Isolate some explicit usage of task->tgid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / pid.c
CommitLineData
1da177e4
LT
1/*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
30e49c26
PE
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/init.h>
33#include <linux/bootmem.h>
34#include <linux/hash.h>
61a58c6c 35#include <linux/pid_namespace.h>
820e45db 36#include <linux/init_task.h>
3eb07c8c 37#include <linux/syscalls.h>
1da177e4 38
8ef047aa
PE
39#define pid_hashfn(nr, ns) \
40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
92476d7f 41static struct hlist_head *pid_hash;
1da177e4 42static int pidhash_shift;
820e45db 43struct pid init_struct_pid = INIT_STRUCT_PID;
c9c5d922 44static struct kmem_cache *pid_ns_cachep;
1da177e4
LT
45
46int pid_max = PID_MAX_DEFAULT;
1da177e4
LT
47
48#define RESERVED_PIDS 300
49
50int pid_max_min = RESERVED_PIDS + 1;
51int pid_max_max = PID_MAX_LIMIT;
52
1da177e4
LT
53#define BITS_PER_PAGE (PAGE_SIZE*8)
54#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
3fbc9648 55
61a58c6c
SB
56static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
3fbc9648 58{
61a58c6c 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
3fbc9648
SB
60}
61
1da177e4
LT
62#define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
65/*
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
70 */
61a58c6c 71struct pid_namespace init_pid_ns = {
9a575a92
CLG
72 .kref = {
73 .refcount = ATOMIC_INIT(2),
74 },
3fbc9648
SB
75 .pidmap = {
76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 },
84d73786 78 .last_pid = 0,
faacbfd3
PE
79 .level = 0,
80 .child_reaper = &init_task,
3fbc9648 81};
198fe21b 82EXPORT_SYMBOL_GPL(init_pid_ns);
1da177e4 83
b461cc03 84int is_container_init(struct task_struct *tsk)
b460cbc5 85{
b461cc03
PE
86 int ret = 0;
87 struct pid *pid;
88
89 rcu_read_lock();
90 pid = task_pid(tsk);
91 if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 ret = 1;
93 rcu_read_unlock();
94
95 return ret;
b460cbc5 96}
b461cc03 97EXPORT_SYMBOL(is_container_init);
b460cbc5 98
92476d7f
EB
99/*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
3fbc9648 112
1da177e4
LT
113static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
61a58c6c 115static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
1da177e4 116{
61a58c6c 117 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
1da177e4
LT
118 int offset = pid & BITS_PER_PAGE_MASK;
119
120 clear_bit(offset, map->page);
121 atomic_inc(&map->nr_free);
122}
123
61a58c6c 124static int alloc_pidmap(struct pid_namespace *pid_ns)
1da177e4 125{
61a58c6c 126 int i, offset, max_scan, pid, last = pid_ns->last_pid;
6a1f3b84 127 struct pidmap *map;
1da177e4
LT
128
129 pid = last + 1;
130 if (pid >= pid_max)
131 pid = RESERVED_PIDS;
132 offset = pid & BITS_PER_PAGE_MASK;
61a58c6c 133 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
1da177e4
LT
134 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
135 for (i = 0; i <= max_scan; ++i) {
136 if (unlikely(!map->page)) {
3fbc9648 137 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1da177e4
LT
138 /*
139 * Free the page if someone raced with us
140 * installing it:
141 */
92476d7f 142 spin_lock_irq(&pidmap_lock);
1da177e4 143 if (map->page)
3fbc9648 144 kfree(page);
1da177e4 145 else
3fbc9648 146 map->page = page;
92476d7f 147 spin_unlock_irq(&pidmap_lock);
1da177e4
LT
148 if (unlikely(!map->page))
149 break;
150 }
151 if (likely(atomic_read(&map->nr_free))) {
152 do {
153 if (!test_and_set_bit(offset, map->page)) {
154 atomic_dec(&map->nr_free);
61a58c6c 155 pid_ns->last_pid = pid;
1da177e4
LT
156 return pid;
157 }
158 offset = find_next_offset(map, offset);
61a58c6c 159 pid = mk_pid(pid_ns, map, offset);
1da177e4
LT
160 /*
161 * find_next_offset() found a bit, the pid from it
162 * is in-bounds, and if we fell back to the last
163 * bitmap block and the final block was the same
164 * as the starting point, pid is before last_pid.
165 */
166 } while (offset < BITS_PER_PAGE && pid < pid_max &&
167 (i != max_scan || pid < last ||
168 !((last+1) & BITS_PER_PAGE_MASK)));
169 }
61a58c6c 170 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
1da177e4
LT
171 ++map;
172 offset = 0;
173 } else {
61a58c6c 174 map = &pid_ns->pidmap[0];
1da177e4
LT
175 offset = RESERVED_PIDS;
176 if (unlikely(last == offset))
177 break;
178 }
61a58c6c 179 pid = mk_pid(pid_ns, map, offset);
1da177e4
LT
180 }
181 return -1;
182}
183
61a58c6c 184static int next_pidmap(struct pid_namespace *pid_ns, int last)
0804ef4b
EB
185{
186 int offset;
f40f50d3 187 struct pidmap *map, *end;
0804ef4b
EB
188
189 offset = (last + 1) & BITS_PER_PAGE_MASK;
61a58c6c
SB
190 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
191 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
f40f50d3 192 for (; map < end; map++, offset = 0) {
0804ef4b
EB
193 if (unlikely(!map->page))
194 continue;
195 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
196 if (offset < BITS_PER_PAGE)
61a58c6c 197 return mk_pid(pid_ns, map, offset);
0804ef4b
EB
198 }
199 return -1;
200}
201
92476d7f
EB
202fastcall void put_pid(struct pid *pid)
203{
baf8f0f8
PE
204 struct pid_namespace *ns;
205
92476d7f
EB
206 if (!pid)
207 return;
baf8f0f8 208
8ef047aa 209 ns = pid->numbers[pid->level].ns;
92476d7f 210 if ((atomic_read(&pid->count) == 1) ||
8ef047aa 211 atomic_dec_and_test(&pid->count)) {
baf8f0f8 212 kmem_cache_free(ns->pid_cachep, pid);
b461cc03 213 put_pid_ns(ns);
8ef047aa 214 }
92476d7f 215}
bbf73147 216EXPORT_SYMBOL_GPL(put_pid);
92476d7f
EB
217
218static void delayed_put_pid(struct rcu_head *rhp)
219{
220 struct pid *pid = container_of(rhp, struct pid, rcu);
221 put_pid(pid);
222}
223
224fastcall void free_pid(struct pid *pid)
225{
226 /* We can be called with write_lock_irq(&tasklist_lock) held */
8ef047aa 227 int i;
92476d7f
EB
228 unsigned long flags;
229
230 spin_lock_irqsave(&pidmap_lock, flags);
198fe21b
PE
231 for (i = 0; i <= pid->level; i++)
232 hlist_del_rcu(&pid->numbers[i].pid_chain);
92476d7f
EB
233 spin_unlock_irqrestore(&pidmap_lock, flags);
234
8ef047aa
PE
235 for (i = 0; i <= pid->level; i++)
236 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
237
92476d7f
EB
238 call_rcu(&pid->rcu, delayed_put_pid);
239}
240
8ef047aa 241struct pid *alloc_pid(struct pid_namespace *ns)
92476d7f
EB
242{
243 struct pid *pid;
244 enum pid_type type;
8ef047aa
PE
245 int i, nr;
246 struct pid_namespace *tmp;
198fe21b 247 struct upid *upid;
92476d7f 248
baf8f0f8 249 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
92476d7f
EB
250 if (!pid)
251 goto out;
252
8ef047aa
PE
253 tmp = ns;
254 for (i = ns->level; i >= 0; i--) {
255 nr = alloc_pidmap(tmp);
256 if (nr < 0)
257 goto out_free;
92476d7f 258
8ef047aa
PE
259 pid->numbers[i].nr = nr;
260 pid->numbers[i].ns = tmp;
261 tmp = tmp->parent;
262 }
263
b461cc03 264 get_pid_ns(ns);
8ef047aa 265 pid->level = ns->level;
92476d7f 266 atomic_set(&pid->count, 1);
92476d7f
EB
267 for (type = 0; type < PIDTYPE_MAX; ++type)
268 INIT_HLIST_HEAD(&pid->tasks[type]);
269
270 spin_lock_irq(&pidmap_lock);
198fe21b
PE
271 for (i = ns->level; i >= 0; i--) {
272 upid = &pid->numbers[i];
273 hlist_add_head_rcu(&upid->pid_chain,
274 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
275 }
92476d7f
EB
276 spin_unlock_irq(&pidmap_lock);
277
278out:
279 return pid;
280
281out_free:
8ef047aa
PE
282 for (i++; i <= ns->level; i++)
283 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
284
baf8f0f8 285 kmem_cache_free(ns->pid_cachep, pid);
92476d7f
EB
286 pid = NULL;
287 goto out;
288}
289
198fe21b 290struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
1da177e4
LT
291{
292 struct hlist_node *elem;
198fe21b
PE
293 struct upid *pnr;
294
295 hlist_for_each_entry_rcu(pnr, elem,
296 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
297 if (pnr->nr == nr && pnr->ns == ns)
298 return container_of(pnr, struct pid,
299 numbers[ns->level]);
1da177e4 300
1da177e4
LT
301 return NULL;
302}
198fe21b 303EXPORT_SYMBOL_GPL(find_pid_ns);
1da177e4 304
e713d0da
SB
305/*
306 * attach_pid() must be called with the tasklist_lock write-held.
307 */
308int fastcall attach_pid(struct task_struct *task, enum pid_type type,
309 struct pid *pid)
1da177e4 310{
92476d7f 311 struct pid_link *link;
92476d7f 312
92476d7f 313 link = &task->pids[type];
e713d0da 314 link->pid = pid;
92476d7f 315 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
1da177e4
LT
316
317 return 0;
318}
319
36c8b586 320void fastcall detach_pid(struct task_struct *task, enum pid_type type)
1da177e4 321{
92476d7f
EB
322 struct pid_link *link;
323 struct pid *pid;
324 int tmp;
1da177e4 325
92476d7f
EB
326 link = &task->pids[type];
327 pid = link->pid;
1da177e4 328
92476d7f
EB
329 hlist_del_rcu(&link->node);
330 link->pid = NULL;
1da177e4 331
92476d7f
EB
332 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
333 if (!hlist_empty(&pid->tasks[tmp]))
334 return;
1da177e4 335
92476d7f 336 free_pid(pid);
1da177e4
LT
337}
338
c18258c6
EB
339/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
340void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
341 enum pid_type type)
342{
343 new->pids[type].pid = old->pids[type].pid;
344 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
345 old->pids[type].pid = NULL;
346}
347
92476d7f 348struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
1da177e4 349{
92476d7f
EB
350 struct task_struct *result = NULL;
351 if (pid) {
352 struct hlist_node *first;
353 first = rcu_dereference(pid->tasks[type].first);
354 if (first)
355 result = hlist_entry(first, struct task_struct, pids[(type)].node);
356 }
357 return result;
358}
1da177e4 359
92476d7f
EB
360/*
361 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
362 */
198fe21b
PE
363struct task_struct *find_task_by_pid_type_ns(int type, int nr,
364 struct pid_namespace *ns)
92476d7f 365{
198fe21b 366 return pid_task(find_pid_ns(nr, ns), type);
92476d7f 367}
1da177e4 368
198fe21b 369EXPORT_SYMBOL(find_task_by_pid_type_ns);
1da177e4 370
228ebcbe
PE
371struct task_struct *find_task_by_pid(pid_t nr)
372{
373 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
374}
375EXPORT_SYMBOL(find_task_by_pid);
376
377struct task_struct *find_task_by_vpid(pid_t vnr)
378{
379 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
380 current->nsproxy->pid_ns);
381}
382EXPORT_SYMBOL(find_task_by_vpid);
383
384struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
385{
386 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
387}
388EXPORT_SYMBOL(find_task_by_pid_ns);
389
1a657f78
ON
390struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
391{
392 struct pid *pid;
393 rcu_read_lock();
394 pid = get_pid(task->pids[type].pid);
395 rcu_read_unlock();
396 return pid;
397}
398
92476d7f
EB
399struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
400{
401 struct task_struct *result;
402 rcu_read_lock();
403 result = pid_task(pid, type);
404 if (result)
405 get_task_struct(result);
406 rcu_read_unlock();
407 return result;
1da177e4
LT
408}
409
92476d7f 410struct pid *find_get_pid(pid_t nr)
1da177e4
LT
411{
412 struct pid *pid;
413
92476d7f 414 rcu_read_lock();
198fe21b 415 pid = get_pid(find_vpid(nr));
92476d7f 416 rcu_read_unlock();
1da177e4 417
92476d7f 418 return pid;
1da177e4
LT
419}
420
7af57294
PE
421pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
422{
423 struct upid *upid;
424 pid_t nr = 0;
425
426 if (pid && ns->level <= pid->level) {
427 upid = &pid->numbers[ns->level];
428 if (upid->ns == ns)
429 nr = upid->nr;
430 }
431 return nr;
432}
433
0804ef4b
EB
434/*
435 * Used by proc to find the first pid that is greater then or equal to nr.
436 *
437 * If there is a pid at nr this function is exactly the same as find_pid.
438 */
198fe21b 439struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
0804ef4b
EB
440{
441 struct pid *pid;
442
443 do {
198fe21b 444 pid = find_pid_ns(nr, ns);
0804ef4b
EB
445 if (pid)
446 break;
198fe21b 447 nr = next_pidmap(ns, nr);
0804ef4b
EB
448 } while (nr > 0);
449
450 return pid;
451}
bbf73147 452EXPORT_SYMBOL_GPL(find_get_pid);
0804ef4b 453
baf8f0f8
PE
454struct pid_cache {
455 int nr_ids;
456 char name[16];
457 struct kmem_cache *cachep;
458 struct list_head list;
459};
460
461static LIST_HEAD(pid_caches_lh);
462static DEFINE_MUTEX(pid_caches_mutex);
463
464/*
465 * creates the kmem cache to allocate pids from.
466 * @nr_ids: the number of numerical ids this pid will have to carry
467 */
468
469static struct kmem_cache *create_pid_cachep(int nr_ids)
470{
471 struct pid_cache *pcache;
472 struct kmem_cache *cachep;
473
474 mutex_lock(&pid_caches_mutex);
475 list_for_each_entry (pcache, &pid_caches_lh, list)
476 if (pcache->nr_ids == nr_ids)
477 goto out;
478
479 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
480 if (pcache == NULL)
481 goto err_alloc;
482
483 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
484 cachep = kmem_cache_create(pcache->name,
30e49c26
PE
485 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
486 0, SLAB_HWCACHE_ALIGN, NULL);
baf8f0f8
PE
487 if (cachep == NULL)
488 goto err_cachep;
489
490 pcache->nr_ids = nr_ids;
491 pcache->cachep = cachep;
492 list_add(&pcache->list, &pid_caches_lh);
493out:
494 mutex_unlock(&pid_caches_mutex);
495 return pcache->cachep;
496
497err_cachep:
498 kfree(pcache);
499err_alloc:
500 mutex_unlock(&pid_caches_mutex);
501 return NULL;
502}
503
30e49c26
PE
504static struct pid_namespace *create_pid_namespace(int level)
505{
506 struct pid_namespace *ns;
507 int i;
508
c9c5d922 509 ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
30e49c26
PE
510 if (ns == NULL)
511 goto out;
512
513 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
514 if (!ns->pidmap[0].page)
515 goto out_free;
516
517 ns->pid_cachep = create_pid_cachep(level + 1);
518 if (ns->pid_cachep == NULL)
519 goto out_free_map;
520
521 kref_init(&ns->kref);
522 ns->last_pid = 0;
523 ns->child_reaper = NULL;
524 ns->level = level;
525
526 set_bit(0, ns->pidmap[0].page);
527 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
528
529 for (i = 1; i < PIDMAP_ENTRIES; i++) {
530 ns->pidmap[i].page = 0;
531 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
532 }
533
534 return ns;
535
536out_free_map:
537 kfree(ns->pidmap[0].page);
538out_free:
c9c5d922 539 kmem_cache_free(pid_ns_cachep, ns);
30e49c26
PE
540out:
541 return ERR_PTR(-ENOMEM);
542}
543
544static void destroy_pid_namespace(struct pid_namespace *ns)
545{
546 int i;
547
548 for (i = 0; i < PIDMAP_ENTRIES; i++)
549 kfree(ns->pidmap[i].page);
c9c5d922 550 kmem_cache_free(pid_ns_cachep, ns);
30e49c26
PE
551}
552
213dd266 553struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
9a575a92 554{
30e49c26
PE
555 struct pid_namespace *new_ns;
556
e3222c4e 557 BUG_ON(!old_ns);
30e49c26
PE
558 new_ns = get_pid_ns(old_ns);
559 if (!(flags & CLONE_NEWPID))
560 goto out;
561
562 new_ns = ERR_PTR(-EINVAL);
563 if (flags & CLONE_THREAD)
564 goto out_put;
565
566 new_ns = create_pid_namespace(old_ns->level + 1);
567 if (!IS_ERR(new_ns))
568 new_ns->parent = get_pid_ns(old_ns);
569
570out_put:
571 put_pid_ns(old_ns);
572out:
573 return new_ns;
9a575a92
CLG
574}
575
576void free_pid_ns(struct kref *kref)
577{
30e49c26 578 struct pid_namespace *ns, *parent;
9a575a92
CLG
579
580 ns = container_of(kref, struct pid_namespace, kref);
30e49c26
PE
581
582 parent = ns->parent;
583 destroy_pid_namespace(ns);
584
585 if (parent != NULL)
586 put_pid_ns(parent);
9a575a92
CLG
587}
588
3eb07c8c
SB
589void zap_pid_ns_processes(struct pid_namespace *pid_ns)
590{
591 int nr;
592 int rc;
593
594 /*
595 * The last thread in the cgroup-init thread group is terminating.
596 * Find remaining pid_ts in the namespace, signal and wait for them
597 * to exit.
598 *
599 * Note: This signals each threads in the namespace - even those that
600 * belong to the same thread group, To avoid this, we would have
601 * to walk the entire tasklist looking a processes in this
602 * namespace, but that could be unnecessarily expensive if the
603 * pid namespace has just a few processes. Or we need to
604 * maintain a tasklist for each pid namespace.
605 *
606 */
607 read_lock(&tasklist_lock);
608 nr = next_pidmap(pid_ns, 1);
609 while (nr > 0) {
610 kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
611 nr = next_pidmap(pid_ns, nr);
612 }
613 read_unlock(&tasklist_lock);
614
615 do {
616 clear_thread_flag(TIF_SIGPENDING);
617 rc = sys_wait4(-1, NULL, __WALL, NULL);
618 } while (rc != -ECHILD);
619
620
621 /* Child reaper for the pid namespace is going away */
622 pid_ns->child_reaper = NULL;
623 return;
624}
625
1da177e4
LT
626/*
627 * The pid hash table is scaled according to the amount of memory in the
628 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
629 * more.
630 */
631void __init pidhash_init(void)
632{
92476d7f 633 int i, pidhash_size;
1da177e4
LT
634 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
635
636 pidhash_shift = max(4, fls(megabytes * 4));
637 pidhash_shift = min(12, pidhash_shift);
638 pidhash_size = 1 << pidhash_shift;
639
640 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
641 pidhash_size, pidhash_shift,
92476d7f
EB
642 pidhash_size * sizeof(struct hlist_head));
643
644 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
645 if (!pid_hash)
646 panic("Could not alloc pidhash!\n");
647 for (i = 0; i < pidhash_size; i++)
648 INIT_HLIST_HEAD(&pid_hash[i]);
1da177e4
LT
649}
650
651void __init pidmap_init(void)
652{
61a58c6c 653 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
73b9ebfe 654 /* Reserve PID 0. We never call free_pidmap(0) */
61a58c6c
SB
655 set_bit(0, init_pid_ns.pidmap[0].page);
656 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
92476d7f 657
baf8f0f8
PE
658 init_pid_ns.pid_cachep = create_pid_cachep(1);
659 if (init_pid_ns.pid_cachep == NULL)
660 panic("Can't create pid_1 cachep\n");
c9c5d922
SB
661
662 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
1da177e4 663}