binfmt_flat: warning fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
c59ede7b 9#include <linux/capability.h>
dc009d92
EB
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
15#include <linux/spinlock.h>
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
dc009d92 20#include <linux/ioport.h>
6e274d14 21#include <linux/hardirq.h>
85916f81
MD
22#include <linux/elf.h>
23#include <linux/elfcore.h>
6e274d14 24
dc009d92
EB
25#include <asm/page.h>
26#include <asm/uaccess.h>
27#include <asm/io.h>
28#include <asm/system.h>
29#include <asm/semaphore.h>
30
cc571658
VG
31/* Per cpu memory for storing cpu states in case of system crash. */
32note_buf_t* crash_notes;
33
dc009d92
EB
34/* Location of the reserved area for the crash kernel */
35struct resource crashk_res = {
36 .name = "Crash kernel",
37 .start = 0,
38 .end = 0,
39 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
40};
41
6e274d14
AN
42int kexec_should_crash(struct task_struct *p)
43{
f400e198 44 if (in_interrupt() || !p->pid || is_init(p) || panic_on_oops)
6e274d14
AN
45 return 1;
46 return 0;
47}
48
dc009d92
EB
49/*
50 * When kexec transitions to the new kernel there is a one-to-one
51 * mapping between physical and virtual addresses. On processors
52 * where you can disable the MMU this is trivial, and easy. For
53 * others it is still a simple predictable page table to setup.
54 *
55 * In that environment kexec copies the new kernel to its final
56 * resting place. This means I can only support memory whose
57 * physical address can fit in an unsigned long. In particular
58 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
59 * If the assembly stub has more restrictive requirements
60 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
61 * defined more restrictively in <asm/kexec.h>.
62 *
63 * The code for the transition from the current kernel to the
64 * the new kernel is placed in the control_code_buffer, whose size
65 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
66 * page of memory is necessary, but some architectures require more.
67 * Because this memory must be identity mapped in the transition from
68 * virtual to physical addresses it must live in the range
69 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
70 * modifiable.
71 *
72 * The assembly stub in the control code buffer is passed a linked list
73 * of descriptor pages detailing the source pages of the new kernel,
74 * and the destination addresses of those source pages. As this data
75 * structure is not used in the context of the current OS, it must
76 * be self-contained.
77 *
78 * The code has been made to work with highmem pages and will use a
79 * destination page in its final resting place (if it happens
80 * to allocate it). The end product of this is that most of the
81 * physical address space, and most of RAM can be used.
82 *
83 * Future directions include:
84 * - allocating a page table with the control code buffer identity
85 * mapped, to simplify machine_kexec and make kexec_on_panic more
86 * reliable.
87 */
88
89/*
90 * KIMAGE_NO_DEST is an impossible destination address..., for
91 * allocating pages whose destination address we do not care about.
92 */
93#define KIMAGE_NO_DEST (-1UL)
94
72414d3f
MS
95static int kimage_is_destination_range(struct kimage *image,
96 unsigned long start, unsigned long end);
97static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 98 gfp_t gfp_mask,
72414d3f 99 unsigned long dest);
dc009d92
EB
100
101static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
102 unsigned long nr_segments,
103 struct kexec_segment __user *segments)
dc009d92
EB
104{
105 size_t segment_bytes;
106 struct kimage *image;
107 unsigned long i;
108 int result;
109
110 /* Allocate a controlling structure */
111 result = -ENOMEM;
4668edc3 112 image = kzalloc(sizeof(*image), GFP_KERNEL);
72414d3f 113 if (!image)
dc009d92 114 goto out;
72414d3f 115
dc009d92
EB
116 image->head = 0;
117 image->entry = &image->head;
118 image->last_entry = &image->head;
119 image->control_page = ~0; /* By default this does not apply */
120 image->start = entry;
121 image->type = KEXEC_TYPE_DEFAULT;
122
123 /* Initialize the list of control pages */
124 INIT_LIST_HEAD(&image->control_pages);
125
126 /* Initialize the list of destination pages */
127 INIT_LIST_HEAD(&image->dest_pages);
128
129 /* Initialize the list of unuseable pages */
130 INIT_LIST_HEAD(&image->unuseable_pages);
131
132 /* Read in the segments */
133 image->nr_segments = nr_segments;
134 segment_bytes = nr_segments * sizeof(*segments);
135 result = copy_from_user(image->segment, segments, segment_bytes);
136 if (result)
137 goto out;
138
139 /*
140 * Verify we have good destination addresses. The caller is
141 * responsible for making certain we don't attempt to load
142 * the new image into invalid or reserved areas of RAM. This
143 * just verifies it is an address we can use.
144 *
145 * Since the kernel does everything in page size chunks ensure
146 * the destination addreses are page aligned. Too many
147 * special cases crop of when we don't do this. The most
148 * insidious is getting overlapping destination addresses
149 * simply because addresses are changed to page size
150 * granularity.
151 */
152 result = -EADDRNOTAVAIL;
153 for (i = 0; i < nr_segments; i++) {
154 unsigned long mstart, mend;
72414d3f 155
dc009d92
EB
156 mstart = image->segment[i].mem;
157 mend = mstart + image->segment[i].memsz;
158 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
159 goto out;
160 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
161 goto out;
162 }
163
164 /* Verify our destination addresses do not overlap.
165 * If we alloed overlapping destination addresses
166 * through very weird things can happen with no
167 * easy explanation as one segment stops on another.
168 */
169 result = -EINVAL;
72414d3f 170 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
171 unsigned long mstart, mend;
172 unsigned long j;
72414d3f 173
dc009d92
EB
174 mstart = image->segment[i].mem;
175 mend = mstart + image->segment[i].memsz;
72414d3f 176 for (j = 0; j < i; j++) {
dc009d92
EB
177 unsigned long pstart, pend;
178 pstart = image->segment[j].mem;
179 pend = pstart + image->segment[j].memsz;
180 /* Do the segments overlap ? */
181 if ((mend > pstart) && (mstart < pend))
182 goto out;
183 }
184 }
185
186 /* Ensure our buffer sizes are strictly less than
187 * our memory sizes. This should always be the case,
188 * and it is easier to check up front than to be surprised
189 * later on.
190 */
191 result = -EINVAL;
72414d3f 192 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
193 if (image->segment[i].bufsz > image->segment[i].memsz)
194 goto out;
195 }
196
dc009d92 197 result = 0;
72414d3f
MS
198out:
199 if (result == 0)
dc009d92 200 *rimage = image;
72414d3f 201 else
dc009d92 202 kfree(image);
72414d3f 203
dc009d92
EB
204 return result;
205
206}
207
208static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
209 unsigned long nr_segments,
210 struct kexec_segment __user *segments)
dc009d92
EB
211{
212 int result;
213 struct kimage *image;
214
215 /* Allocate and initialize a controlling structure */
216 image = NULL;
217 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 218 if (result)
dc009d92 219 goto out;
72414d3f 220
dc009d92
EB
221 *rimage = image;
222
223 /*
224 * Find a location for the control code buffer, and add it
225 * the vector of segments so that it's pages will also be
226 * counted as destination pages.
227 */
228 result = -ENOMEM;
229 image->control_code_page = kimage_alloc_control_pages(image,
72414d3f 230 get_order(KEXEC_CONTROL_CODE_SIZE));
dc009d92
EB
231 if (!image->control_code_page) {
232 printk(KERN_ERR "Could not allocate control_code_buffer\n");
233 goto out;
234 }
235
236 result = 0;
237 out:
72414d3f 238 if (result == 0)
dc009d92 239 *rimage = image;
72414d3f 240 else
dc009d92 241 kfree(image);
72414d3f 242
dc009d92
EB
243 return result;
244}
245
246static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
72414d3f 247 unsigned long nr_segments,
314b6a4d 248 struct kexec_segment __user *segments)
dc009d92
EB
249{
250 int result;
251 struct kimage *image;
252 unsigned long i;
253
254 image = NULL;
255 /* Verify we have a valid entry point */
256 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
257 result = -EADDRNOTAVAIL;
258 goto out;
259 }
260
261 /* Allocate and initialize a controlling structure */
262 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 263 if (result)
dc009d92 264 goto out;
dc009d92
EB
265
266 /* Enable the special crash kernel control page
267 * allocation policy.
268 */
269 image->control_page = crashk_res.start;
270 image->type = KEXEC_TYPE_CRASH;
271
272 /*
273 * Verify we have good destination addresses. Normally
274 * the caller is responsible for making certain we don't
275 * attempt to load the new image into invalid or reserved
276 * areas of RAM. But crash kernels are preloaded into a
277 * reserved area of ram. We must ensure the addresses
278 * are in the reserved area otherwise preloading the
279 * kernel could corrupt things.
280 */
281 result = -EADDRNOTAVAIL;
282 for (i = 0; i < nr_segments; i++) {
283 unsigned long mstart, mend;
72414d3f 284
dc009d92 285 mstart = image->segment[i].mem;
50cccc69 286 mend = mstart + image->segment[i].memsz - 1;
dc009d92
EB
287 /* Ensure we are within the crash kernel limits */
288 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
289 goto out;
290 }
291
dc009d92
EB
292 /*
293 * Find a location for the control code buffer, and add
294 * the vector of segments so that it's pages will also be
295 * counted as destination pages.
296 */
297 result = -ENOMEM;
298 image->control_code_page = kimage_alloc_control_pages(image,
72414d3f 299 get_order(KEXEC_CONTROL_CODE_SIZE));
dc009d92
EB
300 if (!image->control_code_page) {
301 printk(KERN_ERR "Could not allocate control_code_buffer\n");
302 goto out;
303 }
304
305 result = 0;
72414d3f
MS
306out:
307 if (result == 0)
dc009d92 308 *rimage = image;
72414d3f 309 else
dc009d92 310 kfree(image);
72414d3f 311
dc009d92
EB
312 return result;
313}
314
72414d3f
MS
315static int kimage_is_destination_range(struct kimage *image,
316 unsigned long start,
317 unsigned long end)
dc009d92
EB
318{
319 unsigned long i;
320
321 for (i = 0; i < image->nr_segments; i++) {
322 unsigned long mstart, mend;
72414d3f 323
dc009d92 324 mstart = image->segment[i].mem;
72414d3f
MS
325 mend = mstart + image->segment[i].memsz;
326 if ((end > mstart) && (start < mend))
dc009d92 327 return 1;
dc009d92 328 }
72414d3f 329
dc009d92
EB
330 return 0;
331}
332
9796fdd8 333static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
334{
335 struct page *pages;
72414d3f 336
dc009d92
EB
337 pages = alloc_pages(gfp_mask, order);
338 if (pages) {
339 unsigned int count, i;
340 pages->mapping = NULL;
4c21e2f2 341 set_page_private(pages, order);
dc009d92 342 count = 1 << order;
72414d3f 343 for (i = 0; i < count; i++)
dc009d92 344 SetPageReserved(pages + i);
dc009d92 345 }
72414d3f 346
dc009d92
EB
347 return pages;
348}
349
350static void kimage_free_pages(struct page *page)
351{
352 unsigned int order, count, i;
72414d3f 353
4c21e2f2 354 order = page_private(page);
dc009d92 355 count = 1 << order;
72414d3f 356 for (i = 0; i < count; i++)
dc009d92 357 ClearPageReserved(page + i);
dc009d92
EB
358 __free_pages(page, order);
359}
360
361static void kimage_free_page_list(struct list_head *list)
362{
363 struct list_head *pos, *next;
72414d3f 364
dc009d92
EB
365 list_for_each_safe(pos, next, list) {
366 struct page *page;
367
368 page = list_entry(pos, struct page, lru);
369 list_del(&page->lru);
dc009d92
EB
370 kimage_free_pages(page);
371 }
372}
373
72414d3f
MS
374static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
375 unsigned int order)
dc009d92
EB
376{
377 /* Control pages are special, they are the intermediaries
378 * that are needed while we copy the rest of the pages
379 * to their final resting place. As such they must
380 * not conflict with either the destination addresses
381 * or memory the kernel is already using.
382 *
383 * The only case where we really need more than one of
384 * these are for architectures where we cannot disable
385 * the MMU and must instead generate an identity mapped
386 * page table for all of the memory.
387 *
388 * At worst this runs in O(N) of the image size.
389 */
390 struct list_head extra_pages;
391 struct page *pages;
392 unsigned int count;
393
394 count = 1 << order;
395 INIT_LIST_HEAD(&extra_pages);
396
397 /* Loop while I can allocate a page and the page allocated
398 * is a destination page.
399 */
400 do {
401 unsigned long pfn, epfn, addr, eaddr;
72414d3f 402
dc009d92
EB
403 pages = kimage_alloc_pages(GFP_KERNEL, order);
404 if (!pages)
405 break;
406 pfn = page_to_pfn(pages);
407 epfn = pfn + count;
408 addr = pfn << PAGE_SHIFT;
409 eaddr = epfn << PAGE_SHIFT;
410 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 411 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
412 list_add(&pages->lru, &extra_pages);
413 pages = NULL;
414 }
72414d3f
MS
415 } while (!pages);
416
dc009d92
EB
417 if (pages) {
418 /* Remember the allocated page... */
419 list_add(&pages->lru, &image->control_pages);
420
421 /* Because the page is already in it's destination
422 * location we will never allocate another page at
423 * that address. Therefore kimage_alloc_pages
424 * will not return it (again) and we don't need
425 * to give it an entry in image->segment[].
426 */
427 }
428 /* Deal with the destination pages I have inadvertently allocated.
429 *
430 * Ideally I would convert multi-page allocations into single
431 * page allocations, and add everyting to image->dest_pages.
432 *
433 * For now it is simpler to just free the pages.
434 */
435 kimage_free_page_list(&extra_pages);
dc009d92 436
72414d3f 437 return pages;
dc009d92
EB
438}
439
72414d3f
MS
440static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
441 unsigned int order)
dc009d92
EB
442{
443 /* Control pages are special, they are the intermediaries
444 * that are needed while we copy the rest of the pages
445 * to their final resting place. As such they must
446 * not conflict with either the destination addresses
447 * or memory the kernel is already using.
448 *
449 * Control pages are also the only pags we must allocate
450 * when loading a crash kernel. All of the other pages
451 * are specified by the segments and we just memcpy
452 * into them directly.
453 *
454 * The only case where we really need more than one of
455 * these are for architectures where we cannot disable
456 * the MMU and must instead generate an identity mapped
457 * page table for all of the memory.
458 *
459 * Given the low demand this implements a very simple
460 * allocator that finds the first hole of the appropriate
461 * size in the reserved memory region, and allocates all
462 * of the memory up to and including the hole.
463 */
464 unsigned long hole_start, hole_end, size;
465 struct page *pages;
72414d3f 466
dc009d92
EB
467 pages = NULL;
468 size = (1 << order) << PAGE_SHIFT;
469 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
470 hole_end = hole_start + size - 1;
72414d3f 471 while (hole_end <= crashk_res.end) {
dc009d92 472 unsigned long i;
72414d3f
MS
473
474 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
dc009d92 475 break;
72414d3f 476 if (hole_end > crashk_res.end)
dc009d92 477 break;
dc009d92 478 /* See if I overlap any of the segments */
72414d3f 479 for (i = 0; i < image->nr_segments; i++) {
dc009d92 480 unsigned long mstart, mend;
72414d3f 481
dc009d92
EB
482 mstart = image->segment[i].mem;
483 mend = mstart + image->segment[i].memsz - 1;
484 if ((hole_end >= mstart) && (hole_start <= mend)) {
485 /* Advance the hole to the end of the segment */
486 hole_start = (mend + (size - 1)) & ~(size - 1);
487 hole_end = hole_start + size - 1;
488 break;
489 }
490 }
491 /* If I don't overlap any segments I have found my hole! */
492 if (i == image->nr_segments) {
493 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
494 break;
495 }
496 }
72414d3f 497 if (pages)
dc009d92 498 image->control_page = hole_end;
72414d3f 499
dc009d92
EB
500 return pages;
501}
502
503
72414d3f
MS
504struct page *kimage_alloc_control_pages(struct kimage *image,
505 unsigned int order)
dc009d92
EB
506{
507 struct page *pages = NULL;
72414d3f
MS
508
509 switch (image->type) {
dc009d92
EB
510 case KEXEC_TYPE_DEFAULT:
511 pages = kimage_alloc_normal_control_pages(image, order);
512 break;
513 case KEXEC_TYPE_CRASH:
514 pages = kimage_alloc_crash_control_pages(image, order);
515 break;
516 }
72414d3f 517
dc009d92
EB
518 return pages;
519}
520
521static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
522{
72414d3f 523 if (*image->entry != 0)
dc009d92 524 image->entry++;
72414d3f 525
dc009d92
EB
526 if (image->entry == image->last_entry) {
527 kimage_entry_t *ind_page;
528 struct page *page;
72414d3f 529
dc009d92 530 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 531 if (!page)
dc009d92 532 return -ENOMEM;
72414d3f 533
dc009d92
EB
534 ind_page = page_address(page);
535 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
536 image->entry = ind_page;
72414d3f
MS
537 image->last_entry = ind_page +
538 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
539 }
540 *image->entry = entry;
541 image->entry++;
542 *image->entry = 0;
72414d3f 543
dc009d92
EB
544 return 0;
545}
546
72414d3f
MS
547static int kimage_set_destination(struct kimage *image,
548 unsigned long destination)
dc009d92
EB
549{
550 int result;
551
552 destination &= PAGE_MASK;
553 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 554 if (result == 0)
dc009d92 555 image->destination = destination;
72414d3f 556
dc009d92
EB
557 return result;
558}
559
560
561static int kimage_add_page(struct kimage *image, unsigned long page)
562{
563 int result;
564
565 page &= PAGE_MASK;
566 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 567 if (result == 0)
dc009d92 568 image->destination += PAGE_SIZE;
72414d3f 569
dc009d92
EB
570 return result;
571}
572
573
574static void kimage_free_extra_pages(struct kimage *image)
575{
576 /* Walk through and free any extra destination pages I may have */
577 kimage_free_page_list(&image->dest_pages);
578
579 /* Walk through and free any unuseable pages I have cached */
580 kimage_free_page_list(&image->unuseable_pages);
581
582}
583static int kimage_terminate(struct kimage *image)
584{
72414d3f 585 if (*image->entry != 0)
dc009d92 586 image->entry++;
72414d3f 587
dc009d92 588 *image->entry = IND_DONE;
72414d3f 589
dc009d92
EB
590 return 0;
591}
592
593#define for_each_kimage_entry(image, ptr, entry) \
594 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
595 ptr = (entry & IND_INDIRECTION)? \
596 phys_to_virt((entry & PAGE_MASK)): ptr +1)
597
598static void kimage_free_entry(kimage_entry_t entry)
599{
600 struct page *page;
601
602 page = pfn_to_page(entry >> PAGE_SHIFT);
603 kimage_free_pages(page);
604}
605
606static void kimage_free(struct kimage *image)
607{
608 kimage_entry_t *ptr, entry;
609 kimage_entry_t ind = 0;
610
611 if (!image)
612 return;
72414d3f 613
dc009d92
EB
614 kimage_free_extra_pages(image);
615 for_each_kimage_entry(image, ptr, entry) {
616 if (entry & IND_INDIRECTION) {
617 /* Free the previous indirection page */
72414d3f 618 if (ind & IND_INDIRECTION)
dc009d92 619 kimage_free_entry(ind);
dc009d92
EB
620 /* Save this indirection page until we are
621 * done with it.
622 */
623 ind = entry;
624 }
72414d3f 625 else if (entry & IND_SOURCE)
dc009d92 626 kimage_free_entry(entry);
dc009d92
EB
627 }
628 /* Free the final indirection page */
72414d3f 629 if (ind & IND_INDIRECTION)
dc009d92 630 kimage_free_entry(ind);
dc009d92
EB
631
632 /* Handle any machine specific cleanup */
633 machine_kexec_cleanup(image);
634
635 /* Free the kexec control pages... */
636 kimage_free_page_list(&image->control_pages);
637 kfree(image);
638}
639
72414d3f
MS
640static kimage_entry_t *kimage_dst_used(struct kimage *image,
641 unsigned long page)
dc009d92
EB
642{
643 kimage_entry_t *ptr, entry;
644 unsigned long destination = 0;
645
646 for_each_kimage_entry(image, ptr, entry) {
72414d3f 647 if (entry & IND_DESTINATION)
dc009d92 648 destination = entry & PAGE_MASK;
dc009d92 649 else if (entry & IND_SOURCE) {
72414d3f 650 if (page == destination)
dc009d92 651 return ptr;
dc009d92
EB
652 destination += PAGE_SIZE;
653 }
654 }
72414d3f 655
314b6a4d 656 return NULL;
dc009d92
EB
657}
658
72414d3f 659static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 660 gfp_t gfp_mask,
72414d3f 661 unsigned long destination)
dc009d92
EB
662{
663 /*
664 * Here we implement safeguards to ensure that a source page
665 * is not copied to its destination page before the data on
666 * the destination page is no longer useful.
667 *
668 * To do this we maintain the invariant that a source page is
669 * either its own destination page, or it is not a
670 * destination page at all.
671 *
672 * That is slightly stronger than required, but the proof
673 * that no problems will not occur is trivial, and the
674 * implementation is simply to verify.
675 *
676 * When allocating all pages normally this algorithm will run
677 * in O(N) time, but in the worst case it will run in O(N^2)
678 * time. If the runtime is a problem the data structures can
679 * be fixed.
680 */
681 struct page *page;
682 unsigned long addr;
683
684 /*
685 * Walk through the list of destination pages, and see if I
686 * have a match.
687 */
688 list_for_each_entry(page, &image->dest_pages, lru) {
689 addr = page_to_pfn(page) << PAGE_SHIFT;
690 if (addr == destination) {
691 list_del(&page->lru);
692 return page;
693 }
694 }
695 page = NULL;
696 while (1) {
697 kimage_entry_t *old;
698
699 /* Allocate a page, if we run out of memory give up */
700 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 701 if (!page)
314b6a4d 702 return NULL;
dc009d92 703 /* If the page cannot be used file it away */
72414d3f
MS
704 if (page_to_pfn(page) >
705 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
dc009d92
EB
706 list_add(&page->lru, &image->unuseable_pages);
707 continue;
708 }
709 addr = page_to_pfn(page) << PAGE_SHIFT;
710
711 /* If it is the destination page we want use it */
712 if (addr == destination)
713 break;
714
715 /* If the page is not a destination page use it */
72414d3f
MS
716 if (!kimage_is_destination_range(image, addr,
717 addr + PAGE_SIZE))
dc009d92
EB
718 break;
719
720 /*
721 * I know that the page is someones destination page.
722 * See if there is already a source page for this
723 * destination page. And if so swap the source pages.
724 */
725 old = kimage_dst_used(image, addr);
726 if (old) {
727 /* If so move it */
728 unsigned long old_addr;
729 struct page *old_page;
730
731 old_addr = *old & PAGE_MASK;
732 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
733 copy_highpage(page, old_page);
734 *old = addr | (*old & ~PAGE_MASK);
735
736 /* The old page I have found cannot be a
737 * destination page, so return it.
738 */
739 addr = old_addr;
740 page = old_page;
741 break;
742 }
743 else {
744 /* Place the page on the destination list I
745 * will use it later.
746 */
747 list_add(&page->lru, &image->dest_pages);
748 }
749 }
72414d3f 750
dc009d92
EB
751 return page;
752}
753
754static int kimage_load_normal_segment(struct kimage *image,
72414d3f 755 struct kexec_segment *segment)
dc009d92
EB
756{
757 unsigned long maddr;
758 unsigned long ubytes, mbytes;
759 int result;
314b6a4d 760 unsigned char __user *buf;
dc009d92
EB
761
762 result = 0;
763 buf = segment->buf;
764 ubytes = segment->bufsz;
765 mbytes = segment->memsz;
766 maddr = segment->mem;
767
768 result = kimage_set_destination(image, maddr);
72414d3f 769 if (result < 0)
dc009d92 770 goto out;
72414d3f
MS
771
772 while (mbytes) {
dc009d92
EB
773 struct page *page;
774 char *ptr;
775 size_t uchunk, mchunk;
72414d3f 776
dc009d92
EB
777 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
778 if (page == 0) {
779 result = -ENOMEM;
780 goto out;
781 }
72414d3f
MS
782 result = kimage_add_page(image, page_to_pfn(page)
783 << PAGE_SHIFT);
784 if (result < 0)
dc009d92 785 goto out;
72414d3f 786
dc009d92
EB
787 ptr = kmap(page);
788 /* Start with a clear page */
789 memset(ptr, 0, PAGE_SIZE);
790 ptr += maddr & ~PAGE_MASK;
791 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 792 if (mchunk > mbytes)
dc009d92 793 mchunk = mbytes;
72414d3f 794
dc009d92 795 uchunk = mchunk;
72414d3f 796 if (uchunk > ubytes)
dc009d92 797 uchunk = ubytes;
72414d3f 798
dc009d92
EB
799 result = copy_from_user(ptr, buf, uchunk);
800 kunmap(page);
801 if (result) {
802 result = (result < 0) ? result : -EIO;
803 goto out;
804 }
805 ubytes -= uchunk;
806 maddr += mchunk;
807 buf += mchunk;
808 mbytes -= mchunk;
809 }
72414d3f 810out:
dc009d92
EB
811 return result;
812}
813
814static int kimage_load_crash_segment(struct kimage *image,
72414d3f 815 struct kexec_segment *segment)
dc009d92
EB
816{
817 /* For crash dumps kernels we simply copy the data from
818 * user space to it's destination.
819 * We do things a page at a time for the sake of kmap.
820 */
821 unsigned long maddr;
822 unsigned long ubytes, mbytes;
823 int result;
314b6a4d 824 unsigned char __user *buf;
dc009d92
EB
825
826 result = 0;
827 buf = segment->buf;
828 ubytes = segment->bufsz;
829 mbytes = segment->memsz;
830 maddr = segment->mem;
72414d3f 831 while (mbytes) {
dc009d92
EB
832 struct page *page;
833 char *ptr;
834 size_t uchunk, mchunk;
72414d3f 835
dc009d92
EB
836 page = pfn_to_page(maddr >> PAGE_SHIFT);
837 if (page == 0) {
838 result = -ENOMEM;
839 goto out;
840 }
841 ptr = kmap(page);
842 ptr += maddr & ~PAGE_MASK;
843 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 844 if (mchunk > mbytes)
dc009d92 845 mchunk = mbytes;
72414d3f 846
dc009d92
EB
847 uchunk = mchunk;
848 if (uchunk > ubytes) {
849 uchunk = ubytes;
850 /* Zero the trailing part of the page */
851 memset(ptr + uchunk, 0, mchunk - uchunk);
852 }
853 result = copy_from_user(ptr, buf, uchunk);
a7956113 854 kexec_flush_icache_page(page);
dc009d92
EB
855 kunmap(page);
856 if (result) {
857 result = (result < 0) ? result : -EIO;
858 goto out;
859 }
860 ubytes -= uchunk;
861 maddr += mchunk;
862 buf += mchunk;
863 mbytes -= mchunk;
864 }
72414d3f 865out:
dc009d92
EB
866 return result;
867}
868
869static int kimage_load_segment(struct kimage *image,
72414d3f 870 struct kexec_segment *segment)
dc009d92
EB
871{
872 int result = -ENOMEM;
72414d3f
MS
873
874 switch (image->type) {
dc009d92
EB
875 case KEXEC_TYPE_DEFAULT:
876 result = kimage_load_normal_segment(image, segment);
877 break;
878 case KEXEC_TYPE_CRASH:
879 result = kimage_load_crash_segment(image, segment);
880 break;
881 }
72414d3f 882
dc009d92
EB
883 return result;
884}
885
886/*
887 * Exec Kernel system call: for obvious reasons only root may call it.
888 *
889 * This call breaks up into three pieces.
890 * - A generic part which loads the new kernel from the current
891 * address space, and very carefully places the data in the
892 * allocated pages.
893 *
894 * - A generic part that interacts with the kernel and tells all of
895 * the devices to shut down. Preventing on-going dmas, and placing
896 * the devices in a consistent state so a later kernel can
897 * reinitialize them.
898 *
899 * - A machine specific part that includes the syscall number
900 * and the copies the image to it's final destination. And
901 * jumps into the image at entry.
902 *
903 * kexec does not sync, or unmount filesystems so if you need
904 * that to happen you need to do that yourself.
905 */
c330dda9
JM
906struct kimage *kexec_image;
907struct kimage *kexec_crash_image;
dc009d92
EB
908/*
909 * A home grown binary mutex.
910 * Nothing can wait so this mutex is safe to use
911 * in interrupt context :)
912 */
c330dda9 913static int kexec_lock;
dc009d92 914
72414d3f
MS
915asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
916 struct kexec_segment __user *segments,
917 unsigned long flags)
dc009d92
EB
918{
919 struct kimage **dest_image, *image;
920 int locked;
921 int result;
922
923 /* We only trust the superuser with rebooting the system. */
924 if (!capable(CAP_SYS_BOOT))
925 return -EPERM;
926
927 /*
928 * Verify we have a legal set of flags
929 * This leaves us room for future extensions.
930 */
931 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
932 return -EINVAL;
933
934 /* Verify we are on the appropriate architecture */
935 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
936 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 937 return -EINVAL;
dc009d92
EB
938
939 /* Put an artificial cap on the number
940 * of segments passed to kexec_load.
941 */
942 if (nr_segments > KEXEC_SEGMENT_MAX)
943 return -EINVAL;
944
945 image = NULL;
946 result = 0;
947
948 /* Because we write directly to the reserved memory
949 * region when loading crash kernels we need a mutex here to
950 * prevent multiple crash kernels from attempting to load
951 * simultaneously, and to prevent a crash kernel from loading
952 * over the top of a in use crash kernel.
953 *
954 * KISS: always take the mutex.
955 */
956 locked = xchg(&kexec_lock, 1);
72414d3f 957 if (locked)
dc009d92 958 return -EBUSY;
72414d3f 959
dc009d92 960 dest_image = &kexec_image;
72414d3f 961 if (flags & KEXEC_ON_CRASH)
dc009d92 962 dest_image = &kexec_crash_image;
dc009d92
EB
963 if (nr_segments > 0) {
964 unsigned long i;
72414d3f 965
dc009d92 966 /* Loading another kernel to reboot into */
72414d3f
MS
967 if ((flags & KEXEC_ON_CRASH) == 0)
968 result = kimage_normal_alloc(&image, entry,
969 nr_segments, segments);
dc009d92
EB
970 /* Loading another kernel to switch to if this one crashes */
971 else if (flags & KEXEC_ON_CRASH) {
972 /* Free any current crash dump kernel before
973 * we corrupt it.
974 */
975 kimage_free(xchg(&kexec_crash_image, NULL));
72414d3f
MS
976 result = kimage_crash_alloc(&image, entry,
977 nr_segments, segments);
dc009d92 978 }
72414d3f 979 if (result)
dc009d92 980 goto out;
72414d3f 981
dc009d92 982 result = machine_kexec_prepare(image);
72414d3f 983 if (result)
dc009d92 984 goto out;
72414d3f
MS
985
986 for (i = 0; i < nr_segments; i++) {
dc009d92 987 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 988 if (result)
dc009d92 989 goto out;
dc009d92
EB
990 }
991 result = kimage_terminate(image);
72414d3f 992 if (result)
dc009d92 993 goto out;
dc009d92
EB
994 }
995 /* Install the new kernel, and Uninstall the old */
996 image = xchg(dest_image, image);
997
72414d3f 998out:
0b4a8a78
RM
999 locked = xchg(&kexec_lock, 0); /* Release the mutex */
1000 BUG_ON(!locked);
dc009d92 1001 kimage_free(image);
72414d3f 1002
dc009d92
EB
1003 return result;
1004}
1005
1006#ifdef CONFIG_COMPAT
1007asmlinkage long compat_sys_kexec_load(unsigned long entry,
72414d3f
MS
1008 unsigned long nr_segments,
1009 struct compat_kexec_segment __user *segments,
1010 unsigned long flags)
dc009d92
EB
1011{
1012 struct compat_kexec_segment in;
1013 struct kexec_segment out, __user *ksegments;
1014 unsigned long i, result;
1015
1016 /* Don't allow clients that don't understand the native
1017 * architecture to do anything.
1018 */
72414d3f 1019 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1020 return -EINVAL;
dc009d92 1021
72414d3f 1022 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1023 return -EINVAL;
dc009d92
EB
1024
1025 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1026 for (i=0; i < nr_segments; i++) {
1027 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1028 if (result)
dc009d92 1029 return -EFAULT;
dc009d92
EB
1030
1031 out.buf = compat_ptr(in.buf);
1032 out.bufsz = in.bufsz;
1033 out.mem = in.mem;
1034 out.memsz = in.memsz;
1035
1036 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1037 if (result)
dc009d92 1038 return -EFAULT;
dc009d92
EB
1039 }
1040
1041 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1042}
1043#endif
1044
6e274d14 1045void crash_kexec(struct pt_regs *regs)
dc009d92 1046{
dc009d92
EB
1047 int locked;
1048
1049
1050 /* Take the kexec_lock here to prevent sys_kexec_load
1051 * running on one cpu from replacing the crash kernel
1052 * we are using after a panic on a different cpu.
1053 *
1054 * If the crash kernel was not located in a fixed area
1055 * of memory the xchg(&kexec_crash_image) would be
1056 * sufficient. But since I reuse the memory...
1057 */
1058 locked = xchg(&kexec_lock, 1);
1059 if (!locked) {
c0ce7d08 1060 if (kexec_crash_image) {
e996e581
VG
1061 struct pt_regs fixed_regs;
1062 crash_setup_regs(&fixed_regs, regs);
1063 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1064 machine_kexec(kexec_crash_image);
dc009d92 1065 }
0b4a8a78
RM
1066 locked = xchg(&kexec_lock, 0);
1067 BUG_ON(!locked);
dc009d92
EB
1068 }
1069}
cc571658 1070
85916f81
MD
1071static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1072 size_t data_len)
1073{
1074 struct elf_note note;
1075
1076 note.n_namesz = strlen(name) + 1;
1077 note.n_descsz = data_len;
1078 note.n_type = type;
1079 memcpy(buf, &note, sizeof(note));
1080 buf += (sizeof(note) + 3)/4;
1081 memcpy(buf, name, note.n_namesz);
1082 buf += (note.n_namesz + 3)/4;
1083 memcpy(buf, data, note.n_descsz);
1084 buf += (note.n_descsz + 3)/4;
1085
1086 return buf;
1087}
1088
1089static void final_note(u32 *buf)
1090{
1091 struct elf_note note;
1092
1093 note.n_namesz = 0;
1094 note.n_descsz = 0;
1095 note.n_type = 0;
1096 memcpy(buf, &note, sizeof(note));
1097}
1098
1099void crash_save_cpu(struct pt_regs *regs, int cpu)
1100{
1101 struct elf_prstatus prstatus;
1102 u32 *buf;
1103
1104 if ((cpu < 0) || (cpu >= NR_CPUS))
1105 return;
1106
1107 /* Using ELF notes here is opportunistic.
1108 * I need a well defined structure format
1109 * for the data I pass, and I need tags
1110 * on the data to indicate what information I have
1111 * squirrelled away. ELF notes happen to provide
1112 * all of that, so there is no need to invent something new.
1113 */
1114 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1115 if (!buf)
1116 return;
1117 memset(&prstatus, 0, sizeof(prstatus));
1118 prstatus.pr_pid = current->pid;
1119 elf_core_copy_regs(&prstatus.pr_reg, regs);
6672f76a
SH
1120 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1121 &prstatus, sizeof(prstatus));
85916f81
MD
1122 final_note(buf);
1123}
1124
cc571658
VG
1125static int __init crash_notes_memory_init(void)
1126{
1127 /* Allocate memory for saving cpu registers. */
1128 crash_notes = alloc_percpu(note_buf_t);
1129 if (!crash_notes) {
1130 printk("Kexec: Memory allocation for saving cpu register"
1131 " states failed\n");
1132 return -ENOMEM;
1133 }
1134 return 0;
1135}
1136module_init(crash_notes_memory_init)