tracing: Have preempt(irqs)off trace preempt disabled functions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
eea08f32 49#include <linux/timer.h>
c0a31329
TG
50
51#include <asm/uaccess.h>
52
c6a2a177
XG
53#include <trace/events/timer.h>
54
c0a31329
TG
55/*
56 * The timer bases:
7978672c 57 *
e06383db
JS
58 * There are more clockids then hrtimer bases. Thus, we index
59 * into the timer bases by the hrtimer_base_type enum. When trying
60 * to reach a base using a clockid, hrtimer_clockid_to_base()
61 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 62 */
54cdfdb4 63DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 64{
3c8aa39d 65
84cc8fd2 66 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 67 .clock_base =
c0a31329 68 {
3c8aa39d 69 {
ab8177bc
TG
70 .index = HRTIMER_BASE_MONOTONIC,
71 .clockid = CLOCK_MONOTONIC,
3c8aa39d 72 .get_time = &ktime_get,
54cdfdb4 73 .resolution = KTIME_LOW_RES,
3c8aa39d 74 },
68fa61c0
TG
75 {
76 .index = HRTIMER_BASE_REALTIME,
77 .clockid = CLOCK_REALTIME,
78 .get_time = &ktime_get_real,
79 .resolution = KTIME_LOW_RES,
80 },
70a08cca 81 {
ab8177bc
TG
82 .index = HRTIMER_BASE_BOOTTIME,
83 .clockid = CLOCK_BOOTTIME,
70a08cca
JS
84 .get_time = &ktime_get_boottime,
85 .resolution = KTIME_LOW_RES,
86 },
90adda98
JS
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
91 .resolution = KTIME_LOW_RES,
92 },
3c8aa39d 93 }
c0a31329
TG
94};
95
942c3c5c 96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 101};
e06383db
JS
102
103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104{
105 return hrtimer_clock_to_base_table[clock_id];
106}
107
108
92127c7a
TG
109/*
110 * Get the coarse grained time at the softirq based on xtime and
111 * wall_to_monotonic.
112 */
3c8aa39d 113static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a 114{
70a08cca 115 ktime_t xtim, mono, boot;
314ac371 116 struct timespec xts, tom, slp;
90adda98 117 s32 tai_offset;
92127c7a 118
314ac371 119 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
90adda98 120 tai_offset = timekeeping_get_tai_offset();
92127c7a 121
f4304ab2 122 xtim = timespec_to_ktime(xts);
70a08cca
JS
123 mono = ktime_add(xtim, timespec_to_ktime(tom));
124 boot = ktime_add(mono, timespec_to_ktime(slp));
e06383db 125 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
70a08cca
JS
126 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
127 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
90adda98
JS
128 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
129 ktime_add(xtim, ktime_set(tai_offset, 0));
92127c7a
TG
130}
131
c0a31329
TG
132/*
133 * Functions and macros which are different for UP/SMP systems are kept in a
134 * single place
135 */
136#ifdef CONFIG_SMP
137
c0a31329
TG
138/*
139 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
140 * means that all timers which are tied to this base via timer->base are
141 * locked, and the base itself is locked too.
142 *
143 * So __run_timers/migrate_timers can safely modify all timers which could
144 * be found on the lists/queues.
145 *
146 * When the timer's base is locked, and the timer removed from list, it is
147 * possible to set timer->base = NULL and drop the lock: the timer remains
148 * locked.
149 */
3c8aa39d
TG
150static
151struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
152 unsigned long *flags)
c0a31329 153{
3c8aa39d 154 struct hrtimer_clock_base *base;
c0a31329
TG
155
156 for (;;) {
157 base = timer->base;
158 if (likely(base != NULL)) {
ecb49d1a 159 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
160 if (likely(base == timer->base))
161 return base;
162 /* The timer has migrated to another CPU: */
ecb49d1a 163 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
164 }
165 cpu_relax();
166 }
167}
168
6ff7041d
TG
169
170/*
171 * Get the preferred target CPU for NOHZ
172 */
173static int hrtimer_get_target(int this_cpu, int pinned)
174{
3451d024 175#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
176 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
177 return get_nohz_timer_target();
6ff7041d
TG
178#endif
179 return this_cpu;
180}
181
182/*
183 * With HIGHRES=y we do not migrate the timer when it is expiring
184 * before the next event on the target cpu because we cannot reprogram
185 * the target cpu hardware and we would cause it to fire late.
186 *
187 * Called with cpu_base->lock of target cpu held.
188 */
189static int
190hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
191{
192#ifdef CONFIG_HIGH_RES_TIMERS
193 ktime_t expires;
194
195 if (!new_base->cpu_base->hres_active)
196 return 0;
197
198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
200#else
201 return 0;
202#endif
203}
204
c0a31329
TG
205/*
206 * Switch the timer base to the current CPU when possible.
207 */
3c8aa39d 208static inline struct hrtimer_clock_base *
597d0275
AB
209switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
210 int pinned)
c0a31329 211{
3c8aa39d
TG
212 struct hrtimer_clock_base *new_base;
213 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
214 int this_cpu = smp_processor_id();
215 int cpu = hrtimer_get_target(this_cpu, pinned);
ab8177bc 216 int basenum = base->index;
c0a31329 217
eea08f32
AB
218again:
219 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 220 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
221
222 if (base != new_base) {
223 /*
6ff7041d 224 * We are trying to move timer to new_base.
c0a31329
TG
225 * However we can't change timer's base while it is running,
226 * so we keep it on the same CPU. No hassle vs. reprogramming
227 * the event source in the high resolution case. The softirq
228 * code will take care of this when the timer function has
229 * completed. There is no conflict as we hold the lock until
230 * the timer is enqueued.
231 */
54cdfdb4 232 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
233 return base;
234
235 /* See the comment in lock_timer_base() */
236 timer->base = NULL;
ecb49d1a
TG
237 raw_spin_unlock(&base->cpu_base->lock);
238 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 239
6ff7041d
TG
240 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
241 cpu = this_cpu;
ecb49d1a
TG
242 raw_spin_unlock(&new_base->cpu_base->lock);
243 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
244 timer->base = base;
245 goto again;
eea08f32 246 }
c0a31329 247 timer->base = new_base;
7f7bb020
LM
248 } else {
249 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
250 cpu = this_cpu;
251 goto again;
252 }
c0a31329
TG
253 }
254 return new_base;
255}
256
257#else /* CONFIG_SMP */
258
3c8aa39d 259static inline struct hrtimer_clock_base *
c0a31329
TG
260lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
261{
3c8aa39d 262 struct hrtimer_clock_base *base = timer->base;
c0a31329 263
ecb49d1a 264 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
265
266 return base;
267}
268
eea08f32 269# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
270
271#endif /* !CONFIG_SMP */
272
273/*
274 * Functions for the union type storage format of ktime_t which are
275 * too large for inlining:
276 */
277#if BITS_PER_LONG < 64
278# ifndef CONFIG_KTIME_SCALAR
279/**
280 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
281 * @kt: addend
282 * @nsec: the scalar nsec value to add
283 *
284 * Returns the sum of kt and nsec in ktime_t format
285 */
286ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
287{
288 ktime_t tmp;
289
290 if (likely(nsec < NSEC_PER_SEC)) {
291 tmp.tv64 = nsec;
292 } else {
293 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
294
51fd36f3
DE
295 /* Make sure nsec fits into long */
296 if (unlikely(nsec > KTIME_SEC_MAX))
297 return (ktime_t){ .tv64 = KTIME_MAX };
298
c0a31329
TG
299 tmp = ktime_set((long)nsec, rem);
300 }
301
302 return ktime_add(kt, tmp);
303}
b8b8fd2d
DH
304
305EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
306
307/**
308 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
309 * @kt: minuend
310 * @nsec: the scalar nsec value to subtract
311 *
312 * Returns the subtraction of @nsec from @kt in ktime_t format
313 */
314ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
315{
316 ktime_t tmp;
317
318 if (likely(nsec < NSEC_PER_SEC)) {
319 tmp.tv64 = nsec;
320 } else {
321 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
322
323 tmp = ktime_set((long)nsec, rem);
324 }
325
326 return ktime_sub(kt, tmp);
327}
328
329EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
330# endif /* !CONFIG_KTIME_SCALAR */
331
332/*
333 * Divide a ktime value by a nanosecond value
334 */
4d672e7a 335u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 336{
900cfa46 337 u64 dclc;
c0a31329
TG
338 int sft = 0;
339
900cfa46 340 dclc = ktime_to_ns(kt);
c0a31329
TG
341 /* Make sure the divisor is less than 2^32: */
342 while (div >> 32) {
343 sft++;
344 div >>= 1;
345 }
346 dclc >>= sft;
347 do_div(dclc, (unsigned long) div);
348
4d672e7a 349 return dclc;
c0a31329 350}
c0a31329
TG
351#endif /* BITS_PER_LONG >= 64 */
352
5a7780e7
TG
353/*
354 * Add two ktime values and do a safety check for overflow:
355 */
356ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
357{
358 ktime_t res = ktime_add(lhs, rhs);
359
360 /*
361 * We use KTIME_SEC_MAX here, the maximum timeout which we can
362 * return to user space in a timespec:
363 */
364 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
365 res = ktime_set(KTIME_SEC_MAX, 0);
366
367 return res;
368}
369
8daa21e6
AB
370EXPORT_SYMBOL_GPL(ktime_add_safe);
371
237fc6e7
TG
372#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
373
374static struct debug_obj_descr hrtimer_debug_descr;
375
99777288
SG
376static void *hrtimer_debug_hint(void *addr)
377{
378 return ((struct hrtimer *) addr)->function;
379}
380
237fc6e7
TG
381/*
382 * fixup_init is called when:
383 * - an active object is initialized
384 */
385static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
386{
387 struct hrtimer *timer = addr;
388
389 switch (state) {
390 case ODEBUG_STATE_ACTIVE:
391 hrtimer_cancel(timer);
392 debug_object_init(timer, &hrtimer_debug_descr);
393 return 1;
394 default:
395 return 0;
396 }
397}
398
399/*
400 * fixup_activate is called when:
401 * - an active object is activated
402 * - an unknown object is activated (might be a statically initialized object)
403 */
404static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
405{
406 switch (state) {
407
408 case ODEBUG_STATE_NOTAVAILABLE:
409 WARN_ON_ONCE(1);
410 return 0;
411
412 case ODEBUG_STATE_ACTIVE:
413 WARN_ON(1);
414
415 default:
416 return 0;
417 }
418}
419
420/*
421 * fixup_free is called when:
422 * - an active object is freed
423 */
424static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
425{
426 struct hrtimer *timer = addr;
427
428 switch (state) {
429 case ODEBUG_STATE_ACTIVE:
430 hrtimer_cancel(timer);
431 debug_object_free(timer, &hrtimer_debug_descr);
432 return 1;
433 default:
434 return 0;
435 }
436}
437
438static struct debug_obj_descr hrtimer_debug_descr = {
439 .name = "hrtimer",
99777288 440 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
441 .fixup_init = hrtimer_fixup_init,
442 .fixup_activate = hrtimer_fixup_activate,
443 .fixup_free = hrtimer_fixup_free,
444};
445
446static inline void debug_hrtimer_init(struct hrtimer *timer)
447{
448 debug_object_init(timer, &hrtimer_debug_descr);
449}
450
451static inline void debug_hrtimer_activate(struct hrtimer *timer)
452{
453 debug_object_activate(timer, &hrtimer_debug_descr);
454}
455
456static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
457{
458 debug_object_deactivate(timer, &hrtimer_debug_descr);
459}
460
461static inline void debug_hrtimer_free(struct hrtimer *timer)
462{
463 debug_object_free(timer, &hrtimer_debug_descr);
464}
465
466static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
467 enum hrtimer_mode mode);
468
469void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
470 enum hrtimer_mode mode)
471{
472 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
473 __hrtimer_init(timer, clock_id, mode);
474}
2bc481cf 475EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
476
477void destroy_hrtimer_on_stack(struct hrtimer *timer)
478{
479 debug_object_free(timer, &hrtimer_debug_descr);
480}
481
482#else
483static inline void debug_hrtimer_init(struct hrtimer *timer) { }
484static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
485static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
486#endif
487
c6a2a177
XG
488static inline void
489debug_init(struct hrtimer *timer, clockid_t clockid,
490 enum hrtimer_mode mode)
491{
492 debug_hrtimer_init(timer);
493 trace_hrtimer_init(timer, clockid, mode);
494}
495
496static inline void debug_activate(struct hrtimer *timer)
497{
498 debug_hrtimer_activate(timer);
499 trace_hrtimer_start(timer);
500}
501
502static inline void debug_deactivate(struct hrtimer *timer)
503{
504 debug_hrtimer_deactivate(timer);
505 trace_hrtimer_cancel(timer);
506}
507
54cdfdb4
TG
508/* High resolution timer related functions */
509#ifdef CONFIG_HIGH_RES_TIMERS
510
511/*
512 * High resolution timer enabled ?
513 */
514static int hrtimer_hres_enabled __read_mostly = 1;
515
516/*
517 * Enable / Disable high resolution mode
518 */
519static int __init setup_hrtimer_hres(char *str)
520{
521 if (!strcmp(str, "off"))
522 hrtimer_hres_enabled = 0;
523 else if (!strcmp(str, "on"))
524 hrtimer_hres_enabled = 1;
525 else
526 return 0;
527 return 1;
528}
529
530__setup("highres=", setup_hrtimer_hres);
531
532/*
533 * hrtimer_high_res_enabled - query, if the highres mode is enabled
534 */
535static inline int hrtimer_is_hres_enabled(void)
536{
537 return hrtimer_hres_enabled;
538}
539
540/*
541 * Is the high resolution mode active ?
542 */
543static inline int hrtimer_hres_active(void)
544{
909ea964 545 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
546}
547
548/*
549 * Reprogram the event source with checking both queues for the
550 * next event
551 * Called with interrupts disabled and base->lock held
552 */
7403f41f
AC
553static void
554hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
555{
556 int i;
557 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 558 ktime_t expires, expires_next;
54cdfdb4 559
7403f41f 560 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
561
562 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
563 struct hrtimer *timer;
998adc3d 564 struct timerqueue_node *next;
54cdfdb4 565
998adc3d
JS
566 next = timerqueue_getnext(&base->active);
567 if (!next)
54cdfdb4 568 continue;
998adc3d
JS
569 timer = container_of(next, struct hrtimer, node);
570
cc584b21 571 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
572 /*
573 * clock_was_set() has changed base->offset so the
574 * result might be negative. Fix it up to prevent a
575 * false positive in clockevents_program_event()
576 */
577 if (expires.tv64 < 0)
578 expires.tv64 = 0;
7403f41f
AC
579 if (expires.tv64 < expires_next.tv64)
580 expires_next = expires;
54cdfdb4
TG
581 }
582
7403f41f
AC
583 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
584 return;
585
586 cpu_base->expires_next.tv64 = expires_next.tv64;
587
be6e0ece
SH
588 /*
589 * If a hang was detected in the last timer interrupt then we
590 * leave the hang delay active in the hardware. We want the
591 * system to make progress. That also prevents the following
592 * scenario:
593 * T1 expires 50ms from now
594 * T2 expires 5s from now
595 *
596 * T1 is removed, so this code is called and would reprogram
597 * the hardware to 5s from now. Any hrtimer_start after that
598 * will not reprogram the hardware due to hang_detected being
599 * set. So we'd effectivly block all timers until the T2 event
600 * fires.
601 */
602 if (cpu_base->hang_detected)
603 return;
604
54cdfdb4
TG
605 if (cpu_base->expires_next.tv64 != KTIME_MAX)
606 tick_program_event(cpu_base->expires_next, 1);
607}
608
609/*
610 * Shared reprogramming for clock_realtime and clock_monotonic
611 *
612 * When a timer is enqueued and expires earlier than the already enqueued
613 * timers, we have to check, whether it expires earlier than the timer for
614 * which the clock event device was armed.
615 *
616 * Called with interrupts disabled and base->cpu_base.lock held
617 */
618static int hrtimer_reprogram(struct hrtimer *timer,
619 struct hrtimer_clock_base *base)
620{
41d2e494 621 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 622 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
623 int res;
624
cc584b21 625 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 626
54cdfdb4
TG
627 /*
628 * When the callback is running, we do not reprogram the clock event
629 * device. The timer callback is either running on a different CPU or
3a4fa0a2 630 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
631 * reprogramming is handled either by the softirq, which called the
632 * callback or at the end of the hrtimer_interrupt.
633 */
634 if (hrtimer_callback_running(timer))
635 return 0;
636
63070a79
TG
637 /*
638 * CLOCK_REALTIME timer might be requested with an absolute
639 * expiry time which is less than base->offset. Nothing wrong
640 * about that, just avoid to call into the tick code, which
641 * has now objections against negative expiry values.
642 */
643 if (expires.tv64 < 0)
644 return -ETIME;
645
41d2e494
TG
646 if (expires.tv64 >= cpu_base->expires_next.tv64)
647 return 0;
648
649 /*
650 * If a hang was detected in the last timer interrupt then we
651 * do not schedule a timer which is earlier than the expiry
652 * which we enforced in the hang detection. We want the system
653 * to make progress.
654 */
655 if (cpu_base->hang_detected)
54cdfdb4
TG
656 return 0;
657
658 /*
659 * Clockevents returns -ETIME, when the event was in the past.
660 */
661 res = tick_program_event(expires, 0);
662 if (!IS_ERR_VALUE(res))
41d2e494 663 cpu_base->expires_next = expires;
54cdfdb4
TG
664 return res;
665}
666
54cdfdb4
TG
667/*
668 * Initialize the high resolution related parts of cpu_base
669 */
670static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
671{
672 base->expires_next.tv64 = KTIME_MAX;
673 base->hres_active = 0;
54cdfdb4
TG
674}
675
54cdfdb4
TG
676/*
677 * When High resolution timers are active, try to reprogram. Note, that in case
678 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
679 * check happens. The timer gets enqueued into the rbtree. The reprogramming
680 * and expiry check is done in the hrtimer_interrupt or in the softirq.
681 */
682static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
b22affe0 683 struct hrtimer_clock_base *base)
54cdfdb4 684{
b22affe0 685 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
54cdfdb4
TG
686}
687
5baefd6d
JS
688static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
689{
690 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
691 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
90adda98 692 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
5baefd6d 693
90adda98 694 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
5baefd6d
JS
695}
696
9ec26907
TG
697/*
698 * Retrigger next event is called after clock was set
699 *
700 * Called with interrupts disabled via on_each_cpu()
701 */
702static void retrigger_next_event(void *arg)
703{
704 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
9ec26907
TG
705
706 if (!hrtimer_hres_active())
707 return;
708
9ec26907 709 raw_spin_lock(&base->lock);
5baefd6d 710 hrtimer_update_base(base);
9ec26907
TG
711 hrtimer_force_reprogram(base, 0);
712 raw_spin_unlock(&base->lock);
713}
b12a03ce 714
54cdfdb4
TG
715/*
716 * Switch to high resolution mode
717 */
f8953856 718static int hrtimer_switch_to_hres(void)
54cdfdb4 719{
b12a03ce 720 int i, cpu = smp_processor_id();
820de5c3 721 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
722 unsigned long flags;
723
724 if (base->hres_active)
f8953856 725 return 1;
54cdfdb4
TG
726
727 local_irq_save(flags);
728
729 if (tick_init_highres()) {
730 local_irq_restore(flags);
820de5c3
IM
731 printk(KERN_WARNING "Could not switch to high resolution "
732 "mode on CPU %d\n", cpu);
f8953856 733 return 0;
54cdfdb4
TG
734 }
735 base->hres_active = 1;
b12a03ce
TG
736 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
737 base->clock_base[i].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
738
739 tick_setup_sched_timer();
54cdfdb4
TG
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL);
742 local_irq_restore(flags);
f8953856 743 return 1;
54cdfdb4
TG
744}
745
2d06fa0f
TG
746static void clock_was_set_work(struct work_struct *work)
747{
748 clock_was_set();
749}
750
751static DECLARE_WORK(hrtimer_work, clock_was_set_work);
752
f55a6faa 753/*
2d06fa0f
TG
754 * Called from timekeeping and resume code to reprogramm the hrtimer
755 * interrupt device on all cpus.
f55a6faa
JS
756 */
757void clock_was_set_delayed(void)
758{
2d06fa0f 759 schedule_work(&hrtimer_work);
f55a6faa
JS
760}
761
54cdfdb4
TG
762#else
763
764static inline int hrtimer_hres_active(void) { return 0; }
765static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 766static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
767static inline void
768hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 769static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
b22affe0 770 struct hrtimer_clock_base *base)
54cdfdb4
TG
771{
772 return 0;
773}
54cdfdb4 774static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 775static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
776
777#endif /* CONFIG_HIGH_RES_TIMERS */
778
b12a03ce
TG
779/*
780 * Clock realtime was set
781 *
782 * Change the offset of the realtime clock vs. the monotonic
783 * clock.
784 *
785 * We might have to reprogram the high resolution timer interrupt. On
786 * SMP we call the architecture specific code to retrigger _all_ high
787 * resolution timer interrupts. On UP we just disable interrupts and
788 * call the high resolution interrupt code.
789 */
790void clock_was_set(void)
791{
90ff1f30 792#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
793 /* Retrigger the CPU local events everywhere */
794 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
795#endif
796 timerfd_clock_was_set();
b12a03ce
TG
797}
798
799/*
800 * During resume we might have to reprogram the high resolution timer
801 * interrupt (on the local CPU):
802 */
803void hrtimers_resume(void)
804{
805 WARN_ONCE(!irqs_disabled(),
806 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
807
2d06fa0f 808 /* Retrigger on the local CPU */
b12a03ce 809 retrigger_next_event(NULL);
2d06fa0f
TG
810 /* And schedule a retrigger for all others */
811 clock_was_set_delayed();
b12a03ce
TG
812}
813
5f201907 814static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 815{
5f201907 816#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
817 if (timer->start_site)
818 return;
5f201907 819 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
820 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
821 timer->start_pid = current->pid;
5f201907
HC
822#endif
823}
824
825static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
826{
827#ifdef CONFIG_TIMER_STATS
828 timer->start_site = NULL;
829#endif
82f67cd9 830}
5f201907
HC
831
832static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
833{
834#ifdef CONFIG_TIMER_STATS
835 if (likely(!timer_stats_active))
836 return;
837 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
838 timer->function, timer->start_comm, 0);
82f67cd9 839#endif
5f201907 840}
82f67cd9 841
c0a31329 842/*
6506f2aa 843 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
844 */
845static inline
846void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
847{
ecb49d1a 848 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
849}
850
851/**
852 * hrtimer_forward - forward the timer expiry
c0a31329 853 * @timer: hrtimer to forward
44f21475 854 * @now: forward past this time
c0a31329
TG
855 * @interval: the interval to forward
856 *
857 * Forward the timer expiry so it will expire in the future.
8dca6f33 858 * Returns the number of overruns.
c0a31329 859 */
4d672e7a 860u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 861{
4d672e7a 862 u64 orun = 1;
44f21475 863 ktime_t delta;
c0a31329 864
cc584b21 865 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
866
867 if (delta.tv64 < 0)
868 return 0;
869
c9db4fa1
TG
870 if (interval.tv64 < timer->base->resolution.tv64)
871 interval.tv64 = timer->base->resolution.tv64;
872
c0a31329 873 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 874 s64 incr = ktime_to_ns(interval);
c0a31329
TG
875
876 orun = ktime_divns(delta, incr);
cc584b21
AV
877 hrtimer_add_expires_ns(timer, incr * orun);
878 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
879 return orun;
880 /*
881 * This (and the ktime_add() below) is the
882 * correction for exact:
883 */
884 orun++;
885 }
cc584b21 886 hrtimer_add_expires(timer, interval);
c0a31329
TG
887
888 return orun;
889}
6bdb6b62 890EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
891
892/*
893 * enqueue_hrtimer - internal function to (re)start a timer
894 *
895 * The timer is inserted in expiry order. Insertion into the
896 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
897 *
898 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 899 */
a6037b61
PZ
900static int enqueue_hrtimer(struct hrtimer *timer,
901 struct hrtimer_clock_base *base)
c0a31329 902{
c6a2a177 903 debug_activate(timer);
237fc6e7 904
998adc3d 905 timerqueue_add(&base->active, &timer->node);
ab8177bc 906 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 907
303e967f
TG
908 /*
909 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
910 * state of a possibly running callback.
911 */
912 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 913
998adc3d 914 return (&timer->node == base->active.next);
288867ec 915}
c0a31329
TG
916
917/*
918 * __remove_hrtimer - internal function to remove a timer
919 *
920 * Caller must hold the base lock.
54cdfdb4
TG
921 *
922 * High resolution timer mode reprograms the clock event device when the
923 * timer is the one which expires next. The caller can disable this by setting
924 * reprogram to zero. This is useful, when the context does a reprogramming
925 * anyway (e.g. timer interrupt)
c0a31329 926 */
3c8aa39d 927static void __remove_hrtimer(struct hrtimer *timer,
303e967f 928 struct hrtimer_clock_base *base,
54cdfdb4 929 unsigned long newstate, int reprogram)
c0a31329 930{
27c9cd7e 931 struct timerqueue_node *next_timer;
7403f41f
AC
932 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
933 goto out;
934
27c9cd7e
JO
935 next_timer = timerqueue_getnext(&base->active);
936 timerqueue_del(&base->active, &timer->node);
937 if (&timer->node == next_timer) {
7403f41f
AC
938#ifdef CONFIG_HIGH_RES_TIMERS
939 /* Reprogram the clock event device. if enabled */
940 if (reprogram && hrtimer_hres_active()) {
941 ktime_t expires;
942
943 expires = ktime_sub(hrtimer_get_expires(timer),
944 base->offset);
945 if (base->cpu_base->expires_next.tv64 == expires.tv64)
946 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 947 }
7403f41f 948#endif
54cdfdb4 949 }
ab8177bc
TG
950 if (!timerqueue_getnext(&base->active))
951 base->cpu_base->active_bases &= ~(1 << base->index);
7403f41f 952out:
303e967f 953 timer->state = newstate;
c0a31329
TG
954}
955
956/*
957 * remove hrtimer, called with base lock held
958 */
959static inline int
3c8aa39d 960remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 961{
303e967f 962 if (hrtimer_is_queued(timer)) {
f13d4f97 963 unsigned long state;
54cdfdb4
TG
964 int reprogram;
965
966 /*
967 * Remove the timer and force reprogramming when high
968 * resolution mode is active and the timer is on the current
969 * CPU. If we remove a timer on another CPU, reprogramming is
970 * skipped. The interrupt event on this CPU is fired and
971 * reprogramming happens in the interrupt handler. This is a
972 * rare case and less expensive than a smp call.
973 */
c6a2a177 974 debug_deactivate(timer);
82f67cd9 975 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 976 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
977 /*
978 * We must preserve the CALLBACK state flag here,
979 * otherwise we could move the timer base in
980 * switch_hrtimer_base.
981 */
982 state = timer->state & HRTIMER_STATE_CALLBACK;
983 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
984 return 1;
985 }
986 return 0;
987}
988
7f1e2ca9
PZ
989int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
990 unsigned long delta_ns, const enum hrtimer_mode mode,
991 int wakeup)
c0a31329 992{
3c8aa39d 993 struct hrtimer_clock_base *base, *new_base;
c0a31329 994 unsigned long flags;
a6037b61 995 int ret, leftmost;
c0a31329
TG
996
997 base = lock_hrtimer_base(timer, &flags);
998
999 /* Remove an active timer from the queue: */
1000 ret = remove_hrtimer(timer, base);
1001
597d0275 1002 if (mode & HRTIMER_MODE_REL) {
1c0301d1 1003 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
1004 /*
1005 * CONFIG_TIME_LOW_RES is a temporary way for architectures
1006 * to signal that they simply return xtime in
1007 * do_gettimeoffset(). In this case we want to round up by
1008 * resolution when starting a relative timer, to avoid short
1009 * timeouts. This will go away with the GTOD framework.
1010 */
1011#ifdef CONFIG_TIME_LOW_RES
5a7780e7 1012 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
1013#endif
1014 }
237fc6e7 1015
da8f2e17 1016 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1017
1c0301d1
VK
1018 /* Switch the timer base, if necessary: */
1019 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1020
82f67cd9
IM
1021 timer_stats_hrtimer_set_start_info(timer);
1022
a6037b61
PZ
1023 leftmost = enqueue_hrtimer(timer, new_base);
1024
935c631d
IM
1025 /*
1026 * Only allow reprogramming if the new base is on this CPU.
1027 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
1028 *
1029 * XXX send_remote_softirq() ?
935c631d 1030 */
b22affe0
LS
1031 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1032 && hrtimer_enqueue_reprogram(timer, new_base)) {
1033 if (wakeup) {
1034 /*
1035 * We need to drop cpu_base->lock to avoid a
1036 * lock ordering issue vs. rq->lock.
1037 */
1038 raw_spin_unlock(&new_base->cpu_base->lock);
1039 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1040 local_irq_restore(flags);
1041 return ret;
1042 } else {
1043 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1044 }
1045 }
c0a31329
TG
1046
1047 unlock_hrtimer_base(timer, &flags);
1048
1049 return ret;
1050}
7f1e2ca9
PZ
1051
1052/**
1053 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1054 * @timer: the timer to be added
1055 * @tim: expiry time
1056 * @delta_ns: "slack" range for the timer
8ffbc7d9
DD
1057 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1058 * relative (HRTIMER_MODE_REL)
7f1e2ca9
PZ
1059 *
1060 * Returns:
1061 * 0 on success
1062 * 1 when the timer was active
1063 */
1064int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1065 unsigned long delta_ns, const enum hrtimer_mode mode)
1066{
1067 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1068}
da8f2e17
AV
1069EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1070
1071/**
e1dd7bc5 1072 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1073 * @timer: the timer to be added
1074 * @tim: expiry time
8ffbc7d9
DD
1075 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1076 * relative (HRTIMER_MODE_REL)
da8f2e17
AV
1077 *
1078 * Returns:
1079 * 0 on success
1080 * 1 when the timer was active
1081 */
1082int
1083hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1084{
7f1e2ca9 1085 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1086}
8d16b764 1087EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1088
da8f2e17 1089
c0a31329
TG
1090/**
1091 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1092 * @timer: hrtimer to stop
1093 *
1094 * Returns:
1095 * 0 when the timer was not active
1096 * 1 when the timer was active
1097 * -1 when the timer is currently excuting the callback function and
fa9799e3 1098 * cannot be stopped
c0a31329
TG
1099 */
1100int hrtimer_try_to_cancel(struct hrtimer *timer)
1101{
3c8aa39d 1102 struct hrtimer_clock_base *base;
c0a31329
TG
1103 unsigned long flags;
1104 int ret = -1;
1105
1106 base = lock_hrtimer_base(timer, &flags);
1107
303e967f 1108 if (!hrtimer_callback_running(timer))
c0a31329
TG
1109 ret = remove_hrtimer(timer, base);
1110
1111 unlock_hrtimer_base(timer, &flags);
1112
1113 return ret;
1114
1115}
8d16b764 1116EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1117
1118/**
1119 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1120 * @timer: the timer to be cancelled
1121 *
1122 * Returns:
1123 * 0 when the timer was not active
1124 * 1 when the timer was active
1125 */
1126int hrtimer_cancel(struct hrtimer *timer)
1127{
1128 for (;;) {
1129 int ret = hrtimer_try_to_cancel(timer);
1130
1131 if (ret >= 0)
1132 return ret;
5ef37b19 1133 cpu_relax();
c0a31329
TG
1134 }
1135}
8d16b764 1136EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1137
1138/**
1139 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1140 * @timer: the timer to read
1141 */
1142ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1143{
c0a31329
TG
1144 unsigned long flags;
1145 ktime_t rem;
1146
b3bd3de6 1147 lock_hrtimer_base(timer, &flags);
cc584b21 1148 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1149 unlock_hrtimer_base(timer, &flags);
1150
1151 return rem;
1152}
8d16b764 1153EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1154
3451d024 1155#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1156/**
1157 * hrtimer_get_next_event - get the time until next expiry event
1158 *
1159 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1160 * is pending.
1161 */
1162ktime_t hrtimer_get_next_event(void)
1163{
3c8aa39d
TG
1164 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1165 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1166 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1167 unsigned long flags;
1168 int i;
1169
ecb49d1a 1170 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1171
54cdfdb4
TG
1172 if (!hrtimer_hres_active()) {
1173 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1174 struct hrtimer *timer;
998adc3d 1175 struct timerqueue_node *next;
69239749 1176
998adc3d
JS
1177 next = timerqueue_getnext(&base->active);
1178 if (!next)
54cdfdb4 1179 continue;
3c8aa39d 1180
998adc3d 1181 timer = container_of(next, struct hrtimer, node);
cc584b21 1182 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1183 delta = ktime_sub(delta, base->get_time());
1184 if (delta.tv64 < mindelta.tv64)
1185 mindelta.tv64 = delta.tv64;
1186 }
69239749 1187 }
3c8aa39d 1188
ecb49d1a 1189 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1190
69239749
TL
1191 if (mindelta.tv64 < 0)
1192 mindelta.tv64 = 0;
1193 return mindelta;
1194}
1195#endif
1196
237fc6e7
TG
1197static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1198 enum hrtimer_mode mode)
c0a31329 1199{
3c8aa39d 1200 struct hrtimer_cpu_base *cpu_base;
e06383db 1201 int base;
c0a31329 1202
7978672c
GA
1203 memset(timer, 0, sizeof(struct hrtimer));
1204
3c8aa39d 1205 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1206
c9cb2e3d 1207 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1208 clock_id = CLOCK_MONOTONIC;
1209
e06383db
JS
1210 base = hrtimer_clockid_to_base(clock_id);
1211 timer->base = &cpu_base->clock_base[base];
998adc3d 1212 timerqueue_init(&timer->node);
82f67cd9
IM
1213
1214#ifdef CONFIG_TIMER_STATS
1215 timer->start_site = NULL;
1216 timer->start_pid = -1;
1217 memset(timer->start_comm, 0, TASK_COMM_LEN);
1218#endif
c0a31329 1219}
237fc6e7
TG
1220
1221/**
1222 * hrtimer_init - initialize a timer to the given clock
1223 * @timer: the timer to be initialized
1224 * @clock_id: the clock to be used
1225 * @mode: timer mode abs/rel
1226 */
1227void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1228 enum hrtimer_mode mode)
1229{
c6a2a177 1230 debug_init(timer, clock_id, mode);
237fc6e7
TG
1231 __hrtimer_init(timer, clock_id, mode);
1232}
8d16b764 1233EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1234
1235/**
1236 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1237 * @which_clock: which clock to query
1238 * @tp: pointer to timespec variable to store the resolution
1239 *
72fd4a35
RD
1240 * Store the resolution of the clock selected by @which_clock in the
1241 * variable pointed to by @tp.
c0a31329
TG
1242 */
1243int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1244{
3c8aa39d 1245 struct hrtimer_cpu_base *cpu_base;
e06383db 1246 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1247
3c8aa39d 1248 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
e06383db 1249 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1250
1251 return 0;
1252}
8d16b764 1253EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1254
c6a2a177 1255static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1256{
1257 struct hrtimer_clock_base *base = timer->base;
1258 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1259 enum hrtimer_restart (*fn)(struct hrtimer *);
1260 int restart;
1261
ca109491
PZ
1262 WARN_ON(!irqs_disabled());
1263
c6a2a177 1264 debug_deactivate(timer);
d3d74453
PZ
1265 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1266 timer_stats_account_hrtimer(timer);
d3d74453 1267 fn = timer->function;
ca109491
PZ
1268
1269 /*
1270 * Because we run timers from hardirq context, there is no chance
1271 * they get migrated to another cpu, therefore its safe to unlock
1272 * the timer base.
1273 */
ecb49d1a 1274 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1275 trace_hrtimer_expire_entry(timer, now);
ca109491 1276 restart = fn(timer);
c6a2a177 1277 trace_hrtimer_expire_exit(timer);
ecb49d1a 1278 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1279
1280 /*
e3f1d883
TG
1281 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1282 * we do not reprogramm the event hardware. Happens either in
1283 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1284 */
1285 if (restart != HRTIMER_NORESTART) {
1286 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1287 enqueue_hrtimer(timer, base);
d3d74453 1288 }
f13d4f97
SQ
1289
1290 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1291
d3d74453
PZ
1292 timer->state &= ~HRTIMER_STATE_CALLBACK;
1293}
1294
54cdfdb4
TG
1295#ifdef CONFIG_HIGH_RES_TIMERS
1296
1297/*
1298 * High resolution timer interrupt
1299 * Called with interrupts disabled
1300 */
1301void hrtimer_interrupt(struct clock_event_device *dev)
1302{
1303 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
41d2e494
TG
1304 ktime_t expires_next, now, entry_time, delta;
1305 int i, retries = 0;
54cdfdb4
TG
1306
1307 BUG_ON(!cpu_base->hres_active);
1308 cpu_base->nr_events++;
1309 dev->next_event.tv64 = KTIME_MAX;
1310
196951e9 1311 raw_spin_lock(&cpu_base->lock);
5baefd6d 1312 entry_time = now = hrtimer_update_base(cpu_base);
41d2e494 1313retry:
54cdfdb4 1314 expires_next.tv64 = KTIME_MAX;
6ff7041d
TG
1315 /*
1316 * We set expires_next to KTIME_MAX here with cpu_base->lock
1317 * held to prevent that a timer is enqueued in our queue via
1318 * the migration code. This does not affect enqueueing of
1319 * timers which run their callback and need to be requeued on
1320 * this CPU.
1321 */
1322 cpu_base->expires_next.tv64 = KTIME_MAX;
1323
54cdfdb4 1324 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ab8177bc 1325 struct hrtimer_clock_base *base;
998adc3d 1326 struct timerqueue_node *node;
ab8177bc
TG
1327 ktime_t basenow;
1328
1329 if (!(cpu_base->active_bases & (1 << i)))
1330 continue;
54cdfdb4 1331
ab8177bc 1332 base = cpu_base->clock_base + i;
54cdfdb4
TG
1333 basenow = ktime_add(now, base->offset);
1334
998adc3d 1335 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1336 struct hrtimer *timer;
1337
998adc3d 1338 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1339
654c8e0b
AV
1340 /*
1341 * The immediate goal for using the softexpires is
1342 * minimizing wakeups, not running timers at the
1343 * earliest interrupt after their soft expiration.
1344 * This allows us to avoid using a Priority Search
1345 * Tree, which can answer a stabbing querry for
1346 * overlapping intervals and instead use the simple
1347 * BST we already have.
1348 * We don't add extra wakeups by delaying timers that
1349 * are right-of a not yet expired timer, because that
1350 * timer will have to trigger a wakeup anyway.
1351 */
1352
1353 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1354 ktime_t expires;
1355
cc584b21 1356 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4 1357 base->offset);
8f294b5a
PB
1358 if (expires.tv64 < 0)
1359 expires.tv64 = KTIME_MAX;
54cdfdb4
TG
1360 if (expires.tv64 < expires_next.tv64)
1361 expires_next = expires;
1362 break;
1363 }
1364
c6a2a177 1365 __run_hrtimer(timer, &basenow);
54cdfdb4 1366 }
54cdfdb4
TG
1367 }
1368
6ff7041d
TG
1369 /*
1370 * Store the new expiry value so the migration code can verify
1371 * against it.
1372 */
54cdfdb4 1373 cpu_base->expires_next = expires_next;
ecb49d1a 1374 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1375
1376 /* Reprogramming necessary ? */
41d2e494
TG
1377 if (expires_next.tv64 == KTIME_MAX ||
1378 !tick_program_event(expires_next, 0)) {
1379 cpu_base->hang_detected = 0;
1380 return;
54cdfdb4 1381 }
41d2e494
TG
1382
1383 /*
1384 * The next timer was already expired due to:
1385 * - tracing
1386 * - long lasting callbacks
1387 * - being scheduled away when running in a VM
1388 *
1389 * We need to prevent that we loop forever in the hrtimer
1390 * interrupt routine. We give it 3 attempts to avoid
1391 * overreacting on some spurious event.
5baefd6d
JS
1392 *
1393 * Acquire base lock for updating the offsets and retrieving
1394 * the current time.
41d2e494 1395 */
196951e9 1396 raw_spin_lock(&cpu_base->lock);
5baefd6d 1397 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1398 cpu_base->nr_retries++;
1399 if (++retries < 3)
1400 goto retry;
1401 /*
1402 * Give the system a chance to do something else than looping
1403 * here. We stored the entry time, so we know exactly how long
1404 * we spent here. We schedule the next event this amount of
1405 * time away.
1406 */
1407 cpu_base->nr_hangs++;
1408 cpu_base->hang_detected = 1;
196951e9 1409 raw_spin_unlock(&cpu_base->lock);
41d2e494
TG
1410 delta = ktime_sub(now, entry_time);
1411 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1412 cpu_base->max_hang_time = delta;
1413 /*
1414 * Limit it to a sensible value as we enforce a longer
1415 * delay. Give the CPU at least 100ms to catch up.
1416 */
1417 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1418 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1419 else
1420 expires_next = ktime_add(now, delta);
1421 tick_program_event(expires_next, 1);
1422 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1423 ktime_to_ns(delta));
54cdfdb4
TG
1424}
1425
8bdec955
TG
1426/*
1427 * local version of hrtimer_peek_ahead_timers() called with interrupts
1428 * disabled.
1429 */
1430static void __hrtimer_peek_ahead_timers(void)
1431{
1432 struct tick_device *td;
1433
1434 if (!hrtimer_hres_active())
1435 return;
1436
1437 td = &__get_cpu_var(tick_cpu_device);
1438 if (td && td->evtdev)
1439 hrtimer_interrupt(td->evtdev);
1440}
1441
2e94d1f7
AV
1442/**
1443 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1444 *
1445 * hrtimer_peek_ahead_timers will peek at the timer queue of
1446 * the current cpu and check if there are any timers for which
1447 * the soft expires time has passed. If any such timers exist,
1448 * they are run immediately and then removed from the timer queue.
1449 *
1450 */
1451void hrtimer_peek_ahead_timers(void)
1452{
643bdf68 1453 unsigned long flags;
dc4304f7 1454
2e94d1f7 1455 local_irq_save(flags);
8bdec955 1456 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1457 local_irq_restore(flags);
1458}
1459
a6037b61
PZ
1460static void run_hrtimer_softirq(struct softirq_action *h)
1461{
1462 hrtimer_peek_ahead_timers();
1463}
1464
82c5b7b5
IM
1465#else /* CONFIG_HIGH_RES_TIMERS */
1466
1467static inline void __hrtimer_peek_ahead_timers(void) { }
1468
1469#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1470
d3d74453
PZ
1471/*
1472 * Called from timer softirq every jiffy, expire hrtimers:
1473 *
1474 * For HRT its the fall back code to run the softirq in the timer
1475 * softirq context in case the hrtimer initialization failed or has
1476 * not been done yet.
1477 */
1478void hrtimer_run_pending(void)
1479{
d3d74453
PZ
1480 if (hrtimer_hres_active())
1481 return;
54cdfdb4 1482
d3d74453
PZ
1483 /*
1484 * This _is_ ugly: We have to check in the softirq context,
1485 * whether we can switch to highres and / or nohz mode. The
1486 * clocksource switch happens in the timer interrupt with
1487 * xtime_lock held. Notification from there only sets the
1488 * check bit in the tick_oneshot code, otherwise we might
1489 * deadlock vs. xtime_lock.
1490 */
1491 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1492 hrtimer_switch_to_hres();
54cdfdb4
TG
1493}
1494
c0a31329 1495/*
d3d74453 1496 * Called from hardirq context every jiffy
c0a31329 1497 */
833883d9 1498void hrtimer_run_queues(void)
c0a31329 1499{
998adc3d 1500 struct timerqueue_node *node;
833883d9
DS
1501 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1502 struct hrtimer_clock_base *base;
1503 int index, gettime = 1;
c0a31329 1504
833883d9 1505 if (hrtimer_hres_active())
3055adda
DS
1506 return;
1507
833883d9
DS
1508 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1509 base = &cpu_base->clock_base[index];
b007c389 1510 if (!timerqueue_getnext(&base->active))
d3d74453 1511 continue;
833883d9 1512
d7cfb60c 1513 if (gettime) {
833883d9
DS
1514 hrtimer_get_softirq_time(cpu_base);
1515 gettime = 0;
b75f7a51 1516 }
d3d74453 1517
ecb49d1a 1518 raw_spin_lock(&cpu_base->lock);
c0a31329 1519
b007c389 1520 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1521 struct hrtimer *timer;
54cdfdb4 1522
998adc3d 1523 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1524 if (base->softirq_time.tv64 <=
1525 hrtimer_get_expires_tv64(timer))
833883d9
DS
1526 break;
1527
c6a2a177 1528 __run_hrtimer(timer, &base->softirq_time);
833883d9 1529 }
ecb49d1a 1530 raw_spin_unlock(&cpu_base->lock);
833883d9 1531 }
c0a31329
TG
1532}
1533
10c94ec1
TG
1534/*
1535 * Sleep related functions:
1536 */
c9cb2e3d 1537static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1538{
1539 struct hrtimer_sleeper *t =
1540 container_of(timer, struct hrtimer_sleeper, timer);
1541 struct task_struct *task = t->task;
1542
1543 t->task = NULL;
1544 if (task)
1545 wake_up_process(task);
1546
1547 return HRTIMER_NORESTART;
1548}
1549
36c8b586 1550void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1551{
1552 sl->timer.function = hrtimer_wakeup;
1553 sl->task = task;
1554}
2bc481cf 1555EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1556
669d7868 1557static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1558{
669d7868 1559 hrtimer_init_sleeper(t, current);
10c94ec1 1560
432569bb
RZ
1561 do {
1562 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1563 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1564 if (!hrtimer_active(&t->timer))
1565 t->task = NULL;
432569bb 1566
54cdfdb4
TG
1567 if (likely(t->task))
1568 schedule();
432569bb 1569
669d7868 1570 hrtimer_cancel(&t->timer);
c9cb2e3d 1571 mode = HRTIMER_MODE_ABS;
669d7868
TG
1572
1573 } while (t->task && !signal_pending(current));
432569bb 1574
3588a085
PZ
1575 __set_current_state(TASK_RUNNING);
1576
669d7868 1577 return t->task == NULL;
10c94ec1
TG
1578}
1579
080344b9
ON
1580static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1581{
1582 struct timespec rmt;
1583 ktime_t rem;
1584
cc584b21 1585 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1586 if (rem.tv64 <= 0)
1587 return 0;
1588 rmt = ktime_to_timespec(rem);
1589
1590 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1591 return -EFAULT;
1592
1593 return 1;
1594}
1595
1711ef38 1596long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1597{
669d7868 1598 struct hrtimer_sleeper t;
080344b9 1599 struct timespec __user *rmtp;
237fc6e7 1600 int ret = 0;
10c94ec1 1601
ab8177bc 1602 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1603 HRTIMER_MODE_ABS);
cc584b21 1604 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1605
c9cb2e3d 1606 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1607 goto out;
10c94ec1 1608
029a07e0 1609 rmtp = restart->nanosleep.rmtp;
432569bb 1610 if (rmtp) {
237fc6e7 1611 ret = update_rmtp(&t.timer, rmtp);
080344b9 1612 if (ret <= 0)
237fc6e7 1613 goto out;
432569bb 1614 }
10c94ec1 1615
10c94ec1 1616 /* The other values in restart are already filled in */
237fc6e7
TG
1617 ret = -ERESTART_RESTARTBLOCK;
1618out:
1619 destroy_hrtimer_on_stack(&t.timer);
1620 return ret;
10c94ec1
TG
1621}
1622
080344b9 1623long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1624 const enum hrtimer_mode mode, const clockid_t clockid)
1625{
1626 struct restart_block *restart;
669d7868 1627 struct hrtimer_sleeper t;
237fc6e7 1628 int ret = 0;
3bd01206
AV
1629 unsigned long slack;
1630
1631 slack = current->timer_slack_ns;
1632 if (rt_task(current))
1633 slack = 0;
10c94ec1 1634
237fc6e7 1635 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1636 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1637 if (do_nanosleep(&t, mode))
237fc6e7 1638 goto out;
10c94ec1 1639
7978672c 1640 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1641 if (mode == HRTIMER_MODE_ABS) {
1642 ret = -ERESTARTNOHAND;
1643 goto out;
1644 }
10c94ec1 1645
432569bb 1646 if (rmtp) {
237fc6e7 1647 ret = update_rmtp(&t.timer, rmtp);
080344b9 1648 if (ret <= 0)
237fc6e7 1649 goto out;
432569bb 1650 }
10c94ec1
TG
1651
1652 restart = &current_thread_info()->restart_block;
1711ef38 1653 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1654 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1655 restart->nanosleep.rmtp = rmtp;
cc584b21 1656 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1657
237fc6e7
TG
1658 ret = -ERESTART_RESTARTBLOCK;
1659out:
1660 destroy_hrtimer_on_stack(&t.timer);
1661 return ret;
10c94ec1
TG
1662}
1663
58fd3aa2
HC
1664SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1665 struct timespec __user *, rmtp)
6ba1b912 1666{
080344b9 1667 struct timespec tu;
6ba1b912
TG
1668
1669 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1670 return -EFAULT;
1671
1672 if (!timespec_valid(&tu))
1673 return -EINVAL;
1674
080344b9 1675 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1676}
1677
c0a31329
TG
1678/*
1679 * Functions related to boot-time initialization:
1680 */
0ec160dd 1681static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1682{
3c8aa39d 1683 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1684 int i;
1685
998adc3d 1686 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1687 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1688 timerqueue_init_head(&cpu_base->clock_base[i].active);
1689 }
3c8aa39d 1690
54cdfdb4 1691 hrtimer_init_hres(cpu_base);
c0a31329
TG
1692}
1693
1694#ifdef CONFIG_HOTPLUG_CPU
1695
ca109491 1696static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1697 struct hrtimer_clock_base *new_base)
c0a31329
TG
1698{
1699 struct hrtimer *timer;
998adc3d 1700 struct timerqueue_node *node;
c0a31329 1701
998adc3d
JS
1702 while ((node = timerqueue_getnext(&old_base->active))) {
1703 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1704 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1705 debug_deactivate(timer);
b00c1a99
TG
1706
1707 /*
1708 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1709 * timer could be seen as !active and just vanish away
1710 * under us on another CPU
1711 */
1712 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1713 timer->base = new_base;
54cdfdb4 1714 /*
e3f1d883
TG
1715 * Enqueue the timers on the new cpu. This does not
1716 * reprogram the event device in case the timer
1717 * expires before the earliest on this CPU, but we run
1718 * hrtimer_interrupt after we migrated everything to
1719 * sort out already expired timers and reprogram the
1720 * event device.
54cdfdb4 1721 */
a6037b61 1722 enqueue_hrtimer(timer, new_base);
41e1022e 1723
b00c1a99
TG
1724 /* Clear the migration state bit */
1725 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1726 }
1727}
1728
d5fd43c4 1729static void migrate_hrtimers(int scpu)
c0a31329 1730{
3c8aa39d 1731 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1732 int i;
c0a31329 1733
37810659 1734 BUG_ON(cpu_online(scpu));
37810659 1735 tick_cancel_sched_timer(scpu);
731a55ba
TG
1736
1737 local_irq_disable();
1738 old_base = &per_cpu(hrtimer_bases, scpu);
1739 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1740 /*
1741 * The caller is globally serialized and nobody else
1742 * takes two locks at once, deadlock is not possible.
1743 */
ecb49d1a
TG
1744 raw_spin_lock(&new_base->lock);
1745 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1746
3c8aa39d 1747 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1748 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1749 &new_base->clock_base[i]);
c0a31329
TG
1750 }
1751
ecb49d1a
TG
1752 raw_spin_unlock(&old_base->lock);
1753 raw_spin_unlock(&new_base->lock);
37810659 1754
731a55ba
TG
1755 /* Check, if we got expired work to do */
1756 __hrtimer_peek_ahead_timers();
1757 local_irq_enable();
c0a31329 1758}
37810659 1759
c0a31329
TG
1760#endif /* CONFIG_HOTPLUG_CPU */
1761
8c78f307 1762static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1763 unsigned long action, void *hcpu)
1764{
b2e3c0ad 1765 int scpu = (long)hcpu;
c0a31329
TG
1766
1767 switch (action) {
1768
1769 case CPU_UP_PREPARE:
8bb78442 1770 case CPU_UP_PREPARE_FROZEN:
37810659 1771 init_hrtimers_cpu(scpu);
c0a31329
TG
1772 break;
1773
1774#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1775 case CPU_DYING:
1776 case CPU_DYING_FROZEN:
1777 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1778 break;
c0a31329 1779 case CPU_DEAD:
8bb78442 1780 case CPU_DEAD_FROZEN:
b2e3c0ad 1781 {
37810659 1782 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1783 migrate_hrtimers(scpu);
c0a31329 1784 break;
b2e3c0ad 1785 }
c0a31329
TG
1786#endif
1787
1788 default:
1789 break;
1790 }
1791
1792 return NOTIFY_OK;
1793}
1794
8c78f307 1795static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1796 .notifier_call = hrtimer_cpu_notify,
1797};
1798
1799void __init hrtimers_init(void)
1800{
1801 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1802 (void *)(long)smp_processor_id());
1803 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1804#ifdef CONFIG_HIGH_RES_TIMERS
1805 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1806#endif
c0a31329
TG
1807}
1808
7bb67439 1809/**
351b3f7a 1810 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1811 * @expires: timeout value (ktime_t)
654c8e0b 1812 * @delta: slack in expires timeout (ktime_t)
7bb67439 1813 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1814 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1815 */
351b3f7a
CE
1816int __sched
1817schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1818 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1819{
1820 struct hrtimer_sleeper t;
1821
1822 /*
1823 * Optimize when a zero timeout value is given. It does not
1824 * matter whether this is an absolute or a relative time.
1825 */
1826 if (expires && !expires->tv64) {
1827 __set_current_state(TASK_RUNNING);
1828 return 0;
1829 }
1830
1831 /*
43b21013 1832 * A NULL parameter means "infinite"
7bb67439
AV
1833 */
1834 if (!expires) {
1835 schedule();
1836 __set_current_state(TASK_RUNNING);
1837 return -EINTR;
1838 }
1839
351b3f7a 1840 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1841 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1842
1843 hrtimer_init_sleeper(&t, current);
1844
cc584b21 1845 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1846 if (!hrtimer_active(&t.timer))
1847 t.task = NULL;
1848
1849 if (likely(t.task))
1850 schedule();
1851
1852 hrtimer_cancel(&t.timer);
1853 destroy_hrtimer_on_stack(&t.timer);
1854
1855 __set_current_state(TASK_RUNNING);
1856
1857 return !t.task ? 0 : -EINTR;
1858}
351b3f7a
CE
1859
1860/**
1861 * schedule_hrtimeout_range - sleep until timeout
1862 * @expires: timeout value (ktime_t)
1863 * @delta: slack in expires timeout (ktime_t)
1864 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1865 *
1866 * Make the current task sleep until the given expiry time has
1867 * elapsed. The routine will return immediately unless
1868 * the current task state has been set (see set_current_state()).
1869 *
1870 * The @delta argument gives the kernel the freedom to schedule the
1871 * actual wakeup to a time that is both power and performance friendly.
1872 * The kernel give the normal best effort behavior for "@expires+@delta",
1873 * but may decide to fire the timer earlier, but no earlier than @expires.
1874 *
1875 * You can set the task state as follows -
1876 *
1877 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1878 * pass before the routine returns.
1879 *
1880 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1881 * delivered to the current task.
1882 *
1883 * The current task state is guaranteed to be TASK_RUNNING when this
1884 * routine returns.
1885 *
1886 * Returns 0 when the timer has expired otherwise -EINTR
1887 */
1888int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1889 const enum hrtimer_mode mode)
1890{
1891 return schedule_hrtimeout_range_clock(expires, delta, mode,
1892 CLOCK_MONOTONIC);
1893}
654c8e0b
AV
1894EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1895
1896/**
1897 * schedule_hrtimeout - sleep until timeout
1898 * @expires: timeout value (ktime_t)
1899 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1900 *
1901 * Make the current task sleep until the given expiry time has
1902 * elapsed. The routine will return immediately unless
1903 * the current task state has been set (see set_current_state()).
1904 *
1905 * You can set the task state as follows -
1906 *
1907 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1908 * pass before the routine returns.
1909 *
1910 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1911 * delivered to the current task.
1912 *
1913 * The current task state is guaranteed to be TASK_RUNNING when this
1914 * routine returns.
1915 *
1916 * Returns 0 when the timer has expired otherwise -EINTR
1917 */
1918int __sched schedule_hrtimeout(ktime_t *expires,
1919 const enum hrtimer_mode mode)
1920{
1921 return schedule_hrtimeout_range(expires, 0, mode);
1922}
7bb67439 1923EXPORT_SYMBOL_GPL(schedule_hrtimeout);