Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14#include <linux/config.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/unistd.h>
18#include <linux/smp_lock.h>
19#include <linux/module.h>
20#include <linux/vmalloc.h>
21#include <linux/completion.h>
22#include <linux/namespace.h>
23#include <linux/personality.h>
24#include <linux/mempolicy.h>
25#include <linux/sem.h>
26#include <linux/file.h>
27#include <linux/key.h>
28#include <linux/binfmts.h>
29#include <linux/mman.h>
30#include <linux/fs.h>
c59ede7b 31#include <linux/capability.h>
1da177e4
LT
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/security.h>
35#include <linux/swap.h>
36#include <linux/syscalls.h>
37#include <linux/jiffies.h>
38#include <linux/futex.h>
ab2af1f5 39#include <linux/rcupdate.h>
1da177e4
LT
40#include <linux/ptrace.h>
41#include <linux/mount.h>
42#include <linux/audit.h>
43#include <linux/profile.h>
44#include <linux/rmap.h>
45#include <linux/acct.h>
9f46080c 46#include <linux/cn_proc.h>
1da177e4
LT
47
48#include <asm/pgtable.h>
49#include <asm/pgalloc.h>
50#include <asm/uaccess.h>
51#include <asm/mmu_context.h>
52#include <asm/cacheflush.h>
53#include <asm/tlbflush.h>
54
55/*
56 * Protected counters by write_lock_irq(&tasklist_lock)
57 */
58unsigned long total_forks; /* Handle normal Linux uptimes. */
59int nr_threads; /* The idle threads do not count.. */
60
61int max_threads; /* tunable limit on nr_threads */
62
63DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
66
67EXPORT_SYMBOL(tasklist_lock);
68
69int nr_processes(void)
70{
71 int cpu;
72 int total = 0;
73
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
76
77 return total;
78}
79
80#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81# define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82# define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83static kmem_cache_t *task_struct_cachep;
84#endif
85
86/* SLAB cache for signal_struct structures (tsk->signal) */
87kmem_cache_t *signal_cachep;
88
89/* SLAB cache for sighand_struct structures (tsk->sighand) */
90kmem_cache_t *sighand_cachep;
91
92/* SLAB cache for files_struct structures (tsk->files) */
93kmem_cache_t *files_cachep;
94
95/* SLAB cache for fs_struct structures (tsk->fs) */
96kmem_cache_t *fs_cachep;
97
98/* SLAB cache for vm_area_struct structures */
99kmem_cache_t *vm_area_cachep;
100
101/* SLAB cache for mm_struct structures (tsk->mm) */
102static kmem_cache_t *mm_cachep;
103
104void free_task(struct task_struct *tsk)
105{
106 free_thread_info(tsk->thread_info);
107 free_task_struct(tsk);
108}
109EXPORT_SYMBOL(free_task);
110
111void __put_task_struct(struct task_struct *tsk)
112{
113 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 WARN_ON(atomic_read(&tsk->usage));
115 WARN_ON(tsk == current);
116
117 if (unlikely(tsk->audit_context))
118 audit_free(tsk);
119 security_task_free(tsk);
120 free_uid(tsk->user);
121 put_group_info(tsk->group_info);
122
123 if (!profile_handoff_task(tsk))
124 free_task(tsk);
125}
126
127void __init fork_init(unsigned long mempages)
128{
129#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130#ifndef ARCH_MIN_TASKALIGN
131#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
132#endif
133 /* create a slab on which task_structs can be allocated */
134 task_struct_cachep =
135 kmem_cache_create("task_struct", sizeof(struct task_struct),
136 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137#endif
138
139 /*
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
142 * of memory.
143 */
144 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145
146 /*
147 * we need to allow at least 20 threads to boot a system
148 */
149 if(max_threads < 20)
150 max_threads = 20;
151
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154 init_task.signal->rlim[RLIMIT_SIGPENDING] =
155 init_task.signal->rlim[RLIMIT_NPROC];
156}
157
158static struct task_struct *dup_task_struct(struct task_struct *orig)
159{
160 struct task_struct *tsk;
161 struct thread_info *ti;
162
163 prepare_to_copy(orig);
164
165 tsk = alloc_task_struct();
166 if (!tsk)
167 return NULL;
168
169 ti = alloc_thread_info(tsk);
170 if (!ti) {
171 free_task_struct(tsk);
172 return NULL;
173 }
174
1da177e4
LT
175 *tsk = *orig;
176 tsk->thread_info = ti;
10ebffde 177 setup_thread_stack(tsk, orig);
1da177e4
LT
178
179 /* One for us, one for whoever does the "release_task()" (usually parent) */
180 atomic_set(&tsk->usage,2);
4b5d37ac 181 atomic_set(&tsk->fs_excl, 0);
1da177e4
LT
182 return tsk;
183}
184
185#ifdef CONFIG_MMU
fd3e42fc 186static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1da177e4 187{
fd3e42fc 188 struct vm_area_struct *mpnt, *tmp, **pprev;
1da177e4
LT
189 struct rb_node **rb_link, *rb_parent;
190 int retval;
191 unsigned long charge;
192 struct mempolicy *pol;
193
194 down_write(&oldmm->mmap_sem);
fd3e42fc 195 flush_cache_mm(oldmm);
7ee78232
HD
196 down_write(&mm->mmap_sem);
197
1da177e4
LT
198 mm->locked_vm = 0;
199 mm->mmap = NULL;
200 mm->mmap_cache = NULL;
201 mm->free_area_cache = oldmm->mmap_base;
1363c3cd 202 mm->cached_hole_size = ~0UL;
1da177e4 203 mm->map_count = 0;
1da177e4
LT
204 cpus_clear(mm->cpu_vm_mask);
205 mm->mm_rb = RB_ROOT;
206 rb_link = &mm->mm_rb.rb_node;
207 rb_parent = NULL;
208 pprev = &mm->mmap;
209
fd3e42fc 210 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
1da177e4
LT
211 struct file *file;
212
213 if (mpnt->vm_flags & VM_DONTCOPY) {
3b6bfcdb
HD
214 long pages = vma_pages(mpnt);
215 mm->total_vm -= pages;
ab50b8ed 216 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
3b6bfcdb 217 -pages);
1da177e4
LT
218 continue;
219 }
220 charge = 0;
221 if (mpnt->vm_flags & VM_ACCOUNT) {
222 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
223 if (security_vm_enough_memory(len))
224 goto fail_nomem;
225 charge = len;
226 }
227 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228 if (!tmp)
229 goto fail_nomem;
230 *tmp = *mpnt;
231 pol = mpol_copy(vma_policy(mpnt));
232 retval = PTR_ERR(pol);
233 if (IS_ERR(pol))
234 goto fail_nomem_policy;
235 vma_set_policy(tmp, pol);
236 tmp->vm_flags &= ~VM_LOCKED;
237 tmp->vm_mm = mm;
238 tmp->vm_next = NULL;
239 anon_vma_link(tmp);
240 file = tmp->vm_file;
241 if (file) {
242 struct inode *inode = file->f_dentry->d_inode;
243 get_file(file);
244 if (tmp->vm_flags & VM_DENYWRITE)
245 atomic_dec(&inode->i_writecount);
246
247 /* insert tmp into the share list, just after mpnt */
248 spin_lock(&file->f_mapping->i_mmap_lock);
249 tmp->vm_truncate_count = mpnt->vm_truncate_count;
250 flush_dcache_mmap_lock(file->f_mapping);
251 vma_prio_tree_add(tmp, mpnt);
252 flush_dcache_mmap_unlock(file->f_mapping);
253 spin_unlock(&file->f_mapping->i_mmap_lock);
254 }
255
256 /*
7ee78232 257 * Link in the new vma and copy the page table entries.
1da177e4 258 */
1da177e4
LT
259 *pprev = tmp;
260 pprev = &tmp->vm_next;
261
262 __vma_link_rb(mm, tmp, rb_link, rb_parent);
263 rb_link = &tmp->vm_rb.rb_right;
264 rb_parent = &tmp->vm_rb;
265
266 mm->map_count++;
0b0db14c 267 retval = copy_page_range(mm, oldmm, mpnt);
1da177e4
LT
268
269 if (tmp->vm_ops && tmp->vm_ops->open)
270 tmp->vm_ops->open(tmp);
271
272 if (retval)
273 goto out;
274 }
275 retval = 0;
1da177e4 276out:
7ee78232 277 up_write(&mm->mmap_sem);
fd3e42fc 278 flush_tlb_mm(oldmm);
1da177e4
LT
279 up_write(&oldmm->mmap_sem);
280 return retval;
281fail_nomem_policy:
282 kmem_cache_free(vm_area_cachep, tmp);
283fail_nomem:
284 retval = -ENOMEM;
285 vm_unacct_memory(charge);
286 goto out;
287}
288
289static inline int mm_alloc_pgd(struct mm_struct * mm)
290{
291 mm->pgd = pgd_alloc(mm);
292 if (unlikely(!mm->pgd))
293 return -ENOMEM;
294 return 0;
295}
296
297static inline void mm_free_pgd(struct mm_struct * mm)
298{
299 pgd_free(mm->pgd);
300}
301#else
302#define dup_mmap(mm, oldmm) (0)
303#define mm_alloc_pgd(mm) (0)
304#define mm_free_pgd(mm)
305#endif /* CONFIG_MMU */
306
307 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
308
309#define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
311
312#include <linux/init_task.h>
313
314static struct mm_struct * mm_init(struct mm_struct * mm)
315{
316 atomic_set(&mm->mm_users, 1);
317 atomic_set(&mm->mm_count, 1);
318 init_rwsem(&mm->mmap_sem);
319 INIT_LIST_HEAD(&mm->mmlist);
320 mm->core_waiters = 0;
321 mm->nr_ptes = 0;
4294621f 322 set_mm_counter(mm, file_rss, 0);
404351e6 323 set_mm_counter(mm, anon_rss, 0);
1da177e4
LT
324 spin_lock_init(&mm->page_table_lock);
325 rwlock_init(&mm->ioctx_list_lock);
326 mm->ioctx_list = NULL;
1da177e4 327 mm->free_area_cache = TASK_UNMAPPED_BASE;
1363c3cd 328 mm->cached_hole_size = ~0UL;
1da177e4
LT
329
330 if (likely(!mm_alloc_pgd(mm))) {
331 mm->def_flags = 0;
332 return mm;
333 }
334 free_mm(mm);
335 return NULL;
336}
337
338/*
339 * Allocate and initialize an mm_struct.
340 */
341struct mm_struct * mm_alloc(void)
342{
343 struct mm_struct * mm;
344
345 mm = allocate_mm();
346 if (mm) {
347 memset(mm, 0, sizeof(*mm));
348 mm = mm_init(mm);
349 }
350 return mm;
351}
352
353/*
354 * Called when the last reference to the mm
355 * is dropped: either by a lazy thread or by
356 * mmput. Free the page directory and the mm.
357 */
358void fastcall __mmdrop(struct mm_struct *mm)
359{
360 BUG_ON(mm == &init_mm);
361 mm_free_pgd(mm);
362 destroy_context(mm);
363 free_mm(mm);
364}
365
366/*
367 * Decrement the use count and release all resources for an mm.
368 */
369void mmput(struct mm_struct *mm)
370{
371 if (atomic_dec_and_test(&mm->mm_users)) {
372 exit_aio(mm);
373 exit_mmap(mm);
374 if (!list_empty(&mm->mmlist)) {
375 spin_lock(&mmlist_lock);
376 list_del(&mm->mmlist);
377 spin_unlock(&mmlist_lock);
378 }
379 put_swap_token(mm);
380 mmdrop(mm);
381 }
382}
383EXPORT_SYMBOL_GPL(mmput);
384
385/**
386 * get_task_mm - acquire a reference to the task's mm
387 *
388 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
389 * this kernel workthread has transiently adopted a user mm with use_mm,
390 * to do its AIO) is not set and if so returns a reference to it, after
391 * bumping up the use count. User must release the mm via mmput()
392 * after use. Typically used by /proc and ptrace.
393 */
394struct mm_struct *get_task_mm(struct task_struct *task)
395{
396 struct mm_struct *mm;
397
398 task_lock(task);
399 mm = task->mm;
400 if (mm) {
401 if (task->flags & PF_BORROWED_MM)
402 mm = NULL;
403 else
404 atomic_inc(&mm->mm_users);
405 }
406 task_unlock(task);
407 return mm;
408}
409EXPORT_SYMBOL_GPL(get_task_mm);
410
411/* Please note the differences between mmput and mm_release.
412 * mmput is called whenever we stop holding onto a mm_struct,
413 * error success whatever.
414 *
415 * mm_release is called after a mm_struct has been removed
416 * from the current process.
417 *
418 * This difference is important for error handling, when we
419 * only half set up a mm_struct for a new process and need to restore
420 * the old one. Because we mmput the new mm_struct before
421 * restoring the old one. . .
422 * Eric Biederman 10 January 1998
423 */
424void mm_release(struct task_struct *tsk, struct mm_struct *mm)
425{
426 struct completion *vfork_done = tsk->vfork_done;
427
428 /* Get rid of any cached register state */
429 deactivate_mm(tsk, mm);
430
431 /* notify parent sleeping on vfork() */
432 if (vfork_done) {
433 tsk->vfork_done = NULL;
434 complete(vfork_done);
435 }
436 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
437 u32 __user * tidptr = tsk->clear_child_tid;
438 tsk->clear_child_tid = NULL;
439
440 /*
441 * We don't check the error code - if userspace has
442 * not set up a proper pointer then tough luck.
443 */
444 put_user(0, tidptr);
445 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
446 }
447}
448
a0a7ec30
JD
449/*
450 * Allocate a new mm structure and copy contents from the
451 * mm structure of the passed in task structure.
452 */
453static struct mm_struct *dup_mm(struct task_struct *tsk)
454{
455 struct mm_struct *mm, *oldmm = current->mm;
456 int err;
457
458 if (!oldmm)
459 return NULL;
460
461 mm = allocate_mm();
462 if (!mm)
463 goto fail_nomem;
464
465 memcpy(mm, oldmm, sizeof(*mm));
466
467 if (!mm_init(mm))
468 goto fail_nomem;
469
470 if (init_new_context(tsk, mm))
471 goto fail_nocontext;
472
473 err = dup_mmap(mm, oldmm);
474 if (err)
475 goto free_pt;
476
477 mm->hiwater_rss = get_mm_rss(mm);
478 mm->hiwater_vm = mm->total_vm;
479
480 return mm;
481
482free_pt:
483 mmput(mm);
484
485fail_nomem:
486 return NULL;
487
488fail_nocontext:
489 /*
490 * If init_new_context() failed, we cannot use mmput() to free the mm
491 * because it calls destroy_context()
492 */
493 mm_free_pgd(mm);
494 free_mm(mm);
495 return NULL;
496}
497
1da177e4
LT
498static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
499{
500 struct mm_struct * mm, *oldmm;
501 int retval;
502
503 tsk->min_flt = tsk->maj_flt = 0;
504 tsk->nvcsw = tsk->nivcsw = 0;
505
506 tsk->mm = NULL;
507 tsk->active_mm = NULL;
508
509 /*
510 * Are we cloning a kernel thread?
511 *
512 * We need to steal a active VM for that..
513 */
514 oldmm = current->mm;
515 if (!oldmm)
516 return 0;
517
518 if (clone_flags & CLONE_VM) {
519 atomic_inc(&oldmm->mm_users);
520 mm = oldmm;
1da177e4
LT
521 goto good_mm;
522 }
523
524 retval = -ENOMEM;
a0a7ec30 525 mm = dup_mm(tsk);
1da177e4
LT
526 if (!mm)
527 goto fail_nomem;
528
1da177e4
LT
529good_mm:
530 tsk->mm = mm;
531 tsk->active_mm = mm;
532 return 0;
533
1da177e4
LT
534fail_nomem:
535 return retval;
1da177e4
LT
536}
537
538static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
539{
540 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
541 /* We don't need to lock fs - think why ;-) */
542 if (fs) {
543 atomic_set(&fs->count, 1);
544 rwlock_init(&fs->lock);
545 fs->umask = old->umask;
546 read_lock(&old->lock);
547 fs->rootmnt = mntget(old->rootmnt);
548 fs->root = dget(old->root);
549 fs->pwdmnt = mntget(old->pwdmnt);
550 fs->pwd = dget(old->pwd);
551 if (old->altroot) {
552 fs->altrootmnt = mntget(old->altrootmnt);
553 fs->altroot = dget(old->altroot);
554 } else {
555 fs->altrootmnt = NULL;
556 fs->altroot = NULL;
557 }
558 read_unlock(&old->lock);
559 }
560 return fs;
561}
562
563struct fs_struct *copy_fs_struct(struct fs_struct *old)
564{
565 return __copy_fs_struct(old);
566}
567
568EXPORT_SYMBOL_GPL(copy_fs_struct);
569
570static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
571{
572 if (clone_flags & CLONE_FS) {
573 atomic_inc(&current->fs->count);
574 return 0;
575 }
576 tsk->fs = __copy_fs_struct(current->fs);
577 if (!tsk->fs)
578 return -ENOMEM;
579 return 0;
580}
581
ab2af1f5 582static int count_open_files(struct fdtable *fdt)
1da177e4 583{
ab2af1f5 584 int size = fdt->max_fdset;
1da177e4
LT
585 int i;
586
587 /* Find the last open fd */
588 for (i = size/(8*sizeof(long)); i > 0; ) {
badf1662 589 if (fdt->open_fds->fds_bits[--i])
1da177e4
LT
590 break;
591 }
592 i = (i+1) * 8 * sizeof(long);
593 return i;
594}
595
badf1662
DS
596static struct files_struct *alloc_files(void)
597{
598 struct files_struct *newf;
599 struct fdtable *fdt;
600
601 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
602 if (!newf)
603 goto out;
604
605 atomic_set(&newf->count, 1);
606
607 spin_lock_init(&newf->file_lock);
ab2af1f5 608 fdt = &newf->fdtab;
badf1662
DS
609 fdt->next_fd = 0;
610 fdt->max_fds = NR_OPEN_DEFAULT;
611 fdt->max_fdset = __FD_SETSIZE;
612 fdt->close_on_exec = &newf->close_on_exec_init;
613 fdt->open_fds = &newf->open_fds_init;
614 fdt->fd = &newf->fd_array[0];
ab2af1f5
DS
615 INIT_RCU_HEAD(&fdt->rcu);
616 fdt->free_files = NULL;
617 fdt->next = NULL;
618 rcu_assign_pointer(newf->fdt, fdt);
badf1662
DS
619out:
620 return newf;
621}
622
a016f338
JD
623/*
624 * Allocate a new files structure and copy contents from the
625 * passed in files structure.
626 */
627static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
1da177e4 628{
a016f338 629 struct files_struct *newf;
1da177e4 630 struct file **old_fds, **new_fds;
a016f338 631 int open_files, size, i, expand;
badf1662 632 struct fdtable *old_fdt, *new_fdt;
1da177e4 633
badf1662
DS
634 newf = alloc_files();
635 if (!newf)
1da177e4
LT
636 goto out;
637
1da177e4 638 spin_lock(&oldf->file_lock);
badf1662
DS
639 old_fdt = files_fdtable(oldf);
640 new_fdt = files_fdtable(newf);
641 size = old_fdt->max_fdset;
ab2af1f5 642 open_files = count_open_files(old_fdt);
1da177e4
LT
643 expand = 0;
644
645 /*
646 * Check whether we need to allocate a larger fd array or fd set.
647 * Note: we're not a clone task, so the open count won't change.
648 */
badf1662
DS
649 if (open_files > new_fdt->max_fdset) {
650 new_fdt->max_fdset = 0;
1da177e4
LT
651 expand = 1;
652 }
badf1662
DS
653 if (open_files > new_fdt->max_fds) {
654 new_fdt->max_fds = 0;
1da177e4
LT
655 expand = 1;
656 }
657
658 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
659 if (expand) {
660 spin_unlock(&oldf->file_lock);
661 spin_lock(&newf->file_lock);
a016f338 662 *errorp = expand_files(newf, open_files-1);
1da177e4 663 spin_unlock(&newf->file_lock);
a016f338 664 if (*errorp < 0)
1da177e4 665 goto out_release;
ab2af1f5
DS
666 new_fdt = files_fdtable(newf);
667 /*
668 * Reacquire the oldf lock and a pointer to its fd table
669 * who knows it may have a new bigger fd table. We need
670 * the latest pointer.
671 */
1da177e4 672 spin_lock(&oldf->file_lock);
ab2af1f5 673 old_fdt = files_fdtable(oldf);
1da177e4
LT
674 }
675
badf1662
DS
676 old_fds = old_fdt->fd;
677 new_fds = new_fdt->fd;
1da177e4 678
badf1662
DS
679 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
680 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
1da177e4
LT
681
682 for (i = open_files; i != 0; i--) {
683 struct file *f = *old_fds++;
684 if (f) {
685 get_file(f);
686 } else {
687 /*
688 * The fd may be claimed in the fd bitmap but not yet
689 * instantiated in the files array if a sibling thread
690 * is partway through open(). So make sure that this
691 * fd is available to the new process.
692 */
badf1662 693 FD_CLR(open_files - i, new_fdt->open_fds);
1da177e4 694 }
ab2af1f5 695 rcu_assign_pointer(*new_fds++, f);
1da177e4
LT
696 }
697 spin_unlock(&oldf->file_lock);
698
699 /* compute the remainder to be cleared */
badf1662 700 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
1da177e4
LT
701
702 /* This is long word aligned thus could use a optimized version */
703 memset(new_fds, 0, size);
704
badf1662
DS
705 if (new_fdt->max_fdset > open_files) {
706 int left = (new_fdt->max_fdset-open_files)/8;
1da177e4
LT
707 int start = open_files / (8 * sizeof(unsigned long));
708
badf1662
DS
709 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
710 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
1da177e4
LT
711 }
712
1da177e4 713out:
a016f338 714 return newf;
1da177e4
LT
715
716out_release:
badf1662
DS
717 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
718 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
719 free_fd_array(new_fdt->fd, new_fdt->max_fds);
1da177e4
LT
720 kmem_cache_free(files_cachep, newf);
721 goto out;
722}
723
a016f338
JD
724static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
725{
726 struct files_struct *oldf, *newf;
727 int error = 0;
728
729 /*
730 * A background process may not have any files ...
731 */
732 oldf = current->files;
733 if (!oldf)
734 goto out;
735
736 if (clone_flags & CLONE_FILES) {
737 atomic_inc(&oldf->count);
738 goto out;
739 }
740
741 /*
742 * Note: we may be using current for both targets (See exec.c)
743 * This works because we cache current->files (old) as oldf. Don't
744 * break this.
745 */
746 tsk->files = NULL;
747 error = -ENOMEM;
748 newf = dup_fd(oldf, &error);
749 if (!newf)
750 goto out;
751
752 tsk->files = newf;
753 error = 0;
754out:
755 return error;
756}
757
1da177e4
LT
758/*
759 * Helper to unshare the files of the current task.
760 * We don't want to expose copy_files internals to
761 * the exec layer of the kernel.
762 */
763
764int unshare_files(void)
765{
766 struct files_struct *files = current->files;
767 int rc;
768
769 if(!files)
770 BUG();
771
772 /* This can race but the race causes us to copy when we don't
773 need to and drop the copy */
774 if(atomic_read(&files->count) == 1)
775 {
776 atomic_inc(&files->count);
777 return 0;
778 }
779 rc = copy_files(0, current);
780 if(rc)
781 current->files = files;
782 return rc;
783}
784
785EXPORT_SYMBOL(unshare_files);
786
e56d0903
IM
787void sighand_free_cb(struct rcu_head *rhp)
788{
789 struct sighand_struct *sp;
790
791 sp = container_of(rhp, struct sighand_struct, rcu);
792 kmem_cache_free(sighand_cachep, sp);
793}
794
1da177e4
LT
795static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
796{
797 struct sighand_struct *sig;
798
799 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
800 atomic_inc(&current->sighand->count);
801 return 0;
802 }
803 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 804 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
805 if (!sig)
806 return -ENOMEM;
807 spin_lock_init(&sig->siglock);
808 atomic_set(&sig->count, 1);
809 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
810 return 0;
811}
812
813static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
814{
815 struct signal_struct *sig;
816 int ret;
817
818 if (clone_flags & CLONE_THREAD) {
819 atomic_inc(&current->signal->count);
820 atomic_inc(&current->signal->live);
821 return 0;
822 }
823 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
824 tsk->signal = sig;
825 if (!sig)
826 return -ENOMEM;
827
828 ret = copy_thread_group_keys(tsk);
829 if (ret < 0) {
830 kmem_cache_free(signal_cachep, sig);
831 return ret;
832 }
833
834 atomic_set(&sig->count, 1);
835 atomic_set(&sig->live, 1);
836 init_waitqueue_head(&sig->wait_chldexit);
837 sig->flags = 0;
838 sig->group_exit_code = 0;
839 sig->group_exit_task = NULL;
840 sig->group_stop_count = 0;
841 sig->curr_target = NULL;
842 init_sigpending(&sig->shared_pending);
843 INIT_LIST_HEAD(&sig->posix_timers);
844
7978672c 845 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
2ff678b8 846 sig->it_real_incr.tv64 = 0;
1da177e4 847 sig->real_timer.function = it_real_fn;
2ff678b8 848 sig->real_timer.data = tsk;
1da177e4
LT
849
850 sig->it_virt_expires = cputime_zero;
851 sig->it_virt_incr = cputime_zero;
852 sig->it_prof_expires = cputime_zero;
853 sig->it_prof_incr = cputime_zero;
854
1da177e4
LT
855 sig->leader = 0; /* session leadership doesn't inherit */
856 sig->tty_old_pgrp = 0;
857
858 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
859 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
860 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
861 sig->sched_time = 0;
862 INIT_LIST_HEAD(&sig->cpu_timers[0]);
863 INIT_LIST_HEAD(&sig->cpu_timers[1]);
864 INIT_LIST_HEAD(&sig->cpu_timers[2]);
865
866 task_lock(current->group_leader);
867 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
868 task_unlock(current->group_leader);
869
870 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
871 /*
872 * New sole thread in the process gets an expiry time
873 * of the whole CPU time limit.
874 */
875 tsk->it_prof_expires =
876 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
877 }
878
879 return 0;
880}
881
882static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
883{
884 unsigned long new_flags = p->flags;
885
d1209d04 886 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
1da177e4
LT
887 new_flags |= PF_FORKNOEXEC;
888 if (!(clone_flags & CLONE_PTRACE))
889 p->ptrace = 0;
890 p->flags = new_flags;
891}
892
893asmlinkage long sys_set_tid_address(int __user *tidptr)
894{
895 current->clear_child_tid = tidptr;
896
897 return current->pid;
898}
899
900/*
901 * This creates a new process as a copy of the old one,
902 * but does not actually start it yet.
903 *
904 * It copies the registers, and all the appropriate
905 * parts of the process environment (as per the clone
906 * flags). The actual kick-off is left to the caller.
907 */
908static task_t *copy_process(unsigned long clone_flags,
909 unsigned long stack_start,
910 struct pt_regs *regs,
911 unsigned long stack_size,
912 int __user *parent_tidptr,
913 int __user *child_tidptr,
914 int pid)
915{
916 int retval;
917 struct task_struct *p = NULL;
918
919 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
920 return ERR_PTR(-EINVAL);
921
922 /*
923 * Thread groups must share signals as well, and detached threads
924 * can only be started up within the thread group.
925 */
926 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
927 return ERR_PTR(-EINVAL);
928
929 /*
930 * Shared signal handlers imply shared VM. By way of the above,
931 * thread groups also imply shared VM. Blocking this case allows
932 * for various simplifications in other code.
933 */
934 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
935 return ERR_PTR(-EINVAL);
936
937 retval = security_task_create(clone_flags);
938 if (retval)
939 goto fork_out;
940
941 retval = -ENOMEM;
942 p = dup_task_struct(current);
943 if (!p)
944 goto fork_out;
945
946 retval = -EAGAIN;
947 if (atomic_read(&p->user->processes) >=
948 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
949 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
950 p->user != &root_user)
951 goto bad_fork_free;
952 }
953
954 atomic_inc(&p->user->__count);
955 atomic_inc(&p->user->processes);
956 get_group_info(p->group_info);
957
958 /*
959 * If multiple threads are within copy_process(), then this check
960 * triggers too late. This doesn't hurt, the check is only there
961 * to stop root fork bombs.
962 */
963 if (nr_threads >= max_threads)
964 goto bad_fork_cleanup_count;
965
a1261f54 966 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1da177e4
LT
967 goto bad_fork_cleanup_count;
968
969 if (p->binfmt && !try_module_get(p->binfmt->module))
970 goto bad_fork_cleanup_put_domain;
971
972 p->did_exec = 0;
973 copy_flags(clone_flags, p);
974 p->pid = pid;
975 retval = -EFAULT;
976 if (clone_flags & CLONE_PARENT_SETTID)
977 if (put_user(p->pid, parent_tidptr))
978 goto bad_fork_cleanup;
979
980 p->proc_dentry = NULL;
981
982 INIT_LIST_HEAD(&p->children);
983 INIT_LIST_HEAD(&p->sibling);
984 p->vfork_done = NULL;
985 spin_lock_init(&p->alloc_lock);
986 spin_lock_init(&p->proc_lock);
987
988 clear_tsk_thread_flag(p, TIF_SIGPENDING);
989 init_sigpending(&p->pending);
990
991 p->utime = cputime_zero;
992 p->stime = cputime_zero;
993 p->sched_time = 0;
994 p->rchar = 0; /* I/O counter: bytes read */
995 p->wchar = 0; /* I/O counter: bytes written */
996 p->syscr = 0; /* I/O counter: read syscalls */
997 p->syscw = 0; /* I/O counter: write syscalls */
998 acct_clear_integrals(p);
999
1000 p->it_virt_expires = cputime_zero;
1001 p->it_prof_expires = cputime_zero;
1002 p->it_sched_expires = 0;
1003 INIT_LIST_HEAD(&p->cpu_timers[0]);
1004 INIT_LIST_HEAD(&p->cpu_timers[1]);
1005 INIT_LIST_HEAD(&p->cpu_timers[2]);
1006
1007 p->lock_depth = -1; /* -1 = no lock */
1008 do_posix_clock_monotonic_gettime(&p->start_time);
1009 p->security = NULL;
1010 p->io_context = NULL;
1011 p->io_wait = NULL;
1012 p->audit_context = NULL;
b4b26418 1013 cpuset_fork(p);
1da177e4
LT
1014#ifdef CONFIG_NUMA
1015 p->mempolicy = mpol_copy(p->mempolicy);
1016 if (IS_ERR(p->mempolicy)) {
1017 retval = PTR_ERR(p->mempolicy);
1018 p->mempolicy = NULL;
b4b26418 1019 goto bad_fork_cleanup_cpuset;
1da177e4
LT
1020 }
1021#endif
1022
408894ee
IM
1023#ifdef CONFIG_DEBUG_MUTEXES
1024 p->blocked_on = NULL; /* not blocked yet */
1025#endif
1026
1da177e4
LT
1027 p->tgid = p->pid;
1028 if (clone_flags & CLONE_THREAD)
1029 p->tgid = current->tgid;
1030
1031 if ((retval = security_task_alloc(p)))
1032 goto bad_fork_cleanup_policy;
1033 if ((retval = audit_alloc(p)))
1034 goto bad_fork_cleanup_security;
1035 /* copy all the process information */
1036 if ((retval = copy_semundo(clone_flags, p)))
1037 goto bad_fork_cleanup_audit;
1038 if ((retval = copy_files(clone_flags, p)))
1039 goto bad_fork_cleanup_semundo;
1040 if ((retval = copy_fs(clone_flags, p)))
1041 goto bad_fork_cleanup_files;
1042 if ((retval = copy_sighand(clone_flags, p)))
1043 goto bad_fork_cleanup_fs;
1044 if ((retval = copy_signal(clone_flags, p)))
1045 goto bad_fork_cleanup_sighand;
1046 if ((retval = copy_mm(clone_flags, p)))
1047 goto bad_fork_cleanup_signal;
1048 if ((retval = copy_keys(clone_flags, p)))
1049 goto bad_fork_cleanup_mm;
1050 if ((retval = copy_namespace(clone_flags, p)))
1051 goto bad_fork_cleanup_keys;
1052 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1053 if (retval)
1054 goto bad_fork_cleanup_namespace;
1055
1056 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1057 /*
1058 * Clear TID on mm_release()?
1059 */
1060 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1061
1062 /*
1063 * Syscall tracing should be turned off in the child regardless
1064 * of CLONE_PTRACE.
1065 */
1066 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
1067#ifdef TIF_SYSCALL_EMU
1068 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1069#endif
1da177e4
LT
1070
1071 /* Our parent execution domain becomes current domain
1072 These must match for thread signalling to apply */
1073
1074 p->parent_exec_id = p->self_exec_id;
1075
1076 /* ok, now we should be set up.. */
1077 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1078 p->pdeath_signal = 0;
1079 p->exit_state = 0;
1080
1da177e4
LT
1081 /*
1082 * Ok, make it visible to the rest of the system.
1083 * We dont wake it up yet.
1084 */
1085 p->group_leader = p;
1086 INIT_LIST_HEAD(&p->ptrace_children);
1087 INIT_LIST_HEAD(&p->ptrace_list);
1088
476d139c
NP
1089 /* Perform scheduler related setup. Assign this task to a CPU. */
1090 sched_fork(p, clone_flags);
1091
1da177e4
LT
1092 /* Need tasklist lock for parent etc handling! */
1093 write_lock_irq(&tasklist_lock);
1094
1095 /*
476d139c
NP
1096 * The task hasn't been attached yet, so its cpus_allowed mask will
1097 * not be changed, nor will its assigned CPU.
1098 *
1099 * The cpus_allowed mask of the parent may have changed after it was
1100 * copied first time - so re-copy it here, then check the child's CPU
1101 * to ensure it is on a valid CPU (and if not, just force it back to
1102 * parent's CPU). This avoids alot of nasty races.
1da177e4
LT
1103 */
1104 p->cpus_allowed = current->cpus_allowed;
26ff6ad9
SV
1105 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1106 !cpu_online(task_cpu(p))))
476d139c 1107 set_task_cpu(p, smp_processor_id());
1da177e4
LT
1108
1109 /*
1110 * Check for pending SIGKILL! The new thread should not be allowed
1111 * to slip out of an OOM kill. (or normal SIGKILL.)
1112 */
1113 if (sigismember(&current->pending.signal, SIGKILL)) {
1114 write_unlock_irq(&tasklist_lock);
1115 retval = -EINTR;
1116 goto bad_fork_cleanup_namespace;
1117 }
1118
1119 /* CLONE_PARENT re-uses the old parent */
1120 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1121 p->real_parent = current->real_parent;
1122 else
1123 p->real_parent = current;
1124 p->parent = p->real_parent;
1125
1126 if (clone_flags & CLONE_THREAD) {
1127 spin_lock(&current->sighand->siglock);
1128 /*
1129 * Important: if an exit-all has been started then
1130 * do not create this new thread - the whole thread
1131 * group is supposed to exit anyway.
1132 */
1133 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1134 spin_unlock(&current->sighand->siglock);
1135 write_unlock_irq(&tasklist_lock);
1136 retval = -EAGAIN;
1137 goto bad_fork_cleanup_namespace;
1138 }
1139 p->group_leader = current->group_leader;
1140
1141 if (current->signal->group_stop_count > 0) {
1142 /*
1143 * There is an all-stop in progress for the group.
1144 * We ourselves will stop as soon as we check signals.
1145 * Make the new thread part of that group stop too.
1146 */
1147 current->signal->group_stop_count++;
1148 set_tsk_thread_flag(p, TIF_SIGPENDING);
1149 }
1150
1151 if (!cputime_eq(current->signal->it_virt_expires,
1152 cputime_zero) ||
1153 !cputime_eq(current->signal->it_prof_expires,
1154 cputime_zero) ||
1155 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1156 !list_empty(&current->signal->cpu_timers[0]) ||
1157 !list_empty(&current->signal->cpu_timers[1]) ||
1158 !list_empty(&current->signal->cpu_timers[2])) {
1159 /*
1160 * Have child wake up on its first tick to check
1161 * for process CPU timers.
1162 */
1163 p->it_prof_expires = jiffies_to_cputime(1);
1164 }
1165
1166 spin_unlock(&current->sighand->siglock);
1167 }
1168
22e2c507
JA
1169 /*
1170 * inherit ioprio
1171 */
1172 p->ioprio = current->ioprio;
1173
1da177e4
LT
1174 SET_LINKS(p);
1175 if (unlikely(p->ptrace & PT_PTRACED))
1176 __ptrace_link(p, current->parent);
1177
1da177e4
LT
1178 attach_pid(p, PIDTYPE_PID, p->pid);
1179 attach_pid(p, PIDTYPE_TGID, p->tgid);
1180 if (thread_group_leader(p)) {
9a5d3023
OL
1181 p->signal->tty = current->signal->tty;
1182 p->signal->pgrp = process_group(current);
1183 p->signal->session = current->signal->session;
1da177e4
LT
1184 attach_pid(p, PIDTYPE_PGID, process_group(p));
1185 attach_pid(p, PIDTYPE_SID, p->signal->session);
1186 if (p->pid)
1187 __get_cpu_var(process_counts)++;
1188 }
1189
1190 nr_threads++;
1191 total_forks++;
1192 write_unlock_irq(&tasklist_lock);
c13cf856 1193 proc_fork_connector(p);
1da177e4
LT
1194 return p;
1195
1196bad_fork_cleanup_namespace:
1197 exit_namespace(p);
1198bad_fork_cleanup_keys:
1199 exit_keys(p);
1200bad_fork_cleanup_mm:
1201 if (p->mm)
1202 mmput(p->mm);
1203bad_fork_cleanup_signal:
1204 exit_signal(p);
1205bad_fork_cleanup_sighand:
1206 exit_sighand(p);
1207bad_fork_cleanup_fs:
1208 exit_fs(p); /* blocking */
1209bad_fork_cleanup_files:
1210 exit_files(p); /* blocking */
1211bad_fork_cleanup_semundo:
1212 exit_sem(p);
1213bad_fork_cleanup_audit:
1214 audit_free(p);
1215bad_fork_cleanup_security:
1216 security_task_free(p);
1217bad_fork_cleanup_policy:
1218#ifdef CONFIG_NUMA
1219 mpol_free(p->mempolicy);
b4b26418 1220bad_fork_cleanup_cpuset:
1da177e4 1221#endif
b4b26418 1222 cpuset_exit(p);
1da177e4
LT
1223bad_fork_cleanup:
1224 if (p->binfmt)
1225 module_put(p->binfmt->module);
1226bad_fork_cleanup_put_domain:
a1261f54 1227 module_put(task_thread_info(p)->exec_domain->module);
1da177e4
LT
1228bad_fork_cleanup_count:
1229 put_group_info(p->group_info);
1230 atomic_dec(&p->user->processes);
1231 free_uid(p->user);
1232bad_fork_free:
1233 free_task(p);
fe7d37d1
ON
1234fork_out:
1235 return ERR_PTR(retval);
1da177e4
LT
1236}
1237
1238struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1239{
1240 memset(regs, 0, sizeof(struct pt_regs));
1241 return regs;
1242}
1243
1244task_t * __devinit fork_idle(int cpu)
1245{
1246 task_t *task;
1247 struct pt_regs regs;
1248
1249 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1250 if (!task)
1251 return ERR_PTR(-ENOMEM);
1252 init_idle(task, cpu);
1253 unhash_process(task);
1254 return task;
1255}
1256
1257static inline int fork_traceflag (unsigned clone_flags)
1258{
1259 if (clone_flags & CLONE_UNTRACED)
1260 return 0;
1261 else if (clone_flags & CLONE_VFORK) {
1262 if (current->ptrace & PT_TRACE_VFORK)
1263 return PTRACE_EVENT_VFORK;
1264 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1265 if (current->ptrace & PT_TRACE_CLONE)
1266 return PTRACE_EVENT_CLONE;
1267 } else if (current->ptrace & PT_TRACE_FORK)
1268 return PTRACE_EVENT_FORK;
1269
1270 return 0;
1271}
1272
1273/*
1274 * Ok, this is the main fork-routine.
1275 *
1276 * It copies the process, and if successful kick-starts
1277 * it and waits for it to finish using the VM if required.
1278 */
1279long do_fork(unsigned long clone_flags,
1280 unsigned long stack_start,
1281 struct pt_regs *regs,
1282 unsigned long stack_size,
1283 int __user *parent_tidptr,
1284 int __user *child_tidptr)
1285{
1286 struct task_struct *p;
1287 int trace = 0;
1288 long pid = alloc_pidmap();
1289
1290 if (pid < 0)
1291 return -EAGAIN;
1292 if (unlikely(current->ptrace)) {
1293 trace = fork_traceflag (clone_flags);
1294 if (trace)
1295 clone_flags |= CLONE_PTRACE;
1296 }
1297
1298 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1299 /*
1300 * Do this prior waking up the new thread - the thread pointer
1301 * might get invalid after that point, if the thread exits quickly.
1302 */
1303 if (!IS_ERR(p)) {
1304 struct completion vfork;
1305
1306 if (clone_flags & CLONE_VFORK) {
1307 p->vfork_done = &vfork;
1308 init_completion(&vfork);
1309 }
1310
1311 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1312 /*
1313 * We'll start up with an immediate SIGSTOP.
1314 */
1315 sigaddset(&p->pending.signal, SIGSTOP);
1316 set_tsk_thread_flag(p, TIF_SIGPENDING);
1317 }
1318
1319 if (!(clone_flags & CLONE_STOPPED))
1320 wake_up_new_task(p, clone_flags);
1321 else
1322 p->state = TASK_STOPPED;
1323
1324 if (unlikely (trace)) {
1325 current->ptrace_message = pid;
1326 ptrace_notify ((trace << 8) | SIGTRAP);
1327 }
1328
1329 if (clone_flags & CLONE_VFORK) {
1330 wait_for_completion(&vfork);
1331 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1332 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1333 }
1334 } else {
1335 free_pidmap(pid);
1336 pid = PTR_ERR(p);
1337 }
1338 return pid;
1339}
1340
5fd63b30
RT
1341#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1342#define ARCH_MIN_MMSTRUCT_ALIGN 0
1343#endif
1344
1da177e4
LT
1345void __init proc_caches_init(void)
1346{
1347 sighand_cachep = kmem_cache_create("sighand_cache",
1348 sizeof(struct sighand_struct), 0,
1349 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1350 signal_cachep = kmem_cache_create("signal_cache",
1351 sizeof(struct signal_struct), 0,
1352 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1353 files_cachep = kmem_cache_create("files_cache",
1354 sizeof(struct files_struct), 0,
1355 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1356 fs_cachep = kmem_cache_create("fs_cache",
1357 sizeof(struct fs_struct), 0,
1358 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1359 vm_area_cachep = kmem_cache_create("vm_area_struct",
1360 sizeof(struct vm_area_struct), 0,
1361 SLAB_PANIC, NULL, NULL);
1362 mm_cachep = kmem_cache_create("mm_struct",
5fd63b30 1363 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1da177e4
LT
1364 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1365}
cf2e340f
JD
1366
1367
1368/*
1369 * Check constraints on flags passed to the unshare system call and
1370 * force unsharing of additional process context as appropriate.
1371 */
1372static inline void check_unshare_flags(unsigned long *flags_ptr)
1373{
1374 /*
1375 * If unsharing a thread from a thread group, must also
1376 * unshare vm.
1377 */
1378 if (*flags_ptr & CLONE_THREAD)
1379 *flags_ptr |= CLONE_VM;
1380
1381 /*
1382 * If unsharing vm, must also unshare signal handlers.
1383 */
1384 if (*flags_ptr & CLONE_VM)
1385 *flags_ptr |= CLONE_SIGHAND;
1386
1387 /*
1388 * If unsharing signal handlers and the task was created
1389 * using CLONE_THREAD, then must unshare the thread
1390 */
1391 if ((*flags_ptr & CLONE_SIGHAND) &&
1392 (atomic_read(&current->signal->count) > 1))
1393 *flags_ptr |= CLONE_THREAD;
1394
1395 /*
1396 * If unsharing namespace, must also unshare filesystem information.
1397 */
1398 if (*flags_ptr & CLONE_NEWNS)
1399 *flags_ptr |= CLONE_FS;
1400}
1401
1402/*
1403 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1404 */
1405static int unshare_thread(unsigned long unshare_flags)
1406{
1407 if (unshare_flags & CLONE_THREAD)
1408 return -EINVAL;
1409
1410 return 0;
1411}
1412
1413/*
99d1419d 1414 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
1415 */
1416static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1417{
1418 struct fs_struct *fs = current->fs;
1419
1420 if ((unshare_flags & CLONE_FS) &&
99d1419d
JD
1421 (fs && atomic_read(&fs->count) > 1)) {
1422 *new_fsp = __copy_fs_struct(current->fs);
1423 if (!*new_fsp)
1424 return -ENOMEM;
1425 }
cf2e340f
JD
1426
1427 return 0;
1428}
1429
1430/*
741a2951 1431 * Unshare the namespace structure if it is being shared
cf2e340f 1432 */
741a2951 1433static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
cf2e340f
JD
1434{
1435 struct namespace *ns = current->namespace;
1436
1437 if ((unshare_flags & CLONE_NEWNS) &&
741a2951
JD
1438 (ns && atomic_read(&ns->count) > 1)) {
1439 if (!capable(CAP_SYS_ADMIN))
1440 return -EPERM;
1441
1442 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1443 if (!*new_nsp)
1444 return -ENOMEM;
1445 }
cf2e340f
JD
1446
1447 return 0;
1448}
1449
1450/*
1451 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1452 * supported yet
1453 */
1454static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1455{
1456 struct sighand_struct *sigh = current->sighand;
1457
1458 if ((unshare_flags & CLONE_SIGHAND) &&
1459 (sigh && atomic_read(&sigh->count) > 1))
1460 return -EINVAL;
1461 else
1462 return 0;
1463}
1464
1465/*
a0a7ec30 1466 * Unshare vm if it is being shared
cf2e340f
JD
1467 */
1468static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1469{
1470 struct mm_struct *mm = current->mm;
1471
1472 if ((unshare_flags & CLONE_VM) &&
a0a7ec30
JD
1473 (mm && atomic_read(&mm->mm_users) > 1)) {
1474 *new_mmp = dup_mm(current);
1475 if (!*new_mmp)
1476 return -ENOMEM;
1477 }
cf2e340f
JD
1478
1479 return 0;
cf2e340f
JD
1480}
1481
1482/*
a016f338 1483 * Unshare file descriptor table if it is being shared
cf2e340f
JD
1484 */
1485static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1486{
1487 struct files_struct *fd = current->files;
a016f338 1488 int error = 0;
cf2e340f
JD
1489
1490 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
1491 (fd && atomic_read(&fd->count) > 1)) {
1492 *new_fdp = dup_fd(fd, &error);
1493 if (!*new_fdp)
1494 return error;
1495 }
cf2e340f
JD
1496
1497 return 0;
1498}
1499
1500/*
1501 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1502 * supported yet
1503 */
1504static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1505{
1506 if (unshare_flags & CLONE_SYSVSEM)
1507 return -EINVAL;
1508
1509 return 0;
1510}
1511
1512/*
1513 * unshare allows a process to 'unshare' part of the process
1514 * context which was originally shared using clone. copy_*
1515 * functions used by do_fork() cannot be used here directly
1516 * because they modify an inactive task_struct that is being
1517 * constructed. Here we are modifying the current, active,
1518 * task_struct.
1519 */
1520asmlinkage long sys_unshare(unsigned long unshare_flags)
1521{
1522 int err = 0;
1523 struct fs_struct *fs, *new_fs = NULL;
1524 struct namespace *ns, *new_ns = NULL;
1525 struct sighand_struct *sigh, *new_sigh = NULL;
1526 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1527 struct files_struct *fd, *new_fd = NULL;
1528 struct sem_undo_list *new_ulist = NULL;
1529
1530 check_unshare_flags(&unshare_flags);
1531
1532 if ((err = unshare_thread(unshare_flags)))
1533 goto bad_unshare_out;
1534 if ((err = unshare_fs(unshare_flags, &new_fs)))
1535 goto bad_unshare_cleanup_thread;
741a2951 1536 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
cf2e340f
JD
1537 goto bad_unshare_cleanup_fs;
1538 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1539 goto bad_unshare_cleanup_ns;
1540 if ((err = unshare_vm(unshare_flags, &new_mm)))
1541 goto bad_unshare_cleanup_sigh;
1542 if ((err = unshare_fd(unshare_flags, &new_fd)))
1543 goto bad_unshare_cleanup_vm;
1544 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1545 goto bad_unshare_cleanup_fd;
1546
1547 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1548
1549 task_lock(current);
1550
1551 if (new_fs) {
1552 fs = current->fs;
1553 current->fs = new_fs;
1554 new_fs = fs;
1555 }
1556
1557 if (new_ns) {
1558 ns = current->namespace;
1559 current->namespace = new_ns;
1560 new_ns = ns;
1561 }
1562
1563 if (new_sigh) {
1564 sigh = current->sighand;
1565 current->sighand = new_sigh;
1566 new_sigh = sigh;
1567 }
1568
1569 if (new_mm) {
1570 mm = current->mm;
1571 active_mm = current->active_mm;
1572 current->mm = new_mm;
1573 current->active_mm = new_mm;
1574 activate_mm(active_mm, new_mm);
1575 new_mm = mm;
1576 }
1577
1578 if (new_fd) {
1579 fd = current->files;
1580 current->files = new_fd;
1581 new_fd = fd;
1582 }
1583
1584 task_unlock(current);
1585 }
1586
1587bad_unshare_cleanup_fd:
1588 if (new_fd)
1589 put_files_struct(new_fd);
1590
1591bad_unshare_cleanup_vm:
1592 if (new_mm)
1593 mmput(new_mm);
1594
1595bad_unshare_cleanup_sigh:
1596 if (new_sigh)
1597 if (atomic_dec_and_test(&new_sigh->count))
1598 kmem_cache_free(sighand_cachep, new_sigh);
1599
1600bad_unshare_cleanup_ns:
1601 if (new_ns)
1602 put_namespace(new_ns);
1603
1604bad_unshare_cleanup_fs:
1605 if (new_fs)
1606 put_fs_struct(new_fs);
1607
1608bad_unshare_cleanup_thread:
1609bad_unshare_out:
1610 return err;
1611}