[PATCH] kill SET_LINKS/REMOVE_LINKS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/config.h>
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/interrupt.h>
11#include <linux/smp_lock.h>
12#include <linux/module.h>
c59ede7b 13#include <linux/capability.h>
1da177e4
LT
14#include <linux/completion.h>
15#include <linux/personality.h>
16#include <linux/tty.h>
17#include <linux/namespace.h>
18#include <linux/key.h>
19#include <linux/security.h>
20#include <linux/cpu.h>
21#include <linux/acct.h>
22#include <linux/file.h>
23#include <linux/binfmts.h>
24#include <linux/ptrace.h>
25#include <linux/profile.h>
26#include <linux/mount.h>
27#include <linux/proc_fs.h>
28#include <linux/mempolicy.h>
29#include <linux/cpuset.h>
30#include <linux/syscalls.h>
7ed20e1a 31#include <linux/signal.h>
9f46080c 32#include <linux/cn_proc.h>
de5097c2 33#include <linux/mutex.h>
0771dfef 34#include <linux/futex.h>
34f192c6 35#include <linux/compat.h>
1da177e4
LT
36
37#include <asm/uaccess.h>
38#include <asm/unistd.h>
39#include <asm/pgtable.h>
40#include <asm/mmu_context.h>
41
42extern void sem_exit (void);
43extern struct task_struct *child_reaper;
44
45int getrusage(struct task_struct *, int, struct rusage __user *);
46
408b664a
AB
47static void exit_mm(struct task_struct * tsk);
48
1da177e4
LT
49static void __unhash_process(struct task_struct *p)
50{
51 nr_threads--;
52 detach_pid(p, PIDTYPE_PID);
53 detach_pid(p, PIDTYPE_TGID);
54 if (thread_group_leader(p)) {
55 detach_pid(p, PIDTYPE_PGID);
56 detach_pid(p, PIDTYPE_SID);
c97d9893
ON
57
58 list_del_init(&p->tasks);
1da177e4
LT
59 if (p->pid)
60 __get_cpu_var(process_counts)--;
61 }
62
c97d9893 63 remove_parent(p);
1da177e4
LT
64}
65
66void release_task(struct task_struct * p)
67{
68 int zap_leader;
69 task_t *leader;
70 struct dentry *proc_dentry;
71
72repeat:
73 atomic_dec(&p->user->processes);
74 spin_lock(&p->proc_lock);
75 proc_dentry = proc_pid_unhash(p);
76 write_lock_irq(&tasklist_lock);
77 if (unlikely(p->ptrace))
78 __ptrace_unlink(p);
79 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
80 __exit_signal(p);
71a2224d
CL
81 /*
82 * Note that the fastpath in sys_times depends on __exit_signal having
83 * updated the counters before a task is removed from the tasklist of
84 * the process by __unhash_process.
85 */
1da177e4
LT
86 __unhash_process(p);
87
88 /*
89 * If we are the last non-leader member of the thread
90 * group, and the leader is zombie, then notify the
91 * group leader's parent process. (if it wants notification.)
92 */
93 zap_leader = 0;
94 leader = p->group_leader;
95 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
96 BUG_ON(leader->exit_signal == -1);
97 do_notify_parent(leader, leader->exit_signal);
98 /*
99 * If we were the last child thread and the leader has
100 * exited already, and the leader's parent ignores SIGCHLD,
101 * then we are the one who should release the leader.
102 *
103 * do_notify_parent() will have marked it self-reaping in
104 * that case.
105 */
106 zap_leader = (leader->exit_signal == -1);
107 }
108
109 sched_exit(p);
110 write_unlock_irq(&tasklist_lock);
111 spin_unlock(&p->proc_lock);
112 proc_pid_flush(proc_dentry);
113 release_thread(p);
114 put_task_struct(p);
115
116 p = leader;
117 if (unlikely(zap_leader))
118 goto repeat;
119}
120
121/* we are using it only for SMP init */
122
123void unhash_process(struct task_struct *p)
124{
125 struct dentry *proc_dentry;
126
127 spin_lock(&p->proc_lock);
128 proc_dentry = proc_pid_unhash(p);
129 write_lock_irq(&tasklist_lock);
130 __unhash_process(p);
131 write_unlock_irq(&tasklist_lock);
132 spin_unlock(&p->proc_lock);
133 proc_pid_flush(proc_dentry);
134}
135
136/*
137 * This checks not only the pgrp, but falls back on the pid if no
138 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
139 * without this...
140 */
141int session_of_pgrp(int pgrp)
142{
143 struct task_struct *p;
144 int sid = -1;
145
146 read_lock(&tasklist_lock);
147 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
148 if (p->signal->session > 0) {
149 sid = p->signal->session;
150 goto out;
151 }
152 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
153 p = find_task_by_pid(pgrp);
154 if (p)
155 sid = p->signal->session;
156out:
157 read_unlock(&tasklist_lock);
158
159 return sid;
160}
161
162/*
163 * Determine if a process group is "orphaned", according to the POSIX
164 * definition in 2.2.2.52. Orphaned process groups are not to be affected
165 * by terminal-generated stop signals. Newly orphaned process groups are
166 * to receive a SIGHUP and a SIGCONT.
167 *
168 * "I ask you, have you ever known what it is to be an orphan?"
169 */
170static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
171{
172 struct task_struct *p;
173 int ret = 1;
174
175 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
176 if (p == ignored_task
177 || p->exit_state
178 || p->real_parent->pid == 1)
179 continue;
180 if (process_group(p->real_parent) != pgrp
181 && p->real_parent->signal->session == p->signal->session) {
182 ret = 0;
183 break;
184 }
185 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
186 return ret; /* (sighing) "Often!" */
187}
188
189int is_orphaned_pgrp(int pgrp)
190{
191 int retval;
192
193 read_lock(&tasklist_lock);
194 retval = will_become_orphaned_pgrp(pgrp, NULL);
195 read_unlock(&tasklist_lock);
196
197 return retval;
198}
199
858119e1 200static int has_stopped_jobs(int pgrp)
1da177e4
LT
201{
202 int retval = 0;
203 struct task_struct *p;
204
205 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
206 if (p->state != TASK_STOPPED)
207 continue;
208
209 /* If p is stopped by a debugger on a signal that won't
210 stop it, then don't count p as stopped. This isn't
211 perfect but it's a good approximation. */
212 if (unlikely (p->ptrace)
213 && p->exit_code != SIGSTOP
214 && p->exit_code != SIGTSTP
215 && p->exit_code != SIGTTOU
216 && p->exit_code != SIGTTIN)
217 continue;
218
219 retval = 1;
220 break;
221 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
222 return retval;
223}
224
225/**
4dc3b16b 226 * reparent_to_init - Reparent the calling kernel thread to the init task.
1da177e4
LT
227 *
228 * If a kernel thread is launched as a result of a system call, or if
229 * it ever exits, it should generally reparent itself to init so that
230 * it is correctly cleaned up on exit.
231 *
232 * The various task state such as scheduling policy and priority may have
233 * been inherited from a user process, so we reset them to sane values here.
234 *
235 * NOTE that reparent_to_init() gives the caller full capabilities.
236 */
858119e1 237static void reparent_to_init(void)
1da177e4
LT
238{
239 write_lock_irq(&tasklist_lock);
240
241 ptrace_unlink(current);
242 /* Reparent to init */
9b678ece 243 remove_parent(current);
1da177e4
LT
244 current->parent = child_reaper;
245 current->real_parent = child_reaper;
9b678ece 246 add_parent(current);
1da177e4
LT
247
248 /* Set the exit signal to SIGCHLD so we signal init on exit */
249 current->exit_signal = SIGCHLD;
250
b0a9499c
IM
251 if ((current->policy == SCHED_NORMAL ||
252 current->policy == SCHED_BATCH)
253 && (task_nice(current) < 0))
1da177e4
LT
254 set_user_nice(current, 0);
255 /* cpus_allowed? */
256 /* rt_priority? */
257 /* signals? */
258 security_task_reparent_to_init(current);
259 memcpy(current->signal->rlim, init_task.signal->rlim,
260 sizeof(current->signal->rlim));
261 atomic_inc(&(INIT_USER->__count));
262 write_unlock_irq(&tasklist_lock);
263 switch_uid(INIT_USER);
264}
265
266void __set_special_pids(pid_t session, pid_t pgrp)
267{
e19f247a 268 struct task_struct *curr = current->group_leader;
1da177e4
LT
269
270 if (curr->signal->session != session) {
271 detach_pid(curr, PIDTYPE_SID);
272 curr->signal->session = session;
273 attach_pid(curr, PIDTYPE_SID, session);
274 }
275 if (process_group(curr) != pgrp) {
276 detach_pid(curr, PIDTYPE_PGID);
277 curr->signal->pgrp = pgrp;
278 attach_pid(curr, PIDTYPE_PGID, pgrp);
279 }
280}
281
282void set_special_pids(pid_t session, pid_t pgrp)
283{
284 write_lock_irq(&tasklist_lock);
285 __set_special_pids(session, pgrp);
286 write_unlock_irq(&tasklist_lock);
287}
288
289/*
290 * Let kernel threads use this to say that they
291 * allow a certain signal (since daemonize() will
292 * have disabled all of them by default).
293 */
294int allow_signal(int sig)
295{
7ed20e1a 296 if (!valid_signal(sig) || sig < 1)
1da177e4
LT
297 return -EINVAL;
298
299 spin_lock_irq(&current->sighand->siglock);
300 sigdelset(&current->blocked, sig);
301 if (!current->mm) {
302 /* Kernel threads handle their own signals.
303 Let the signal code know it'll be handled, so
304 that they don't get converted to SIGKILL or
305 just silently dropped */
306 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
307 }
308 recalc_sigpending();
309 spin_unlock_irq(&current->sighand->siglock);
310 return 0;
311}
312
313EXPORT_SYMBOL(allow_signal);
314
315int disallow_signal(int sig)
316{
7ed20e1a 317 if (!valid_signal(sig) || sig < 1)
1da177e4
LT
318 return -EINVAL;
319
320 spin_lock_irq(&current->sighand->siglock);
321 sigaddset(&current->blocked, sig);
322 recalc_sigpending();
323 spin_unlock_irq(&current->sighand->siglock);
324 return 0;
325}
326
327EXPORT_SYMBOL(disallow_signal);
328
329/*
330 * Put all the gunge required to become a kernel thread without
331 * attached user resources in one place where it belongs.
332 */
333
334void daemonize(const char *name, ...)
335{
336 va_list args;
337 struct fs_struct *fs;
338 sigset_t blocked;
339
340 va_start(args, name);
341 vsnprintf(current->comm, sizeof(current->comm), name, args);
342 va_end(args);
343
344 /*
345 * If we were started as result of loading a module, close all of the
346 * user space pages. We don't need them, and if we didn't close them
347 * they would be locked into memory.
348 */
349 exit_mm(current);
350
351 set_special_pids(1, 1);
70522e12 352 mutex_lock(&tty_mutex);
1da177e4 353 current->signal->tty = NULL;
70522e12 354 mutex_unlock(&tty_mutex);
1da177e4
LT
355
356 /* Block and flush all signals */
357 sigfillset(&blocked);
358 sigprocmask(SIG_BLOCK, &blocked, NULL);
359 flush_signals(current);
360
361 /* Become as one with the init task */
362
363 exit_fs(current); /* current->fs->count--; */
364 fs = init_task.fs;
365 current->fs = fs;
366 atomic_inc(&fs->count);
5914811a
BS
367 exit_namespace(current);
368 current->namespace = init_task.namespace;
369 get_namespace(current->namespace);
1da177e4
LT
370 exit_files(current);
371 current->files = init_task.files;
372 atomic_inc(&current->files->count);
373
374 reparent_to_init();
375}
376
377EXPORT_SYMBOL(daemonize);
378
858119e1 379static void close_files(struct files_struct * files)
1da177e4
LT
380{
381 int i, j;
badf1662 382 struct fdtable *fdt;
1da177e4
LT
383
384 j = 0;
4fb3a538
DS
385
386 /*
387 * It is safe to dereference the fd table without RCU or
388 * ->file_lock because this is the last reference to the
389 * files structure.
390 */
badf1662 391 fdt = files_fdtable(files);
1da177e4
LT
392 for (;;) {
393 unsigned long set;
394 i = j * __NFDBITS;
badf1662 395 if (i >= fdt->max_fdset || i >= fdt->max_fds)
1da177e4 396 break;
badf1662 397 set = fdt->open_fds->fds_bits[j++];
1da177e4
LT
398 while (set) {
399 if (set & 1) {
badf1662 400 struct file * file = xchg(&fdt->fd[i], NULL);
1da177e4
LT
401 if (file)
402 filp_close(file, files);
403 }
404 i++;
405 set >>= 1;
406 }
407 }
408}
409
410struct files_struct *get_files_struct(struct task_struct *task)
411{
412 struct files_struct *files;
413
414 task_lock(task);
415 files = task->files;
416 if (files)
417 atomic_inc(&files->count);
418 task_unlock(task);
419
420 return files;
421}
422
423void fastcall put_files_struct(struct files_struct *files)
424{
badf1662
DS
425 struct fdtable *fdt;
426
1da177e4
LT
427 if (atomic_dec_and_test(&files->count)) {
428 close_files(files);
429 /*
430 * Free the fd and fdset arrays if we expanded them.
ab2af1f5
DS
431 * If the fdtable was embedded, pass files for freeing
432 * at the end of the RCU grace period. Otherwise,
433 * you can free files immediately.
1da177e4 434 */
badf1662 435 fdt = files_fdtable(files);
ab2af1f5
DS
436 if (fdt == &files->fdtab)
437 fdt->free_files = files;
438 else
439 kmem_cache_free(files_cachep, files);
440 free_fdtable(fdt);
1da177e4
LT
441 }
442}
443
444EXPORT_SYMBOL(put_files_struct);
445
446static inline void __exit_files(struct task_struct *tsk)
447{
448 struct files_struct * files = tsk->files;
449
450 if (files) {
451 task_lock(tsk);
452 tsk->files = NULL;
453 task_unlock(tsk);
454 put_files_struct(files);
455 }
456}
457
458void exit_files(struct task_struct *tsk)
459{
460 __exit_files(tsk);
461}
462
463static inline void __put_fs_struct(struct fs_struct *fs)
464{
465 /* No need to hold fs->lock if we are killing it */
466 if (atomic_dec_and_test(&fs->count)) {
467 dput(fs->root);
468 mntput(fs->rootmnt);
469 dput(fs->pwd);
470 mntput(fs->pwdmnt);
471 if (fs->altroot) {
472 dput(fs->altroot);
473 mntput(fs->altrootmnt);
474 }
475 kmem_cache_free(fs_cachep, fs);
476 }
477}
478
479void put_fs_struct(struct fs_struct *fs)
480{
481 __put_fs_struct(fs);
482}
483
484static inline void __exit_fs(struct task_struct *tsk)
485{
486 struct fs_struct * fs = tsk->fs;
487
488 if (fs) {
489 task_lock(tsk);
490 tsk->fs = NULL;
491 task_unlock(tsk);
492 __put_fs_struct(fs);
493 }
494}
495
496void exit_fs(struct task_struct *tsk)
497{
498 __exit_fs(tsk);
499}
500
501EXPORT_SYMBOL_GPL(exit_fs);
502
503/*
504 * Turn us into a lazy TLB process if we
505 * aren't already..
506 */
408b664a 507static void exit_mm(struct task_struct * tsk)
1da177e4
LT
508{
509 struct mm_struct *mm = tsk->mm;
510
511 mm_release(tsk, mm);
512 if (!mm)
513 return;
514 /*
515 * Serialize with any possible pending coredump.
516 * We must hold mmap_sem around checking core_waiters
517 * and clearing tsk->mm. The core-inducing thread
518 * will increment core_waiters for each thread in the
519 * group with ->mm != NULL.
520 */
521 down_read(&mm->mmap_sem);
522 if (mm->core_waiters) {
523 up_read(&mm->mmap_sem);
524 down_write(&mm->mmap_sem);
525 if (!--mm->core_waiters)
526 complete(mm->core_startup_done);
527 up_write(&mm->mmap_sem);
528
529 wait_for_completion(&mm->core_done);
530 down_read(&mm->mmap_sem);
531 }
532 atomic_inc(&mm->mm_count);
533 if (mm != tsk->active_mm) BUG();
534 /* more a memory barrier than a real lock */
535 task_lock(tsk);
536 tsk->mm = NULL;
537 up_read(&mm->mmap_sem);
538 enter_lazy_tlb(mm, current);
539 task_unlock(tsk);
540 mmput(mm);
541}
542
d799f035 543static inline void choose_new_parent(task_t *p, task_t *reaper)
1da177e4
LT
544{
545 /*
546 * Make sure we're not reparenting to ourselves and that
547 * the parent is not a zombie.
548 */
d799f035 549 BUG_ON(p == reaper || reaper->exit_state);
1da177e4 550 p->real_parent = reaper;
1da177e4
LT
551}
552
858119e1 553static void reparent_thread(task_t *p, task_t *father, int traced)
1da177e4
LT
554{
555 /* We don't want people slaying init. */
556 if (p->exit_signal != -1)
557 p->exit_signal = SIGCHLD;
558
559 if (p->pdeath_signal)
560 /* We already hold the tasklist_lock here. */
b67a1b9e 561 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
1da177e4
LT
562
563 /* Move the child from its dying parent to the new one. */
564 if (unlikely(traced)) {
565 /* Preserve ptrace links if someone else is tracing this child. */
566 list_del_init(&p->ptrace_list);
567 if (p->parent != p->real_parent)
568 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
569 } else {
570 /* If this child is being traced, then we're the one tracing it
571 * anyway, so let go of it.
572 */
573 p->ptrace = 0;
574 list_del_init(&p->sibling);
575 p->parent = p->real_parent;
576 list_add_tail(&p->sibling, &p->parent->children);
577
578 /* If we'd notified the old parent about this child's death,
579 * also notify the new parent.
580 */
581 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
582 thread_group_empty(p))
583 do_notify_parent(p, p->exit_signal);
584 else if (p->state == TASK_TRACED) {
585 /*
586 * If it was at a trace stop, turn it into
587 * a normal stop since it's no longer being
588 * traced.
589 */
590 ptrace_untrace(p);
591 }
592 }
593
594 /*
595 * process group orphan check
596 * Case ii: Our child is in a different pgrp
597 * than we are, and it was the only connection
598 * outside, so the child pgrp is now orphaned.
599 */
600 if ((process_group(p) != process_group(father)) &&
601 (p->signal->session == father->signal->session)) {
602 int pgrp = process_group(p);
603
604 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
b67a1b9e
ON
605 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
606 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
1da177e4
LT
607 }
608 }
609}
610
611/*
612 * When we die, we re-parent all our children.
613 * Try to give them to another thread in our thread
614 * group, and if no such member exists, give it to
615 * the global child reaper process (ie "init")
616 */
858119e1 617static void forget_original_parent(struct task_struct * father,
1da177e4
LT
618 struct list_head *to_release)
619{
620 struct task_struct *p, *reaper = father;
621 struct list_head *_p, *_n;
622
623 do {
624 reaper = next_thread(reaper);
625 if (reaper == father) {
626 reaper = child_reaper;
627 break;
628 }
629 } while (reaper->exit_state);
630
631 /*
632 * There are only two places where our children can be:
633 *
634 * - in our child list
635 * - in our ptraced child list
636 *
637 * Search them and reparent children.
638 */
639 list_for_each_safe(_p, _n, &father->children) {
640 int ptrace;
641 p = list_entry(_p,struct task_struct,sibling);
642
643 ptrace = p->ptrace;
644
645 /* if father isn't the real parent, then ptrace must be enabled */
646 BUG_ON(father != p->real_parent && !ptrace);
647
648 if (father == p->real_parent) {
649 /* reparent with a reaper, real father it's us */
d799f035 650 choose_new_parent(p, reaper);
1da177e4
LT
651 reparent_thread(p, father, 0);
652 } else {
653 /* reparent ptraced task to its real parent */
654 __ptrace_unlink (p);
655 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
656 thread_group_empty(p))
657 do_notify_parent(p, p->exit_signal);
658 }
659
660 /*
661 * if the ptraced child is a zombie with exit_signal == -1
662 * we must collect it before we exit, or it will remain
663 * zombie forever since we prevented it from self-reap itself
664 * while it was being traced by us, to be able to see it in wait4.
665 */
666 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
667 list_add(&p->ptrace_list, to_release);
668 }
669 list_for_each_safe(_p, _n, &father->ptrace_children) {
670 p = list_entry(_p,struct task_struct,ptrace_list);
d799f035 671 choose_new_parent(p, reaper);
1da177e4
LT
672 reparent_thread(p, father, 1);
673 }
674}
675
676/*
677 * Send signals to all our closest relatives so that they know
678 * to properly mourn us..
679 */
680static void exit_notify(struct task_struct *tsk)
681{
682 int state;
683 struct task_struct *t;
684 struct list_head ptrace_dead, *_p, *_n;
685
686 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
687 && !thread_group_empty(tsk)) {
688 /*
689 * This occurs when there was a race between our exit
690 * syscall and a group signal choosing us as the one to
691 * wake up. It could be that we are the only thread
692 * alerted to check for pending signals, but another thread
693 * should be woken now to take the signal since we will not.
694 * Now we'll wake all the threads in the group just to make
695 * sure someone gets all the pending signals.
696 */
697 read_lock(&tasklist_lock);
698 spin_lock_irq(&tsk->sighand->siglock);
699 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
700 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
701 recalc_sigpending_tsk(t);
702 if (signal_pending(t))
703 signal_wake_up(t, 0);
704 }
705 spin_unlock_irq(&tsk->sighand->siglock);
706 read_unlock(&tasklist_lock);
707 }
708
709 write_lock_irq(&tasklist_lock);
710
711 /*
712 * This does two things:
713 *
714 * A. Make init inherit all the child processes
715 * B. Check to see if any process groups have become orphaned
716 * as a result of our exiting, and if they have any stopped
717 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
718 */
719
720 INIT_LIST_HEAD(&ptrace_dead);
721 forget_original_parent(tsk, &ptrace_dead);
722 BUG_ON(!list_empty(&tsk->children));
723 BUG_ON(!list_empty(&tsk->ptrace_children));
724
725 /*
726 * Check to see if any process groups have become orphaned
727 * as a result of our exiting, and if they have any stopped
728 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
729 *
730 * Case i: Our father is in a different pgrp than we are
731 * and we were the only connection outside, so our pgrp
732 * is about to become orphaned.
733 */
734
735 t = tsk->real_parent;
736
737 if ((process_group(t) != process_group(tsk)) &&
738 (t->signal->session == tsk->signal->session) &&
739 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
740 has_stopped_jobs(process_group(tsk))) {
b67a1b9e
ON
741 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
742 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
1da177e4
LT
743 }
744
745 /* Let father know we died
746 *
747 * Thread signals are configurable, but you aren't going to use
748 * that to send signals to arbitary processes.
749 * That stops right now.
750 *
751 * If the parent exec id doesn't match the exec id we saved
752 * when we started then we know the parent has changed security
753 * domain.
754 *
755 * If our self_exec id doesn't match our parent_exec_id then
756 * we have changed execution domain as these two values started
757 * the same after a fork.
758 *
759 */
760
761 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
762 ( tsk->parent_exec_id != t->self_exec_id ||
763 tsk->self_exec_id != tsk->parent_exec_id)
764 && !capable(CAP_KILL))
765 tsk->exit_signal = SIGCHLD;
766
767
768 /* If something other than our normal parent is ptracing us, then
769 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
770 * only has special meaning to our real parent.
771 */
772 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
773 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
774 do_notify_parent(tsk, signal);
775 } else if (tsk->ptrace) {
776 do_notify_parent(tsk, SIGCHLD);
777 }
778
779 state = EXIT_ZOMBIE;
780 if (tsk->exit_signal == -1 &&
781 (likely(tsk->ptrace == 0) ||
782 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
783 state = EXIT_DEAD;
784 tsk->exit_state = state;
785
786 write_unlock_irq(&tasklist_lock);
787
788 list_for_each_safe(_p, _n, &ptrace_dead) {
789 list_del_init(_p);
790 t = list_entry(_p,struct task_struct,ptrace_list);
791 release_task(t);
792 }
793
794 /* If the process is dead, release it - nobody will wait for it */
795 if (state == EXIT_DEAD)
796 release_task(tsk);
1da177e4
LT
797}
798
799fastcall NORET_TYPE void do_exit(long code)
800{
801 struct task_struct *tsk = current;
802 int group_dead;
803
804 profile_task_exit(tsk);
805
22e2c507
JA
806 WARN_ON(atomic_read(&tsk->fs_excl));
807
1da177e4
LT
808 if (unlikely(in_interrupt()))
809 panic("Aiee, killing interrupt handler!");
810 if (unlikely(!tsk->pid))
811 panic("Attempted to kill the idle task!");
fef23e7f 812 if (unlikely(tsk == child_reaper))
1da177e4 813 panic("Attempted to kill init!");
1da177e4
LT
814
815 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
816 current->ptrace_message = code;
817 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
818 }
819
df164db5
AN
820 /*
821 * We're taking recursive faults here in do_exit. Safest is to just
822 * leave this task alone and wait for reboot.
823 */
824 if (unlikely(tsk->flags & PF_EXITING)) {
825 printk(KERN_ALERT
826 "Fixing recursive fault but reboot is needed!\n");
afc847b7
AV
827 if (tsk->io_context)
828 exit_io_context();
df164db5
AN
829 set_current_state(TASK_UNINTERRUPTIBLE);
830 schedule();
831 }
832
1da177e4
LT
833 tsk->flags |= PF_EXITING;
834
a362f463
LT
835 /*
836 * Make sure we don't try to process any timer firings
837 * while we are already exiting.
838 */
839 tsk->it_virt_expires = cputime_zero;
840 tsk->it_prof_expires = cputime_zero;
841 tsk->it_sched_expires = 0;
842
1da177e4
LT
843 if (unlikely(in_atomic()))
844 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
845 current->comm, current->pid,
846 preempt_count());
847
848 acct_update_integrals(tsk);
365e9c87
HD
849 if (tsk->mm) {
850 update_hiwater_rss(tsk->mm);
851 update_hiwater_vm(tsk->mm);
852 }
1da177e4 853 group_dead = atomic_dec_and_test(&tsk->signal->live);
c3068951 854 if (group_dead) {
2ff678b8 855 hrtimer_cancel(&tsk->signal->real_timer);
25f407f0 856 exit_itimers(tsk->signal);
1da177e4 857 acct_process(code);
c3068951 858 }
0771dfef
IM
859 if (unlikely(tsk->robust_list))
860 exit_robust_list(tsk);
34f192c6
IM
861#ifdef CONFIG_COMPAT
862 if (unlikely(tsk->compat_robust_list))
863 compat_exit_robust_list(tsk);
864#endif
1da177e4
LT
865 exit_mm(tsk);
866
867 exit_sem(tsk);
868 __exit_files(tsk);
869 __exit_fs(tsk);
870 exit_namespace(tsk);
871 exit_thread();
872 cpuset_exit(tsk);
873 exit_keys(tsk);
874
875 if (group_dead && tsk->signal->leader)
876 disassociate_ctty(1);
877
a1261f54 878 module_put(task_thread_info(tsk)->exec_domain->module);
1da177e4
LT
879 if (tsk->binfmt)
880 module_put(tsk->binfmt->module);
881
882 tsk->exit_code = code;
9f46080c 883 proc_exit_connector(tsk);
1da177e4
LT
884 exit_notify(tsk);
885#ifdef CONFIG_NUMA
886 mpol_free(tsk->mempolicy);
887 tsk->mempolicy = NULL;
888#endif
de5097c2
IM
889 /*
890 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
891 */
892 mutex_debug_check_no_locks_held(tsk);
1da177e4 893
afc847b7
AV
894 if (tsk->io_context)
895 exit_io_context();
896
7407251a
CQH
897 /* PF_DEAD causes final put_task_struct after we schedule. */
898 preempt_disable();
899 BUG_ON(tsk->flags & PF_DEAD);
900 tsk->flags |= PF_DEAD;
901
1da177e4
LT
902 schedule();
903 BUG();
904 /* Avoid "noreturn function does return". */
905 for (;;) ;
906}
907
012914da
RA
908EXPORT_SYMBOL_GPL(do_exit);
909
1da177e4
LT
910NORET_TYPE void complete_and_exit(struct completion *comp, long code)
911{
912 if (comp)
913 complete(comp);
914
915 do_exit(code);
916}
917
918EXPORT_SYMBOL(complete_and_exit);
919
920asmlinkage long sys_exit(int error_code)
921{
922 do_exit((error_code&0xff)<<8);
923}
924
925task_t fastcall *next_thread(const task_t *p)
926{
927 return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
928}
929
930EXPORT_SYMBOL(next_thread);
931
932/*
933 * Take down every thread in the group. This is called by fatal signals
934 * as well as by sys_exit_group (below).
935 */
936NORET_TYPE void
937do_group_exit(int exit_code)
938{
939 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
940
941 if (current->signal->flags & SIGNAL_GROUP_EXIT)
942 exit_code = current->signal->group_exit_code;
943 else if (!thread_group_empty(current)) {
944 struct signal_struct *const sig = current->signal;
945 struct sighand_struct *const sighand = current->sighand;
946 read_lock(&tasklist_lock);
947 spin_lock_irq(&sighand->siglock);
948 if (sig->flags & SIGNAL_GROUP_EXIT)
949 /* Another thread got here before we took the lock. */
950 exit_code = sig->group_exit_code;
951 else {
1da177e4
LT
952 sig->group_exit_code = exit_code;
953 zap_other_threads(current);
954 }
955 spin_unlock_irq(&sighand->siglock);
956 read_unlock(&tasklist_lock);
957 }
958
959 do_exit(exit_code);
960 /* NOTREACHED */
961}
962
963/*
964 * this kills every thread in the thread group. Note that any externally
965 * wait4()-ing process will get the correct exit code - even if this
966 * thread is not the thread group leader.
967 */
968asmlinkage void sys_exit_group(int error_code)
969{
970 do_group_exit((error_code & 0xff) << 8);
971}
972
973static int eligible_child(pid_t pid, int options, task_t *p)
974{
975 if (pid > 0) {
976 if (p->pid != pid)
977 return 0;
978 } else if (!pid) {
979 if (process_group(p) != process_group(current))
980 return 0;
981 } else if (pid != -1) {
982 if (process_group(p) != -pid)
983 return 0;
984 }
985
986 /*
987 * Do not consider detached threads that are
988 * not ptraced:
989 */
990 if (p->exit_signal == -1 && !p->ptrace)
991 return 0;
992
993 /* Wait for all children (clone and not) if __WALL is set;
994 * otherwise, wait for clone children *only* if __WCLONE is
995 * set; otherwise, wait for non-clone children *only*. (Note:
996 * A "clone" child here is one that reports to its parent
997 * using a signal other than SIGCHLD.) */
998 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
999 && !(options & __WALL))
1000 return 0;
1001 /*
1002 * Do not consider thread group leaders that are
1003 * in a non-empty thread group:
1004 */
1005 if (current->tgid != p->tgid && delay_group_leader(p))
1006 return 2;
1007
1008 if (security_task_wait(p))
1009 return 0;
1010
1011 return 1;
1012}
1013
1014static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1015 int why, int status,
1016 struct siginfo __user *infop,
1017 struct rusage __user *rusagep)
1018{
1019 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1020 put_task_struct(p);
1021 if (!retval)
1022 retval = put_user(SIGCHLD, &infop->si_signo);
1023 if (!retval)
1024 retval = put_user(0, &infop->si_errno);
1025 if (!retval)
1026 retval = put_user((short)why, &infop->si_code);
1027 if (!retval)
1028 retval = put_user(pid, &infop->si_pid);
1029 if (!retval)
1030 retval = put_user(uid, &infop->si_uid);
1031 if (!retval)
1032 retval = put_user(status, &infop->si_status);
1033 if (!retval)
1034 retval = pid;
1035 return retval;
1036}
1037
1038/*
1039 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1040 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1041 * the lock and this task is uninteresting. If we return nonzero, we have
1042 * released the lock and the system call should return.
1043 */
1044static int wait_task_zombie(task_t *p, int noreap,
1045 struct siginfo __user *infop,
1046 int __user *stat_addr, struct rusage __user *ru)
1047{
1048 unsigned long state;
1049 int retval;
1050 int status;
1051
1052 if (unlikely(noreap)) {
1053 pid_t pid = p->pid;
1054 uid_t uid = p->uid;
1055 int exit_code = p->exit_code;
1056 int why, status;
1057
1058 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1059 return 0;
1060 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1061 return 0;
1062 get_task_struct(p);
1063 read_unlock(&tasklist_lock);
1064 if ((exit_code & 0x7f) == 0) {
1065 why = CLD_EXITED;
1066 status = exit_code >> 8;
1067 } else {
1068 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1069 status = exit_code & 0x7f;
1070 }
1071 return wait_noreap_copyout(p, pid, uid, why,
1072 status, infop, ru);
1073 }
1074
1075 /*
1076 * Try to move the task's state to DEAD
1077 * only one thread is allowed to do this:
1078 */
1079 state = xchg(&p->exit_state, EXIT_DEAD);
1080 if (state != EXIT_ZOMBIE) {
1081 BUG_ON(state != EXIT_DEAD);
1082 return 0;
1083 }
1084 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1085 /*
1086 * This can only happen in a race with a ptraced thread
1087 * dying on another processor.
1088 */
1089 return 0;
1090 }
1091
1092 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
3795e161
JJ
1093 struct signal_struct *psig;
1094 struct signal_struct *sig;
1095
1da177e4
LT
1096 /*
1097 * The resource counters for the group leader are in its
1098 * own task_struct. Those for dead threads in the group
1099 * are in its signal_struct, as are those for the child
1100 * processes it has previously reaped. All these
1101 * accumulate in the parent's signal_struct c* fields.
1102 *
1103 * We don't bother to take a lock here to protect these
1104 * p->signal fields, because they are only touched by
1105 * __exit_signal, which runs with tasklist_lock
1106 * write-locked anyway, and so is excluded here. We do
1107 * need to protect the access to p->parent->signal fields,
1108 * as other threads in the parent group can be right
1109 * here reaping other children at the same time.
1110 */
1111 spin_lock_irq(&p->parent->sighand->siglock);
3795e161
JJ
1112 psig = p->parent->signal;
1113 sig = p->signal;
1114 psig->cutime =
1115 cputime_add(psig->cutime,
1da177e4 1116 cputime_add(p->utime,
3795e161
JJ
1117 cputime_add(sig->utime,
1118 sig->cutime)));
1119 psig->cstime =
1120 cputime_add(psig->cstime,
1da177e4 1121 cputime_add(p->stime,
3795e161
JJ
1122 cputime_add(sig->stime,
1123 sig->cstime)));
1124 psig->cmin_flt +=
1125 p->min_flt + sig->min_flt + sig->cmin_flt;
1126 psig->cmaj_flt +=
1127 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128 psig->cnvcsw +=
1129 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130 psig->cnivcsw +=
1131 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1da177e4
LT
1132 spin_unlock_irq(&p->parent->sighand->siglock);
1133 }
1134
1135 /*
1136 * Now we are sure this task is interesting, and no other
1137 * thread can reap it because we set its state to EXIT_DEAD.
1138 */
1139 read_unlock(&tasklist_lock);
1140
1141 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1142 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1143 ? p->signal->group_exit_code : p->exit_code;
1144 if (!retval && stat_addr)
1145 retval = put_user(status, stat_addr);
1146 if (!retval && infop)
1147 retval = put_user(SIGCHLD, &infop->si_signo);
1148 if (!retval && infop)
1149 retval = put_user(0, &infop->si_errno);
1150 if (!retval && infop) {
1151 int why;
1152
1153 if ((status & 0x7f) == 0) {
1154 why = CLD_EXITED;
1155 status >>= 8;
1156 } else {
1157 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1158 status &= 0x7f;
1159 }
1160 retval = put_user((short)why, &infop->si_code);
1161 if (!retval)
1162 retval = put_user(status, &infop->si_status);
1163 }
1164 if (!retval && infop)
1165 retval = put_user(p->pid, &infop->si_pid);
1166 if (!retval && infop)
1167 retval = put_user(p->uid, &infop->si_uid);
1168 if (retval) {
1169 // TODO: is this safe?
1170 p->exit_state = EXIT_ZOMBIE;
1171 return retval;
1172 }
1173 retval = p->pid;
1174 if (p->real_parent != p->parent) {
1175 write_lock_irq(&tasklist_lock);
1176 /* Double-check with lock held. */
1177 if (p->real_parent != p->parent) {
1178 __ptrace_unlink(p);
1179 // TODO: is this safe?
1180 p->exit_state = EXIT_ZOMBIE;
1181 /*
1182 * If this is not a detached task, notify the parent.
1183 * If it's still not detached after that, don't release
1184 * it now.
1185 */
1186 if (p->exit_signal != -1) {
1187 do_notify_parent(p, p->exit_signal);
1188 if (p->exit_signal != -1)
1189 p = NULL;
1190 }
1191 }
1192 write_unlock_irq(&tasklist_lock);
1193 }
1194 if (p != NULL)
1195 release_task(p);
1196 BUG_ON(!retval);
1197 return retval;
1198}
1199
1200/*
1201 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1202 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1203 * the lock and this task is uninteresting. If we return nonzero, we have
1204 * released the lock and the system call should return.
1205 */
1206static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1207 struct siginfo __user *infop,
1208 int __user *stat_addr, struct rusage __user *ru)
1209{
1210 int retval, exit_code;
1211
1212 if (!p->exit_code)
1213 return 0;
1214 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1215 p->signal && p->signal->group_stop_count > 0)
1216 /*
1217 * A group stop is in progress and this is the group leader.
1218 * We won't report until all threads have stopped.
1219 */
1220 return 0;
1221
1222 /*
1223 * Now we are pretty sure this task is interesting.
1224 * Make sure it doesn't get reaped out from under us while we
1225 * give up the lock and then examine it below. We don't want to
1226 * keep holding onto the tasklist_lock while we call getrusage and
1227 * possibly take page faults for user memory.
1228 */
1229 get_task_struct(p);
1230 read_unlock(&tasklist_lock);
1231
1232 if (unlikely(noreap)) {
1233 pid_t pid = p->pid;
1234 uid_t uid = p->uid;
1235 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1236
1237 exit_code = p->exit_code;
1238 if (unlikely(!exit_code) ||
14bf01bb 1239 unlikely(p->state & TASK_TRACED))
1da177e4
LT
1240 goto bail_ref;
1241 return wait_noreap_copyout(p, pid, uid,
1242 why, (exit_code << 8) | 0x7f,
1243 infop, ru);
1244 }
1245
1246 write_lock_irq(&tasklist_lock);
1247
1248 /*
1249 * This uses xchg to be atomic with the thread resuming and setting
1250 * it. It must also be done with the write lock held to prevent a
1251 * race with the EXIT_ZOMBIE case.
1252 */
1253 exit_code = xchg(&p->exit_code, 0);
1254 if (unlikely(p->exit_state)) {
1255 /*
1256 * The task resumed and then died. Let the next iteration
1257 * catch it in EXIT_ZOMBIE. Note that exit_code might
1258 * already be zero here if it resumed and did _exit(0).
1259 * The task itself is dead and won't touch exit_code again;
1260 * other processors in this function are locked out.
1261 */
1262 p->exit_code = exit_code;
1263 exit_code = 0;
1264 }
1265 if (unlikely(exit_code == 0)) {
1266 /*
1267 * Another thread in this function got to it first, or it
1268 * resumed, or it resumed and then died.
1269 */
1270 write_unlock_irq(&tasklist_lock);
1271bail_ref:
1272 put_task_struct(p);
1273 /*
1274 * We are returning to the wait loop without having successfully
1275 * removed the process and having released the lock. We cannot
1276 * continue, since the "p" task pointer is potentially stale.
1277 *
1278 * Return -EAGAIN, and do_wait() will restart the loop from the
1279 * beginning. Do _not_ re-acquire the lock.
1280 */
1281 return -EAGAIN;
1282 }
1283
1284 /* move to end of parent's list to avoid starvation */
1285 remove_parent(p);
8fafabd8 1286 add_parent(p);
1da177e4
LT
1287
1288 write_unlock_irq(&tasklist_lock);
1289
1290 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1291 if (!retval && stat_addr)
1292 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1293 if (!retval && infop)
1294 retval = put_user(SIGCHLD, &infop->si_signo);
1295 if (!retval && infop)
1296 retval = put_user(0, &infop->si_errno);
1297 if (!retval && infop)
1298 retval = put_user((short)((p->ptrace & PT_PTRACED)
1299 ? CLD_TRAPPED : CLD_STOPPED),
1300 &infop->si_code);
1301 if (!retval && infop)
1302 retval = put_user(exit_code, &infop->si_status);
1303 if (!retval && infop)
1304 retval = put_user(p->pid, &infop->si_pid);
1305 if (!retval && infop)
1306 retval = put_user(p->uid, &infop->si_uid);
1307 if (!retval)
1308 retval = p->pid;
1309 put_task_struct(p);
1310
1311 BUG_ON(!retval);
1312 return retval;
1313}
1314
1315/*
1316 * Handle do_wait work for one task in a live, non-stopped state.
1317 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1318 * the lock and this task is uninteresting. If we return nonzero, we have
1319 * released the lock and the system call should return.
1320 */
1321static int wait_task_continued(task_t *p, int noreap,
1322 struct siginfo __user *infop,
1323 int __user *stat_addr, struct rusage __user *ru)
1324{
1325 int retval;
1326 pid_t pid;
1327 uid_t uid;
1328
1329 if (unlikely(!p->signal))
1330 return 0;
1331
1332 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1333 return 0;
1334
1335 spin_lock_irq(&p->sighand->siglock);
1336 /* Re-check with the lock held. */
1337 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1338 spin_unlock_irq(&p->sighand->siglock);
1339 return 0;
1340 }
1341 if (!noreap)
1342 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1343 spin_unlock_irq(&p->sighand->siglock);
1344
1345 pid = p->pid;
1346 uid = p->uid;
1347 get_task_struct(p);
1348 read_unlock(&tasklist_lock);
1349
1350 if (!infop) {
1351 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1352 put_task_struct(p);
1353 if (!retval && stat_addr)
1354 retval = put_user(0xffff, stat_addr);
1355 if (!retval)
1356 retval = p->pid;
1357 } else {
1358 retval = wait_noreap_copyout(p, pid, uid,
1359 CLD_CONTINUED, SIGCONT,
1360 infop, ru);
1361 BUG_ON(retval == 0);
1362 }
1363
1364 return retval;
1365}
1366
1367
1368static inline int my_ptrace_child(struct task_struct *p)
1369{
1370 if (!(p->ptrace & PT_PTRACED))
1371 return 0;
1372 if (!(p->ptrace & PT_ATTACHED))
1373 return 1;
1374 /*
1375 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1376 * we are the attacher. If we are the real parent, this is a race
1377 * inside ptrace_attach. It is waiting for the tasklist_lock,
1378 * which we have to switch the parent links, but has already set
1379 * the flags in p->ptrace.
1380 */
1381 return (p->parent != p->real_parent);
1382}
1383
1384static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1385 int __user *stat_addr, struct rusage __user *ru)
1386{
1387 DECLARE_WAITQUEUE(wait, current);
1388 struct task_struct *tsk;
1389 int flag, retval;
1390
1391 add_wait_queue(&current->signal->wait_chldexit,&wait);
1392repeat:
1393 /*
1394 * We will set this flag if we see any child that might later
1395 * match our criteria, even if we are not able to reap it yet.
1396 */
1397 flag = 0;
1398 current->state = TASK_INTERRUPTIBLE;
1399 read_lock(&tasklist_lock);
1400 tsk = current;
1401 do {
1402 struct task_struct *p;
1403 struct list_head *_p;
1404 int ret;
1405
1406 list_for_each(_p,&tsk->children) {
1407 p = list_entry(_p,struct task_struct,sibling);
1408
1409 ret = eligible_child(pid, options, p);
1410 if (!ret)
1411 continue;
1412
1413 switch (p->state) {
1414 case TASK_TRACED:
7f2a5255
RM
1415 /*
1416 * When we hit the race with PTRACE_ATTACH,
1417 * we will not report this child. But the
1418 * race means it has not yet been moved to
1419 * our ptrace_children list, so we need to
1420 * set the flag here to avoid a spurious ECHILD
1421 * when the race happens with the only child.
1422 */
1423 flag = 1;
1da177e4
LT
1424 if (!my_ptrace_child(p))
1425 continue;
1426 /*FALLTHROUGH*/
1427 case TASK_STOPPED:
1428 /*
1429 * It's stopped now, so it might later
1430 * continue, exit, or stop again.
1431 */
1432 flag = 1;
1433 if (!(options & WUNTRACED) &&
1434 !my_ptrace_child(p))
1435 continue;
1436 retval = wait_task_stopped(p, ret == 2,
1437 (options & WNOWAIT),
1438 infop,
1439 stat_addr, ru);
1440 if (retval == -EAGAIN)
1441 goto repeat;
1442 if (retval != 0) /* He released the lock. */
1443 goto end;
1444 break;
1445 default:
1446 // case EXIT_DEAD:
1447 if (p->exit_state == EXIT_DEAD)
1448 continue;
1449 // case EXIT_ZOMBIE:
1450 if (p->exit_state == EXIT_ZOMBIE) {
1451 /*
1452 * Eligible but we cannot release
1453 * it yet:
1454 */
1455 if (ret == 2)
1456 goto check_continued;
1457 if (!likely(options & WEXITED))
1458 continue;
1459 retval = wait_task_zombie(
1460 p, (options & WNOWAIT),
1461 infop, stat_addr, ru);
1462 /* He released the lock. */
1463 if (retval != 0)
1464 goto end;
1465 break;
1466 }
1467check_continued:
1468 /*
1469 * It's running now, so it might later
1470 * exit, stop, or stop and then continue.
1471 */
1472 flag = 1;
1473 if (!unlikely(options & WCONTINUED))
1474 continue;
1475 retval = wait_task_continued(
1476 p, (options & WNOWAIT),
1477 infop, stat_addr, ru);
1478 if (retval != 0) /* He released the lock. */
1479 goto end;
1480 break;
1481 }
1482 }
1483 if (!flag) {
1484 list_for_each(_p, &tsk->ptrace_children) {
1485 p = list_entry(_p, struct task_struct,
1486 ptrace_list);
1487 if (!eligible_child(pid, options, p))
1488 continue;
1489 flag = 1;
1490 break;
1491 }
1492 }
1493 if (options & __WNOTHREAD)
1494 break;
1495 tsk = next_thread(tsk);
1496 if (tsk->signal != current->signal)
1497 BUG();
1498 } while (tsk != current);
1499
1500 read_unlock(&tasklist_lock);
1501 if (flag) {
1502 retval = 0;
1503 if (options & WNOHANG)
1504 goto end;
1505 retval = -ERESTARTSYS;
1506 if (signal_pending(current))
1507 goto end;
1508 schedule();
1509 goto repeat;
1510 }
1511 retval = -ECHILD;
1512end:
1513 current->state = TASK_RUNNING;
1514 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1515 if (infop) {
1516 if (retval > 0)
1517 retval = 0;
1518 else {
1519 /*
1520 * For a WNOHANG return, clear out all the fields
1521 * we would set so the user can easily tell the
1522 * difference.
1523 */
1524 if (!retval)
1525 retval = put_user(0, &infop->si_signo);
1526 if (!retval)
1527 retval = put_user(0, &infop->si_errno);
1528 if (!retval)
1529 retval = put_user(0, &infop->si_code);
1530 if (!retval)
1531 retval = put_user(0, &infop->si_pid);
1532 if (!retval)
1533 retval = put_user(0, &infop->si_uid);
1534 if (!retval)
1535 retval = put_user(0, &infop->si_status);
1536 }
1537 }
1538 return retval;
1539}
1540
1541asmlinkage long sys_waitid(int which, pid_t pid,
1542 struct siginfo __user *infop, int options,
1543 struct rusage __user *ru)
1544{
1545 long ret;
1546
1547 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1548 return -EINVAL;
1549 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1550 return -EINVAL;
1551
1552 switch (which) {
1553 case P_ALL:
1554 pid = -1;
1555 break;
1556 case P_PID:
1557 if (pid <= 0)
1558 return -EINVAL;
1559 break;
1560 case P_PGID:
1561 if (pid <= 0)
1562 return -EINVAL;
1563 pid = -pid;
1564 break;
1565 default:
1566 return -EINVAL;
1567 }
1568
1569 ret = do_wait(pid, options, infop, NULL, ru);
1570
1571 /* avoid REGPARM breakage on x86: */
1572 prevent_tail_call(ret);
1573 return ret;
1574}
1575
1576asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1577 int options, struct rusage __user *ru)
1578{
1579 long ret;
1580
1581 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1582 __WNOTHREAD|__WCLONE|__WALL))
1583 return -EINVAL;
1584 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1585
1586 /* avoid REGPARM breakage on x86: */
1587 prevent_tail_call(ret);
1588 return ret;
1589}
1590
1591#ifdef __ARCH_WANT_SYS_WAITPID
1592
1593/*
1594 * sys_waitpid() remains for compatibility. waitpid() should be
1595 * implemented by calling sys_wait4() from libc.a.
1596 */
1597asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1598{
1599 return sys_wait4(pid, stat_addr, options, NULL);
1600}
1601
1602#endif