tracing: Handle NULL formats in hold_module_trace_bprintk_format()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
85887973 42#include <linux/compat.h>
0793a61d 43
76369139
FW
44#include "internal.h"
45
4e193bd4
TB
46#include <asm/irq_regs.h>
47
fe4b04fa 48struct remote_function_call {
e7e7ee2e
IM
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
fe4b04fa
PZ
53};
54
55static void remote_function(void *data)
56{
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67}
68
69/**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82static int
83task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84{
85 struct remote_function_call data = {
e7e7ee2e
IM
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96}
97
98/**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108{
109 struct remote_function_call data = {
e7e7ee2e
IM
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119}
120
e5d1367f
SE
121#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
123 PERF_FLAG_PID_CGROUP)
124
bce38cd5
SE
125/*
126 * branch priv levels that need permission checks
127 */
128#define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
0b3fcf17
SE
132enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136};
137
e5d1367f
SE
138/*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
c5905afb 142struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 143static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 144static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 145
cdd6c482
IM
146static atomic_t nr_mmap_events __read_mostly;
147static atomic_t nr_comm_events __read_mostly;
148static atomic_t nr_task_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
3cd49fd7
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
a4a108e8 186 do_div(tmp, 100);
3cd49fd7
DH
187 atomic_set(&perf_sample_allowed_ns, tmp);
188}
163ec435
PZ
189
190int perf_proc_update_handler(struct ctl_table *table, int write,
191 void __user *buffer, size_t *lenp,
192 loff_t *ppos)
193{
02f98e3e 194 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
195
196 if (ret || !write)
197 return ret;
198
199 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
3cd49fd7
DH
200 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
201 update_perf_cpu_limits();
202
203 return 0;
204}
205
206int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
207
208int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
209 void __user *buffer, size_t *lenp,
210 loff_t *ppos)
211{
212 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
213
214 if (ret || !write)
215 return ret;
216
217 update_perf_cpu_limits();
163ec435
PZ
218
219 return 0;
220}
1ccd1549 221
3cd49fd7
DH
222/*
223 * perf samples are done in some very critical code paths (NMIs).
224 * If they take too much CPU time, the system can lock up and not
225 * get any real work done. This will drop the sample rate when
226 * we detect that events are taking too long.
227 */
228#define NR_ACCUMULATED_SAMPLES 128
229DEFINE_PER_CPU(u64, running_sample_length);
230
231void perf_sample_event_took(u64 sample_len_ns)
232{
233 u64 avg_local_sample_len;
a4a108e8 234 u64 local_samples_len;
3cd49fd7
DH
235
236 if (atomic_read(&perf_sample_allowed_ns) == 0)
237 return;
238
239 /* decay the counter by 1 average sample */
240 local_samples_len = __get_cpu_var(running_sample_length);
241 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
242 local_samples_len += sample_len_ns;
243 __get_cpu_var(running_sample_length) = local_samples_len;
244
245 /*
246 * note: this will be biased artifically low until we have
247 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
248 * from having to maintain a count.
249 */
250 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
251
252 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
253 return;
254
255 if (max_samples_per_tick <= 1)
256 return;
257
258 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
259 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
260 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
261
262 printk_ratelimited(KERN_WARNING
263 "perf samples too long (%lld > %d), lowering "
264 "kernel.perf_event_max_sample_rate to %d\n",
265 avg_local_sample_len,
266 atomic_read(&perf_sample_allowed_ns),
267 sysctl_perf_event_sample_rate);
268
269 update_perf_cpu_limits();
270}
271
cdd6c482 272static atomic64_t perf_event_id;
a96bbc16 273
0b3fcf17
SE
274static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
275 enum event_type_t event_type);
276
277static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
278 enum event_type_t event_type,
279 struct task_struct *task);
280
281static void update_context_time(struct perf_event_context *ctx);
282static u64 perf_event_time(struct perf_event *event);
0b3fcf17 283
cdd6c482 284void __weak perf_event_print_debug(void) { }
0793a61d 285
84c79910 286extern __weak const char *perf_pmu_name(void)
0793a61d 287{
84c79910 288 return "pmu";
0793a61d
TG
289}
290
0b3fcf17
SE
291static inline u64 perf_clock(void)
292{
293 return local_clock();
294}
295
e5d1367f
SE
296static inline struct perf_cpu_context *
297__get_cpu_context(struct perf_event_context *ctx)
298{
299 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
300}
301
facc4307
PZ
302static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
303 struct perf_event_context *ctx)
304{
305 raw_spin_lock(&cpuctx->ctx.lock);
306 if (ctx)
307 raw_spin_lock(&ctx->lock);
308}
309
310static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
311 struct perf_event_context *ctx)
312{
313 if (ctx)
314 raw_spin_unlock(&ctx->lock);
315 raw_spin_unlock(&cpuctx->ctx.lock);
316}
317
e5d1367f
SE
318#ifdef CONFIG_CGROUP_PERF
319
877c6856
LZ
320/*
321 * perf_cgroup_info keeps track of time_enabled for a cgroup.
322 * This is a per-cpu dynamically allocated data structure.
323 */
324struct perf_cgroup_info {
325 u64 time;
326 u64 timestamp;
327};
328
329struct perf_cgroup {
330 struct cgroup_subsys_state css;
86e213e1 331 struct perf_cgroup_info __percpu *info;
877c6856
LZ
332};
333
3f7cce3c
SE
334/*
335 * Must ensure cgroup is pinned (css_get) before calling
336 * this function. In other words, we cannot call this function
337 * if there is no cgroup event for the current CPU context.
338 */
e5d1367f
SE
339static inline struct perf_cgroup *
340perf_cgroup_from_task(struct task_struct *task)
341{
342 return container_of(task_subsys_state(task, perf_subsys_id),
343 struct perf_cgroup, css);
344}
345
346static inline bool
347perf_cgroup_match(struct perf_event *event)
348{
349 struct perf_event_context *ctx = event->ctx;
350 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
351
ef824fa1
TH
352 /* @event doesn't care about cgroup */
353 if (!event->cgrp)
354 return true;
355
356 /* wants specific cgroup scope but @cpuctx isn't associated with any */
357 if (!cpuctx->cgrp)
358 return false;
359
360 /*
361 * Cgroup scoping is recursive. An event enabled for a cgroup is
362 * also enabled for all its descendant cgroups. If @cpuctx's
363 * cgroup is a descendant of @event's (the test covers identity
364 * case), it's a match.
365 */
366 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
367 event->cgrp->css.cgroup);
e5d1367f
SE
368}
369
9c5da09d 370static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 371{
9c5da09d 372 return css_tryget(&event->cgrp->css);
e5d1367f
SE
373}
374
375static inline void perf_put_cgroup(struct perf_event *event)
376{
377 css_put(&event->cgrp->css);
378}
379
380static inline void perf_detach_cgroup(struct perf_event *event)
381{
382 perf_put_cgroup(event);
383 event->cgrp = NULL;
384}
385
386static inline int is_cgroup_event(struct perf_event *event)
387{
388 return event->cgrp != NULL;
389}
390
391static inline u64 perf_cgroup_event_time(struct perf_event *event)
392{
393 struct perf_cgroup_info *t;
394
395 t = per_cpu_ptr(event->cgrp->info, event->cpu);
396 return t->time;
397}
398
399static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
400{
401 struct perf_cgroup_info *info;
402 u64 now;
403
404 now = perf_clock();
405
406 info = this_cpu_ptr(cgrp->info);
407
408 info->time += now - info->timestamp;
409 info->timestamp = now;
410}
411
412static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
413{
414 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
415 if (cgrp_out)
416 __update_cgrp_time(cgrp_out);
417}
418
419static inline void update_cgrp_time_from_event(struct perf_event *event)
420{
3f7cce3c
SE
421 struct perf_cgroup *cgrp;
422
e5d1367f 423 /*
3f7cce3c
SE
424 * ensure we access cgroup data only when needed and
425 * when we know the cgroup is pinned (css_get)
e5d1367f 426 */
3f7cce3c 427 if (!is_cgroup_event(event))
e5d1367f
SE
428 return;
429
3f7cce3c
SE
430 cgrp = perf_cgroup_from_task(current);
431 /*
432 * Do not update time when cgroup is not active
433 */
434 if (cgrp == event->cgrp)
435 __update_cgrp_time(event->cgrp);
e5d1367f
SE
436}
437
438static inline void
3f7cce3c
SE
439perf_cgroup_set_timestamp(struct task_struct *task,
440 struct perf_event_context *ctx)
e5d1367f
SE
441{
442 struct perf_cgroup *cgrp;
443 struct perf_cgroup_info *info;
444
3f7cce3c
SE
445 /*
446 * ctx->lock held by caller
447 * ensure we do not access cgroup data
448 * unless we have the cgroup pinned (css_get)
449 */
450 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
451 return;
452
453 cgrp = perf_cgroup_from_task(task);
454 info = this_cpu_ptr(cgrp->info);
3f7cce3c 455 info->timestamp = ctx->timestamp;
e5d1367f
SE
456}
457
458#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
459#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
460
461/*
462 * reschedule events based on the cgroup constraint of task.
463 *
464 * mode SWOUT : schedule out everything
465 * mode SWIN : schedule in based on cgroup for next
466 */
467void perf_cgroup_switch(struct task_struct *task, int mode)
468{
469 struct perf_cpu_context *cpuctx;
470 struct pmu *pmu;
471 unsigned long flags;
472
473 /*
474 * disable interrupts to avoid geting nr_cgroup
475 * changes via __perf_event_disable(). Also
476 * avoids preemption.
477 */
478 local_irq_save(flags);
479
480 /*
481 * we reschedule only in the presence of cgroup
482 * constrained events.
483 */
484 rcu_read_lock();
485
486 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 487 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
488 if (cpuctx->unique_pmu != pmu)
489 continue; /* ensure we process each cpuctx once */
e5d1367f 490
e5d1367f
SE
491 /*
492 * perf_cgroup_events says at least one
493 * context on this CPU has cgroup events.
494 *
495 * ctx->nr_cgroups reports the number of cgroup
496 * events for a context.
497 */
498 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
499 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
500 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
501
502 if (mode & PERF_CGROUP_SWOUT) {
503 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
504 /*
505 * must not be done before ctxswout due
506 * to event_filter_match() in event_sched_out()
507 */
508 cpuctx->cgrp = NULL;
509 }
510
511 if (mode & PERF_CGROUP_SWIN) {
e566b76e 512 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
513 /*
514 * set cgrp before ctxsw in to allow
515 * event_filter_match() to not have to pass
516 * task around
e5d1367f
SE
517 */
518 cpuctx->cgrp = perf_cgroup_from_task(task);
519 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
520 }
facc4307
PZ
521 perf_pmu_enable(cpuctx->ctx.pmu);
522 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 523 }
e5d1367f
SE
524 }
525
526 rcu_read_unlock();
527
528 local_irq_restore(flags);
529}
530
a8d757ef
SE
531static inline void perf_cgroup_sched_out(struct task_struct *task,
532 struct task_struct *next)
e5d1367f 533{
a8d757ef
SE
534 struct perf_cgroup *cgrp1;
535 struct perf_cgroup *cgrp2 = NULL;
536
537 /*
538 * we come here when we know perf_cgroup_events > 0
539 */
540 cgrp1 = perf_cgroup_from_task(task);
541
542 /*
543 * next is NULL when called from perf_event_enable_on_exec()
544 * that will systematically cause a cgroup_switch()
545 */
546 if (next)
547 cgrp2 = perf_cgroup_from_task(next);
548
549 /*
550 * only schedule out current cgroup events if we know
551 * that we are switching to a different cgroup. Otherwise,
552 * do no touch the cgroup events.
553 */
554 if (cgrp1 != cgrp2)
555 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
556}
557
a8d757ef
SE
558static inline void perf_cgroup_sched_in(struct task_struct *prev,
559 struct task_struct *task)
e5d1367f 560{
a8d757ef
SE
561 struct perf_cgroup *cgrp1;
562 struct perf_cgroup *cgrp2 = NULL;
563
564 /*
565 * we come here when we know perf_cgroup_events > 0
566 */
567 cgrp1 = perf_cgroup_from_task(task);
568
569 /* prev can never be NULL */
570 cgrp2 = perf_cgroup_from_task(prev);
571
572 /*
573 * only need to schedule in cgroup events if we are changing
574 * cgroup during ctxsw. Cgroup events were not scheduled
575 * out of ctxsw out if that was not the case.
576 */
577 if (cgrp1 != cgrp2)
578 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
579}
580
581static inline int perf_cgroup_connect(int fd, struct perf_event *event,
582 struct perf_event_attr *attr,
583 struct perf_event *group_leader)
584{
585 struct perf_cgroup *cgrp;
586 struct cgroup_subsys_state *css;
2903ff01
AV
587 struct fd f = fdget(fd);
588 int ret = 0;
e5d1367f 589
2903ff01 590 if (!f.file)
e5d1367f
SE
591 return -EBADF;
592
2903ff01 593 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
594 if (IS_ERR(css)) {
595 ret = PTR_ERR(css);
596 goto out;
597 }
e5d1367f
SE
598
599 cgrp = container_of(css, struct perf_cgroup, css);
600 event->cgrp = cgrp;
601
f75e18cb 602 /* must be done before we fput() the file */
9c5da09d
SQ
603 if (!perf_tryget_cgroup(event)) {
604 event->cgrp = NULL;
605 ret = -ENOENT;
606 goto out;
607 }
f75e18cb 608
e5d1367f
SE
609 /*
610 * all events in a group must monitor
611 * the same cgroup because a task belongs
612 * to only one perf cgroup at a time
613 */
614 if (group_leader && group_leader->cgrp != cgrp) {
615 perf_detach_cgroup(event);
616 ret = -EINVAL;
e5d1367f 617 }
3db272c0 618out:
2903ff01 619 fdput(f);
e5d1367f
SE
620 return ret;
621}
622
623static inline void
624perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
625{
626 struct perf_cgroup_info *t;
627 t = per_cpu_ptr(event->cgrp->info, event->cpu);
628 event->shadow_ctx_time = now - t->timestamp;
629}
630
631static inline void
632perf_cgroup_defer_enabled(struct perf_event *event)
633{
634 /*
635 * when the current task's perf cgroup does not match
636 * the event's, we need to remember to call the
637 * perf_mark_enable() function the first time a task with
638 * a matching perf cgroup is scheduled in.
639 */
640 if (is_cgroup_event(event) && !perf_cgroup_match(event))
641 event->cgrp_defer_enabled = 1;
642}
643
644static inline void
645perf_cgroup_mark_enabled(struct perf_event *event,
646 struct perf_event_context *ctx)
647{
648 struct perf_event *sub;
649 u64 tstamp = perf_event_time(event);
650
651 if (!event->cgrp_defer_enabled)
652 return;
653
654 event->cgrp_defer_enabled = 0;
655
656 event->tstamp_enabled = tstamp - event->total_time_enabled;
657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
658 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
659 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
660 sub->cgrp_defer_enabled = 0;
661 }
662 }
663}
664#else /* !CONFIG_CGROUP_PERF */
665
666static inline bool
667perf_cgroup_match(struct perf_event *event)
668{
669 return true;
670}
671
672static inline void perf_detach_cgroup(struct perf_event *event)
673{}
674
675static inline int is_cgroup_event(struct perf_event *event)
676{
677 return 0;
678}
679
680static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
681{
682 return 0;
683}
684
685static inline void update_cgrp_time_from_event(struct perf_event *event)
686{
687}
688
689static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
690{
691}
692
a8d757ef
SE
693static inline void perf_cgroup_sched_out(struct task_struct *task,
694 struct task_struct *next)
e5d1367f
SE
695{
696}
697
a8d757ef
SE
698static inline void perf_cgroup_sched_in(struct task_struct *prev,
699 struct task_struct *task)
e5d1367f
SE
700{
701}
702
703static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
704 struct perf_event_attr *attr,
705 struct perf_event *group_leader)
706{
707 return -EINVAL;
708}
709
710static inline void
3f7cce3c
SE
711perf_cgroup_set_timestamp(struct task_struct *task,
712 struct perf_event_context *ctx)
e5d1367f
SE
713{
714}
715
716void
717perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
718{
719}
720
721static inline void
722perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
723{
724}
725
726static inline u64 perf_cgroup_event_time(struct perf_event *event)
727{
728 return 0;
729}
730
731static inline void
732perf_cgroup_defer_enabled(struct perf_event *event)
733{
734}
735
736static inline void
737perf_cgroup_mark_enabled(struct perf_event *event,
738 struct perf_event_context *ctx)
739{
740}
741#endif
742
33696fc0 743void perf_pmu_disable(struct pmu *pmu)
9e35ad38 744{
33696fc0
PZ
745 int *count = this_cpu_ptr(pmu->pmu_disable_count);
746 if (!(*count)++)
747 pmu->pmu_disable(pmu);
9e35ad38 748}
9e35ad38 749
33696fc0 750void perf_pmu_enable(struct pmu *pmu)
9e35ad38 751{
33696fc0
PZ
752 int *count = this_cpu_ptr(pmu->pmu_disable_count);
753 if (!--(*count))
754 pmu->pmu_enable(pmu);
9e35ad38 755}
9e35ad38 756
e9d2b064
PZ
757static DEFINE_PER_CPU(struct list_head, rotation_list);
758
759/*
760 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
761 * because they're strictly cpu affine and rotate_start is called with IRQs
762 * disabled, while rotate_context is called from IRQ context.
763 */
108b02cf 764static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 765{
108b02cf 766 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 767 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 768
e9d2b064 769 WARN_ON(!irqs_disabled());
b5ab4cd5 770
12351ef8
FW
771 if (list_empty(&cpuctx->rotation_list)) {
772 int was_empty = list_empty(head);
e9d2b064 773 list_add(&cpuctx->rotation_list, head);
12351ef8
FW
774 if (was_empty)
775 tick_nohz_full_kick();
776 }
9e35ad38 777}
9e35ad38 778
cdd6c482 779static void get_ctx(struct perf_event_context *ctx)
a63eaf34 780{
e5289d4a 781 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
782}
783
cdd6c482 784static void put_ctx(struct perf_event_context *ctx)
a63eaf34 785{
564c2b21
PM
786 if (atomic_dec_and_test(&ctx->refcount)) {
787 if (ctx->parent_ctx)
788 put_ctx(ctx->parent_ctx);
c93f7669
PM
789 if (ctx->task)
790 put_task_struct(ctx->task);
cb796ff3 791 kfree_rcu(ctx, rcu_head);
564c2b21 792 }
a63eaf34
PM
793}
794
cdd6c482 795static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
796{
797 if (ctx->parent_ctx) {
798 put_ctx(ctx->parent_ctx);
799 ctx->parent_ctx = NULL;
800 }
801}
802
6844c09d
ACM
803static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
804{
805 /*
806 * only top level events have the pid namespace they were created in
807 */
808 if (event->parent)
809 event = event->parent;
810
811 return task_tgid_nr_ns(p, event->ns);
812}
813
814static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
815{
816 /*
817 * only top level events have the pid namespace they were created in
818 */
819 if (event->parent)
820 event = event->parent;
821
822 return task_pid_nr_ns(p, event->ns);
823}
824
7f453c24 825/*
cdd6c482 826 * If we inherit events we want to return the parent event id
7f453c24
PZ
827 * to userspace.
828 */
cdd6c482 829static u64 primary_event_id(struct perf_event *event)
7f453c24 830{
cdd6c482 831 u64 id = event->id;
7f453c24 832
cdd6c482
IM
833 if (event->parent)
834 id = event->parent->id;
7f453c24
PZ
835
836 return id;
837}
838
25346b93 839/*
cdd6c482 840 * Get the perf_event_context for a task and lock it.
25346b93
PM
841 * This has to cope with with the fact that until it is locked,
842 * the context could get moved to another task.
843 */
cdd6c482 844static struct perf_event_context *
8dc85d54 845perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 846{
cdd6c482 847 struct perf_event_context *ctx;
25346b93 848
9ed6060d 849retry:
65e303d7
PZ
850 /*
851 * One of the few rules of preemptible RCU is that one cannot do
852 * rcu_read_unlock() while holding a scheduler (or nested) lock when
853 * part of the read side critical section was preemptible -- see
854 * rcu_read_unlock_special().
855 *
856 * Since ctx->lock nests under rq->lock we must ensure the entire read
857 * side critical section is non-preemptible.
858 */
859 preempt_disable();
860 rcu_read_lock();
8dc85d54 861 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
862 if (ctx) {
863 /*
864 * If this context is a clone of another, it might
865 * get swapped for another underneath us by
cdd6c482 866 * perf_event_task_sched_out, though the
25346b93
PM
867 * rcu_read_lock() protects us from any context
868 * getting freed. Lock the context and check if it
869 * got swapped before we could get the lock, and retry
870 * if so. If we locked the right context, then it
871 * can't get swapped on us any more.
872 */
e625cce1 873 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 874 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 875 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
65e303d7
PZ
876 rcu_read_unlock();
877 preempt_enable();
25346b93
PM
878 goto retry;
879 }
b49a9e7e
PZ
880
881 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 882 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
883 ctx = NULL;
884 }
25346b93
PM
885 }
886 rcu_read_unlock();
65e303d7 887 preempt_enable();
25346b93
PM
888 return ctx;
889}
890
891/*
892 * Get the context for a task and increment its pin_count so it
893 * can't get swapped to another task. This also increments its
894 * reference count so that the context can't get freed.
895 */
8dc85d54
PZ
896static struct perf_event_context *
897perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 898{
cdd6c482 899 struct perf_event_context *ctx;
25346b93
PM
900 unsigned long flags;
901
8dc85d54 902 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
903 if (ctx) {
904 ++ctx->pin_count;
e625cce1 905 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
906 }
907 return ctx;
908}
909
cdd6c482 910static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
911{
912 unsigned long flags;
913
e625cce1 914 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 915 --ctx->pin_count;
e625cce1 916 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
917}
918
f67218c3
PZ
919/*
920 * Update the record of the current time in a context.
921 */
922static void update_context_time(struct perf_event_context *ctx)
923{
924 u64 now = perf_clock();
925
926 ctx->time += now - ctx->timestamp;
927 ctx->timestamp = now;
928}
929
4158755d
SE
930static u64 perf_event_time(struct perf_event *event)
931{
932 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
933
934 if (is_cgroup_event(event))
935 return perf_cgroup_event_time(event);
936
4158755d
SE
937 return ctx ? ctx->time : 0;
938}
939
f67218c3
PZ
940/*
941 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 942 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
943 */
944static void update_event_times(struct perf_event *event)
945{
946 struct perf_event_context *ctx = event->ctx;
947 u64 run_end;
948
949 if (event->state < PERF_EVENT_STATE_INACTIVE ||
950 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
951 return;
e5d1367f
SE
952 /*
953 * in cgroup mode, time_enabled represents
954 * the time the event was enabled AND active
955 * tasks were in the monitored cgroup. This is
956 * independent of the activity of the context as
957 * there may be a mix of cgroup and non-cgroup events.
958 *
959 * That is why we treat cgroup events differently
960 * here.
961 */
962 if (is_cgroup_event(event))
46cd6a7f 963 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
964 else if (ctx->is_active)
965 run_end = ctx->time;
acd1d7c1
PZ
966 else
967 run_end = event->tstamp_stopped;
968
969 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
970
971 if (event->state == PERF_EVENT_STATE_INACTIVE)
972 run_end = event->tstamp_stopped;
973 else
4158755d 974 run_end = perf_event_time(event);
f67218c3
PZ
975
976 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 977
f67218c3
PZ
978}
979
96c21a46
PZ
980/*
981 * Update total_time_enabled and total_time_running for all events in a group.
982 */
983static void update_group_times(struct perf_event *leader)
984{
985 struct perf_event *event;
986
987 update_event_times(leader);
988 list_for_each_entry(event, &leader->sibling_list, group_entry)
989 update_event_times(event);
990}
991
889ff015
FW
992static struct list_head *
993ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
994{
995 if (event->attr.pinned)
996 return &ctx->pinned_groups;
997 else
998 return &ctx->flexible_groups;
999}
1000
fccc714b 1001/*
cdd6c482 1002 * Add a event from the lists for its context.
fccc714b
PZ
1003 * Must be called with ctx->mutex and ctx->lock held.
1004 */
04289bb9 1005static void
cdd6c482 1006list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1007{
8a49542c
PZ
1008 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1009 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1010
1011 /*
8a49542c
PZ
1012 * If we're a stand alone event or group leader, we go to the context
1013 * list, group events are kept attached to the group so that
1014 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1015 */
8a49542c 1016 if (event->group_leader == event) {
889ff015
FW
1017 struct list_head *list;
1018
d6f962b5
FW
1019 if (is_software_event(event))
1020 event->group_flags |= PERF_GROUP_SOFTWARE;
1021
889ff015
FW
1022 list = ctx_group_list(event, ctx);
1023 list_add_tail(&event->group_entry, list);
5c148194 1024 }
592903cd 1025
08309379 1026 if (is_cgroup_event(event))
e5d1367f 1027 ctx->nr_cgroups++;
e5d1367f 1028
d010b332
SE
1029 if (has_branch_stack(event))
1030 ctx->nr_branch_stack++;
1031
cdd6c482 1032 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1033 if (!ctx->nr_events)
108b02cf 1034 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1035 ctx->nr_events++;
1036 if (event->attr.inherit_stat)
bfbd3381 1037 ctx->nr_stat++;
04289bb9
IM
1038}
1039
0231bb53
JO
1040/*
1041 * Initialize event state based on the perf_event_attr::disabled.
1042 */
1043static inline void perf_event__state_init(struct perf_event *event)
1044{
1045 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1046 PERF_EVENT_STATE_INACTIVE;
1047}
1048
c320c7b7
ACM
1049/*
1050 * Called at perf_event creation and when events are attached/detached from a
1051 * group.
1052 */
1053static void perf_event__read_size(struct perf_event *event)
1054{
1055 int entry = sizeof(u64); /* value */
1056 int size = 0;
1057 int nr = 1;
1058
1059 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1060 size += sizeof(u64);
1061
1062 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1063 size += sizeof(u64);
1064
1065 if (event->attr.read_format & PERF_FORMAT_ID)
1066 entry += sizeof(u64);
1067
1068 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1069 nr += event->group_leader->nr_siblings;
1070 size += sizeof(u64);
1071 }
1072
1073 size += entry * nr;
1074 event->read_size = size;
1075}
1076
1077static void perf_event__header_size(struct perf_event *event)
1078{
1079 struct perf_sample_data *data;
1080 u64 sample_type = event->attr.sample_type;
1081 u16 size = 0;
1082
1083 perf_event__read_size(event);
1084
1085 if (sample_type & PERF_SAMPLE_IP)
1086 size += sizeof(data->ip);
1087
6844c09d
ACM
1088 if (sample_type & PERF_SAMPLE_ADDR)
1089 size += sizeof(data->addr);
1090
1091 if (sample_type & PERF_SAMPLE_PERIOD)
1092 size += sizeof(data->period);
1093
c3feedf2
AK
1094 if (sample_type & PERF_SAMPLE_WEIGHT)
1095 size += sizeof(data->weight);
1096
6844c09d
ACM
1097 if (sample_type & PERF_SAMPLE_READ)
1098 size += event->read_size;
1099
d6be9ad6
SE
1100 if (sample_type & PERF_SAMPLE_DATA_SRC)
1101 size += sizeof(data->data_src.val);
1102
6844c09d
ACM
1103 event->header_size = size;
1104}
1105
1106static void perf_event__id_header_size(struct perf_event *event)
1107{
1108 struct perf_sample_data *data;
1109 u64 sample_type = event->attr.sample_type;
1110 u16 size = 0;
1111
c320c7b7
ACM
1112 if (sample_type & PERF_SAMPLE_TID)
1113 size += sizeof(data->tid_entry);
1114
1115 if (sample_type & PERF_SAMPLE_TIME)
1116 size += sizeof(data->time);
1117
c320c7b7
ACM
1118 if (sample_type & PERF_SAMPLE_ID)
1119 size += sizeof(data->id);
1120
1121 if (sample_type & PERF_SAMPLE_STREAM_ID)
1122 size += sizeof(data->stream_id);
1123
1124 if (sample_type & PERF_SAMPLE_CPU)
1125 size += sizeof(data->cpu_entry);
1126
6844c09d 1127 event->id_header_size = size;
c320c7b7
ACM
1128}
1129
8a49542c
PZ
1130static void perf_group_attach(struct perf_event *event)
1131{
c320c7b7 1132 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1133
74c3337c
PZ
1134 /*
1135 * We can have double attach due to group movement in perf_event_open.
1136 */
1137 if (event->attach_state & PERF_ATTACH_GROUP)
1138 return;
1139
8a49542c
PZ
1140 event->attach_state |= PERF_ATTACH_GROUP;
1141
1142 if (group_leader == event)
1143 return;
1144
1145 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1146 !is_software_event(event))
1147 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1148
1149 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1150 group_leader->nr_siblings++;
c320c7b7
ACM
1151
1152 perf_event__header_size(group_leader);
1153
1154 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1155 perf_event__header_size(pos);
8a49542c
PZ
1156}
1157
a63eaf34 1158/*
cdd6c482 1159 * Remove a event from the lists for its context.
fccc714b 1160 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1161 */
04289bb9 1162static void
cdd6c482 1163list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1164{
68cacd29 1165 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1166 /*
1167 * We can have double detach due to exit/hot-unplug + close.
1168 */
1169 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1170 return;
8a49542c
PZ
1171
1172 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1173
68cacd29 1174 if (is_cgroup_event(event)) {
e5d1367f 1175 ctx->nr_cgroups--;
68cacd29
SE
1176 cpuctx = __get_cpu_context(ctx);
1177 /*
1178 * if there are no more cgroup events
1179 * then cler cgrp to avoid stale pointer
1180 * in update_cgrp_time_from_cpuctx()
1181 */
1182 if (!ctx->nr_cgroups)
1183 cpuctx->cgrp = NULL;
1184 }
e5d1367f 1185
d010b332
SE
1186 if (has_branch_stack(event))
1187 ctx->nr_branch_stack--;
1188
cdd6c482
IM
1189 ctx->nr_events--;
1190 if (event->attr.inherit_stat)
bfbd3381 1191 ctx->nr_stat--;
8bc20959 1192
cdd6c482 1193 list_del_rcu(&event->event_entry);
04289bb9 1194
8a49542c
PZ
1195 if (event->group_leader == event)
1196 list_del_init(&event->group_entry);
5c148194 1197
96c21a46 1198 update_group_times(event);
b2e74a26
SE
1199
1200 /*
1201 * If event was in error state, then keep it
1202 * that way, otherwise bogus counts will be
1203 * returned on read(). The only way to get out
1204 * of error state is by explicit re-enabling
1205 * of the event
1206 */
1207 if (event->state > PERF_EVENT_STATE_OFF)
1208 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1209}
1210
8a49542c 1211static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1212{
1213 struct perf_event *sibling, *tmp;
8a49542c
PZ
1214 struct list_head *list = NULL;
1215
1216 /*
1217 * We can have double detach due to exit/hot-unplug + close.
1218 */
1219 if (!(event->attach_state & PERF_ATTACH_GROUP))
1220 return;
1221
1222 event->attach_state &= ~PERF_ATTACH_GROUP;
1223
1224 /*
1225 * If this is a sibling, remove it from its group.
1226 */
1227 if (event->group_leader != event) {
1228 list_del_init(&event->group_entry);
1229 event->group_leader->nr_siblings--;
c320c7b7 1230 goto out;
8a49542c
PZ
1231 }
1232
1233 if (!list_empty(&event->group_entry))
1234 list = &event->group_entry;
2e2af50b 1235
04289bb9 1236 /*
cdd6c482
IM
1237 * If this was a group event with sibling events then
1238 * upgrade the siblings to singleton events by adding them
8a49542c 1239 * to whatever list we are on.
04289bb9 1240 */
cdd6c482 1241 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1242 if (list)
1243 list_move_tail(&sibling->group_entry, list);
04289bb9 1244 sibling->group_leader = sibling;
d6f962b5
FW
1245
1246 /* Inherit group flags from the previous leader */
1247 sibling->group_flags = event->group_flags;
04289bb9 1248 }
c320c7b7
ACM
1249
1250out:
1251 perf_event__header_size(event->group_leader);
1252
1253 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1254 perf_event__header_size(tmp);
04289bb9
IM
1255}
1256
fa66f07a
SE
1257static inline int
1258event_filter_match(struct perf_event *event)
1259{
e5d1367f
SE
1260 return (event->cpu == -1 || event->cpu == smp_processor_id())
1261 && perf_cgroup_match(event);
fa66f07a
SE
1262}
1263
9ffcfa6f
SE
1264static void
1265event_sched_out(struct perf_event *event,
3b6f9e5c 1266 struct perf_cpu_context *cpuctx,
cdd6c482 1267 struct perf_event_context *ctx)
3b6f9e5c 1268{
4158755d 1269 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1270 u64 delta;
1271 /*
1272 * An event which could not be activated because of
1273 * filter mismatch still needs to have its timings
1274 * maintained, otherwise bogus information is return
1275 * via read() for time_enabled, time_running:
1276 */
1277 if (event->state == PERF_EVENT_STATE_INACTIVE
1278 && !event_filter_match(event)) {
e5d1367f 1279 delta = tstamp - event->tstamp_stopped;
fa66f07a 1280 event->tstamp_running += delta;
4158755d 1281 event->tstamp_stopped = tstamp;
fa66f07a
SE
1282 }
1283
cdd6c482 1284 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1285 return;
3b6f9e5c 1286
cdd6c482
IM
1287 event->state = PERF_EVENT_STATE_INACTIVE;
1288 if (event->pending_disable) {
1289 event->pending_disable = 0;
1290 event->state = PERF_EVENT_STATE_OFF;
970892a9 1291 }
4158755d 1292 event->tstamp_stopped = tstamp;
a4eaf7f1 1293 event->pmu->del(event, 0);
cdd6c482 1294 event->oncpu = -1;
3b6f9e5c 1295
cdd6c482 1296 if (!is_software_event(event))
3b6f9e5c
PM
1297 cpuctx->active_oncpu--;
1298 ctx->nr_active--;
0f5a2601
PZ
1299 if (event->attr.freq && event->attr.sample_freq)
1300 ctx->nr_freq--;
cdd6c482 1301 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1302 cpuctx->exclusive = 0;
1303}
1304
d859e29f 1305static void
cdd6c482 1306group_sched_out(struct perf_event *group_event,
d859e29f 1307 struct perf_cpu_context *cpuctx,
cdd6c482 1308 struct perf_event_context *ctx)
d859e29f 1309{
cdd6c482 1310 struct perf_event *event;
fa66f07a 1311 int state = group_event->state;
d859e29f 1312
cdd6c482 1313 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1314
1315 /*
1316 * Schedule out siblings (if any):
1317 */
cdd6c482
IM
1318 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1319 event_sched_out(event, cpuctx, ctx);
d859e29f 1320
fa66f07a 1321 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1322 cpuctx->exclusive = 0;
1323}
1324
54b3f8df
PZ
1325struct remove_event {
1326 struct perf_event *event;
1327 bool detach_group;
1328};
1329
0793a61d 1330/*
cdd6c482 1331 * Cross CPU call to remove a performance event
0793a61d 1332 *
cdd6c482 1333 * We disable the event on the hardware level first. After that we
0793a61d
TG
1334 * remove it from the context list.
1335 */
fe4b04fa 1336static int __perf_remove_from_context(void *info)
0793a61d 1337{
54b3f8df
PZ
1338 struct remove_event *re = info;
1339 struct perf_event *event = re->event;
cdd6c482 1340 struct perf_event_context *ctx = event->ctx;
108b02cf 1341 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1342
e625cce1 1343 raw_spin_lock(&ctx->lock);
cdd6c482 1344 event_sched_out(event, cpuctx, ctx);
54b3f8df
PZ
1345 if (re->detach_group)
1346 perf_group_detach(event);
cdd6c482 1347 list_del_event(event, ctx);
64ce3126
PZ
1348 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1349 ctx->is_active = 0;
1350 cpuctx->task_ctx = NULL;
1351 }
e625cce1 1352 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1353
1354 return 0;
0793a61d
TG
1355}
1356
1357
1358/*
cdd6c482 1359 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1360 *
cdd6c482 1361 * CPU events are removed with a smp call. For task events we only
0793a61d 1362 * call when the task is on a CPU.
c93f7669 1363 *
cdd6c482
IM
1364 * If event->ctx is a cloned context, callers must make sure that
1365 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1366 * remains valid. This is OK when called from perf_release since
1367 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1368 * When called from perf_event_exit_task, it's OK because the
c93f7669 1369 * context has been detached from its task.
0793a61d 1370 */
54b3f8df 1371static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1372{
cdd6c482 1373 struct perf_event_context *ctx = event->ctx;
0793a61d 1374 struct task_struct *task = ctx->task;
54b3f8df
PZ
1375 struct remove_event re = {
1376 .event = event,
1377 .detach_group = detach_group,
1378 };
0793a61d 1379
fe4b04fa
PZ
1380 lockdep_assert_held(&ctx->mutex);
1381
0793a61d
TG
1382 if (!task) {
1383 /*
cdd6c482 1384 * Per cpu events are removed via an smp call and
af901ca1 1385 * the removal is always successful.
0793a61d 1386 */
54b3f8df 1387 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1388 return;
1389 }
1390
1391retry:
54b3f8df 1392 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1393 return;
0793a61d 1394
e625cce1 1395 raw_spin_lock_irq(&ctx->lock);
0793a61d 1396 /*
fe4b04fa
PZ
1397 * If we failed to find a running task, but find the context active now
1398 * that we've acquired the ctx->lock, retry.
0793a61d 1399 */
fe4b04fa 1400 if (ctx->is_active) {
e625cce1 1401 raw_spin_unlock_irq(&ctx->lock);
a63607b9
CW
1402 /*
1403 * Reload the task pointer, it might have been changed by
1404 * a concurrent perf_event_context_sched_out().
1405 */
1406 task = ctx->task;
0793a61d
TG
1407 goto retry;
1408 }
1409
1410 /*
fe4b04fa
PZ
1411 * Since the task isn't running, its safe to remove the event, us
1412 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1413 */
54b3f8df
PZ
1414 if (detach_group)
1415 perf_group_detach(event);
fe4b04fa 1416 list_del_event(event, ctx);
e625cce1 1417 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1418}
1419
d859e29f 1420/*
cdd6c482 1421 * Cross CPU call to disable a performance event
d859e29f 1422 */
500ad2d8 1423int __perf_event_disable(void *info)
d859e29f 1424{
cdd6c482 1425 struct perf_event *event = info;
cdd6c482 1426 struct perf_event_context *ctx = event->ctx;
108b02cf 1427 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1428
1429 /*
cdd6c482
IM
1430 * If this is a per-task event, need to check whether this
1431 * event's task is the current task on this cpu.
fe4b04fa
PZ
1432 *
1433 * Can trigger due to concurrent perf_event_context_sched_out()
1434 * flipping contexts around.
d859e29f 1435 */
665c2142 1436 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1437 return -EINVAL;
d859e29f 1438
e625cce1 1439 raw_spin_lock(&ctx->lock);
d859e29f
PM
1440
1441 /*
cdd6c482 1442 * If the event is on, turn it off.
d859e29f
PM
1443 * If it is in error state, leave it in error state.
1444 */
cdd6c482 1445 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1446 update_context_time(ctx);
e5d1367f 1447 update_cgrp_time_from_event(event);
cdd6c482
IM
1448 update_group_times(event);
1449 if (event == event->group_leader)
1450 group_sched_out(event, cpuctx, ctx);
d859e29f 1451 else
cdd6c482
IM
1452 event_sched_out(event, cpuctx, ctx);
1453 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1454 }
1455
e625cce1 1456 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1457
1458 return 0;
d859e29f
PM
1459}
1460
1461/*
cdd6c482 1462 * Disable a event.
c93f7669 1463 *
cdd6c482
IM
1464 * If event->ctx is a cloned context, callers must make sure that
1465 * every task struct that event->ctx->task could possibly point to
c93f7669 1466 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1467 * perf_event_for_each_child or perf_event_for_each because they
1468 * hold the top-level event's child_mutex, so any descendant that
1469 * goes to exit will block in sync_child_event.
1470 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1471 * is the current context on this CPU and preemption is disabled,
cdd6c482 1472 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1473 */
44234adc 1474void perf_event_disable(struct perf_event *event)
d859e29f 1475{
cdd6c482 1476 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1477 struct task_struct *task = ctx->task;
1478
1479 if (!task) {
1480 /*
cdd6c482 1481 * Disable the event on the cpu that it's on
d859e29f 1482 */
fe4b04fa 1483 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1484 return;
1485 }
1486
9ed6060d 1487retry:
fe4b04fa
PZ
1488 if (!task_function_call(task, __perf_event_disable, event))
1489 return;
d859e29f 1490
e625cce1 1491 raw_spin_lock_irq(&ctx->lock);
d859e29f 1492 /*
cdd6c482 1493 * If the event is still active, we need to retry the cross-call.
d859e29f 1494 */
cdd6c482 1495 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1496 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1497 /*
1498 * Reload the task pointer, it might have been changed by
1499 * a concurrent perf_event_context_sched_out().
1500 */
1501 task = ctx->task;
d859e29f
PM
1502 goto retry;
1503 }
1504
1505 /*
1506 * Since we have the lock this context can't be scheduled
1507 * in, so we can change the state safely.
1508 */
cdd6c482
IM
1509 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1510 update_group_times(event);
1511 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1512 }
e625cce1 1513 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1514}
dcfce4a0 1515EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1516
e5d1367f
SE
1517static void perf_set_shadow_time(struct perf_event *event,
1518 struct perf_event_context *ctx,
1519 u64 tstamp)
1520{
1521 /*
1522 * use the correct time source for the time snapshot
1523 *
1524 * We could get by without this by leveraging the
1525 * fact that to get to this function, the caller
1526 * has most likely already called update_context_time()
1527 * and update_cgrp_time_xx() and thus both timestamp
1528 * are identical (or very close). Given that tstamp is,
1529 * already adjusted for cgroup, we could say that:
1530 * tstamp - ctx->timestamp
1531 * is equivalent to
1532 * tstamp - cgrp->timestamp.
1533 *
1534 * Then, in perf_output_read(), the calculation would
1535 * work with no changes because:
1536 * - event is guaranteed scheduled in
1537 * - no scheduled out in between
1538 * - thus the timestamp would be the same
1539 *
1540 * But this is a bit hairy.
1541 *
1542 * So instead, we have an explicit cgroup call to remain
1543 * within the time time source all along. We believe it
1544 * is cleaner and simpler to understand.
1545 */
1546 if (is_cgroup_event(event))
1547 perf_cgroup_set_shadow_time(event, tstamp);
1548 else
1549 event->shadow_ctx_time = tstamp - ctx->timestamp;
1550}
1551
4fe757dd
PZ
1552#define MAX_INTERRUPTS (~0ULL)
1553
1554static void perf_log_throttle(struct perf_event *event, int enable);
1555
235c7fc7 1556static int
9ffcfa6f 1557event_sched_in(struct perf_event *event,
235c7fc7 1558 struct perf_cpu_context *cpuctx,
6e37738a 1559 struct perf_event_context *ctx)
235c7fc7 1560{
4158755d
SE
1561 u64 tstamp = perf_event_time(event);
1562
cdd6c482 1563 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1564 return 0;
1565
cdd6c482 1566 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1567 event->oncpu = smp_processor_id();
4fe757dd
PZ
1568
1569 /*
1570 * Unthrottle events, since we scheduled we might have missed several
1571 * ticks already, also for a heavily scheduling task there is little
1572 * guarantee it'll get a tick in a timely manner.
1573 */
1574 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1575 perf_log_throttle(event, 1);
1576 event->hw.interrupts = 0;
1577 }
1578
235c7fc7
IM
1579 /*
1580 * The new state must be visible before we turn it on in the hardware:
1581 */
1582 smp_wmb();
1583
a4eaf7f1 1584 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1585 event->state = PERF_EVENT_STATE_INACTIVE;
1586 event->oncpu = -1;
235c7fc7
IM
1587 return -EAGAIN;
1588 }
1589
4158755d 1590 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1591
e5d1367f 1592 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1593
cdd6c482 1594 if (!is_software_event(event))
3b6f9e5c 1595 cpuctx->active_oncpu++;
235c7fc7 1596 ctx->nr_active++;
0f5a2601
PZ
1597 if (event->attr.freq && event->attr.sample_freq)
1598 ctx->nr_freq++;
235c7fc7 1599
cdd6c482 1600 if (event->attr.exclusive)
3b6f9e5c
PM
1601 cpuctx->exclusive = 1;
1602
235c7fc7
IM
1603 return 0;
1604}
1605
6751b71e 1606static int
cdd6c482 1607group_sched_in(struct perf_event *group_event,
6751b71e 1608 struct perf_cpu_context *cpuctx,
6e37738a 1609 struct perf_event_context *ctx)
6751b71e 1610{
6bde9b6c 1611 struct perf_event *event, *partial_group = NULL;
51b0fe39 1612 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1613 u64 now = ctx->time;
1614 bool simulate = false;
6751b71e 1615
cdd6c482 1616 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1617 return 0;
1618
ad5133b7 1619 pmu->start_txn(pmu);
6bde9b6c 1620
9ffcfa6f 1621 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1622 pmu->cancel_txn(pmu);
6751b71e 1623 return -EAGAIN;
90151c35 1624 }
6751b71e
PM
1625
1626 /*
1627 * Schedule in siblings as one group (if any):
1628 */
cdd6c482 1629 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1630 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1631 partial_group = event;
6751b71e
PM
1632 goto group_error;
1633 }
1634 }
1635
9ffcfa6f 1636 if (!pmu->commit_txn(pmu))
6e85158c 1637 return 0;
9ffcfa6f 1638
6751b71e
PM
1639group_error:
1640 /*
1641 * Groups can be scheduled in as one unit only, so undo any
1642 * partial group before returning:
d7842da4
SE
1643 * The events up to the failed event are scheduled out normally,
1644 * tstamp_stopped will be updated.
1645 *
1646 * The failed events and the remaining siblings need to have
1647 * their timings updated as if they had gone thru event_sched_in()
1648 * and event_sched_out(). This is required to get consistent timings
1649 * across the group. This also takes care of the case where the group
1650 * could never be scheduled by ensuring tstamp_stopped is set to mark
1651 * the time the event was actually stopped, such that time delta
1652 * calculation in update_event_times() is correct.
6751b71e 1653 */
cdd6c482
IM
1654 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1655 if (event == partial_group)
d7842da4
SE
1656 simulate = true;
1657
1658 if (simulate) {
1659 event->tstamp_running += now - event->tstamp_stopped;
1660 event->tstamp_stopped = now;
1661 } else {
1662 event_sched_out(event, cpuctx, ctx);
1663 }
6751b71e 1664 }
9ffcfa6f 1665 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1666
ad5133b7 1667 pmu->cancel_txn(pmu);
90151c35 1668
6751b71e
PM
1669 return -EAGAIN;
1670}
1671
3b6f9e5c 1672/*
cdd6c482 1673 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1674 */
cdd6c482 1675static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1676 struct perf_cpu_context *cpuctx,
1677 int can_add_hw)
1678{
1679 /*
cdd6c482 1680 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1681 */
d6f962b5 1682 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1683 return 1;
1684 /*
1685 * If an exclusive group is already on, no other hardware
cdd6c482 1686 * events can go on.
3b6f9e5c
PM
1687 */
1688 if (cpuctx->exclusive)
1689 return 0;
1690 /*
1691 * If this group is exclusive and there are already
cdd6c482 1692 * events on the CPU, it can't go on.
3b6f9e5c 1693 */
cdd6c482 1694 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1695 return 0;
1696 /*
1697 * Otherwise, try to add it if all previous groups were able
1698 * to go on.
1699 */
1700 return can_add_hw;
1701}
1702
cdd6c482
IM
1703static void add_event_to_ctx(struct perf_event *event,
1704 struct perf_event_context *ctx)
53cfbf59 1705{
4158755d
SE
1706 u64 tstamp = perf_event_time(event);
1707
cdd6c482 1708 list_add_event(event, ctx);
8a49542c 1709 perf_group_attach(event);
4158755d
SE
1710 event->tstamp_enabled = tstamp;
1711 event->tstamp_running = tstamp;
1712 event->tstamp_stopped = tstamp;
53cfbf59
PM
1713}
1714
2c29ef0f
PZ
1715static void task_ctx_sched_out(struct perf_event_context *ctx);
1716static void
1717ctx_sched_in(struct perf_event_context *ctx,
1718 struct perf_cpu_context *cpuctx,
1719 enum event_type_t event_type,
1720 struct task_struct *task);
fe4b04fa 1721
dce5855b
PZ
1722static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1723 struct perf_event_context *ctx,
1724 struct task_struct *task)
1725{
1726 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1727 if (ctx)
1728 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1729 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1730 if (ctx)
1731 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1732}
1733
0793a61d 1734/*
cdd6c482 1735 * Cross CPU call to install and enable a performance event
682076ae
PZ
1736 *
1737 * Must be called with ctx->mutex held
0793a61d 1738 */
fe4b04fa 1739static int __perf_install_in_context(void *info)
0793a61d 1740{
cdd6c482
IM
1741 struct perf_event *event = info;
1742 struct perf_event_context *ctx = event->ctx;
108b02cf 1743 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1744 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1745 struct task_struct *task = current;
1746
b58f6b0d 1747 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1748 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1749
1750 /*
2c29ef0f 1751 * If there was an active task_ctx schedule it out.
0793a61d 1752 */
b58f6b0d 1753 if (task_ctx)
2c29ef0f 1754 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1755
1756 /*
1757 * If the context we're installing events in is not the
1758 * active task_ctx, flip them.
1759 */
1760 if (ctx->task && task_ctx != ctx) {
1761 if (task_ctx)
1762 raw_spin_unlock(&task_ctx->lock);
1763 raw_spin_lock(&ctx->lock);
1764 task_ctx = ctx;
1765 }
1766
1767 if (task_ctx) {
1768 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1769 task = task_ctx->task;
1770 }
b58f6b0d 1771
2c29ef0f 1772 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1773
4af4998b 1774 update_context_time(ctx);
e5d1367f
SE
1775 /*
1776 * update cgrp time only if current cgrp
1777 * matches event->cgrp. Must be done before
1778 * calling add_event_to_ctx()
1779 */
1780 update_cgrp_time_from_event(event);
0793a61d 1781
cdd6c482 1782 add_event_to_ctx(event, ctx);
0793a61d 1783
d859e29f 1784 /*
2c29ef0f 1785 * Schedule everything back in
d859e29f 1786 */
dce5855b 1787 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1788
1789 perf_pmu_enable(cpuctx->ctx.pmu);
1790 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1791
1792 return 0;
0793a61d
TG
1793}
1794
1795/*
cdd6c482 1796 * Attach a performance event to a context
0793a61d 1797 *
cdd6c482
IM
1798 * First we add the event to the list with the hardware enable bit
1799 * in event->hw_config cleared.
0793a61d 1800 *
cdd6c482 1801 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1802 * call to enable it in the task context. The task might have been
1803 * scheduled away, but we check this in the smp call again.
1804 */
1805static void
cdd6c482
IM
1806perf_install_in_context(struct perf_event_context *ctx,
1807 struct perf_event *event,
0793a61d
TG
1808 int cpu)
1809{
1810 struct task_struct *task = ctx->task;
1811
fe4b04fa
PZ
1812 lockdep_assert_held(&ctx->mutex);
1813
c3f00c70 1814 event->ctx = ctx;
0cda4c02
YZ
1815 if (event->cpu != -1)
1816 event->cpu = cpu;
c3f00c70 1817
0793a61d
TG
1818 if (!task) {
1819 /*
cdd6c482 1820 * Per cpu events are installed via an smp call and
af901ca1 1821 * the install is always successful.
0793a61d 1822 */
fe4b04fa 1823 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1824 return;
1825 }
1826
0793a61d 1827retry:
fe4b04fa
PZ
1828 if (!task_function_call(task, __perf_install_in_context, event))
1829 return;
0793a61d 1830
e625cce1 1831 raw_spin_lock_irq(&ctx->lock);
0793a61d 1832 /*
fe4b04fa
PZ
1833 * If we failed to find a running task, but find the context active now
1834 * that we've acquired the ctx->lock, retry.
0793a61d 1835 */
fe4b04fa 1836 if (ctx->is_active) {
e625cce1 1837 raw_spin_unlock_irq(&ctx->lock);
a63607b9
CW
1838 /*
1839 * Reload the task pointer, it might have been changed by
1840 * a concurrent perf_event_context_sched_out().
1841 */
1842 task = ctx->task;
0793a61d
TG
1843 goto retry;
1844 }
1845
1846 /*
fe4b04fa
PZ
1847 * Since the task isn't running, its safe to add the event, us holding
1848 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1849 */
fe4b04fa 1850 add_event_to_ctx(event, ctx);
e625cce1 1851 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1852}
1853
fa289bec 1854/*
cdd6c482 1855 * Put a event into inactive state and update time fields.
fa289bec
PM
1856 * Enabling the leader of a group effectively enables all
1857 * the group members that aren't explicitly disabled, so we
1858 * have to update their ->tstamp_enabled also.
1859 * Note: this works for group members as well as group leaders
1860 * since the non-leader members' sibling_lists will be empty.
1861 */
1d9b482e 1862static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1863{
cdd6c482 1864 struct perf_event *sub;
4158755d 1865 u64 tstamp = perf_event_time(event);
fa289bec 1866
cdd6c482 1867 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1868 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1869 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1870 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1871 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1872 }
fa289bec
PM
1873}
1874
d859e29f 1875/*
cdd6c482 1876 * Cross CPU call to enable a performance event
d859e29f 1877 */
fe4b04fa 1878static int __perf_event_enable(void *info)
04289bb9 1879{
cdd6c482 1880 struct perf_event *event = info;
cdd6c482
IM
1881 struct perf_event_context *ctx = event->ctx;
1882 struct perf_event *leader = event->group_leader;
108b02cf 1883 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1884 int err;
04289bb9 1885
b2412679
JO
1886 /*
1887 * There's a time window between 'ctx->is_active' check
1888 * in perf_event_enable function and this place having:
1889 * - IRQs on
1890 * - ctx->lock unlocked
1891 *
1892 * where the task could be killed and 'ctx' deactivated
1893 * by perf_event_exit_task.
1894 */
1895 if (!ctx->is_active)
fe4b04fa 1896 return -EINVAL;
3cbed429 1897
e625cce1 1898 raw_spin_lock(&ctx->lock);
4af4998b 1899 update_context_time(ctx);
d859e29f 1900
cdd6c482 1901 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1902 goto unlock;
e5d1367f
SE
1903
1904 /*
1905 * set current task's cgroup time reference point
1906 */
3f7cce3c 1907 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1908
1d9b482e 1909 __perf_event_mark_enabled(event);
04289bb9 1910
e5d1367f
SE
1911 if (!event_filter_match(event)) {
1912 if (is_cgroup_event(event))
1913 perf_cgroup_defer_enabled(event);
f4c4176f 1914 goto unlock;
e5d1367f 1915 }
f4c4176f 1916
04289bb9 1917 /*
cdd6c482 1918 * If the event is in a group and isn't the group leader,
d859e29f 1919 * then don't put it on unless the group is on.
04289bb9 1920 */
cdd6c482 1921 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1922 goto unlock;
3b6f9e5c 1923
cdd6c482 1924 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1925 err = -EEXIST;
e758a33d 1926 } else {
cdd6c482 1927 if (event == leader)
6e37738a 1928 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1929 else
6e37738a 1930 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1931 }
d859e29f
PM
1932
1933 if (err) {
1934 /*
cdd6c482 1935 * If this event can't go on and it's part of a
d859e29f
PM
1936 * group, then the whole group has to come off.
1937 */
cdd6c482 1938 if (leader != event)
d859e29f 1939 group_sched_out(leader, cpuctx, ctx);
0d48696f 1940 if (leader->attr.pinned) {
53cfbf59 1941 update_group_times(leader);
cdd6c482 1942 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1943 }
d859e29f
PM
1944 }
1945
9ed6060d 1946unlock:
e625cce1 1947 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1948
1949 return 0;
d859e29f
PM
1950}
1951
1952/*
cdd6c482 1953 * Enable a event.
c93f7669 1954 *
cdd6c482
IM
1955 * If event->ctx is a cloned context, callers must make sure that
1956 * every task struct that event->ctx->task could possibly point to
c93f7669 1957 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1958 * perf_event_for_each_child or perf_event_for_each as described
1959 * for perf_event_disable.
d859e29f 1960 */
44234adc 1961void perf_event_enable(struct perf_event *event)
d859e29f 1962{
cdd6c482 1963 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1964 struct task_struct *task = ctx->task;
1965
1966 if (!task) {
1967 /*
cdd6c482 1968 * Enable the event on the cpu that it's on
d859e29f 1969 */
fe4b04fa 1970 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1971 return;
1972 }
1973
e625cce1 1974 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1975 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1976 goto out;
1977
1978 /*
cdd6c482
IM
1979 * If the event is in error state, clear that first.
1980 * That way, if we see the event in error state below, we
d859e29f
PM
1981 * know that it has gone back into error state, as distinct
1982 * from the task having been scheduled away before the
1983 * cross-call arrived.
1984 */
cdd6c482
IM
1985 if (event->state == PERF_EVENT_STATE_ERROR)
1986 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1987
9ed6060d 1988retry:
fe4b04fa 1989 if (!ctx->is_active) {
1d9b482e 1990 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1991 goto out;
1992 }
1993
e625cce1 1994 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1995
1996 if (!task_function_call(task, __perf_event_enable, event))
1997 return;
d859e29f 1998
e625cce1 1999 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2000
2001 /*
cdd6c482 2002 * If the context is active and the event is still off,
d859e29f
PM
2003 * we need to retry the cross-call.
2004 */
fe4b04fa
PZ
2005 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2006 /*
2007 * task could have been flipped by a concurrent
2008 * perf_event_context_sched_out()
2009 */
2010 task = ctx->task;
d859e29f 2011 goto retry;
fe4b04fa 2012 }
fa289bec 2013
9ed6060d 2014out:
e625cce1 2015 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2016}
dcfce4a0 2017EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2018
26ca5c11 2019int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2020{
2023b359 2021 /*
cdd6c482 2022 * not supported on inherited events
2023b359 2023 */
2e939d1d 2024 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2025 return -EINVAL;
2026
cdd6c482
IM
2027 atomic_add(refresh, &event->event_limit);
2028 perf_event_enable(event);
2023b359
PZ
2029
2030 return 0;
79f14641 2031}
26ca5c11 2032EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2033
5b0311e1
FW
2034static void ctx_sched_out(struct perf_event_context *ctx,
2035 struct perf_cpu_context *cpuctx,
2036 enum event_type_t event_type)
235c7fc7 2037{
cdd6c482 2038 struct perf_event *event;
db24d33e 2039 int is_active = ctx->is_active;
235c7fc7 2040
db24d33e 2041 ctx->is_active &= ~event_type;
cdd6c482 2042 if (likely(!ctx->nr_events))
facc4307
PZ
2043 return;
2044
4af4998b 2045 update_context_time(ctx);
e5d1367f 2046 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2047 if (!ctx->nr_active)
facc4307 2048 return;
5b0311e1 2049
075e0b00 2050 perf_pmu_disable(ctx->pmu);
db24d33e 2051 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2052 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2053 group_sched_out(event, cpuctx, ctx);
9ed6060d 2054 }
889ff015 2055
db24d33e 2056 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2057 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2058 group_sched_out(event, cpuctx, ctx);
9ed6060d 2059 }
1b9a644f 2060 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2061}
2062
564c2b21
PM
2063/*
2064 * Test whether two contexts are equivalent, i.e. whether they
2065 * have both been cloned from the same version of the same context
cdd6c482
IM
2066 * and they both have the same number of enabled events.
2067 * If the number of enabled events is the same, then the set
2068 * of enabled events should be the same, because these are both
2069 * inherited contexts, therefore we can't access individual events
564c2b21 2070 * in them directly with an fd; we can only enable/disable all
cdd6c482 2071 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2072 * via ioctl, which will have the same effect on both contexts.
2073 */
cdd6c482
IM
2074static int context_equiv(struct perf_event_context *ctx1,
2075 struct perf_event_context *ctx2)
564c2b21
PM
2076{
2077 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2078 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2079 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2080}
2081
cdd6c482
IM
2082static void __perf_event_sync_stat(struct perf_event *event,
2083 struct perf_event *next_event)
bfbd3381
PZ
2084{
2085 u64 value;
2086
cdd6c482 2087 if (!event->attr.inherit_stat)
bfbd3381
PZ
2088 return;
2089
2090 /*
cdd6c482 2091 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2092 * because we're in the middle of a context switch and have IRQs
2093 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2094 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2095 * don't need to use it.
2096 */
cdd6c482
IM
2097 switch (event->state) {
2098 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2099 event->pmu->read(event);
2100 /* fall-through */
bfbd3381 2101
cdd6c482
IM
2102 case PERF_EVENT_STATE_INACTIVE:
2103 update_event_times(event);
bfbd3381
PZ
2104 break;
2105
2106 default:
2107 break;
2108 }
2109
2110 /*
cdd6c482 2111 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2112 * values when we flip the contexts.
2113 */
e7850595
PZ
2114 value = local64_read(&next_event->count);
2115 value = local64_xchg(&event->count, value);
2116 local64_set(&next_event->count, value);
bfbd3381 2117
cdd6c482
IM
2118 swap(event->total_time_enabled, next_event->total_time_enabled);
2119 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2120
bfbd3381 2121 /*
19d2e755 2122 * Since we swizzled the values, update the user visible data too.
bfbd3381 2123 */
cdd6c482
IM
2124 perf_event_update_userpage(event);
2125 perf_event_update_userpage(next_event);
bfbd3381
PZ
2126}
2127
cdd6c482
IM
2128static void perf_event_sync_stat(struct perf_event_context *ctx,
2129 struct perf_event_context *next_ctx)
bfbd3381 2130{
cdd6c482 2131 struct perf_event *event, *next_event;
bfbd3381
PZ
2132
2133 if (!ctx->nr_stat)
2134 return;
2135
02ffdbc8
PZ
2136 update_context_time(ctx);
2137
cdd6c482
IM
2138 event = list_first_entry(&ctx->event_list,
2139 struct perf_event, event_entry);
bfbd3381 2140
cdd6c482
IM
2141 next_event = list_first_entry(&next_ctx->event_list,
2142 struct perf_event, event_entry);
bfbd3381 2143
cdd6c482
IM
2144 while (&event->event_entry != &ctx->event_list &&
2145 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2146
cdd6c482 2147 __perf_event_sync_stat(event, next_event);
bfbd3381 2148
cdd6c482
IM
2149 event = list_next_entry(event, event_entry);
2150 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2151 }
2152}
2153
fe4b04fa
PZ
2154static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2155 struct task_struct *next)
0793a61d 2156{
8dc85d54 2157 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2158 struct perf_event_context *next_ctx;
2159 struct perf_event_context *parent;
108b02cf 2160 struct perf_cpu_context *cpuctx;
c93f7669 2161 int do_switch = 1;
0793a61d 2162
108b02cf
PZ
2163 if (likely(!ctx))
2164 return;
10989fb2 2165
108b02cf
PZ
2166 cpuctx = __get_cpu_context(ctx);
2167 if (!cpuctx->task_ctx)
0793a61d
TG
2168 return;
2169
c93f7669
PM
2170 rcu_read_lock();
2171 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2172 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2173 if (parent && next_ctx &&
2174 rcu_dereference(next_ctx->parent_ctx) == parent) {
2175 /*
2176 * Looks like the two contexts are clones, so we might be
2177 * able to optimize the context switch. We lock both
2178 * contexts and check that they are clones under the
2179 * lock (including re-checking that neither has been
2180 * uncloned in the meantime). It doesn't matter which
2181 * order we take the locks because no other cpu could
2182 * be trying to lock both of these tasks.
2183 */
e625cce1
TG
2184 raw_spin_lock(&ctx->lock);
2185 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2186 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2187 /*
2188 * XXX do we need a memory barrier of sorts
cdd6c482 2189 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2190 */
8dc85d54
PZ
2191 task->perf_event_ctxp[ctxn] = next_ctx;
2192 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2193 ctx->task = next;
2194 next_ctx->task = task;
2195 do_switch = 0;
bfbd3381 2196
cdd6c482 2197 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2198 }
e625cce1
TG
2199 raw_spin_unlock(&next_ctx->lock);
2200 raw_spin_unlock(&ctx->lock);
564c2b21 2201 }
c93f7669 2202 rcu_read_unlock();
564c2b21 2203
c93f7669 2204 if (do_switch) {
facc4307 2205 raw_spin_lock(&ctx->lock);
5b0311e1 2206 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2207 cpuctx->task_ctx = NULL;
facc4307 2208 raw_spin_unlock(&ctx->lock);
c93f7669 2209 }
0793a61d
TG
2210}
2211
8dc85d54
PZ
2212#define for_each_task_context_nr(ctxn) \
2213 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2214
2215/*
2216 * Called from scheduler to remove the events of the current task,
2217 * with interrupts disabled.
2218 *
2219 * We stop each event and update the event value in event->count.
2220 *
2221 * This does not protect us against NMI, but disable()
2222 * sets the disabled bit in the control field of event _before_
2223 * accessing the event control register. If a NMI hits, then it will
2224 * not restart the event.
2225 */
ab0cce56
JO
2226void __perf_event_task_sched_out(struct task_struct *task,
2227 struct task_struct *next)
8dc85d54
PZ
2228{
2229 int ctxn;
2230
8dc85d54
PZ
2231 for_each_task_context_nr(ctxn)
2232 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2233
2234 /*
2235 * if cgroup events exist on this CPU, then we need
2236 * to check if we have to switch out PMU state.
2237 * cgroup event are system-wide mode only
2238 */
2239 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2240 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2241}
2242
04dc2dbb 2243static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2244{
108b02cf 2245 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2246
a63eaf34
PM
2247 if (!cpuctx->task_ctx)
2248 return;
012b84da
IM
2249
2250 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2251 return;
2252
04dc2dbb 2253 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2254 cpuctx->task_ctx = NULL;
2255}
2256
5b0311e1
FW
2257/*
2258 * Called with IRQs disabled
2259 */
2260static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2261 enum event_type_t event_type)
2262{
2263 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2264}
2265
235c7fc7 2266static void
5b0311e1 2267ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2268 struct perf_cpu_context *cpuctx)
0793a61d 2269{
cdd6c482 2270 struct perf_event *event;
0793a61d 2271
889ff015
FW
2272 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2273 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2274 continue;
5632ab12 2275 if (!event_filter_match(event))
3b6f9e5c
PM
2276 continue;
2277
e5d1367f
SE
2278 /* may need to reset tstamp_enabled */
2279 if (is_cgroup_event(event))
2280 perf_cgroup_mark_enabled(event, ctx);
2281
8c9ed8e1 2282 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2283 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2284
2285 /*
2286 * If this pinned group hasn't been scheduled,
2287 * put it in error state.
2288 */
cdd6c482
IM
2289 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2290 update_group_times(event);
2291 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2292 }
3b6f9e5c 2293 }
5b0311e1
FW
2294}
2295
2296static void
2297ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2298 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2299{
2300 struct perf_event *event;
2301 int can_add_hw = 1;
3b6f9e5c 2302
889ff015
FW
2303 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2304 /* Ignore events in OFF or ERROR state */
2305 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2306 continue;
04289bb9
IM
2307 /*
2308 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2309 * of events:
04289bb9 2310 */
5632ab12 2311 if (!event_filter_match(event))
0793a61d
TG
2312 continue;
2313
e5d1367f
SE
2314 /* may need to reset tstamp_enabled */
2315 if (is_cgroup_event(event))
2316 perf_cgroup_mark_enabled(event, ctx);
2317
9ed6060d 2318 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2319 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2320 can_add_hw = 0;
9ed6060d 2321 }
0793a61d 2322 }
5b0311e1
FW
2323}
2324
2325static void
2326ctx_sched_in(struct perf_event_context *ctx,
2327 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2328 enum event_type_t event_type,
2329 struct task_struct *task)
5b0311e1 2330{
e5d1367f 2331 u64 now;
db24d33e 2332 int is_active = ctx->is_active;
e5d1367f 2333
db24d33e 2334 ctx->is_active |= event_type;
5b0311e1 2335 if (likely(!ctx->nr_events))
facc4307 2336 return;
5b0311e1 2337
e5d1367f
SE
2338 now = perf_clock();
2339 ctx->timestamp = now;
3f7cce3c 2340 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2341 /*
2342 * First go through the list and put on any pinned groups
2343 * in order to give them the best chance of going on.
2344 */
db24d33e 2345 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2346 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2347
2348 /* Then walk through the lower prio flexible groups */
db24d33e 2349 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2350 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2351}
2352
329c0e01 2353static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2354 enum event_type_t event_type,
2355 struct task_struct *task)
329c0e01
FW
2356{
2357 struct perf_event_context *ctx = &cpuctx->ctx;
2358
e5d1367f 2359 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2360}
2361
e5d1367f
SE
2362static void perf_event_context_sched_in(struct perf_event_context *ctx,
2363 struct task_struct *task)
235c7fc7 2364{
108b02cf 2365 struct perf_cpu_context *cpuctx;
235c7fc7 2366
108b02cf 2367 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2368 if (cpuctx->task_ctx == ctx)
2369 return;
2370
facc4307 2371 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2372 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2373 /*
2374 * We want to keep the following priority order:
2375 * cpu pinned (that don't need to move), task pinned,
2376 * cpu flexible, task flexible.
2377 */
2378 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2379
1d5f003f
GN
2380 if (ctx->nr_events)
2381 cpuctx->task_ctx = ctx;
9b33fa6b 2382
86b47c25
GN
2383 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2384
facc4307
PZ
2385 perf_pmu_enable(ctx->pmu);
2386 perf_ctx_unlock(cpuctx, ctx);
2387
b5ab4cd5
PZ
2388 /*
2389 * Since these rotations are per-cpu, we need to ensure the
2390 * cpu-context we got scheduled on is actually rotating.
2391 */
108b02cf 2392 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2393}
2394
d010b332
SE
2395/*
2396 * When sampling the branck stack in system-wide, it may be necessary
2397 * to flush the stack on context switch. This happens when the branch
2398 * stack does not tag its entries with the pid of the current task.
2399 * Otherwise it becomes impossible to associate a branch entry with a
2400 * task. This ambiguity is more likely to appear when the branch stack
2401 * supports priv level filtering and the user sets it to monitor only
2402 * at the user level (which could be a useful measurement in system-wide
2403 * mode). In that case, the risk is high of having a branch stack with
2404 * branch from multiple tasks. Flushing may mean dropping the existing
2405 * entries or stashing them somewhere in the PMU specific code layer.
2406 *
2407 * This function provides the context switch callback to the lower code
2408 * layer. It is invoked ONLY when there is at least one system-wide context
2409 * with at least one active event using taken branch sampling.
2410 */
2411static void perf_branch_stack_sched_in(struct task_struct *prev,
2412 struct task_struct *task)
2413{
2414 struct perf_cpu_context *cpuctx;
2415 struct pmu *pmu;
2416 unsigned long flags;
2417
2418 /* no need to flush branch stack if not changing task */
2419 if (prev == task)
2420 return;
2421
2422 local_irq_save(flags);
2423
2424 rcu_read_lock();
2425
2426 list_for_each_entry_rcu(pmu, &pmus, entry) {
2427 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2428
2429 /*
2430 * check if the context has at least one
2431 * event using PERF_SAMPLE_BRANCH_STACK
2432 */
2433 if (cpuctx->ctx.nr_branch_stack > 0
2434 && pmu->flush_branch_stack) {
2435
2436 pmu = cpuctx->ctx.pmu;
2437
2438 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2439
2440 perf_pmu_disable(pmu);
2441
2442 pmu->flush_branch_stack();
2443
2444 perf_pmu_enable(pmu);
2445
2446 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2447 }
2448 }
2449
2450 rcu_read_unlock();
2451
2452 local_irq_restore(flags);
2453}
2454
8dc85d54
PZ
2455/*
2456 * Called from scheduler to add the events of the current task
2457 * with interrupts disabled.
2458 *
2459 * We restore the event value and then enable it.
2460 *
2461 * This does not protect us against NMI, but enable()
2462 * sets the enabled bit in the control field of event _before_
2463 * accessing the event control register. If a NMI hits, then it will
2464 * keep the event running.
2465 */
ab0cce56
JO
2466void __perf_event_task_sched_in(struct task_struct *prev,
2467 struct task_struct *task)
8dc85d54
PZ
2468{
2469 struct perf_event_context *ctx;
2470 int ctxn;
2471
2472 for_each_task_context_nr(ctxn) {
2473 ctx = task->perf_event_ctxp[ctxn];
2474 if (likely(!ctx))
2475 continue;
2476
e5d1367f 2477 perf_event_context_sched_in(ctx, task);
8dc85d54 2478 }
e5d1367f
SE
2479 /*
2480 * if cgroup events exist on this CPU, then we need
2481 * to check if we have to switch in PMU state.
2482 * cgroup event are system-wide mode only
2483 */
2484 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2485 perf_cgroup_sched_in(prev, task);
d010b332
SE
2486
2487 /* check for system-wide branch_stack events */
2488 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2489 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2490}
2491
abd50713
PZ
2492static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2493{
2494 u64 frequency = event->attr.sample_freq;
2495 u64 sec = NSEC_PER_SEC;
2496 u64 divisor, dividend;
2497
2498 int count_fls, nsec_fls, frequency_fls, sec_fls;
2499
2500 count_fls = fls64(count);
2501 nsec_fls = fls64(nsec);
2502 frequency_fls = fls64(frequency);
2503 sec_fls = 30;
2504
2505 /*
2506 * We got @count in @nsec, with a target of sample_freq HZ
2507 * the target period becomes:
2508 *
2509 * @count * 10^9
2510 * period = -------------------
2511 * @nsec * sample_freq
2512 *
2513 */
2514
2515 /*
2516 * Reduce accuracy by one bit such that @a and @b converge
2517 * to a similar magnitude.
2518 */
fe4b04fa 2519#define REDUCE_FLS(a, b) \
abd50713
PZ
2520do { \
2521 if (a##_fls > b##_fls) { \
2522 a >>= 1; \
2523 a##_fls--; \
2524 } else { \
2525 b >>= 1; \
2526 b##_fls--; \
2527 } \
2528} while (0)
2529
2530 /*
2531 * Reduce accuracy until either term fits in a u64, then proceed with
2532 * the other, so that finally we can do a u64/u64 division.
2533 */
2534 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2535 REDUCE_FLS(nsec, frequency);
2536 REDUCE_FLS(sec, count);
2537 }
2538
2539 if (count_fls + sec_fls > 64) {
2540 divisor = nsec * frequency;
2541
2542 while (count_fls + sec_fls > 64) {
2543 REDUCE_FLS(count, sec);
2544 divisor >>= 1;
2545 }
2546
2547 dividend = count * sec;
2548 } else {
2549 dividend = count * sec;
2550
2551 while (nsec_fls + frequency_fls > 64) {
2552 REDUCE_FLS(nsec, frequency);
2553 dividend >>= 1;
2554 }
2555
2556 divisor = nsec * frequency;
2557 }
2558
f6ab91ad
PZ
2559 if (!divisor)
2560 return dividend;
2561
abd50713
PZ
2562 return div64_u64(dividend, divisor);
2563}
2564
e050e3f0
SE
2565static DEFINE_PER_CPU(int, perf_throttled_count);
2566static DEFINE_PER_CPU(u64, perf_throttled_seq);
2567
f39d47ff 2568static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2569{
cdd6c482 2570 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2571 s64 period, sample_period;
bd2b5b12
PZ
2572 s64 delta;
2573
abd50713 2574 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2575
2576 delta = (s64)(period - hwc->sample_period);
2577 delta = (delta + 7) / 8; /* low pass filter */
2578
2579 sample_period = hwc->sample_period + delta;
2580
2581 if (!sample_period)
2582 sample_period = 1;
2583
bd2b5b12 2584 hwc->sample_period = sample_period;
abd50713 2585
e7850595 2586 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2587 if (disable)
2588 event->pmu->stop(event, PERF_EF_UPDATE);
2589
e7850595 2590 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2591
2592 if (disable)
2593 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2594 }
bd2b5b12
PZ
2595}
2596
e050e3f0
SE
2597/*
2598 * combine freq adjustment with unthrottling to avoid two passes over the
2599 * events. At the same time, make sure, having freq events does not change
2600 * the rate of unthrottling as that would introduce bias.
2601 */
2602static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2603 int needs_unthr)
60db5e09 2604{
cdd6c482
IM
2605 struct perf_event *event;
2606 struct hw_perf_event *hwc;
e050e3f0 2607 u64 now, period = TICK_NSEC;
abd50713 2608 s64 delta;
60db5e09 2609
e050e3f0
SE
2610 /*
2611 * only need to iterate over all events iff:
2612 * - context have events in frequency mode (needs freq adjust)
2613 * - there are events to unthrottle on this cpu
2614 */
2615 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2616 return;
2617
e050e3f0 2618 raw_spin_lock(&ctx->lock);
f39d47ff 2619 perf_pmu_disable(ctx->pmu);
e050e3f0 2620
03541f8b 2621 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2622 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2623 continue;
2624
5632ab12 2625 if (!event_filter_match(event))
5d27c23d
PZ
2626 continue;
2627
cdd6c482 2628 hwc = &event->hw;
6a24ed6c 2629
e050e3f0
SE
2630 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2631 hwc->interrupts = 0;
cdd6c482 2632 perf_log_throttle(event, 1);
a4eaf7f1 2633 event->pmu->start(event, 0);
a78ac325
PZ
2634 }
2635
cdd6c482 2636 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2637 continue;
2638
e050e3f0
SE
2639 /*
2640 * stop the event and update event->count
2641 */
2642 event->pmu->stop(event, PERF_EF_UPDATE);
2643
e7850595 2644 now = local64_read(&event->count);
abd50713
PZ
2645 delta = now - hwc->freq_count_stamp;
2646 hwc->freq_count_stamp = now;
60db5e09 2647
e050e3f0
SE
2648 /*
2649 * restart the event
2650 * reload only if value has changed
f39d47ff
SE
2651 * we have stopped the event so tell that
2652 * to perf_adjust_period() to avoid stopping it
2653 * twice.
e050e3f0 2654 */
abd50713 2655 if (delta > 0)
f39d47ff 2656 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2657
2658 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2659 }
e050e3f0 2660
f39d47ff 2661 perf_pmu_enable(ctx->pmu);
e050e3f0 2662 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2663}
2664
235c7fc7 2665/*
cdd6c482 2666 * Round-robin a context's events:
235c7fc7 2667 */
cdd6c482 2668static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2669{
dddd3379
TG
2670 /*
2671 * Rotate the first entry last of non-pinned groups. Rotation might be
2672 * disabled by the inheritance code.
2673 */
2674 if (!ctx->rotate_disable)
2675 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2676}
2677
b5ab4cd5 2678/*
e9d2b064
PZ
2679 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2680 * because they're strictly cpu affine and rotate_start is called with IRQs
2681 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2682 */
e9d2b064 2683static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2684{
8dc85d54 2685 struct perf_event_context *ctx = NULL;
e050e3f0 2686 int rotate = 0, remove = 1;
7fc23a53 2687
b5ab4cd5 2688 if (cpuctx->ctx.nr_events) {
e9d2b064 2689 remove = 0;
b5ab4cd5
PZ
2690 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2691 rotate = 1;
2692 }
235c7fc7 2693
8dc85d54 2694 ctx = cpuctx->task_ctx;
b5ab4cd5 2695 if (ctx && ctx->nr_events) {
e9d2b064 2696 remove = 0;
b5ab4cd5
PZ
2697 if (ctx->nr_events != ctx->nr_active)
2698 rotate = 1;
2699 }
9717e6cd 2700
e050e3f0 2701 if (!rotate)
0f5a2601
PZ
2702 goto done;
2703
facc4307 2704 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2705 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2706
e050e3f0
SE
2707 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2708 if (ctx)
2709 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2710
e050e3f0
SE
2711 rotate_ctx(&cpuctx->ctx);
2712 if (ctx)
2713 rotate_ctx(ctx);
235c7fc7 2714
e050e3f0 2715 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2716
0f5a2601
PZ
2717 perf_pmu_enable(cpuctx->ctx.pmu);
2718 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2719done:
e9d2b064
PZ
2720 if (remove)
2721 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2722}
2723
026249ef
FW
2724#ifdef CONFIG_NO_HZ_FULL
2725bool perf_event_can_stop_tick(void)
2726{
2727 if (list_empty(&__get_cpu_var(rotation_list)))
2728 return true;
2729 else
2730 return false;
2731}
2732#endif
2733
e9d2b064
PZ
2734void perf_event_task_tick(void)
2735{
2736 struct list_head *head = &__get_cpu_var(rotation_list);
2737 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2738 struct perf_event_context *ctx;
2739 int throttled;
b5ab4cd5 2740
e9d2b064
PZ
2741 WARN_ON(!irqs_disabled());
2742
e050e3f0
SE
2743 __this_cpu_inc(perf_throttled_seq);
2744 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2745
e9d2b064 2746 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2747 ctx = &cpuctx->ctx;
2748 perf_adjust_freq_unthr_context(ctx, throttled);
2749
2750 ctx = cpuctx->task_ctx;
2751 if (ctx)
2752 perf_adjust_freq_unthr_context(ctx, throttled);
2753
e9d2b064
PZ
2754 if (cpuctx->jiffies_interval == 1 ||
2755 !(jiffies % cpuctx->jiffies_interval))
2756 perf_rotate_context(cpuctx);
2757 }
0793a61d
TG
2758}
2759
889ff015
FW
2760static int event_enable_on_exec(struct perf_event *event,
2761 struct perf_event_context *ctx)
2762{
2763 if (!event->attr.enable_on_exec)
2764 return 0;
2765
2766 event->attr.enable_on_exec = 0;
2767 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2768 return 0;
2769
1d9b482e 2770 __perf_event_mark_enabled(event);
889ff015
FW
2771
2772 return 1;
2773}
2774
57e7986e 2775/*
cdd6c482 2776 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2777 * This expects task == current.
2778 */
8dc85d54 2779static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2780{
cdd6c482 2781 struct perf_event *event;
57e7986e
PM
2782 unsigned long flags;
2783 int enabled = 0;
889ff015 2784 int ret;
57e7986e
PM
2785
2786 local_irq_save(flags);
cdd6c482 2787 if (!ctx || !ctx->nr_events)
57e7986e
PM
2788 goto out;
2789
e566b76e
SE
2790 /*
2791 * We must ctxsw out cgroup events to avoid conflict
2792 * when invoking perf_task_event_sched_in() later on
2793 * in this function. Otherwise we end up trying to
2794 * ctxswin cgroup events which are already scheduled
2795 * in.
2796 */
a8d757ef 2797 perf_cgroup_sched_out(current, NULL);
57e7986e 2798
e625cce1 2799 raw_spin_lock(&ctx->lock);
04dc2dbb 2800 task_ctx_sched_out(ctx);
57e7986e 2801
b79387ef 2802 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2803 ret = event_enable_on_exec(event, ctx);
2804 if (ret)
2805 enabled = 1;
57e7986e
PM
2806 }
2807
2808 /*
cdd6c482 2809 * Unclone this context if we enabled any event.
57e7986e 2810 */
71a851b4
PZ
2811 if (enabled)
2812 unclone_ctx(ctx);
57e7986e 2813
e625cce1 2814 raw_spin_unlock(&ctx->lock);
57e7986e 2815
e566b76e
SE
2816 /*
2817 * Also calls ctxswin for cgroup events, if any:
2818 */
e5d1367f 2819 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2820out:
57e7986e
PM
2821 local_irq_restore(flags);
2822}
2823
0793a61d 2824/*
cdd6c482 2825 * Cross CPU call to read the hardware event
0793a61d 2826 */
cdd6c482 2827static void __perf_event_read(void *info)
0793a61d 2828{
cdd6c482
IM
2829 struct perf_event *event = info;
2830 struct perf_event_context *ctx = event->ctx;
108b02cf 2831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2832
e1ac3614
PM
2833 /*
2834 * If this is a task context, we need to check whether it is
2835 * the current task context of this cpu. If not it has been
2836 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2837 * event->count would have been updated to a recent sample
2838 * when the event was scheduled out.
e1ac3614
PM
2839 */
2840 if (ctx->task && cpuctx->task_ctx != ctx)
2841 return;
2842
e625cce1 2843 raw_spin_lock(&ctx->lock);
e5d1367f 2844 if (ctx->is_active) {
542e72fc 2845 update_context_time(ctx);
e5d1367f
SE
2846 update_cgrp_time_from_event(event);
2847 }
cdd6c482 2848 update_event_times(event);
542e72fc
PZ
2849 if (event->state == PERF_EVENT_STATE_ACTIVE)
2850 event->pmu->read(event);
e625cce1 2851 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2852}
2853
b5e58793
PZ
2854static inline u64 perf_event_count(struct perf_event *event)
2855{
e7850595 2856 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2857}
2858
cdd6c482 2859static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2860{
2861 /*
cdd6c482
IM
2862 * If event is enabled and currently active on a CPU, update the
2863 * value in the event structure:
0793a61d 2864 */
cdd6c482
IM
2865 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2866 smp_call_function_single(event->oncpu,
2867 __perf_event_read, event, 1);
2868 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2869 struct perf_event_context *ctx = event->ctx;
2870 unsigned long flags;
2871
e625cce1 2872 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2873 /*
2874 * may read while context is not active
2875 * (e.g., thread is blocked), in that case
2876 * we cannot update context time
2877 */
e5d1367f 2878 if (ctx->is_active) {
c530ccd9 2879 update_context_time(ctx);
e5d1367f
SE
2880 update_cgrp_time_from_event(event);
2881 }
cdd6c482 2882 update_event_times(event);
e625cce1 2883 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2884 }
2885
b5e58793 2886 return perf_event_count(event);
0793a61d
TG
2887}
2888
a63eaf34 2889/*
cdd6c482 2890 * Initialize the perf_event context in a task_struct:
a63eaf34 2891 */
eb184479 2892static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2893{
e625cce1 2894 raw_spin_lock_init(&ctx->lock);
a63eaf34 2895 mutex_init(&ctx->mutex);
889ff015
FW
2896 INIT_LIST_HEAD(&ctx->pinned_groups);
2897 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2898 INIT_LIST_HEAD(&ctx->event_list);
2899 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2900}
2901
2902static struct perf_event_context *
2903alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2904{
2905 struct perf_event_context *ctx;
2906
2907 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2908 if (!ctx)
2909 return NULL;
2910
2911 __perf_event_init_context(ctx);
2912 if (task) {
2913 ctx->task = task;
2914 get_task_struct(task);
0793a61d 2915 }
eb184479
PZ
2916 ctx->pmu = pmu;
2917
2918 return ctx;
a63eaf34
PM
2919}
2920
2ebd4ffb
MH
2921static struct task_struct *
2922find_lively_task_by_vpid(pid_t vpid)
2923{
2924 struct task_struct *task;
2925 int err;
0793a61d
TG
2926
2927 rcu_read_lock();
2ebd4ffb 2928 if (!vpid)
0793a61d
TG
2929 task = current;
2930 else
2ebd4ffb 2931 task = find_task_by_vpid(vpid);
0793a61d
TG
2932 if (task)
2933 get_task_struct(task);
2934 rcu_read_unlock();
2935
2936 if (!task)
2937 return ERR_PTR(-ESRCH);
2938
0793a61d 2939 /* Reuse ptrace permission checks for now. */
c93f7669 2940 err = -EACCES;
414f6fbc 2941 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
2942 goto errout;
2943
2ebd4ffb
MH
2944 return task;
2945errout:
2946 put_task_struct(task);
2947 return ERR_PTR(err);
2948
2949}
2950
fe4b04fa
PZ
2951/*
2952 * Returns a matching context with refcount and pincount.
2953 */
108b02cf 2954static struct perf_event_context *
38a81da2 2955find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2956{
cdd6c482 2957 struct perf_event_context *ctx;
22a4f650 2958 struct perf_cpu_context *cpuctx;
25346b93 2959 unsigned long flags;
8dc85d54 2960 int ctxn, err;
0793a61d 2961
22a4ec72 2962 if (!task) {
cdd6c482 2963 /* Must be root to operate on a CPU event: */
0764771d 2964 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2965 return ERR_PTR(-EACCES);
2966
0793a61d 2967 /*
cdd6c482 2968 * We could be clever and allow to attach a event to an
0793a61d
TG
2969 * offline CPU and activate it when the CPU comes up, but
2970 * that's for later.
2971 */
f6325e30 2972 if (!cpu_online(cpu))
0793a61d
TG
2973 return ERR_PTR(-ENODEV);
2974
108b02cf 2975 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2976 ctx = &cpuctx->ctx;
c93f7669 2977 get_ctx(ctx);
fe4b04fa 2978 ++ctx->pin_count;
0793a61d 2979
0793a61d
TG
2980 return ctx;
2981 }
2982
8dc85d54
PZ
2983 err = -EINVAL;
2984 ctxn = pmu->task_ctx_nr;
2985 if (ctxn < 0)
2986 goto errout;
2987
9ed6060d 2988retry:
8dc85d54 2989 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2990 if (ctx) {
71a851b4 2991 unclone_ctx(ctx);
fe4b04fa 2992 ++ctx->pin_count;
e625cce1 2993 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2994 } else {
eb184479 2995 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2996 err = -ENOMEM;
2997 if (!ctx)
2998 goto errout;
eb184479 2999
dbe08d82
ON
3000 err = 0;
3001 mutex_lock(&task->perf_event_mutex);
3002 /*
3003 * If it has already passed perf_event_exit_task().
3004 * we must see PF_EXITING, it takes this mutex too.
3005 */
3006 if (task->flags & PF_EXITING)
3007 err = -ESRCH;
3008 else if (task->perf_event_ctxp[ctxn])
3009 err = -EAGAIN;
fe4b04fa 3010 else {
9137fb28 3011 get_ctx(ctx);
fe4b04fa 3012 ++ctx->pin_count;
dbe08d82 3013 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3014 }
dbe08d82
ON
3015 mutex_unlock(&task->perf_event_mutex);
3016
3017 if (unlikely(err)) {
9137fb28 3018 put_ctx(ctx);
dbe08d82
ON
3019
3020 if (err == -EAGAIN)
3021 goto retry;
3022 goto errout;
a63eaf34
PM
3023 }
3024 }
3025
0793a61d 3026 return ctx;
c93f7669 3027
9ed6060d 3028errout:
c93f7669 3029 return ERR_PTR(err);
0793a61d
TG
3030}
3031
6fb2915d
LZ
3032static void perf_event_free_filter(struct perf_event *event);
3033
cdd6c482 3034static void free_event_rcu(struct rcu_head *head)
592903cd 3035{
cdd6c482 3036 struct perf_event *event;
592903cd 3037
cdd6c482
IM
3038 event = container_of(head, struct perf_event, rcu_head);
3039 if (event->ns)
3040 put_pid_ns(event->ns);
6fb2915d 3041 perf_event_free_filter(event);
cdd6c482 3042 kfree(event);
592903cd
PZ
3043}
3044
9bb5d40c
PZ
3045static void ring_buffer_put(struct ring_buffer *rb);
3046static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3047
cdd6c482 3048static void free_event(struct perf_event *event)
f1600952 3049{
e360adbe 3050 irq_work_sync(&event->pending);
925d519a 3051
cdd6c482 3052 if (!event->parent) {
82cd6def 3053 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 3054 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 3055 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
3056 atomic_dec(&nr_mmap_events);
3057 if (event->attr.comm)
3058 atomic_dec(&nr_comm_events);
3059 if (event->attr.task)
3060 atomic_dec(&nr_task_events);
927c7a9e
FW
3061 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3062 put_callchain_buffers();
08309379
PZ
3063 if (is_cgroup_event(event)) {
3064 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 3065 static_key_slow_dec_deferred(&perf_sched_events);
08309379 3066 }
d010b332
SE
3067
3068 if (has_branch_stack(event)) {
3069 static_key_slow_dec_deferred(&perf_sched_events);
3070 /* is system-wide event */
9bb5d40c 3071 if (!(event->attach_state & PERF_ATTACH_TASK)) {
d010b332
SE
3072 atomic_dec(&per_cpu(perf_branch_stack_events,
3073 event->cpu));
9bb5d40c 3074 }
d010b332 3075 }
f344011c 3076 }
9ee318a7 3077
76369139 3078 if (event->rb) {
9bb5d40c
PZ
3079 struct ring_buffer *rb;
3080
3081 /*
3082 * Can happen when we close an event with re-directed output.
3083 *
3084 * Since we have a 0 refcount, perf_mmap_close() will skip
3085 * over us; possibly making our ring_buffer_put() the last.
3086 */
3087 mutex_lock(&event->mmap_mutex);
3088 rb = event->rb;
3089 if (rb) {
3090 rcu_assign_pointer(event->rb, NULL);
3091 ring_buffer_detach(event, rb);
3092 ring_buffer_put(rb); /* could be last */
3093 }
3094 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3095 }
3096
e5d1367f
SE
3097 if (is_cgroup_event(event))
3098 perf_detach_cgroup(event);
3099
cdd6c482
IM
3100 if (event->destroy)
3101 event->destroy(event);
e077df4f 3102
0c67b408
PZ
3103 if (event->ctx)
3104 put_ctx(event->ctx);
3105
cdd6c482 3106 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3107}
3108
a66a3052 3109int perf_event_release_kernel(struct perf_event *event)
0793a61d 3110{
cdd6c482 3111 struct perf_event_context *ctx = event->ctx;
0793a61d 3112
ad3a37de 3113 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3114 /*
3115 * There are two ways this annotation is useful:
3116 *
3117 * 1) there is a lock recursion from perf_event_exit_task
3118 * see the comment there.
3119 *
3120 * 2) there is a lock-inversion with mmap_sem through
3121 * perf_event_read_group(), which takes faults while
3122 * holding ctx->mutex, however this is called after
3123 * the last filedesc died, so there is no possibility
3124 * to trigger the AB-BA case.
3125 */
3126 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
54b3f8df 3127 perf_remove_from_context(event, true);
d859e29f 3128 mutex_unlock(&ctx->mutex);
0793a61d 3129
cdd6c482 3130 free_event(event);
0793a61d
TG
3131
3132 return 0;
3133}
a66a3052 3134EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3135
a66a3052
PZ
3136/*
3137 * Called when the last reference to the file is gone.
3138 */
a6fa941d 3139static void put_event(struct perf_event *event)
fb0459d7 3140{
8882135b 3141 struct task_struct *owner;
fb0459d7 3142
a6fa941d
AV
3143 if (!atomic_long_dec_and_test(&event->refcount))
3144 return;
fb0459d7 3145
8882135b
PZ
3146 rcu_read_lock();
3147 owner = ACCESS_ONCE(event->owner);
3148 /*
3149 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3150 * !owner it means the list deletion is complete and we can indeed
3151 * free this event, otherwise we need to serialize on
3152 * owner->perf_event_mutex.
3153 */
3154 smp_read_barrier_depends();
3155 if (owner) {
3156 /*
3157 * Since delayed_put_task_struct() also drops the last
3158 * task reference we can safely take a new reference
3159 * while holding the rcu_read_lock().
3160 */
3161 get_task_struct(owner);
3162 }
3163 rcu_read_unlock();
3164
3165 if (owner) {
3166 mutex_lock(&owner->perf_event_mutex);
3167 /*
3168 * We have to re-check the event->owner field, if it is cleared
3169 * we raced with perf_event_exit_task(), acquiring the mutex
3170 * ensured they're done, and we can proceed with freeing the
3171 * event.
3172 */
3173 if (event->owner)
3174 list_del_init(&event->owner_entry);
3175 mutex_unlock(&owner->perf_event_mutex);
3176 put_task_struct(owner);
3177 }
3178
a6fa941d
AV
3179 perf_event_release_kernel(event);
3180}
3181
3182static int perf_release(struct inode *inode, struct file *file)
3183{
3184 put_event(file->private_data);
3185 return 0;
fb0459d7 3186}
fb0459d7 3187
59ed446f 3188u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3189{
cdd6c482 3190 struct perf_event *child;
e53c0994
PZ
3191 u64 total = 0;
3192
59ed446f
PZ
3193 *enabled = 0;
3194 *running = 0;
3195
6f10581a 3196 mutex_lock(&event->child_mutex);
cdd6c482 3197 total += perf_event_read(event);
59ed446f
PZ
3198 *enabled += event->total_time_enabled +
3199 atomic64_read(&event->child_total_time_enabled);
3200 *running += event->total_time_running +
3201 atomic64_read(&event->child_total_time_running);
3202
3203 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3204 total += perf_event_read(child);
59ed446f
PZ
3205 *enabled += child->total_time_enabled;
3206 *running += child->total_time_running;
3207 }
6f10581a 3208 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3209
3210 return total;
3211}
fb0459d7 3212EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3213
cdd6c482 3214static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3215 u64 read_format, char __user *buf)
3216{
cdd6c482 3217 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3218 int n = 0, size = 0, ret = -EFAULT;
3219 struct perf_event_context *ctx = leader->ctx;
abf4868b 3220 u64 values[5];
59ed446f 3221 u64 count, enabled, running;
abf4868b 3222
6f10581a 3223 mutex_lock(&ctx->mutex);
59ed446f 3224 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3225
3226 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3227 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3228 values[n++] = enabled;
3229 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3230 values[n++] = running;
abf4868b
PZ
3231 values[n++] = count;
3232 if (read_format & PERF_FORMAT_ID)
3233 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3234
3235 size = n * sizeof(u64);
3236
3237 if (copy_to_user(buf, values, size))
6f10581a 3238 goto unlock;
3dab77fb 3239
6f10581a 3240 ret = size;
3dab77fb 3241
65abc865 3242 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3243 n = 0;
3dab77fb 3244
59ed446f 3245 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3246 if (read_format & PERF_FORMAT_ID)
3247 values[n++] = primary_event_id(sub);
3248
3249 size = n * sizeof(u64);
3250
184d3da8 3251 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3252 ret = -EFAULT;
3253 goto unlock;
3254 }
abf4868b
PZ
3255
3256 ret += size;
3dab77fb 3257 }
6f10581a
PZ
3258unlock:
3259 mutex_unlock(&ctx->mutex);
3dab77fb 3260
abf4868b 3261 return ret;
3dab77fb
PZ
3262}
3263
cdd6c482 3264static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3265 u64 read_format, char __user *buf)
3266{
59ed446f 3267 u64 enabled, running;
3dab77fb
PZ
3268 u64 values[4];
3269 int n = 0;
3270
59ed446f
PZ
3271 values[n++] = perf_event_read_value(event, &enabled, &running);
3272 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3273 values[n++] = enabled;
3274 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3275 values[n++] = running;
3dab77fb 3276 if (read_format & PERF_FORMAT_ID)
cdd6c482 3277 values[n++] = primary_event_id(event);
3dab77fb
PZ
3278
3279 if (copy_to_user(buf, values, n * sizeof(u64)))
3280 return -EFAULT;
3281
3282 return n * sizeof(u64);
3283}
3284
0793a61d 3285/*
cdd6c482 3286 * Read the performance event - simple non blocking version for now
0793a61d
TG
3287 */
3288static ssize_t
cdd6c482 3289perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3290{
cdd6c482 3291 u64 read_format = event->attr.read_format;
3dab77fb 3292 int ret;
0793a61d 3293
3b6f9e5c 3294 /*
cdd6c482 3295 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3296 * error state (i.e. because it was pinned but it couldn't be
3297 * scheduled on to the CPU at some point).
3298 */
cdd6c482 3299 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3300 return 0;
3301
c320c7b7 3302 if (count < event->read_size)
3dab77fb
PZ
3303 return -ENOSPC;
3304
cdd6c482 3305 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3306 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3307 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3308 else
cdd6c482 3309 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3310
3dab77fb 3311 return ret;
0793a61d
TG
3312}
3313
0793a61d
TG
3314static ssize_t
3315perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3316{
cdd6c482 3317 struct perf_event *event = file->private_data;
0793a61d 3318
cdd6c482 3319 return perf_read_hw(event, buf, count);
0793a61d
TG
3320}
3321
3322static unsigned int perf_poll(struct file *file, poll_table *wait)
3323{
cdd6c482 3324 struct perf_event *event = file->private_data;
76369139 3325 struct ring_buffer *rb;
c33a0bc4 3326 unsigned int events = POLL_HUP;
c7138f37 3327
10c6db11 3328 /*
9bb5d40c
PZ
3329 * Pin the event->rb by taking event->mmap_mutex; otherwise
3330 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3331 */
3332 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3333 rb = event->rb;
3334 if (rb)
76369139 3335 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3336 mutex_unlock(&event->mmap_mutex);
3337
cdd6c482 3338 poll_wait(file, &event->waitq, wait);
0793a61d 3339
0793a61d
TG
3340 return events;
3341}
3342
cdd6c482 3343static void perf_event_reset(struct perf_event *event)
6de6a7b9 3344{
cdd6c482 3345 (void)perf_event_read(event);
e7850595 3346 local64_set(&event->count, 0);
cdd6c482 3347 perf_event_update_userpage(event);
3df5edad
PZ
3348}
3349
c93f7669 3350/*
cdd6c482
IM
3351 * Holding the top-level event's child_mutex means that any
3352 * descendant process that has inherited this event will block
3353 * in sync_child_event if it goes to exit, thus satisfying the
3354 * task existence requirements of perf_event_enable/disable.
c93f7669 3355 */
cdd6c482
IM
3356static void perf_event_for_each_child(struct perf_event *event,
3357 void (*func)(struct perf_event *))
3df5edad 3358{
cdd6c482 3359 struct perf_event *child;
3df5edad 3360
cdd6c482
IM
3361 WARN_ON_ONCE(event->ctx->parent_ctx);
3362 mutex_lock(&event->child_mutex);
3363 func(event);
3364 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3365 func(child);
cdd6c482 3366 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3367}
3368
cdd6c482
IM
3369static void perf_event_for_each(struct perf_event *event,
3370 void (*func)(struct perf_event *))
3df5edad 3371{
cdd6c482
IM
3372 struct perf_event_context *ctx = event->ctx;
3373 struct perf_event *sibling;
3df5edad 3374
75f937f2
PZ
3375 WARN_ON_ONCE(ctx->parent_ctx);
3376 mutex_lock(&ctx->mutex);
cdd6c482 3377 event = event->group_leader;
75f937f2 3378
cdd6c482 3379 perf_event_for_each_child(event, func);
cdd6c482 3380 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3381 perf_event_for_each_child(sibling, func);
75f937f2 3382 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3383}
3384
cdd6c482 3385static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3386{
cdd6c482 3387 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3388 int ret = 0;
3389 u64 value;
3390
6c7e550f 3391 if (!is_sampling_event(event))
08247e31
PZ
3392 return -EINVAL;
3393
ad0cf347 3394 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3395 return -EFAULT;
3396
3397 if (!value)
3398 return -EINVAL;
3399
e625cce1 3400 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3401 if (event->attr.freq) {
3402 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3403 ret = -EINVAL;
3404 goto unlock;
3405 }
3406
cdd6c482 3407 event->attr.sample_freq = value;
08247e31 3408 } else {
cdd6c482
IM
3409 event->attr.sample_period = value;
3410 event->hw.sample_period = value;
08247e31
PZ
3411 }
3412unlock:
e625cce1 3413 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3414
3415 return ret;
3416}
3417
ac9721f3
PZ
3418static const struct file_operations perf_fops;
3419
2903ff01 3420static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3421{
2903ff01
AV
3422 struct fd f = fdget(fd);
3423 if (!f.file)
3424 return -EBADF;
ac9721f3 3425
2903ff01
AV
3426 if (f.file->f_op != &perf_fops) {
3427 fdput(f);
3428 return -EBADF;
ac9721f3 3429 }
2903ff01
AV
3430 *p = f;
3431 return 0;
ac9721f3
PZ
3432}
3433
3434static int perf_event_set_output(struct perf_event *event,
3435 struct perf_event *output_event);
6fb2915d 3436static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3437
d859e29f
PM
3438static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3439{
cdd6c482
IM
3440 struct perf_event *event = file->private_data;
3441 void (*func)(struct perf_event *);
3df5edad 3442 u32 flags = arg;
d859e29f
PM
3443
3444 switch (cmd) {
cdd6c482
IM
3445 case PERF_EVENT_IOC_ENABLE:
3446 func = perf_event_enable;
d859e29f 3447 break;
cdd6c482
IM
3448 case PERF_EVENT_IOC_DISABLE:
3449 func = perf_event_disable;
79f14641 3450 break;
cdd6c482
IM
3451 case PERF_EVENT_IOC_RESET:
3452 func = perf_event_reset;
6de6a7b9 3453 break;
3df5edad 3454
cdd6c482
IM
3455 case PERF_EVENT_IOC_REFRESH:
3456 return perf_event_refresh(event, arg);
08247e31 3457
cdd6c482
IM
3458 case PERF_EVENT_IOC_PERIOD:
3459 return perf_event_period(event, (u64 __user *)arg);
08247e31 3460
cdd6c482 3461 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3462 {
ac9721f3 3463 int ret;
ac9721f3 3464 if (arg != -1) {
2903ff01
AV
3465 struct perf_event *output_event;
3466 struct fd output;
3467 ret = perf_fget_light(arg, &output);
3468 if (ret)
3469 return ret;
3470 output_event = output.file->private_data;
3471 ret = perf_event_set_output(event, output_event);
3472 fdput(output);
3473 } else {
3474 ret = perf_event_set_output(event, NULL);
ac9721f3 3475 }
ac9721f3
PZ
3476 return ret;
3477 }
a4be7c27 3478
6fb2915d
LZ
3479 case PERF_EVENT_IOC_SET_FILTER:
3480 return perf_event_set_filter(event, (void __user *)arg);
3481
d859e29f 3482 default:
3df5edad 3483 return -ENOTTY;
d859e29f 3484 }
3df5edad
PZ
3485
3486 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3487 perf_event_for_each(event, func);
3df5edad 3488 else
cdd6c482 3489 perf_event_for_each_child(event, func);
3df5edad
PZ
3490
3491 return 0;
d859e29f
PM
3492}
3493
85887973
PM
3494#ifdef CONFIG_COMPAT
3495static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3496 unsigned long arg)
3497{
3498 switch (_IOC_NR(cmd)) {
3499 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3500 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3501 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3502 cmd &= ~IOCSIZE_MASK;
3503 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3504 }
3505 break;
3506 }
3507 return perf_ioctl(file, cmd, arg);
3508}
3509#else
3510# define perf_compat_ioctl NULL
3511#endif
3512
cdd6c482 3513int perf_event_task_enable(void)
771d7cde 3514{
cdd6c482 3515 struct perf_event *event;
771d7cde 3516
cdd6c482
IM
3517 mutex_lock(&current->perf_event_mutex);
3518 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3519 perf_event_for_each_child(event, perf_event_enable);
3520 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3521
3522 return 0;
3523}
3524
cdd6c482 3525int perf_event_task_disable(void)
771d7cde 3526{
cdd6c482 3527 struct perf_event *event;
771d7cde 3528
cdd6c482
IM
3529 mutex_lock(&current->perf_event_mutex);
3530 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3531 perf_event_for_each_child(event, perf_event_disable);
3532 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3533
3534 return 0;
3535}
3536
cdd6c482 3537static int perf_event_index(struct perf_event *event)
194002b2 3538{
a4eaf7f1
PZ
3539 if (event->hw.state & PERF_HES_STOPPED)
3540 return 0;
3541
cdd6c482 3542 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3543 return 0;
3544
35edc2a5 3545 return event->pmu->event_idx(event);
194002b2
PZ
3546}
3547
c4794295 3548static void calc_timer_values(struct perf_event *event,
e3f3541c 3549 u64 *now,
7f310a5d
EM
3550 u64 *enabled,
3551 u64 *running)
c4794295 3552{
e3f3541c 3553 u64 ctx_time;
c4794295 3554
e3f3541c
PZ
3555 *now = perf_clock();
3556 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3557 *enabled = ctx_time - event->tstamp_enabled;
3558 *running = ctx_time - event->tstamp_running;
3559}
3560
c7206205 3561void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3562{
3563}
3564
38ff667b
PZ
3565/*
3566 * Callers need to ensure there can be no nesting of this function, otherwise
3567 * the seqlock logic goes bad. We can not serialize this because the arch
3568 * code calls this from NMI context.
3569 */
cdd6c482 3570void perf_event_update_userpage(struct perf_event *event)
37d81828 3571{
cdd6c482 3572 struct perf_event_mmap_page *userpg;
76369139 3573 struct ring_buffer *rb;
e3f3541c 3574 u64 enabled, running, now;
38ff667b
PZ
3575
3576 rcu_read_lock();
0d641208
EM
3577 /*
3578 * compute total_time_enabled, total_time_running
3579 * based on snapshot values taken when the event
3580 * was last scheduled in.
3581 *
3582 * we cannot simply called update_context_time()
3583 * because of locking issue as we can be called in
3584 * NMI context
3585 */
e3f3541c 3586 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3587 rb = rcu_dereference(event->rb);
3588 if (!rb)
38ff667b
PZ
3589 goto unlock;
3590
76369139 3591 userpg = rb->user_page;
37d81828 3592
7b732a75
PZ
3593 /*
3594 * Disable preemption so as to not let the corresponding user-space
3595 * spin too long if we get preempted.
3596 */
3597 preempt_disable();
37d81828 3598 ++userpg->lock;
92f22a38 3599 barrier();
cdd6c482 3600 userpg->index = perf_event_index(event);
b5e58793 3601 userpg->offset = perf_event_count(event);
365a4038 3602 if (userpg->index)
e7850595 3603 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3604
0d641208 3605 userpg->time_enabled = enabled +
cdd6c482 3606 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3607
0d641208 3608 userpg->time_running = running +
cdd6c482 3609 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3610
c7206205 3611 arch_perf_update_userpage(userpg, now);
e3f3541c 3612
92f22a38 3613 barrier();
37d81828 3614 ++userpg->lock;
7b732a75 3615 preempt_enable();
38ff667b 3616unlock:
7b732a75 3617 rcu_read_unlock();
37d81828
PM
3618}
3619
906010b2
PZ
3620static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3621{
3622 struct perf_event *event = vma->vm_file->private_data;
76369139 3623 struct ring_buffer *rb;
906010b2
PZ
3624 int ret = VM_FAULT_SIGBUS;
3625
3626 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3627 if (vmf->pgoff == 0)
3628 ret = 0;
3629 return ret;
3630 }
3631
3632 rcu_read_lock();
76369139
FW
3633 rb = rcu_dereference(event->rb);
3634 if (!rb)
906010b2
PZ
3635 goto unlock;
3636
3637 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3638 goto unlock;
3639
76369139 3640 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3641 if (!vmf->page)
3642 goto unlock;
3643
3644 get_page(vmf->page);
3645 vmf->page->mapping = vma->vm_file->f_mapping;
3646 vmf->page->index = vmf->pgoff;
3647
3648 ret = 0;
3649unlock:
3650 rcu_read_unlock();
3651
3652 return ret;
3653}
3654
10c6db11
PZ
3655static void ring_buffer_attach(struct perf_event *event,
3656 struct ring_buffer *rb)
3657{
3658 unsigned long flags;
3659
3660 if (!list_empty(&event->rb_entry))
3661 return;
3662
3663 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3664 if (list_empty(&event->rb_entry))
3665 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3666 spin_unlock_irqrestore(&rb->event_lock, flags);
3667}
3668
9bb5d40c 3669static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3670{
3671 unsigned long flags;
3672
3673 if (list_empty(&event->rb_entry))
3674 return;
3675
3676 spin_lock_irqsave(&rb->event_lock, flags);
3677 list_del_init(&event->rb_entry);
3678 wake_up_all(&event->waitq);
3679 spin_unlock_irqrestore(&rb->event_lock, flags);
3680}
3681
3682static void ring_buffer_wakeup(struct perf_event *event)
3683{
3684 struct ring_buffer *rb;
3685
3686 rcu_read_lock();
3687 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3688 if (rb) {
3689 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3690 wake_up_all(&event->waitq);
3691 }
10c6db11
PZ
3692 rcu_read_unlock();
3693}
3694
76369139 3695static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3696{
76369139 3697 struct ring_buffer *rb;
906010b2 3698
76369139
FW
3699 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3700 rb_free(rb);
7b732a75
PZ
3701}
3702
76369139 3703static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3704{
76369139 3705 struct ring_buffer *rb;
7b732a75 3706
ac9721f3 3707 rcu_read_lock();
76369139
FW
3708 rb = rcu_dereference(event->rb);
3709 if (rb) {
3710 if (!atomic_inc_not_zero(&rb->refcount))
3711 rb = NULL;
ac9721f3
PZ
3712 }
3713 rcu_read_unlock();
3714
76369139 3715 return rb;
ac9721f3
PZ
3716}
3717
9bb5d40c 3718static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3719{
76369139 3720 if (!atomic_dec_and_test(&rb->refcount))
9bb5d40c 3721 return;
7b732a75 3722
9bb5d40c 3723 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3724
76369139 3725 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3726}
3727
3728static void perf_mmap_open(struct vm_area_struct *vma)
3729{
cdd6c482 3730 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3731
cdd6c482 3732 atomic_inc(&event->mmap_count);
9bb5d40c 3733 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3734}
3735
9bb5d40c
PZ
3736/*
3737 * A buffer can be mmap()ed multiple times; either directly through the same
3738 * event, or through other events by use of perf_event_set_output().
3739 *
3740 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3741 * the buffer here, where we still have a VM context. This means we need
3742 * to detach all events redirecting to us.
3743 */
7b732a75
PZ
3744static void perf_mmap_close(struct vm_area_struct *vma)
3745{
cdd6c482 3746 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3747
9bb5d40c
PZ
3748 struct ring_buffer *rb = event->rb;
3749 struct user_struct *mmap_user = rb->mmap_user;
3750 int mmap_locked = rb->mmap_locked;
3751 unsigned long size = perf_data_size(rb);
789f90fc 3752
9bb5d40c
PZ
3753 atomic_dec(&rb->mmap_count);
3754
3755 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3756 return;
3757
3758 /* Detach current event from the buffer. */
3759 rcu_assign_pointer(event->rb, NULL);
3760 ring_buffer_detach(event, rb);
3761 mutex_unlock(&event->mmap_mutex);
3762
3763 /* If there's still other mmap()s of this buffer, we're done. */
3764 if (atomic_read(&rb->mmap_count)) {
3765 ring_buffer_put(rb); /* can't be last */
3766 return;
3767 }
ac9721f3 3768
9bb5d40c
PZ
3769 /*
3770 * No other mmap()s, detach from all other events that might redirect
3771 * into the now unreachable buffer. Somewhat complicated by the
3772 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3773 */
3774again:
3775 rcu_read_lock();
3776 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3777 if (!atomic_long_inc_not_zero(&event->refcount)) {
3778 /*
3779 * This event is en-route to free_event() which will
3780 * detach it and remove it from the list.
3781 */
3782 continue;
3783 }
3784 rcu_read_unlock();
3785
3786 mutex_lock(&event->mmap_mutex);
3787 /*
3788 * Check we didn't race with perf_event_set_output() which can
3789 * swizzle the rb from under us while we were waiting to
3790 * acquire mmap_mutex.
3791 *
3792 * If we find a different rb; ignore this event, a next
3793 * iteration will no longer find it on the list. We have to
3794 * still restart the iteration to make sure we're not now
3795 * iterating the wrong list.
3796 */
3797 if (event->rb == rb) {
3798 rcu_assign_pointer(event->rb, NULL);
3799 ring_buffer_detach(event, rb);
3800 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3801 }
9bb5d40c
PZ
3802 mutex_unlock(&event->mmap_mutex);
3803 put_event(event);
3804
3805 /*
3806 * Restart the iteration; either we're on the wrong list or
3807 * destroyed its integrity by doing a deletion.
3808 */
3809 goto again;
7b732a75 3810 }
9bb5d40c
PZ
3811 rcu_read_unlock();
3812
3813 /*
3814 * It could be there's still a few 0-ref events on the list; they'll
3815 * get cleaned up by free_event() -- they'll also still have their
3816 * ref on the rb and will free it whenever they are done with it.
3817 *
3818 * Aside from that, this buffer is 'fully' detached and unmapped,
3819 * undo the VM accounting.
3820 */
3821
3822 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3823 vma->vm_mm->pinned_vm -= mmap_locked;
3824 free_uid(mmap_user);
3825
3826 ring_buffer_put(rb); /* could be last */
37d81828
PM
3827}
3828
f0f37e2f 3829static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3830 .open = perf_mmap_open,
3831 .close = perf_mmap_close,
3832 .fault = perf_mmap_fault,
3833 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3834};
3835
3836static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3837{
cdd6c482 3838 struct perf_event *event = file->private_data;
22a4f650 3839 unsigned long user_locked, user_lock_limit;
789f90fc 3840 struct user_struct *user = current_user();
22a4f650 3841 unsigned long locked, lock_limit;
76369139 3842 struct ring_buffer *rb;
7b732a75
PZ
3843 unsigned long vma_size;
3844 unsigned long nr_pages;
789f90fc 3845 long user_extra, extra;
d57e34fd 3846 int ret = 0, flags = 0;
37d81828 3847
c7920614
PZ
3848 /*
3849 * Don't allow mmap() of inherited per-task counters. This would
3850 * create a performance issue due to all children writing to the
76369139 3851 * same rb.
c7920614
PZ
3852 */
3853 if (event->cpu == -1 && event->attr.inherit)
3854 return -EINVAL;
3855
43a21ea8 3856 if (!(vma->vm_flags & VM_SHARED))
37d81828 3857 return -EINVAL;
7b732a75
PZ
3858
3859 vma_size = vma->vm_end - vma->vm_start;
3860 nr_pages = (vma_size / PAGE_SIZE) - 1;
3861
7730d865 3862 /*
76369139 3863 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3864 * can do bitmasks instead of modulo.
3865 */
3866 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3867 return -EINVAL;
3868
7b732a75 3869 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3870 return -EINVAL;
3871
7b732a75
PZ
3872 if (vma->vm_pgoff != 0)
3873 return -EINVAL;
37d81828 3874
cdd6c482 3875 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3876again:
cdd6c482 3877 mutex_lock(&event->mmap_mutex);
76369139 3878 if (event->rb) {
9bb5d40c 3879 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3880 ret = -EINVAL;
9bb5d40c
PZ
3881 goto unlock;
3882 }
3883
3884 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3885 /*
3886 * Raced against perf_mmap_close() through
3887 * perf_event_set_output(). Try again, hope for better
3888 * luck.
3889 */
3890 mutex_unlock(&event->mmap_mutex);
3891 goto again;
3892 }
3893
ebb3c4c4
PZ
3894 goto unlock;
3895 }
3896
789f90fc 3897 user_extra = nr_pages + 1;
cdd6c482 3898 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3899
3900 /*
3901 * Increase the limit linearly with more CPUs:
3902 */
3903 user_lock_limit *= num_online_cpus();
3904
789f90fc 3905 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3906
789f90fc
PZ
3907 extra = 0;
3908 if (user_locked > user_lock_limit)
3909 extra = user_locked - user_lock_limit;
7b732a75 3910
78d7d407 3911 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3912 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3913 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3914
459ec28a
IM
3915 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3916 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3917 ret = -EPERM;
3918 goto unlock;
3919 }
7b732a75 3920
76369139 3921 WARN_ON(event->rb);
906010b2 3922
d57e34fd 3923 if (vma->vm_flags & VM_WRITE)
76369139 3924 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3925
4ec8363d
VW
3926 rb = rb_alloc(nr_pages,
3927 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3928 event->cpu, flags);
3929
76369139 3930 if (!rb) {
ac9721f3 3931 ret = -ENOMEM;
ebb3c4c4 3932 goto unlock;
ac9721f3 3933 }
26cb63ad 3934
9bb5d40c 3935 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
3936 rb->mmap_locked = extra;
3937 rb->mmap_user = get_current_user();
43a21ea8 3938
ac9721f3 3939 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
3940 vma->vm_mm->pinned_vm += extra;
3941
9bb5d40c 3942 ring_buffer_attach(event, rb);
26cb63ad 3943 rcu_assign_pointer(event->rb, rb);
ac9721f3 3944
9a0f05cb
PZ
3945 perf_event_update_userpage(event);
3946
ebb3c4c4 3947unlock:
ac9721f3
PZ
3948 if (!ret)
3949 atomic_inc(&event->mmap_count);
cdd6c482 3950 mutex_unlock(&event->mmap_mutex);
37d81828 3951
9bb5d40c
PZ
3952 /*
3953 * Since pinned accounting is per vm we cannot allow fork() to copy our
3954 * vma.
3955 */
26cb63ad 3956 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 3957 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3958
3959 return ret;
37d81828
PM
3960}
3961
3c446b3d
PZ
3962static int perf_fasync(int fd, struct file *filp, int on)
3963{
496ad9aa 3964 struct inode *inode = file_inode(filp);
cdd6c482 3965 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3966 int retval;
3967
3968 mutex_lock(&inode->i_mutex);
cdd6c482 3969 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3970 mutex_unlock(&inode->i_mutex);
3971
3972 if (retval < 0)
3973 return retval;
3974
3975 return 0;
3976}
3977
0793a61d 3978static const struct file_operations perf_fops = {
3326c1ce 3979 .llseek = no_llseek,
0793a61d
TG
3980 .release = perf_release,
3981 .read = perf_read,
3982 .poll = perf_poll,
d859e29f 3983 .unlocked_ioctl = perf_ioctl,
85887973 3984 .compat_ioctl = perf_compat_ioctl,
37d81828 3985 .mmap = perf_mmap,
3c446b3d 3986 .fasync = perf_fasync,
0793a61d
TG
3987};
3988
925d519a 3989/*
cdd6c482 3990 * Perf event wakeup
925d519a
PZ
3991 *
3992 * If there's data, ensure we set the poll() state and publish everything
3993 * to user-space before waking everybody up.
3994 */
3995
1f6661e2
PZ
3996static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
3997{
3998 /* only the parent has fasync state */
3999 if (event->parent)
4000 event = event->parent;
4001 return &event->fasync;
4002}
4003
cdd6c482 4004void perf_event_wakeup(struct perf_event *event)
925d519a 4005{
10c6db11 4006 ring_buffer_wakeup(event);
4c9e2542 4007
cdd6c482 4008 if (event->pending_kill) {
1f6661e2 4009 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4010 event->pending_kill = 0;
4c9e2542 4011 }
925d519a
PZ
4012}
4013
e360adbe 4014static void perf_pending_event(struct irq_work *entry)
79f14641 4015{
cdd6c482
IM
4016 struct perf_event *event = container_of(entry,
4017 struct perf_event, pending);
a49a0c95
PZ
4018 int rctx;
4019
4020 rctx = perf_swevent_get_recursion_context();
4021 /*
4022 * If we 'fail' here, that's OK, it means recursion is already disabled
4023 * and we won't recurse 'further'.
4024 */
79f14641 4025
cdd6c482
IM
4026 if (event->pending_disable) {
4027 event->pending_disable = 0;
4028 __perf_event_disable(event);
79f14641
PZ
4029 }
4030
cdd6c482
IM
4031 if (event->pending_wakeup) {
4032 event->pending_wakeup = 0;
4033 perf_event_wakeup(event);
79f14641 4034 }
a49a0c95
PZ
4035
4036 if (rctx >= 0)
4037 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4038}
4039
39447b38
ZY
4040/*
4041 * We assume there is only KVM supporting the callbacks.
4042 * Later on, we might change it to a list if there is
4043 * another virtualization implementation supporting the callbacks.
4044 */
4045struct perf_guest_info_callbacks *perf_guest_cbs;
4046
4047int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4048{
4049 perf_guest_cbs = cbs;
4050 return 0;
4051}
4052EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4053
4054int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4055{
4056 perf_guest_cbs = NULL;
4057 return 0;
4058}
4059EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4060
4018994f
JO
4061static void
4062perf_output_sample_regs(struct perf_output_handle *handle,
4063 struct pt_regs *regs, u64 mask)
4064{
4065 int bit;
4066
4067 for_each_set_bit(bit, (const unsigned long *) &mask,
4068 sizeof(mask) * BITS_PER_BYTE) {
4069 u64 val;
4070
4071 val = perf_reg_value(regs, bit);
4072 perf_output_put(handle, val);
4073 }
4074}
4075
4076static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4077 struct pt_regs *regs)
4078{
4079 if (!user_mode(regs)) {
4080 if (current->mm)
4081 regs = task_pt_regs(current);
4082 else
4083 regs = NULL;
4084 }
4085
4086 if (regs) {
4087 regs_user->regs = regs;
4088 regs_user->abi = perf_reg_abi(current);
4089 }
4090}
4091
c5ebcedb
JO
4092/*
4093 * Get remaining task size from user stack pointer.
4094 *
4095 * It'd be better to take stack vma map and limit this more
4096 * precisly, but there's no way to get it safely under interrupt,
4097 * so using TASK_SIZE as limit.
4098 */
4099static u64 perf_ustack_task_size(struct pt_regs *regs)
4100{
4101 unsigned long addr = perf_user_stack_pointer(regs);
4102
4103 if (!addr || addr >= TASK_SIZE)
4104 return 0;
4105
4106 return TASK_SIZE - addr;
4107}
4108
4109static u16
4110perf_sample_ustack_size(u16 stack_size, u16 header_size,
4111 struct pt_regs *regs)
4112{
4113 u64 task_size;
4114
4115 /* No regs, no stack pointer, no dump. */
4116 if (!regs)
4117 return 0;
4118
4119 /*
4120 * Check if we fit in with the requested stack size into the:
4121 * - TASK_SIZE
4122 * If we don't, we limit the size to the TASK_SIZE.
4123 *
4124 * - remaining sample size
4125 * If we don't, we customize the stack size to
4126 * fit in to the remaining sample size.
4127 */
4128
4129 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4130 stack_size = min(stack_size, (u16) task_size);
4131
4132 /* Current header size plus static size and dynamic size. */
4133 header_size += 2 * sizeof(u64);
4134
4135 /* Do we fit in with the current stack dump size? */
4136 if ((u16) (header_size + stack_size) < header_size) {
4137 /*
4138 * If we overflow the maximum size for the sample,
4139 * we customize the stack dump size to fit in.
4140 */
4141 stack_size = USHRT_MAX - header_size - sizeof(u64);
4142 stack_size = round_up(stack_size, sizeof(u64));
4143 }
4144
4145 return stack_size;
4146}
4147
4148static void
4149perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4150 struct pt_regs *regs)
4151{
4152 /* Case of a kernel thread, nothing to dump */
4153 if (!regs) {
4154 u64 size = 0;
4155 perf_output_put(handle, size);
4156 } else {
4157 unsigned long sp;
4158 unsigned int rem;
4159 u64 dyn_size;
4160
4161 /*
4162 * We dump:
4163 * static size
4164 * - the size requested by user or the best one we can fit
4165 * in to the sample max size
4166 * data
4167 * - user stack dump data
4168 * dynamic size
4169 * - the actual dumped size
4170 */
4171
4172 /* Static size. */
4173 perf_output_put(handle, dump_size);
4174
4175 /* Data. */
4176 sp = perf_user_stack_pointer(regs);
4177 rem = __output_copy_user(handle, (void *) sp, dump_size);
4178 dyn_size = dump_size - rem;
4179
4180 perf_output_skip(handle, rem);
4181
4182 /* Dynamic size. */
4183 perf_output_put(handle, dyn_size);
4184 }
4185}
4186
c980d109
ACM
4187static void __perf_event_header__init_id(struct perf_event_header *header,
4188 struct perf_sample_data *data,
4189 struct perf_event *event)
6844c09d
ACM
4190{
4191 u64 sample_type = event->attr.sample_type;
4192
4193 data->type = sample_type;
4194 header->size += event->id_header_size;
4195
4196 if (sample_type & PERF_SAMPLE_TID) {
4197 /* namespace issues */
4198 data->tid_entry.pid = perf_event_pid(event, current);
4199 data->tid_entry.tid = perf_event_tid(event, current);
4200 }
4201
4202 if (sample_type & PERF_SAMPLE_TIME)
4203 data->time = perf_clock();
4204
4205 if (sample_type & PERF_SAMPLE_ID)
4206 data->id = primary_event_id(event);
4207
4208 if (sample_type & PERF_SAMPLE_STREAM_ID)
4209 data->stream_id = event->id;
4210
4211 if (sample_type & PERF_SAMPLE_CPU) {
4212 data->cpu_entry.cpu = raw_smp_processor_id();
4213 data->cpu_entry.reserved = 0;
4214 }
4215}
4216
76369139
FW
4217void perf_event_header__init_id(struct perf_event_header *header,
4218 struct perf_sample_data *data,
4219 struct perf_event *event)
c980d109
ACM
4220{
4221 if (event->attr.sample_id_all)
4222 __perf_event_header__init_id(header, data, event);
4223}
4224
4225static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4226 struct perf_sample_data *data)
4227{
4228 u64 sample_type = data->type;
4229
4230 if (sample_type & PERF_SAMPLE_TID)
4231 perf_output_put(handle, data->tid_entry);
4232
4233 if (sample_type & PERF_SAMPLE_TIME)
4234 perf_output_put(handle, data->time);
4235
4236 if (sample_type & PERF_SAMPLE_ID)
4237 perf_output_put(handle, data->id);
4238
4239 if (sample_type & PERF_SAMPLE_STREAM_ID)
4240 perf_output_put(handle, data->stream_id);
4241
4242 if (sample_type & PERF_SAMPLE_CPU)
4243 perf_output_put(handle, data->cpu_entry);
4244}
4245
76369139
FW
4246void perf_event__output_id_sample(struct perf_event *event,
4247 struct perf_output_handle *handle,
4248 struct perf_sample_data *sample)
c980d109
ACM
4249{
4250 if (event->attr.sample_id_all)
4251 __perf_event__output_id_sample(handle, sample);
4252}
4253
3dab77fb 4254static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4255 struct perf_event *event,
4256 u64 enabled, u64 running)
3dab77fb 4257{
cdd6c482 4258 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4259 u64 values[4];
4260 int n = 0;
4261
b5e58793 4262 values[n++] = perf_event_count(event);
3dab77fb 4263 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4264 values[n++] = enabled +
cdd6c482 4265 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4266 }
4267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4268 values[n++] = running +
cdd6c482 4269 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4270 }
4271 if (read_format & PERF_FORMAT_ID)
cdd6c482 4272 values[n++] = primary_event_id(event);
3dab77fb 4273
76369139 4274 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4275}
4276
4277/*
cdd6c482 4278 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4279 */
4280static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4281 struct perf_event *event,
4282 u64 enabled, u64 running)
3dab77fb 4283{
cdd6c482
IM
4284 struct perf_event *leader = event->group_leader, *sub;
4285 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4286 u64 values[5];
4287 int n = 0;
4288
4289 values[n++] = 1 + leader->nr_siblings;
4290
4291 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4292 values[n++] = enabled;
3dab77fb
PZ
4293
4294 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4295 values[n++] = running;
3dab77fb 4296
cdd6c482 4297 if (leader != event)
3dab77fb
PZ
4298 leader->pmu->read(leader);
4299
b5e58793 4300 values[n++] = perf_event_count(leader);
3dab77fb 4301 if (read_format & PERF_FORMAT_ID)
cdd6c482 4302 values[n++] = primary_event_id(leader);
3dab77fb 4303
76369139 4304 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4305
65abc865 4306 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4307 n = 0;
4308
cdd6c482 4309 if (sub != event)
3dab77fb
PZ
4310 sub->pmu->read(sub);
4311
b5e58793 4312 values[n++] = perf_event_count(sub);
3dab77fb 4313 if (read_format & PERF_FORMAT_ID)
cdd6c482 4314 values[n++] = primary_event_id(sub);
3dab77fb 4315
76369139 4316 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4317 }
4318}
4319
eed01528
SE
4320#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4321 PERF_FORMAT_TOTAL_TIME_RUNNING)
4322
3dab77fb 4323static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4324 struct perf_event *event)
3dab77fb 4325{
e3f3541c 4326 u64 enabled = 0, running = 0, now;
eed01528
SE
4327 u64 read_format = event->attr.read_format;
4328
4329 /*
4330 * compute total_time_enabled, total_time_running
4331 * based on snapshot values taken when the event
4332 * was last scheduled in.
4333 *
4334 * we cannot simply called update_context_time()
4335 * because of locking issue as we are called in
4336 * NMI context
4337 */
c4794295 4338 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4339 calc_timer_values(event, &now, &enabled, &running);
eed01528 4340
cdd6c482 4341 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4342 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4343 else
eed01528 4344 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4345}
4346
5622f295
MM
4347void perf_output_sample(struct perf_output_handle *handle,
4348 struct perf_event_header *header,
4349 struct perf_sample_data *data,
cdd6c482 4350 struct perf_event *event)
5622f295
MM
4351{
4352 u64 sample_type = data->type;
4353
4354 perf_output_put(handle, *header);
4355
4356 if (sample_type & PERF_SAMPLE_IP)
4357 perf_output_put(handle, data->ip);
4358
4359 if (sample_type & PERF_SAMPLE_TID)
4360 perf_output_put(handle, data->tid_entry);
4361
4362 if (sample_type & PERF_SAMPLE_TIME)
4363 perf_output_put(handle, data->time);
4364
4365 if (sample_type & PERF_SAMPLE_ADDR)
4366 perf_output_put(handle, data->addr);
4367
4368 if (sample_type & PERF_SAMPLE_ID)
4369 perf_output_put(handle, data->id);
4370
4371 if (sample_type & PERF_SAMPLE_STREAM_ID)
4372 perf_output_put(handle, data->stream_id);
4373
4374 if (sample_type & PERF_SAMPLE_CPU)
4375 perf_output_put(handle, data->cpu_entry);
4376
4377 if (sample_type & PERF_SAMPLE_PERIOD)
4378 perf_output_put(handle, data->period);
4379
4380 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4381 perf_output_read(handle, event);
5622f295
MM
4382
4383 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4384 if (data->callchain) {
4385 int size = 1;
4386
4387 if (data->callchain)
4388 size += data->callchain->nr;
4389
4390 size *= sizeof(u64);
4391
76369139 4392 __output_copy(handle, data->callchain, size);
5622f295
MM
4393 } else {
4394 u64 nr = 0;
4395 perf_output_put(handle, nr);
4396 }
4397 }
4398
4399 if (sample_type & PERF_SAMPLE_RAW) {
4400 if (data->raw) {
4401 perf_output_put(handle, data->raw->size);
76369139
FW
4402 __output_copy(handle, data->raw->data,
4403 data->raw->size);
5622f295
MM
4404 } else {
4405 struct {
4406 u32 size;
4407 u32 data;
4408 } raw = {
4409 .size = sizeof(u32),
4410 .data = 0,
4411 };
4412 perf_output_put(handle, raw);
4413 }
4414 }
a7ac67ea
PZ
4415
4416 if (!event->attr.watermark) {
4417 int wakeup_events = event->attr.wakeup_events;
4418
4419 if (wakeup_events) {
4420 struct ring_buffer *rb = handle->rb;
4421 int events = local_inc_return(&rb->events);
4422
4423 if (events >= wakeup_events) {
4424 local_sub(wakeup_events, &rb->events);
4425 local_inc(&rb->wakeup);
4426 }
4427 }
4428 }
bce38cd5
SE
4429
4430 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4431 if (data->br_stack) {
4432 size_t size;
4433
4434 size = data->br_stack->nr
4435 * sizeof(struct perf_branch_entry);
4436
4437 perf_output_put(handle, data->br_stack->nr);
4438 perf_output_copy(handle, data->br_stack->entries, size);
4439 } else {
4440 /*
4441 * we always store at least the value of nr
4442 */
4443 u64 nr = 0;
4444 perf_output_put(handle, nr);
4445 }
4446 }
4018994f
JO
4447
4448 if (sample_type & PERF_SAMPLE_REGS_USER) {
4449 u64 abi = data->regs_user.abi;
4450
4451 /*
4452 * If there are no regs to dump, notice it through
4453 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4454 */
4455 perf_output_put(handle, abi);
4456
4457 if (abi) {
4458 u64 mask = event->attr.sample_regs_user;
4459 perf_output_sample_regs(handle,
4460 data->regs_user.regs,
4461 mask);
4462 }
4463 }
c5ebcedb
JO
4464
4465 if (sample_type & PERF_SAMPLE_STACK_USER)
4466 perf_output_sample_ustack(handle,
4467 data->stack_user_size,
4468 data->regs_user.regs);
c3feedf2
AK
4469
4470 if (sample_type & PERF_SAMPLE_WEIGHT)
4471 perf_output_put(handle, data->weight);
d6be9ad6
SE
4472
4473 if (sample_type & PERF_SAMPLE_DATA_SRC)
4474 perf_output_put(handle, data->data_src.val);
5622f295
MM
4475}
4476
4477void perf_prepare_sample(struct perf_event_header *header,
4478 struct perf_sample_data *data,
cdd6c482 4479 struct perf_event *event,
5622f295 4480 struct pt_regs *regs)
7b732a75 4481{
cdd6c482 4482 u64 sample_type = event->attr.sample_type;
7b732a75 4483
cdd6c482 4484 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4485 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4486
4487 header->misc = 0;
4488 header->misc |= perf_misc_flags(regs);
6fab0192 4489
c980d109 4490 __perf_event_header__init_id(header, data, event);
6844c09d 4491
c320c7b7 4492 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4493 data->ip = perf_instruction_pointer(regs);
4494
b23f3325 4495 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4496 int size = 1;
394ee076 4497
e6dab5ff 4498 data->callchain = perf_callchain(event, regs);
5622f295
MM
4499
4500 if (data->callchain)
4501 size += data->callchain->nr;
4502
4503 header->size += size * sizeof(u64);
394ee076
PZ
4504 }
4505
3a43ce68 4506 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4507 int size = sizeof(u32);
4508
4509 if (data->raw)
4510 size += data->raw->size;
4511 else
4512 size += sizeof(u32);
4513
4514 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4515 header->size += size;
7f453c24 4516 }
bce38cd5
SE
4517
4518 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4519 int size = sizeof(u64); /* nr */
4520 if (data->br_stack) {
4521 size += data->br_stack->nr
4522 * sizeof(struct perf_branch_entry);
4523 }
4524 header->size += size;
4525 }
4018994f
JO
4526
4527 if (sample_type & PERF_SAMPLE_REGS_USER) {
4528 /* regs dump ABI info */
4529 int size = sizeof(u64);
4530
4531 perf_sample_regs_user(&data->regs_user, regs);
4532
4533 if (data->regs_user.regs) {
4534 u64 mask = event->attr.sample_regs_user;
4535 size += hweight64(mask) * sizeof(u64);
4536 }
4537
4538 header->size += size;
4539 }
c5ebcedb
JO
4540
4541 if (sample_type & PERF_SAMPLE_STACK_USER) {
4542 /*
4543 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4544 * processed as the last one or have additional check added
4545 * in case new sample type is added, because we could eat
4546 * up the rest of the sample size.
4547 */
4548 struct perf_regs_user *uregs = &data->regs_user;
4549 u16 stack_size = event->attr.sample_stack_user;
4550 u16 size = sizeof(u64);
4551
4552 if (!uregs->abi)
4553 perf_sample_regs_user(uregs, regs);
4554
4555 stack_size = perf_sample_ustack_size(stack_size, header->size,
4556 uregs->regs);
4557
4558 /*
4559 * If there is something to dump, add space for the dump
4560 * itself and for the field that tells the dynamic size,
4561 * which is how many have been actually dumped.
4562 */
4563 if (stack_size)
4564 size += sizeof(u64) + stack_size;
4565
4566 data->stack_user_size = stack_size;
4567 header->size += size;
4568 }
5622f295 4569}
7f453c24 4570
a8b0ca17 4571static void perf_event_output(struct perf_event *event,
5622f295
MM
4572 struct perf_sample_data *data,
4573 struct pt_regs *regs)
4574{
4575 struct perf_output_handle handle;
4576 struct perf_event_header header;
689802b2 4577
927c7a9e
FW
4578 /* protect the callchain buffers */
4579 rcu_read_lock();
4580
cdd6c482 4581 perf_prepare_sample(&header, data, event, regs);
5c148194 4582
a7ac67ea 4583 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4584 goto exit;
0322cd6e 4585
cdd6c482 4586 perf_output_sample(&handle, &header, data, event);
f413cdb8 4587
8a057d84 4588 perf_output_end(&handle);
927c7a9e
FW
4589
4590exit:
4591 rcu_read_unlock();
0322cd6e
PZ
4592}
4593
38b200d6 4594/*
cdd6c482 4595 * read event_id
38b200d6
PZ
4596 */
4597
4598struct perf_read_event {
4599 struct perf_event_header header;
4600
4601 u32 pid;
4602 u32 tid;
38b200d6
PZ
4603};
4604
4605static void
cdd6c482 4606perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4607 struct task_struct *task)
4608{
4609 struct perf_output_handle handle;
c980d109 4610 struct perf_sample_data sample;
dfc65094 4611 struct perf_read_event read_event = {
38b200d6 4612 .header = {
cdd6c482 4613 .type = PERF_RECORD_READ,
38b200d6 4614 .misc = 0,
c320c7b7 4615 .size = sizeof(read_event) + event->read_size,
38b200d6 4616 },
cdd6c482
IM
4617 .pid = perf_event_pid(event, task),
4618 .tid = perf_event_tid(event, task),
38b200d6 4619 };
3dab77fb 4620 int ret;
38b200d6 4621
c980d109 4622 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4623 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4624 if (ret)
4625 return;
4626
dfc65094 4627 perf_output_put(&handle, read_event);
cdd6c482 4628 perf_output_read(&handle, event);
c980d109 4629 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4630
38b200d6
PZ
4631 perf_output_end(&handle);
4632}
4633
52d857a8
JO
4634typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4635typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4636
4637static void
4638perf_event_aux_ctx(struct perf_event_context *ctx,
4639 perf_event_aux_match_cb match,
4640 perf_event_aux_output_cb output,
4641 void *data)
4642{
4643 struct perf_event *event;
4644
4645 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4646 if (event->state < PERF_EVENT_STATE_INACTIVE)
4647 continue;
4648 if (!event_filter_match(event))
4649 continue;
4650 if (match(event, data))
4651 output(event, data);
4652 }
4653}
4654
4655static void
4656perf_event_aux(perf_event_aux_match_cb match,
4657 perf_event_aux_output_cb output,
4658 void *data,
4659 struct perf_event_context *task_ctx)
4660{
4661 struct perf_cpu_context *cpuctx;
4662 struct perf_event_context *ctx;
4663 struct pmu *pmu;
4664 int ctxn;
4665
4666 rcu_read_lock();
4667 list_for_each_entry_rcu(pmu, &pmus, entry) {
4668 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4669 if (cpuctx->unique_pmu != pmu)
4670 goto next;
4671 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4672 if (task_ctx)
4673 goto next;
4674 ctxn = pmu->task_ctx_nr;
4675 if (ctxn < 0)
4676 goto next;
4677 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4678 if (ctx)
4679 perf_event_aux_ctx(ctx, match, output, data);
4680next:
4681 put_cpu_ptr(pmu->pmu_cpu_context);
4682 }
4683
4684 if (task_ctx) {
4685 preempt_disable();
4686 perf_event_aux_ctx(task_ctx, match, output, data);
4687 preempt_enable();
4688 }
4689 rcu_read_unlock();
4690}
4691
60313ebe 4692/*
9f498cc5
PZ
4693 * task tracking -- fork/exit
4694 *
3af9e859 4695 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4696 */
4697
9f498cc5 4698struct perf_task_event {
3a80b4a3 4699 struct task_struct *task;
cdd6c482 4700 struct perf_event_context *task_ctx;
60313ebe
PZ
4701
4702 struct {
4703 struct perf_event_header header;
4704
4705 u32 pid;
4706 u32 ppid;
9f498cc5
PZ
4707 u32 tid;
4708 u32 ptid;
393b2ad8 4709 u64 time;
cdd6c482 4710 } event_id;
60313ebe
PZ
4711};
4712
cdd6c482 4713static void perf_event_task_output(struct perf_event *event,
52d857a8 4714 void *data)
60313ebe 4715{
52d857a8 4716 struct perf_task_event *task_event = data;
60313ebe 4717 struct perf_output_handle handle;
c980d109 4718 struct perf_sample_data sample;
9f498cc5 4719 struct task_struct *task = task_event->task;
c980d109 4720 int ret, size = task_event->event_id.header.size;
8bb39f9a 4721
c980d109 4722 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4723
c980d109 4724 ret = perf_output_begin(&handle, event,
a7ac67ea 4725 task_event->event_id.header.size);
ef60777c 4726 if (ret)
c980d109 4727 goto out;
60313ebe 4728
cdd6c482
IM
4729 task_event->event_id.pid = perf_event_pid(event, task);
4730 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4731
cdd6c482
IM
4732 task_event->event_id.tid = perf_event_tid(event, task);
4733 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4734
cdd6c482 4735 perf_output_put(&handle, task_event->event_id);
393b2ad8 4736
c980d109
ACM
4737 perf_event__output_id_sample(event, &handle, &sample);
4738
60313ebe 4739 perf_output_end(&handle);
c980d109
ACM
4740out:
4741 task_event->event_id.header.size = size;
60313ebe
PZ
4742}
4743
52d857a8
JO
4744static int perf_event_task_match(struct perf_event *event,
4745 void *data __maybe_unused)
60313ebe 4746{
52d857a8
JO
4747 return event->attr.comm || event->attr.mmap ||
4748 event->attr.mmap_data || event->attr.task;
60313ebe
PZ
4749}
4750
cdd6c482
IM
4751static void perf_event_task(struct task_struct *task,
4752 struct perf_event_context *task_ctx,
3a80b4a3 4753 int new)
60313ebe 4754{
9f498cc5 4755 struct perf_task_event task_event;
60313ebe 4756
cdd6c482
IM
4757 if (!atomic_read(&nr_comm_events) &&
4758 !atomic_read(&nr_mmap_events) &&
4759 !atomic_read(&nr_task_events))
60313ebe
PZ
4760 return;
4761
9f498cc5 4762 task_event = (struct perf_task_event){
3a80b4a3
PZ
4763 .task = task,
4764 .task_ctx = task_ctx,
cdd6c482 4765 .event_id = {
60313ebe 4766 .header = {
cdd6c482 4767 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4768 .misc = 0,
cdd6c482 4769 .size = sizeof(task_event.event_id),
60313ebe 4770 },
573402db
PZ
4771 /* .pid */
4772 /* .ppid */
9f498cc5
PZ
4773 /* .tid */
4774 /* .ptid */
6f93d0a7 4775 .time = perf_clock(),
60313ebe
PZ
4776 },
4777 };
4778
52d857a8
JO
4779 perf_event_aux(perf_event_task_match,
4780 perf_event_task_output,
4781 &task_event,
4782 task_ctx);
9f498cc5
PZ
4783}
4784
cdd6c482 4785void perf_event_fork(struct task_struct *task)
9f498cc5 4786{
cdd6c482 4787 perf_event_task(task, NULL, 1);
60313ebe
PZ
4788}
4789
8d1b2d93
PZ
4790/*
4791 * comm tracking
4792 */
4793
4794struct perf_comm_event {
22a4f650
IM
4795 struct task_struct *task;
4796 char *comm;
8d1b2d93
PZ
4797 int comm_size;
4798
4799 struct {
4800 struct perf_event_header header;
4801
4802 u32 pid;
4803 u32 tid;
cdd6c482 4804 } event_id;
8d1b2d93
PZ
4805};
4806
cdd6c482 4807static void perf_event_comm_output(struct perf_event *event,
52d857a8 4808 void *data)
8d1b2d93 4809{
52d857a8 4810 struct perf_comm_event *comm_event = data;
8d1b2d93 4811 struct perf_output_handle handle;
c980d109 4812 struct perf_sample_data sample;
cdd6c482 4813 int size = comm_event->event_id.header.size;
c980d109
ACM
4814 int ret;
4815
4816 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4817 ret = perf_output_begin(&handle, event,
a7ac67ea 4818 comm_event->event_id.header.size);
8d1b2d93
PZ
4819
4820 if (ret)
c980d109 4821 goto out;
8d1b2d93 4822
cdd6c482
IM
4823 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4824 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4825
cdd6c482 4826 perf_output_put(&handle, comm_event->event_id);
76369139 4827 __output_copy(&handle, comm_event->comm,
8d1b2d93 4828 comm_event->comm_size);
c980d109
ACM
4829
4830 perf_event__output_id_sample(event, &handle, &sample);
4831
8d1b2d93 4832 perf_output_end(&handle);
c980d109
ACM
4833out:
4834 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4835}
4836
52d857a8
JO
4837static int perf_event_comm_match(struct perf_event *event,
4838 void *data __maybe_unused)
8d1b2d93 4839{
52d857a8 4840 return event->attr.comm;
8d1b2d93
PZ
4841}
4842
cdd6c482 4843static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4844{
413ee3b4 4845 char comm[TASK_COMM_LEN];
8d1b2d93 4846 unsigned int size;
8d1b2d93 4847
413ee3b4 4848 memset(comm, 0, sizeof(comm));
96b02d78 4849 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4850 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4851
4852 comm_event->comm = comm;
4853 comm_event->comm_size = size;
4854
cdd6c482 4855 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4856
52d857a8
JO
4857 perf_event_aux(perf_event_comm_match,
4858 perf_event_comm_output,
4859 comm_event,
4860 NULL);
8d1b2d93
PZ
4861}
4862
cdd6c482 4863void perf_event_comm(struct task_struct *task)
8d1b2d93 4864{
9ee318a7 4865 struct perf_comm_event comm_event;
8dc85d54
PZ
4866 struct perf_event_context *ctx;
4867 int ctxn;
9ee318a7 4868
c79aa0d9 4869 rcu_read_lock();
8dc85d54
PZ
4870 for_each_task_context_nr(ctxn) {
4871 ctx = task->perf_event_ctxp[ctxn];
4872 if (!ctx)
4873 continue;
9ee318a7 4874
8dc85d54
PZ
4875 perf_event_enable_on_exec(ctx);
4876 }
c79aa0d9 4877 rcu_read_unlock();
9ee318a7 4878
cdd6c482 4879 if (!atomic_read(&nr_comm_events))
9ee318a7 4880 return;
a63eaf34 4881
9ee318a7 4882 comm_event = (struct perf_comm_event){
8d1b2d93 4883 .task = task,
573402db
PZ
4884 /* .comm */
4885 /* .comm_size */
cdd6c482 4886 .event_id = {
573402db 4887 .header = {
cdd6c482 4888 .type = PERF_RECORD_COMM,
573402db
PZ
4889 .misc = 0,
4890 /* .size */
4891 },
4892 /* .pid */
4893 /* .tid */
8d1b2d93
PZ
4894 },
4895 };
4896
cdd6c482 4897 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4898}
4899
0a4a9391
PZ
4900/*
4901 * mmap tracking
4902 */
4903
4904struct perf_mmap_event {
089dd79d
PZ
4905 struct vm_area_struct *vma;
4906
4907 const char *file_name;
4908 int file_size;
0a4a9391
PZ
4909
4910 struct {
4911 struct perf_event_header header;
4912
4913 u32 pid;
4914 u32 tid;
4915 u64 start;
4916 u64 len;
4917 u64 pgoff;
cdd6c482 4918 } event_id;
0a4a9391
PZ
4919};
4920
cdd6c482 4921static void perf_event_mmap_output(struct perf_event *event,
52d857a8 4922 void *data)
0a4a9391 4923{
52d857a8 4924 struct perf_mmap_event *mmap_event = data;
0a4a9391 4925 struct perf_output_handle handle;
c980d109 4926 struct perf_sample_data sample;
cdd6c482 4927 int size = mmap_event->event_id.header.size;
c980d109 4928 int ret;
0a4a9391 4929
c980d109
ACM
4930 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4931 ret = perf_output_begin(&handle, event,
a7ac67ea 4932 mmap_event->event_id.header.size);
0a4a9391 4933 if (ret)
c980d109 4934 goto out;
0a4a9391 4935
cdd6c482
IM
4936 mmap_event->event_id.pid = perf_event_pid(event, current);
4937 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4938
cdd6c482 4939 perf_output_put(&handle, mmap_event->event_id);
76369139 4940 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4941 mmap_event->file_size);
c980d109
ACM
4942
4943 perf_event__output_id_sample(event, &handle, &sample);
4944
78d613eb 4945 perf_output_end(&handle);
c980d109
ACM
4946out:
4947 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4948}
4949
cdd6c482 4950static int perf_event_mmap_match(struct perf_event *event,
52d857a8 4951 void *data)
0a4a9391 4952{
52d857a8
JO
4953 struct perf_mmap_event *mmap_event = data;
4954 struct vm_area_struct *vma = mmap_event->vma;
4955 int executable = vma->vm_flags & VM_EXEC;
0a4a9391 4956
52d857a8
JO
4957 return (!executable && event->attr.mmap_data) ||
4958 (executable && event->attr.mmap);
0a4a9391
PZ
4959}
4960
cdd6c482 4961static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 4962{
089dd79d
PZ
4963 struct vm_area_struct *vma = mmap_event->vma;
4964 struct file *file = vma->vm_file;
0a4a9391
PZ
4965 unsigned int size;
4966 char tmp[16];
4967 char *buf = NULL;
089dd79d 4968 const char *name;
0a4a9391 4969
413ee3b4
AB
4970 memset(tmp, 0, sizeof(tmp));
4971
0a4a9391 4972 if (file) {
413ee3b4 4973 /*
76369139 4974 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4975 * need to add enough zero bytes after the string to handle
4976 * the 64bit alignment we do later.
4977 */
4978 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4979 if (!buf) {
4980 name = strncpy(tmp, "//enomem", sizeof(tmp));
4981 goto got_name;
4982 }
d3d21c41 4983 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4984 if (IS_ERR(name)) {
4985 name = strncpy(tmp, "//toolong", sizeof(tmp));
4986 goto got_name;
4987 }
4988 } else {
413ee3b4
AB
4989 if (arch_vma_name(mmap_event->vma)) {
4990 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
4991 sizeof(tmp) - 1);
4992 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 4993 goto got_name;
413ee3b4 4994 }
089dd79d
PZ
4995
4996 if (!vma->vm_mm) {
4997 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4998 goto got_name;
3af9e859
EM
4999 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5000 vma->vm_end >= vma->vm_mm->brk) {
5001 name = strncpy(tmp, "[heap]", sizeof(tmp));
5002 goto got_name;
5003 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5004 vma->vm_end >= vma->vm_mm->start_stack) {
5005 name = strncpy(tmp, "[stack]", sizeof(tmp));
5006 goto got_name;
089dd79d
PZ
5007 }
5008
0a4a9391
PZ
5009 name = strncpy(tmp, "//anon", sizeof(tmp));
5010 goto got_name;
5011 }
5012
5013got_name:
888fcee0 5014 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5015
5016 mmap_event->file_name = name;
5017 mmap_event->file_size = size;
5018
2fe85427
SE
5019 if (!(vma->vm_flags & VM_EXEC))
5020 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5021
cdd6c482 5022 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5023
52d857a8
JO
5024 perf_event_aux(perf_event_mmap_match,
5025 perf_event_mmap_output,
5026 mmap_event,
5027 NULL);
665c2142 5028
0a4a9391
PZ
5029 kfree(buf);
5030}
5031
3af9e859 5032void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5033{
9ee318a7
PZ
5034 struct perf_mmap_event mmap_event;
5035
cdd6c482 5036 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5037 return;
5038
5039 mmap_event = (struct perf_mmap_event){
089dd79d 5040 .vma = vma,
573402db
PZ
5041 /* .file_name */
5042 /* .file_size */
cdd6c482 5043 .event_id = {
573402db 5044 .header = {
cdd6c482 5045 .type = PERF_RECORD_MMAP,
39447b38 5046 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5047 /* .size */
5048 },
5049 /* .pid */
5050 /* .tid */
089dd79d
PZ
5051 .start = vma->vm_start,
5052 .len = vma->vm_end - vma->vm_start,
3a0304e9 5053 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5054 },
5055 };
5056
cdd6c482 5057 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5058}
5059
a78ac325
PZ
5060/*
5061 * IRQ throttle logging
5062 */
5063
cdd6c482 5064static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5065{
5066 struct perf_output_handle handle;
c980d109 5067 struct perf_sample_data sample;
a78ac325
PZ
5068 int ret;
5069
5070 struct {
5071 struct perf_event_header header;
5072 u64 time;
cca3f454 5073 u64 id;
7f453c24 5074 u64 stream_id;
a78ac325
PZ
5075 } throttle_event = {
5076 .header = {
cdd6c482 5077 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5078 .misc = 0,
5079 .size = sizeof(throttle_event),
5080 },
def0a9b2 5081 .time = perf_clock(),
cdd6c482
IM
5082 .id = primary_event_id(event),
5083 .stream_id = event->id,
a78ac325
PZ
5084 };
5085
966ee4d6 5086 if (enable)
cdd6c482 5087 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5088
c980d109
ACM
5089 perf_event_header__init_id(&throttle_event.header, &sample, event);
5090
5091 ret = perf_output_begin(&handle, event,
a7ac67ea 5092 throttle_event.header.size);
a78ac325
PZ
5093 if (ret)
5094 return;
5095
5096 perf_output_put(&handle, throttle_event);
c980d109 5097 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5098 perf_output_end(&handle);
5099}
5100
f6c7d5fe 5101/*
cdd6c482 5102 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5103 */
5104
a8b0ca17 5105static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5106 int throttle, struct perf_sample_data *data,
5107 struct pt_regs *regs)
f6c7d5fe 5108{
cdd6c482
IM
5109 int events = atomic_read(&event->event_limit);
5110 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5111 u64 seq;
79f14641
PZ
5112 int ret = 0;
5113
96398826
PZ
5114 /*
5115 * Non-sampling counters might still use the PMI to fold short
5116 * hardware counters, ignore those.
5117 */
5118 if (unlikely(!is_sampling_event(event)))
5119 return 0;
5120
e050e3f0
SE
5121 seq = __this_cpu_read(perf_throttled_seq);
5122 if (seq != hwc->interrupts_seq) {
5123 hwc->interrupts_seq = seq;
5124 hwc->interrupts = 1;
5125 } else {
5126 hwc->interrupts++;
5127 if (unlikely(throttle
5128 && hwc->interrupts >= max_samples_per_tick)) {
5129 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5130 hwc->interrupts = MAX_INTERRUPTS;
5131 perf_log_throttle(event, 0);
a78ac325
PZ
5132 ret = 1;
5133 }
e050e3f0 5134 }
60db5e09 5135
cdd6c482 5136 if (event->attr.freq) {
def0a9b2 5137 u64 now = perf_clock();
abd50713 5138 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5139
abd50713 5140 hwc->freq_time_stamp = now;
bd2b5b12 5141
abd50713 5142 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5143 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5144 }
5145
2023b359
PZ
5146 /*
5147 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5148 * events
2023b359
PZ
5149 */
5150
cdd6c482
IM
5151 event->pending_kill = POLL_IN;
5152 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5153 ret = 1;
cdd6c482 5154 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5155 event->pending_disable = 1;
5156 irq_work_queue(&event->pending);
79f14641
PZ
5157 }
5158
453f19ee 5159 if (event->overflow_handler)
a8b0ca17 5160 event->overflow_handler(event, data, regs);
453f19ee 5161 else
a8b0ca17 5162 perf_event_output(event, data, regs);
453f19ee 5163
1f6661e2 5164 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
5165 event->pending_wakeup = 1;
5166 irq_work_queue(&event->pending);
f506b3dc
PZ
5167 }
5168
79f14641 5169 return ret;
f6c7d5fe
PZ
5170}
5171
a8b0ca17 5172int perf_event_overflow(struct perf_event *event,
5622f295
MM
5173 struct perf_sample_data *data,
5174 struct pt_regs *regs)
850bc73f 5175{
a8b0ca17 5176 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5177}
5178
15dbf27c 5179/*
cdd6c482 5180 * Generic software event infrastructure
15dbf27c
PZ
5181 */
5182
b28ab83c
PZ
5183struct swevent_htable {
5184 struct swevent_hlist *swevent_hlist;
5185 struct mutex hlist_mutex;
5186 int hlist_refcount;
5187
5188 /* Recursion avoidance in each contexts */
5189 int recursion[PERF_NR_CONTEXTS];
26616604
JO
5190
5191 /* Keeps track of cpu being initialized/exited */
5192 bool online;
b28ab83c
PZ
5193};
5194
5195static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5196
7b4b6658 5197/*
cdd6c482
IM
5198 * We directly increment event->count and keep a second value in
5199 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5200 * is kept in the range [-sample_period, 0] so that we can use the
5201 * sign as trigger.
5202 */
5203
cdd6c482 5204static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5205{
cdd6c482 5206 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5207 u64 period = hwc->last_period;
5208 u64 nr, offset;
5209 s64 old, val;
5210
5211 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5212
5213again:
e7850595 5214 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5215 if (val < 0)
5216 return 0;
15dbf27c 5217
7b4b6658
PZ
5218 nr = div64_u64(period + val, period);
5219 offset = nr * period;
5220 val -= offset;
e7850595 5221 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5222 goto again;
15dbf27c 5223
7b4b6658 5224 return nr;
15dbf27c
PZ
5225}
5226
0cff784a 5227static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5228 struct perf_sample_data *data,
5622f295 5229 struct pt_regs *regs)
15dbf27c 5230{
cdd6c482 5231 struct hw_perf_event *hwc = &event->hw;
850bc73f 5232 int throttle = 0;
15dbf27c 5233
0cff784a
PZ
5234 if (!overflow)
5235 overflow = perf_swevent_set_period(event);
15dbf27c 5236
7b4b6658
PZ
5237 if (hwc->interrupts == MAX_INTERRUPTS)
5238 return;
15dbf27c 5239
7b4b6658 5240 for (; overflow; overflow--) {
a8b0ca17 5241 if (__perf_event_overflow(event, throttle,
5622f295 5242 data, regs)) {
7b4b6658
PZ
5243 /*
5244 * We inhibit the overflow from happening when
5245 * hwc->interrupts == MAX_INTERRUPTS.
5246 */
5247 break;
5248 }
cf450a73 5249 throttle = 1;
7b4b6658 5250 }
15dbf27c
PZ
5251}
5252
a4eaf7f1 5253static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5254 struct perf_sample_data *data,
5622f295 5255 struct pt_regs *regs)
7b4b6658 5256{
cdd6c482 5257 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5258
e7850595 5259 local64_add(nr, &event->count);
d6d020e9 5260
0cff784a
PZ
5261 if (!regs)
5262 return;
5263
6c7e550f 5264 if (!is_sampling_event(event))
7b4b6658 5265 return;
d6d020e9 5266
5d81e5cf
AV
5267 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5268 data->period = nr;
5269 return perf_swevent_overflow(event, 1, data, regs);
5270 } else
5271 data->period = event->hw.last_period;
5272
0cff784a 5273 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5274 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5275
e7850595 5276 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5277 return;
df1a132b 5278
a8b0ca17 5279 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5280}
5281
f5ffe02e
FW
5282static int perf_exclude_event(struct perf_event *event,
5283 struct pt_regs *regs)
5284{
a4eaf7f1 5285 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5286 return 1;
a4eaf7f1 5287
f5ffe02e
FW
5288 if (regs) {
5289 if (event->attr.exclude_user && user_mode(regs))
5290 return 1;
5291
5292 if (event->attr.exclude_kernel && !user_mode(regs))
5293 return 1;
5294 }
5295
5296 return 0;
5297}
5298
cdd6c482 5299static int perf_swevent_match(struct perf_event *event,
1c432d89 5300 enum perf_type_id type,
6fb2915d
LZ
5301 u32 event_id,
5302 struct perf_sample_data *data,
5303 struct pt_regs *regs)
15dbf27c 5304{
cdd6c482 5305 if (event->attr.type != type)
a21ca2ca 5306 return 0;
f5ffe02e 5307
cdd6c482 5308 if (event->attr.config != event_id)
15dbf27c
PZ
5309 return 0;
5310
f5ffe02e
FW
5311 if (perf_exclude_event(event, regs))
5312 return 0;
15dbf27c
PZ
5313
5314 return 1;
5315}
5316
76e1d904
FW
5317static inline u64 swevent_hash(u64 type, u32 event_id)
5318{
5319 u64 val = event_id | (type << 32);
5320
5321 return hash_64(val, SWEVENT_HLIST_BITS);
5322}
5323
49f135ed
FW
5324static inline struct hlist_head *
5325__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5326{
49f135ed
FW
5327 u64 hash = swevent_hash(type, event_id);
5328
5329 return &hlist->heads[hash];
5330}
76e1d904 5331
49f135ed
FW
5332/* For the read side: events when they trigger */
5333static inline struct hlist_head *
b28ab83c 5334find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5335{
5336 struct swevent_hlist *hlist;
76e1d904 5337
b28ab83c 5338 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5339 if (!hlist)
5340 return NULL;
5341
49f135ed
FW
5342 return __find_swevent_head(hlist, type, event_id);
5343}
5344
5345/* For the event head insertion and removal in the hlist */
5346static inline struct hlist_head *
b28ab83c 5347find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5348{
5349 struct swevent_hlist *hlist;
5350 u32 event_id = event->attr.config;
5351 u64 type = event->attr.type;
5352
5353 /*
5354 * Event scheduling is always serialized against hlist allocation
5355 * and release. Which makes the protected version suitable here.
5356 * The context lock guarantees that.
5357 */
b28ab83c 5358 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5359 lockdep_is_held(&event->ctx->lock));
5360 if (!hlist)
5361 return NULL;
5362
5363 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5364}
5365
5366static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5367 u64 nr,
76e1d904
FW
5368 struct perf_sample_data *data,
5369 struct pt_regs *regs)
15dbf27c 5370{
b28ab83c 5371 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5372 struct perf_event *event;
76e1d904 5373 struct hlist_head *head;
15dbf27c 5374
76e1d904 5375 rcu_read_lock();
b28ab83c 5376 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5377 if (!head)
5378 goto end;
5379
b67bfe0d 5380 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5381 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5382 perf_swevent_event(event, nr, data, regs);
15dbf27c 5383 }
76e1d904
FW
5384end:
5385 rcu_read_unlock();
15dbf27c
PZ
5386}
5387
4ed7c92d 5388int perf_swevent_get_recursion_context(void)
96f6d444 5389{
b28ab83c 5390 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5391
b28ab83c 5392 return get_recursion_context(swhash->recursion);
96f6d444 5393}
645e8cc0 5394EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5395
fa9f90be 5396inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5397{
b28ab83c 5398 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5399
b28ab83c 5400 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5401}
15dbf27c 5402
a8b0ca17 5403void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5404{
a4234bfc 5405 struct perf_sample_data data;
4ed7c92d
PZ
5406 int rctx;
5407
1c024eca 5408 preempt_disable_notrace();
4ed7c92d
PZ
5409 rctx = perf_swevent_get_recursion_context();
5410 if (rctx < 0)
5411 return;
a4234bfc 5412
fd0d000b 5413 perf_sample_data_init(&data, addr, 0);
92bf309a 5414
a8b0ca17 5415 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5416
5417 perf_swevent_put_recursion_context(rctx);
1c024eca 5418 preempt_enable_notrace();
b8e83514
PZ
5419}
5420
cdd6c482 5421static void perf_swevent_read(struct perf_event *event)
15dbf27c 5422{
15dbf27c
PZ
5423}
5424
a4eaf7f1 5425static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5426{
b28ab83c 5427 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5428 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5429 struct hlist_head *head;
5430
6c7e550f 5431 if (is_sampling_event(event)) {
7b4b6658 5432 hwc->last_period = hwc->sample_period;
cdd6c482 5433 perf_swevent_set_period(event);
7b4b6658 5434 }
76e1d904 5435
a4eaf7f1
PZ
5436 hwc->state = !(flags & PERF_EF_START);
5437
b28ab83c 5438 head = find_swevent_head(swhash, event);
26616604
JO
5439 if (!head) {
5440 /*
5441 * We can race with cpu hotplug code. Do not
5442 * WARN if the cpu just got unplugged.
5443 */
5444 WARN_ON_ONCE(swhash->online);
76e1d904 5445 return -EINVAL;
26616604 5446 }
76e1d904
FW
5447
5448 hlist_add_head_rcu(&event->hlist_entry, head);
5449
15dbf27c
PZ
5450 return 0;
5451}
5452
a4eaf7f1 5453static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5454{
76e1d904 5455 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5456}
5457
a4eaf7f1 5458static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5459{
a4eaf7f1 5460 event->hw.state = 0;
d6d020e9 5461}
aa9c4c0f 5462
a4eaf7f1 5463static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5464{
a4eaf7f1 5465 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5466}
5467
49f135ed
FW
5468/* Deref the hlist from the update side */
5469static inline struct swevent_hlist *
b28ab83c 5470swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5471{
b28ab83c
PZ
5472 return rcu_dereference_protected(swhash->swevent_hlist,
5473 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5474}
5475
b28ab83c 5476static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5477{
b28ab83c 5478 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5479
49f135ed 5480 if (!hlist)
76e1d904
FW
5481 return;
5482
b28ab83c 5483 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5484 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5485}
5486
5487static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5488{
b28ab83c 5489 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5490
b28ab83c 5491 mutex_lock(&swhash->hlist_mutex);
76e1d904 5492
b28ab83c
PZ
5493 if (!--swhash->hlist_refcount)
5494 swevent_hlist_release(swhash);
76e1d904 5495
b28ab83c 5496 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5497}
5498
5499static void swevent_hlist_put(struct perf_event *event)
5500{
5501 int cpu;
5502
5503 if (event->cpu != -1) {
5504 swevent_hlist_put_cpu(event, event->cpu);
5505 return;
5506 }
5507
5508 for_each_possible_cpu(cpu)
5509 swevent_hlist_put_cpu(event, cpu);
5510}
5511
5512static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5513{
b28ab83c 5514 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5515 int err = 0;
5516
b28ab83c 5517 mutex_lock(&swhash->hlist_mutex);
76e1d904 5518
b28ab83c 5519 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5520 struct swevent_hlist *hlist;
5521
5522 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5523 if (!hlist) {
5524 err = -ENOMEM;
5525 goto exit;
5526 }
b28ab83c 5527 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5528 }
b28ab83c 5529 swhash->hlist_refcount++;
9ed6060d 5530exit:
b28ab83c 5531 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5532
5533 return err;
5534}
5535
5536static int swevent_hlist_get(struct perf_event *event)
5537{
5538 int err;
5539 int cpu, failed_cpu;
5540
5541 if (event->cpu != -1)
5542 return swevent_hlist_get_cpu(event, event->cpu);
5543
5544 get_online_cpus();
5545 for_each_possible_cpu(cpu) {
5546 err = swevent_hlist_get_cpu(event, cpu);
5547 if (err) {
5548 failed_cpu = cpu;
5549 goto fail;
5550 }
5551 }
5552 put_online_cpus();
5553
5554 return 0;
9ed6060d 5555fail:
76e1d904
FW
5556 for_each_possible_cpu(cpu) {
5557 if (cpu == failed_cpu)
5558 break;
5559 swevent_hlist_put_cpu(event, cpu);
5560 }
5561
5562 put_online_cpus();
5563 return err;
5564}
5565
c5905afb 5566struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5567
b0a873eb
PZ
5568static void sw_perf_event_destroy(struct perf_event *event)
5569{
5570 u64 event_id = event->attr.config;
95476b64 5571
b0a873eb
PZ
5572 WARN_ON(event->parent);
5573
c5905afb 5574 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5575 swevent_hlist_put(event);
5576}
5577
5578static int perf_swevent_init(struct perf_event *event)
5579{
8176cced 5580 u64 event_id = event->attr.config;
b0a873eb
PZ
5581
5582 if (event->attr.type != PERF_TYPE_SOFTWARE)
5583 return -ENOENT;
5584
2481c5fa
SE
5585 /*
5586 * no branch sampling for software events
5587 */
5588 if (has_branch_stack(event))
5589 return -EOPNOTSUPP;
5590
b0a873eb
PZ
5591 switch (event_id) {
5592 case PERF_COUNT_SW_CPU_CLOCK:
5593 case PERF_COUNT_SW_TASK_CLOCK:
5594 return -ENOENT;
5595
5596 default:
5597 break;
5598 }
5599
ce677831 5600 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5601 return -ENOENT;
5602
5603 if (!event->parent) {
5604 int err;
5605
5606 err = swevent_hlist_get(event);
5607 if (err)
5608 return err;
5609
c5905afb 5610 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5611 event->destroy = sw_perf_event_destroy;
5612 }
5613
5614 return 0;
5615}
5616
35edc2a5
PZ
5617static int perf_swevent_event_idx(struct perf_event *event)
5618{
5619 return 0;
5620}
5621
b0a873eb 5622static struct pmu perf_swevent = {
89a1e187 5623 .task_ctx_nr = perf_sw_context,
95476b64 5624
b0a873eb 5625 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5626 .add = perf_swevent_add,
5627 .del = perf_swevent_del,
5628 .start = perf_swevent_start,
5629 .stop = perf_swevent_stop,
1c024eca 5630 .read = perf_swevent_read,
35edc2a5
PZ
5631
5632 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5633};
5634
b0a873eb
PZ
5635#ifdef CONFIG_EVENT_TRACING
5636
1c024eca
PZ
5637static int perf_tp_filter_match(struct perf_event *event,
5638 struct perf_sample_data *data)
5639{
5640 void *record = data->raw->data;
5641
05c55825
PZ
5642 /* only top level events have filters set */
5643 if (event->parent)
5644 event = event->parent;
5645
1c024eca
PZ
5646 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5647 return 1;
5648 return 0;
5649}
5650
5651static int perf_tp_event_match(struct perf_event *event,
5652 struct perf_sample_data *data,
5653 struct pt_regs *regs)
5654{
a0f7d0f7
FW
5655 if (event->hw.state & PERF_HES_STOPPED)
5656 return 0;
580d607c
PZ
5657 /*
5658 * All tracepoints are from kernel-space.
5659 */
5660 if (event->attr.exclude_kernel)
1c024eca
PZ
5661 return 0;
5662
5663 if (!perf_tp_filter_match(event, data))
5664 return 0;
5665
5666 return 1;
5667}
5668
5669void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5670 struct pt_regs *regs, struct hlist_head *head, int rctx,
5671 struct task_struct *task)
95476b64
FW
5672{
5673 struct perf_sample_data data;
1c024eca 5674 struct perf_event *event;
1c024eca 5675
95476b64
FW
5676 struct perf_raw_record raw = {
5677 .size = entry_size,
5678 .data = record,
5679 };
5680
fd0d000b 5681 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5682 data.raw = &raw;
5683
b67bfe0d 5684 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5685 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5686 perf_swevent_event(event, count, &data, regs);
4f41c013 5687 }
ecc55f84 5688
e6dab5ff
AV
5689 /*
5690 * If we got specified a target task, also iterate its context and
5691 * deliver this event there too.
5692 */
5693 if (task && task != current) {
5694 struct perf_event_context *ctx;
5695 struct trace_entry *entry = record;
5696
5697 rcu_read_lock();
5698 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5699 if (!ctx)
5700 goto unlock;
5701
5702 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5703 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5704 continue;
5705 if (event->attr.config != entry->type)
5706 continue;
5707 if (perf_tp_event_match(event, &data, regs))
5708 perf_swevent_event(event, count, &data, regs);
5709 }
5710unlock:
5711 rcu_read_unlock();
5712 }
5713
ecc55f84 5714 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5715}
5716EXPORT_SYMBOL_GPL(perf_tp_event);
5717
cdd6c482 5718static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5719{
1c024eca 5720 perf_trace_destroy(event);
e077df4f
PZ
5721}
5722
b0a873eb 5723static int perf_tp_event_init(struct perf_event *event)
e077df4f 5724{
76e1d904
FW
5725 int err;
5726
b0a873eb
PZ
5727 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5728 return -ENOENT;
5729
2481c5fa
SE
5730 /*
5731 * no branch sampling for tracepoint events
5732 */
5733 if (has_branch_stack(event))
5734 return -EOPNOTSUPP;
5735
1c024eca
PZ
5736 err = perf_trace_init(event);
5737 if (err)
b0a873eb 5738 return err;
e077df4f 5739
cdd6c482 5740 event->destroy = tp_perf_event_destroy;
e077df4f 5741
b0a873eb
PZ
5742 return 0;
5743}
5744
5745static struct pmu perf_tracepoint = {
89a1e187
PZ
5746 .task_ctx_nr = perf_sw_context,
5747
b0a873eb 5748 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5749 .add = perf_trace_add,
5750 .del = perf_trace_del,
5751 .start = perf_swevent_start,
5752 .stop = perf_swevent_stop,
b0a873eb 5753 .read = perf_swevent_read,
35edc2a5
PZ
5754
5755 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5756};
5757
5758static inline void perf_tp_register(void)
5759{
2e80a82a 5760 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5761}
6fb2915d
LZ
5762
5763static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5764{
5765 char *filter_str;
5766 int ret;
5767
5768 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5769 return -EINVAL;
5770
5771 filter_str = strndup_user(arg, PAGE_SIZE);
5772 if (IS_ERR(filter_str))
5773 return PTR_ERR(filter_str);
5774
5775 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5776
5777 kfree(filter_str);
5778 return ret;
5779}
5780
5781static void perf_event_free_filter(struct perf_event *event)
5782{
5783 ftrace_profile_free_filter(event);
5784}
5785
e077df4f 5786#else
6fb2915d 5787
b0a873eb 5788static inline void perf_tp_register(void)
e077df4f 5789{
e077df4f 5790}
6fb2915d
LZ
5791
5792static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5793{
5794 return -ENOENT;
5795}
5796
5797static void perf_event_free_filter(struct perf_event *event)
5798{
5799}
5800
07b139c8 5801#endif /* CONFIG_EVENT_TRACING */
e077df4f 5802
24f1e32c 5803#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5804void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5805{
f5ffe02e
FW
5806 struct perf_sample_data sample;
5807 struct pt_regs *regs = data;
5808
fd0d000b 5809 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5810
a4eaf7f1 5811 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5812 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5813}
5814#endif
5815
b0a873eb
PZ
5816/*
5817 * hrtimer based swevent callback
5818 */
f29ac756 5819
b0a873eb 5820static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5821{
b0a873eb
PZ
5822 enum hrtimer_restart ret = HRTIMER_RESTART;
5823 struct perf_sample_data data;
5824 struct pt_regs *regs;
5825 struct perf_event *event;
5826 u64 period;
f29ac756 5827
b0a873eb 5828 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5829
5830 if (event->state != PERF_EVENT_STATE_ACTIVE)
5831 return HRTIMER_NORESTART;
5832
b0a873eb 5833 event->pmu->read(event);
f344011c 5834
fd0d000b 5835 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5836 regs = get_irq_regs();
5837
5838 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5839 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5840 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5841 ret = HRTIMER_NORESTART;
5842 }
24f1e32c 5843
b0a873eb
PZ
5844 period = max_t(u64, 10000, event->hw.sample_period);
5845 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5846
b0a873eb 5847 return ret;
f29ac756
PZ
5848}
5849
b0a873eb 5850static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5851{
b0a873eb 5852 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5853 s64 period;
5854
5855 if (!is_sampling_event(event))
5856 return;
f5ffe02e 5857
5d508e82
FBH
5858 period = local64_read(&hwc->period_left);
5859 if (period) {
5860 if (period < 0)
5861 period = 10000;
fa407f35 5862
5d508e82
FBH
5863 local64_set(&hwc->period_left, 0);
5864 } else {
5865 period = max_t(u64, 10000, hwc->sample_period);
5866 }
5867 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5868 ns_to_ktime(period), 0,
b5ab4cd5 5869 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5870}
b0a873eb
PZ
5871
5872static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5873{
b0a873eb
PZ
5874 struct hw_perf_event *hwc = &event->hw;
5875
6c7e550f 5876 if (is_sampling_event(event)) {
b0a873eb 5877 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5878 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5879
5880 hrtimer_cancel(&hwc->hrtimer);
5881 }
24f1e32c
FW
5882}
5883
ba3dd36c
PZ
5884static void perf_swevent_init_hrtimer(struct perf_event *event)
5885{
5886 struct hw_perf_event *hwc = &event->hw;
5887
5888 if (!is_sampling_event(event))
5889 return;
5890
5891 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5892 hwc->hrtimer.function = perf_swevent_hrtimer;
5893
5894 /*
5895 * Since hrtimers have a fixed rate, we can do a static freq->period
5896 * mapping and avoid the whole period adjust feedback stuff.
5897 */
5898 if (event->attr.freq) {
5899 long freq = event->attr.sample_freq;
5900
5901 event->attr.sample_period = NSEC_PER_SEC / freq;
5902 hwc->sample_period = event->attr.sample_period;
5903 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5904 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5905 event->attr.freq = 0;
5906 }
5907}
5908
b0a873eb
PZ
5909/*
5910 * Software event: cpu wall time clock
5911 */
5912
5913static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5914{
b0a873eb
PZ
5915 s64 prev;
5916 u64 now;
5917
a4eaf7f1 5918 now = local_clock();
b0a873eb
PZ
5919 prev = local64_xchg(&event->hw.prev_count, now);
5920 local64_add(now - prev, &event->count);
24f1e32c 5921}
24f1e32c 5922
a4eaf7f1 5923static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5924{
a4eaf7f1 5925 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5926 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5927}
5928
a4eaf7f1 5929static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5930{
b0a873eb
PZ
5931 perf_swevent_cancel_hrtimer(event);
5932 cpu_clock_event_update(event);
5933}
f29ac756 5934
a4eaf7f1
PZ
5935static int cpu_clock_event_add(struct perf_event *event, int flags)
5936{
5937 if (flags & PERF_EF_START)
5938 cpu_clock_event_start(event, flags);
5939
5940 return 0;
5941}
5942
5943static void cpu_clock_event_del(struct perf_event *event, int flags)
5944{
5945 cpu_clock_event_stop(event, flags);
5946}
5947
b0a873eb
PZ
5948static void cpu_clock_event_read(struct perf_event *event)
5949{
5950 cpu_clock_event_update(event);
5951}
f344011c 5952
b0a873eb
PZ
5953static int cpu_clock_event_init(struct perf_event *event)
5954{
5955 if (event->attr.type != PERF_TYPE_SOFTWARE)
5956 return -ENOENT;
5957
5958 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5959 return -ENOENT;
5960
2481c5fa
SE
5961 /*
5962 * no branch sampling for software events
5963 */
5964 if (has_branch_stack(event))
5965 return -EOPNOTSUPP;
5966
ba3dd36c
PZ
5967 perf_swevent_init_hrtimer(event);
5968
b0a873eb 5969 return 0;
f29ac756
PZ
5970}
5971
b0a873eb 5972static struct pmu perf_cpu_clock = {
89a1e187
PZ
5973 .task_ctx_nr = perf_sw_context,
5974
b0a873eb 5975 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5976 .add = cpu_clock_event_add,
5977 .del = cpu_clock_event_del,
5978 .start = cpu_clock_event_start,
5979 .stop = cpu_clock_event_stop,
b0a873eb 5980 .read = cpu_clock_event_read,
35edc2a5
PZ
5981
5982 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5983};
5984
5985/*
5986 * Software event: task time clock
5987 */
5988
5989static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5990{
b0a873eb
PZ
5991 u64 prev;
5992 s64 delta;
5c92d124 5993
b0a873eb
PZ
5994 prev = local64_xchg(&event->hw.prev_count, now);
5995 delta = now - prev;
5996 local64_add(delta, &event->count);
5997}
5c92d124 5998
a4eaf7f1 5999static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6000{
a4eaf7f1 6001 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6002 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6003}
6004
a4eaf7f1 6005static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6006{
6007 perf_swevent_cancel_hrtimer(event);
6008 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6009}
6010
6011static int task_clock_event_add(struct perf_event *event, int flags)
6012{
6013 if (flags & PERF_EF_START)
6014 task_clock_event_start(event, flags);
b0a873eb 6015
a4eaf7f1
PZ
6016 return 0;
6017}
6018
6019static void task_clock_event_del(struct perf_event *event, int flags)
6020{
6021 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6022}
6023
6024static void task_clock_event_read(struct perf_event *event)
6025{
768a06e2
PZ
6026 u64 now = perf_clock();
6027 u64 delta = now - event->ctx->timestamp;
6028 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6029
6030 task_clock_event_update(event, time);
6031}
6032
6033static int task_clock_event_init(struct perf_event *event)
6fb2915d 6034{
b0a873eb
PZ
6035 if (event->attr.type != PERF_TYPE_SOFTWARE)
6036 return -ENOENT;
6037
6038 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6039 return -ENOENT;
6040
2481c5fa
SE
6041 /*
6042 * no branch sampling for software events
6043 */
6044 if (has_branch_stack(event))
6045 return -EOPNOTSUPP;
6046
ba3dd36c
PZ
6047 perf_swevent_init_hrtimer(event);
6048
b0a873eb 6049 return 0;
6fb2915d
LZ
6050}
6051
b0a873eb 6052static struct pmu perf_task_clock = {
89a1e187
PZ
6053 .task_ctx_nr = perf_sw_context,
6054
b0a873eb 6055 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6056 .add = task_clock_event_add,
6057 .del = task_clock_event_del,
6058 .start = task_clock_event_start,
6059 .stop = task_clock_event_stop,
b0a873eb 6060 .read = task_clock_event_read,
35edc2a5
PZ
6061
6062 .event_idx = perf_swevent_event_idx,
b0a873eb 6063};
6fb2915d 6064
ad5133b7 6065static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6066{
e077df4f 6067}
6fb2915d 6068
ad5133b7 6069static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6070{
ad5133b7 6071 return 0;
6fb2915d
LZ
6072}
6073
ad5133b7 6074static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6075{
ad5133b7 6076 perf_pmu_disable(pmu);
6fb2915d
LZ
6077}
6078
ad5133b7
PZ
6079static int perf_pmu_commit_txn(struct pmu *pmu)
6080{
6081 perf_pmu_enable(pmu);
6082 return 0;
6083}
e077df4f 6084
ad5133b7 6085static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6086{
ad5133b7 6087 perf_pmu_enable(pmu);
24f1e32c
FW
6088}
6089
35edc2a5
PZ
6090static int perf_event_idx_default(struct perf_event *event)
6091{
6092 return event->hw.idx + 1;
6093}
6094
8dc85d54
PZ
6095/*
6096 * Ensures all contexts with the same task_ctx_nr have the same
6097 * pmu_cpu_context too.
6098 */
6099static void *find_pmu_context(int ctxn)
24f1e32c 6100{
8dc85d54 6101 struct pmu *pmu;
b326e956 6102
8dc85d54
PZ
6103 if (ctxn < 0)
6104 return NULL;
24f1e32c 6105
8dc85d54
PZ
6106 list_for_each_entry(pmu, &pmus, entry) {
6107 if (pmu->task_ctx_nr == ctxn)
6108 return pmu->pmu_cpu_context;
6109 }
24f1e32c 6110
8dc85d54 6111 return NULL;
24f1e32c
FW
6112}
6113
51676957 6114static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6115{
51676957
PZ
6116 int cpu;
6117
6118 for_each_possible_cpu(cpu) {
6119 struct perf_cpu_context *cpuctx;
6120
6121 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6122
3f1f3320
PZ
6123 if (cpuctx->unique_pmu == old_pmu)
6124 cpuctx->unique_pmu = pmu;
51676957
PZ
6125 }
6126}
6127
6128static void free_pmu_context(struct pmu *pmu)
6129{
6130 struct pmu *i;
f5ffe02e 6131
8dc85d54 6132 mutex_lock(&pmus_lock);
0475f9ea 6133 /*
8dc85d54 6134 * Like a real lame refcount.
0475f9ea 6135 */
51676957
PZ
6136 list_for_each_entry(i, &pmus, entry) {
6137 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6138 update_pmu_context(i, pmu);
8dc85d54 6139 goto out;
51676957 6140 }
8dc85d54 6141 }
d6d020e9 6142
51676957 6143 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6144out:
6145 mutex_unlock(&pmus_lock);
24f1e32c 6146}
2e80a82a 6147static struct idr pmu_idr;
d6d020e9 6148
abe43400
PZ
6149static ssize_t
6150type_show(struct device *dev, struct device_attribute *attr, char *page)
6151{
6152 struct pmu *pmu = dev_get_drvdata(dev);
6153
6154 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6155}
6156
6157static struct device_attribute pmu_dev_attrs[] = {
6158 __ATTR_RO(type),
6159 __ATTR_NULL,
6160};
6161
6162static int pmu_bus_running;
6163static struct bus_type pmu_bus = {
6164 .name = "event_source",
6165 .dev_attrs = pmu_dev_attrs,
6166};
6167
6168static void pmu_dev_release(struct device *dev)
6169{
6170 kfree(dev);
6171}
6172
6173static int pmu_dev_alloc(struct pmu *pmu)
6174{
6175 int ret = -ENOMEM;
6176
6177 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6178 if (!pmu->dev)
6179 goto out;
6180
0c9d42ed 6181 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6182 device_initialize(pmu->dev);
6183 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6184 if (ret)
6185 goto free_dev;
6186
6187 dev_set_drvdata(pmu->dev, pmu);
6188 pmu->dev->bus = &pmu_bus;
6189 pmu->dev->release = pmu_dev_release;
6190 ret = device_add(pmu->dev);
6191 if (ret)
6192 goto free_dev;
6193
6194out:
6195 return ret;
6196
6197free_dev:
6198 put_device(pmu->dev);
6199 goto out;
6200}
6201
547e9fd7 6202static struct lock_class_key cpuctx_mutex;
facc4307 6203static struct lock_class_key cpuctx_lock;
547e9fd7 6204
2e80a82a 6205int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 6206{
108b02cf 6207 int cpu, ret;
24f1e32c 6208
b0a873eb 6209 mutex_lock(&pmus_lock);
33696fc0
PZ
6210 ret = -ENOMEM;
6211 pmu->pmu_disable_count = alloc_percpu(int);
6212 if (!pmu->pmu_disable_count)
6213 goto unlock;
f29ac756 6214
2e80a82a
PZ
6215 pmu->type = -1;
6216 if (!name)
6217 goto skip_type;
6218 pmu->name = name;
6219
6220 if (type < 0) {
0e9c3be2
TH
6221 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6222 if (type < 0) {
6223 ret = type;
2e80a82a
PZ
6224 goto free_pdc;
6225 }
6226 }
6227 pmu->type = type;
6228
abe43400
PZ
6229 if (pmu_bus_running) {
6230 ret = pmu_dev_alloc(pmu);
6231 if (ret)
6232 goto free_idr;
6233 }
6234
2e80a82a 6235skip_type:
8dc85d54
PZ
6236 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6237 if (pmu->pmu_cpu_context)
6238 goto got_cpu_context;
f29ac756 6239
c4814202 6240 ret = -ENOMEM;
108b02cf
PZ
6241 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6242 if (!pmu->pmu_cpu_context)
abe43400 6243 goto free_dev;
f344011c 6244
108b02cf
PZ
6245 for_each_possible_cpu(cpu) {
6246 struct perf_cpu_context *cpuctx;
6247
6248 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6249 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6250 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6251 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6252 cpuctx->ctx.type = cpu_context;
108b02cf 6253 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
6254 cpuctx->jiffies_interval = 1;
6255 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6256 cpuctx->unique_pmu = pmu;
108b02cf 6257 }
76e1d904 6258
8dc85d54 6259got_cpu_context:
ad5133b7
PZ
6260 if (!pmu->start_txn) {
6261 if (pmu->pmu_enable) {
6262 /*
6263 * If we have pmu_enable/pmu_disable calls, install
6264 * transaction stubs that use that to try and batch
6265 * hardware accesses.
6266 */
6267 pmu->start_txn = perf_pmu_start_txn;
6268 pmu->commit_txn = perf_pmu_commit_txn;
6269 pmu->cancel_txn = perf_pmu_cancel_txn;
6270 } else {
6271 pmu->start_txn = perf_pmu_nop_void;
6272 pmu->commit_txn = perf_pmu_nop_int;
6273 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6274 }
5c92d124 6275 }
15dbf27c 6276
ad5133b7
PZ
6277 if (!pmu->pmu_enable) {
6278 pmu->pmu_enable = perf_pmu_nop_void;
6279 pmu->pmu_disable = perf_pmu_nop_void;
6280 }
6281
35edc2a5
PZ
6282 if (!pmu->event_idx)
6283 pmu->event_idx = perf_event_idx_default;
6284
b0a873eb 6285 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6286 ret = 0;
6287unlock:
b0a873eb
PZ
6288 mutex_unlock(&pmus_lock);
6289
33696fc0 6290 return ret;
108b02cf 6291
abe43400
PZ
6292free_dev:
6293 device_del(pmu->dev);
6294 put_device(pmu->dev);
6295
2e80a82a
PZ
6296free_idr:
6297 if (pmu->type >= PERF_TYPE_MAX)
6298 idr_remove(&pmu_idr, pmu->type);
6299
108b02cf
PZ
6300free_pdc:
6301 free_percpu(pmu->pmu_disable_count);
6302 goto unlock;
f29ac756
PZ
6303}
6304
b0a873eb 6305void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6306{
b0a873eb
PZ
6307 mutex_lock(&pmus_lock);
6308 list_del_rcu(&pmu->entry);
6309 mutex_unlock(&pmus_lock);
5c92d124 6310
0475f9ea 6311 /*
cde8e884
PZ
6312 * We dereference the pmu list under both SRCU and regular RCU, so
6313 * synchronize against both of those.
0475f9ea 6314 */
b0a873eb 6315 synchronize_srcu(&pmus_srcu);
cde8e884 6316 synchronize_rcu();
d6d020e9 6317
33696fc0 6318 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6319 if (pmu->type >= PERF_TYPE_MAX)
6320 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6321 device_del(pmu->dev);
6322 put_device(pmu->dev);
51676957 6323 free_pmu_context(pmu);
b0a873eb 6324}
d6d020e9 6325
b0a873eb
PZ
6326struct pmu *perf_init_event(struct perf_event *event)
6327{
6328 struct pmu *pmu = NULL;
6329 int idx;
940c5b29 6330 int ret;
b0a873eb
PZ
6331
6332 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6333
6334 rcu_read_lock();
6335 pmu = idr_find(&pmu_idr, event->attr.type);
6336 rcu_read_unlock();
940c5b29 6337 if (pmu) {
7e5b2a01 6338 event->pmu = pmu;
940c5b29
LM
6339 ret = pmu->event_init(event);
6340 if (ret)
6341 pmu = ERR_PTR(ret);
2e80a82a 6342 goto unlock;
940c5b29 6343 }
2e80a82a 6344
b0a873eb 6345 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6346 event->pmu = pmu;
940c5b29 6347 ret = pmu->event_init(event);
b0a873eb 6348 if (!ret)
e5f4d339 6349 goto unlock;
76e1d904 6350
b0a873eb
PZ
6351 if (ret != -ENOENT) {
6352 pmu = ERR_PTR(ret);
e5f4d339 6353 goto unlock;
f344011c 6354 }
5c92d124 6355 }
e5f4d339
PZ
6356 pmu = ERR_PTR(-ENOENT);
6357unlock:
b0a873eb 6358 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6359
4aeb0b42 6360 return pmu;
5c92d124
IM
6361}
6362
0793a61d 6363/*
cdd6c482 6364 * Allocate and initialize a event structure
0793a61d 6365 */
cdd6c482 6366static struct perf_event *
c3f00c70 6367perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6368 struct task_struct *task,
6369 struct perf_event *group_leader,
6370 struct perf_event *parent_event,
4dc0da86
AK
6371 perf_overflow_handler_t overflow_handler,
6372 void *context)
0793a61d 6373{
51b0fe39 6374 struct pmu *pmu;
cdd6c482
IM
6375 struct perf_event *event;
6376 struct hw_perf_event *hwc;
d5d2bc0d 6377 long err;
0793a61d 6378
66832eb4
ON
6379 if ((unsigned)cpu >= nr_cpu_ids) {
6380 if (!task || cpu != -1)
6381 return ERR_PTR(-EINVAL);
6382 }
6383
c3f00c70 6384 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6385 if (!event)
d5d2bc0d 6386 return ERR_PTR(-ENOMEM);
0793a61d 6387
04289bb9 6388 /*
cdd6c482 6389 * Single events are their own group leaders, with an
04289bb9
IM
6390 * empty sibling list:
6391 */
6392 if (!group_leader)
cdd6c482 6393 group_leader = event;
04289bb9 6394
cdd6c482
IM
6395 mutex_init(&event->child_mutex);
6396 INIT_LIST_HEAD(&event->child_list);
fccc714b 6397
cdd6c482
IM
6398 INIT_LIST_HEAD(&event->group_entry);
6399 INIT_LIST_HEAD(&event->event_entry);
6400 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6401 INIT_LIST_HEAD(&event->rb_entry);
6402
cdd6c482 6403 init_waitqueue_head(&event->waitq);
e360adbe 6404 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6405
cdd6c482 6406 mutex_init(&event->mmap_mutex);
7b732a75 6407
a6fa941d 6408 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6409 event->cpu = cpu;
6410 event->attr = *attr;
6411 event->group_leader = group_leader;
6412 event->pmu = NULL;
cdd6c482 6413 event->oncpu = -1;
a96bbc16 6414
cdd6c482 6415 event->parent = parent_event;
b84fbc9f 6416
17cf22c3 6417 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6418 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6419
cdd6c482 6420 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6421
d580ff86
PZ
6422 if (task) {
6423 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6424
6425 if (attr->type == PERF_TYPE_TRACEPOINT)
6426 event->hw.tp_target = task;
d580ff86
PZ
6427#ifdef CONFIG_HAVE_HW_BREAKPOINT
6428 /*
6429 * hw_breakpoint is a bit difficult here..
6430 */
f22c1bb6 6431 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6432 event->hw.bp_target = task;
6433#endif
6434 }
6435
4dc0da86 6436 if (!overflow_handler && parent_event) {
b326e956 6437 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6438 context = parent_event->overflow_handler_context;
6439 }
66832eb4 6440
b326e956 6441 event->overflow_handler = overflow_handler;
4dc0da86 6442 event->overflow_handler_context = context;
97eaf530 6443
0231bb53 6444 perf_event__state_init(event);
a86ed508 6445
4aeb0b42 6446 pmu = NULL;
b8e83514 6447
cdd6c482 6448 hwc = &event->hw;
bd2b5b12 6449 hwc->sample_period = attr->sample_period;
0d48696f 6450 if (attr->freq && attr->sample_freq)
bd2b5b12 6451 hwc->sample_period = 1;
eced1dfc 6452 hwc->last_period = hwc->sample_period;
bd2b5b12 6453
e7850595 6454 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6455
2023b359 6456 /*
cdd6c482 6457 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6458 */
3dab77fb 6459 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6460 goto done;
6461
b0a873eb 6462 pmu = perf_init_event(event);
974802ea 6463
d5d2bc0d
PM
6464done:
6465 err = 0;
4aeb0b42 6466 if (!pmu)
d5d2bc0d 6467 err = -EINVAL;
4aeb0b42
RR
6468 else if (IS_ERR(pmu))
6469 err = PTR_ERR(pmu);
5c92d124 6470
d5d2bc0d 6471 if (err) {
cdd6c482
IM
6472 if (event->ns)
6473 put_pid_ns(event->ns);
6474 kfree(event);
d5d2bc0d 6475 return ERR_PTR(err);
621a01ea 6476 }
d5d2bc0d 6477
cdd6c482 6478 if (!event->parent) {
82cd6def 6479 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6480 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6481 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6482 atomic_inc(&nr_mmap_events);
6483 if (event->attr.comm)
6484 atomic_inc(&nr_comm_events);
6485 if (event->attr.task)
6486 atomic_inc(&nr_task_events);
927c7a9e
FW
6487 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6488 err = get_callchain_buffers();
6489 if (err) {
6490 free_event(event);
6491 return ERR_PTR(err);
6492 }
6493 }
d010b332
SE
6494 if (has_branch_stack(event)) {
6495 static_key_slow_inc(&perf_sched_events.key);
6496 if (!(event->attach_state & PERF_ATTACH_TASK))
6497 atomic_inc(&per_cpu(perf_branch_stack_events,
6498 event->cpu));
6499 }
f344011c 6500 }
9ee318a7 6501
cdd6c482 6502 return event;
0793a61d
TG
6503}
6504
cdd6c482
IM
6505static int perf_copy_attr(struct perf_event_attr __user *uattr,
6506 struct perf_event_attr *attr)
974802ea 6507{
974802ea 6508 u32 size;
cdf8073d 6509 int ret;
974802ea
PZ
6510
6511 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6512 return -EFAULT;
6513
6514 /*
6515 * zero the full structure, so that a short copy will be nice.
6516 */
6517 memset(attr, 0, sizeof(*attr));
6518
6519 ret = get_user(size, &uattr->size);
6520 if (ret)
6521 return ret;
6522
6523 if (size > PAGE_SIZE) /* silly large */
6524 goto err_size;
6525
6526 if (!size) /* abi compat */
6527 size = PERF_ATTR_SIZE_VER0;
6528
6529 if (size < PERF_ATTR_SIZE_VER0)
6530 goto err_size;
6531
6532 /*
6533 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6534 * ensure all the unknown bits are 0 - i.e. new
6535 * user-space does not rely on any kernel feature
6536 * extensions we dont know about yet.
974802ea
PZ
6537 */
6538 if (size > sizeof(*attr)) {
cdf8073d
IS
6539 unsigned char __user *addr;
6540 unsigned char __user *end;
6541 unsigned char val;
974802ea 6542
cdf8073d
IS
6543 addr = (void __user *)uattr + sizeof(*attr);
6544 end = (void __user *)uattr + size;
974802ea 6545
cdf8073d 6546 for (; addr < end; addr++) {
974802ea
PZ
6547 ret = get_user(val, addr);
6548 if (ret)
6549 return ret;
6550 if (val)
6551 goto err_size;
6552 }
b3e62e35 6553 size = sizeof(*attr);
974802ea
PZ
6554 }
6555
6556 ret = copy_from_user(attr, uattr, size);
6557 if (ret)
6558 return -EFAULT;
6559
cd757645 6560 if (attr->__reserved_1)
974802ea
PZ
6561 return -EINVAL;
6562
6563 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6564 return -EINVAL;
6565
6566 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6567 return -EINVAL;
6568
bce38cd5
SE
6569 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6570 u64 mask = attr->branch_sample_type;
6571
6572 /* only using defined bits */
6573 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6574 return -EINVAL;
6575
6576 /* at least one branch bit must be set */
6577 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6578 return -EINVAL;
6579
6580 /* kernel level capture: check permissions */
6581 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6582 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6583 return -EACCES;
6584
6585 /* propagate priv level, when not set for branch */
6586 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6587
6588 /* exclude_kernel checked on syscall entry */
6589 if (!attr->exclude_kernel)
6590 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6591
6592 if (!attr->exclude_user)
6593 mask |= PERF_SAMPLE_BRANCH_USER;
6594
6595 if (!attr->exclude_hv)
6596 mask |= PERF_SAMPLE_BRANCH_HV;
6597 /*
6598 * adjust user setting (for HW filter setup)
6599 */
6600 attr->branch_sample_type = mask;
6601 }
6602 }
4018994f 6603
c5ebcedb 6604 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6605 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6606 if (ret)
6607 return ret;
6608 }
6609
6610 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6611 if (!arch_perf_have_user_stack_dump())
6612 return -ENOSYS;
6613
6614 /*
6615 * We have __u32 type for the size, but so far
6616 * we can only use __u16 as maximum due to the
6617 * __u16 sample size limit.
6618 */
6619 if (attr->sample_stack_user >= USHRT_MAX)
6620 ret = -EINVAL;
6621 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6622 ret = -EINVAL;
6623 }
4018994f 6624
974802ea
PZ
6625out:
6626 return ret;
6627
6628err_size:
6629 put_user(sizeof(*attr), &uattr->size);
6630 ret = -E2BIG;
6631 goto out;
6632}
6633
ac9721f3
PZ
6634static int
6635perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6636{
76369139 6637 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6638 int ret = -EINVAL;
6639
ac9721f3 6640 if (!output_event)
a4be7c27
PZ
6641 goto set;
6642
ac9721f3
PZ
6643 /* don't allow circular references */
6644 if (event == output_event)
a4be7c27
PZ
6645 goto out;
6646
0f139300
PZ
6647 /*
6648 * Don't allow cross-cpu buffers
6649 */
6650 if (output_event->cpu != event->cpu)
6651 goto out;
6652
6653 /*
76369139 6654 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6655 */
6656 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6657 goto out;
6658
a4be7c27 6659set:
cdd6c482 6660 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6661 /* Can't redirect output if we've got an active mmap() */
6662 if (atomic_read(&event->mmap_count))
6663 goto unlock;
a4be7c27 6664
9bb5d40c
PZ
6665 old_rb = event->rb;
6666
ac9721f3 6667 if (output_event) {
76369139
FW
6668 /* get the rb we want to redirect to */
6669 rb = ring_buffer_get(output_event);
6670 if (!rb)
ac9721f3 6671 goto unlock;
a4be7c27
PZ
6672 }
6673
10c6db11
PZ
6674 if (old_rb)
6675 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6676
6677 if (rb)
6678 ring_buffer_attach(event, rb);
6679
6680 rcu_assign_pointer(event->rb, rb);
6681
6682 if (old_rb) {
6683 ring_buffer_put(old_rb);
6684 /*
6685 * Since we detached before setting the new rb, so that we
6686 * could attach the new rb, we could have missed a wakeup.
6687 * Provide it now.
6688 */
6689 wake_up_all(&event->waitq);
6690 }
6691
a4be7c27 6692 ret = 0;
ac9721f3
PZ
6693unlock:
6694 mutex_unlock(&event->mmap_mutex);
6695
a4be7c27 6696out:
a4be7c27
PZ
6697 return ret;
6698}
6699
0793a61d 6700/**
cdd6c482 6701 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6702 *
cdd6c482 6703 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6704 * @pid: target pid
9f66a381 6705 * @cpu: target cpu
cdd6c482 6706 * @group_fd: group leader event fd
0793a61d 6707 */
cdd6c482
IM
6708SYSCALL_DEFINE5(perf_event_open,
6709 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6710 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6711{
b04243ef
PZ
6712 struct perf_event *group_leader = NULL, *output_event = NULL;
6713 struct perf_event *event, *sibling;
cdd6c482
IM
6714 struct perf_event_attr attr;
6715 struct perf_event_context *ctx;
6716 struct file *event_file = NULL;
2903ff01 6717 struct fd group = {NULL, 0};
38a81da2 6718 struct task_struct *task = NULL;
89a1e187 6719 struct pmu *pmu;
ea635c64 6720 int event_fd;
b04243ef 6721 int move_group = 0;
dc86cabe 6722 int err;
0793a61d 6723
2743a5b0 6724 /* for future expandability... */
e5d1367f 6725 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6726 return -EINVAL;
6727
dc86cabe
IM
6728 err = perf_copy_attr(attr_uptr, &attr);
6729 if (err)
6730 return err;
eab656ae 6731
0764771d
PZ
6732 if (!attr.exclude_kernel) {
6733 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6734 return -EACCES;
6735 }
6736
df58ab24 6737 if (attr.freq) {
cdd6c482 6738 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 6739 return -EINVAL;
95090e8a
PZ
6740 } else {
6741 if (attr.sample_period & (1ULL << 63))
6742 return -EINVAL;
df58ab24
PZ
6743 }
6744
e5d1367f
SE
6745 /*
6746 * In cgroup mode, the pid argument is used to pass the fd
6747 * opened to the cgroup directory in cgroupfs. The cpu argument
6748 * designates the cpu on which to monitor threads from that
6749 * cgroup.
6750 */
6751 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6752 return -EINVAL;
6753
ab72a702 6754 event_fd = get_unused_fd();
ea635c64
AV
6755 if (event_fd < 0)
6756 return event_fd;
6757
ac9721f3 6758 if (group_fd != -1) {
2903ff01
AV
6759 err = perf_fget_light(group_fd, &group);
6760 if (err)
d14b12d7 6761 goto err_fd;
2903ff01 6762 group_leader = group.file->private_data;
ac9721f3
PZ
6763 if (flags & PERF_FLAG_FD_OUTPUT)
6764 output_event = group_leader;
6765 if (flags & PERF_FLAG_FD_NO_GROUP)
6766 group_leader = NULL;
6767 }
6768
e5d1367f 6769 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6770 task = find_lively_task_by_vpid(pid);
6771 if (IS_ERR(task)) {
6772 err = PTR_ERR(task);
6773 goto err_group_fd;
6774 }
6775 }
6776
fbfc623f
YZ
6777 get_online_cpus();
6778
4dc0da86
AK
6779 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6780 NULL, NULL);
d14b12d7
SE
6781 if (IS_ERR(event)) {
6782 err = PTR_ERR(event);
c6be5a5c 6783 goto err_task;
d14b12d7
SE
6784 }
6785
e5d1367f
SE
6786 if (flags & PERF_FLAG_PID_CGROUP) {
6787 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6788 if (err)
6789 goto err_alloc;
08309379
PZ
6790 /*
6791 * one more event:
6792 * - that has cgroup constraint on event->cpu
6793 * - that may need work on context switch
6794 */
6795 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6796 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6797 }
6798
89a1e187
PZ
6799 /*
6800 * Special case software events and allow them to be part of
6801 * any hardware group.
6802 */
6803 pmu = event->pmu;
b04243ef
PZ
6804
6805 if (group_leader &&
6806 (is_software_event(event) != is_software_event(group_leader))) {
6807 if (is_software_event(event)) {
6808 /*
6809 * If event and group_leader are not both a software
6810 * event, and event is, then group leader is not.
6811 *
6812 * Allow the addition of software events to !software
6813 * groups, this is safe because software events never
6814 * fail to schedule.
6815 */
6816 pmu = group_leader->pmu;
6817 } else if (is_software_event(group_leader) &&
6818 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6819 /*
6820 * In case the group is a pure software group, and we
6821 * try to add a hardware event, move the whole group to
6822 * the hardware context.
6823 */
6824 move_group = 1;
6825 }
6826 }
89a1e187
PZ
6827
6828 /*
6829 * Get the target context (task or percpu):
6830 */
e2d37cd2 6831 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6832 if (IS_ERR(ctx)) {
6833 err = PTR_ERR(ctx);
c6be5a5c 6834 goto err_alloc;
89a1e187
PZ
6835 }
6836
fd1edb3a
PZ
6837 if (task) {
6838 put_task_struct(task);
6839 task = NULL;
6840 }
6841
ccff286d 6842 /*
cdd6c482 6843 * Look up the group leader (we will attach this event to it):
04289bb9 6844 */
ac9721f3 6845 if (group_leader) {
dc86cabe 6846 err = -EINVAL;
04289bb9 6847
04289bb9 6848 /*
ccff286d
IM
6849 * Do not allow a recursive hierarchy (this new sibling
6850 * becoming part of another group-sibling):
6851 */
6852 if (group_leader->group_leader != group_leader)
c3f00c70 6853 goto err_context;
ccff286d
IM
6854 /*
6855 * Do not allow to attach to a group in a different
6856 * task or CPU context:
04289bb9 6857 */
b04243ef
PZ
6858 if (move_group) {
6859 if (group_leader->ctx->type != ctx->type)
6860 goto err_context;
6861 } else {
6862 if (group_leader->ctx != ctx)
6863 goto err_context;
6864 }
6865
3b6f9e5c
PM
6866 /*
6867 * Only a group leader can be exclusive or pinned
6868 */
0d48696f 6869 if (attr.exclusive || attr.pinned)
c3f00c70 6870 goto err_context;
ac9721f3
PZ
6871 }
6872
6873 if (output_event) {
6874 err = perf_event_set_output(event, output_event);
6875 if (err)
c3f00c70 6876 goto err_context;
ac9721f3 6877 }
0793a61d 6878
ea635c64
AV
6879 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6880 if (IS_ERR(event_file)) {
6881 err = PTR_ERR(event_file);
c3f00c70 6882 goto err_context;
ea635c64 6883 }
9b51f66d 6884
b04243ef
PZ
6885 if (move_group) {
6886 struct perf_event_context *gctx = group_leader->ctx;
6887
6888 mutex_lock(&gctx->mutex);
54b3f8df 6889 perf_remove_from_context(group_leader, false);
0231bb53
JO
6890
6891 /*
6892 * Removing from the context ends up with disabled
6893 * event. What we want here is event in the initial
6894 * startup state, ready to be add into new context.
6895 */
6896 perf_event__state_init(group_leader);
b04243ef
PZ
6897 list_for_each_entry(sibling, &group_leader->sibling_list,
6898 group_entry) {
54b3f8df 6899 perf_remove_from_context(sibling, false);
0231bb53 6900 perf_event__state_init(sibling);
b04243ef
PZ
6901 put_ctx(gctx);
6902 }
6903 mutex_unlock(&gctx->mutex);
6904 put_ctx(gctx);
ea635c64 6905 }
9b51f66d 6906
ad3a37de 6907 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6908 mutex_lock(&ctx->mutex);
b04243ef
PZ
6909
6910 if (move_group) {
0cda4c02 6911 synchronize_rcu();
d525563b 6912 perf_install_in_context(ctx, group_leader, group_leader->cpu);
b04243ef
PZ
6913 get_ctx(ctx);
6914 list_for_each_entry(sibling, &group_leader->sibling_list,
6915 group_entry) {
d525563b 6916 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
6917 get_ctx(ctx);
6918 }
6919 }
6920
e2d37cd2 6921 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6922 ++ctx->generation;
fe4b04fa 6923 perf_unpin_context(ctx);
d859e29f 6924 mutex_unlock(&ctx->mutex);
9b51f66d 6925
fbfc623f
YZ
6926 put_online_cpus();
6927
cdd6c482 6928 event->owner = current;
8882135b 6929
cdd6c482
IM
6930 mutex_lock(&current->perf_event_mutex);
6931 list_add_tail(&event->owner_entry, &current->perf_event_list);
6932 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6933
c320c7b7
ACM
6934 /*
6935 * Precalculate sample_data sizes
6936 */
6937 perf_event__header_size(event);
6844c09d 6938 perf_event__id_header_size(event);
c320c7b7 6939
8a49542c
PZ
6940 /*
6941 * Drop the reference on the group_event after placing the
6942 * new event on the sibling_list. This ensures destruction
6943 * of the group leader will find the pointer to itself in
6944 * perf_group_detach().
6945 */
2903ff01 6946 fdput(group);
ea635c64
AV
6947 fd_install(event_fd, event_file);
6948 return event_fd;
0793a61d 6949
c3f00c70 6950err_context:
fe4b04fa 6951 perf_unpin_context(ctx);
ea635c64 6952 put_ctx(ctx);
c6be5a5c 6953err_alloc:
ea635c64 6954 free_event(event);
e7d0bc04 6955err_task:
fbfc623f 6956 put_online_cpus();
e7d0bc04
PZ
6957 if (task)
6958 put_task_struct(task);
89a1e187 6959err_group_fd:
2903ff01 6960 fdput(group);
ea635c64
AV
6961err_fd:
6962 put_unused_fd(event_fd);
dc86cabe 6963 return err;
0793a61d
TG
6964}
6965
fb0459d7
AV
6966/**
6967 * perf_event_create_kernel_counter
6968 *
6969 * @attr: attributes of the counter to create
6970 * @cpu: cpu in which the counter is bound
38a81da2 6971 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6972 */
6973struct perf_event *
6974perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6975 struct task_struct *task,
4dc0da86
AK
6976 perf_overflow_handler_t overflow_handler,
6977 void *context)
fb0459d7 6978{
fb0459d7 6979 struct perf_event_context *ctx;
c3f00c70 6980 struct perf_event *event;
fb0459d7 6981 int err;
d859e29f 6982
fb0459d7
AV
6983 /*
6984 * Get the target context (task or percpu):
6985 */
d859e29f 6986
4dc0da86
AK
6987 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6988 overflow_handler, context);
c3f00c70
PZ
6989 if (IS_ERR(event)) {
6990 err = PTR_ERR(event);
6991 goto err;
6992 }
d859e29f 6993
38a81da2 6994 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6995 if (IS_ERR(ctx)) {
6996 err = PTR_ERR(ctx);
c3f00c70 6997 goto err_free;
d859e29f 6998 }
fb0459d7 6999
fb0459d7
AV
7000 WARN_ON_ONCE(ctx->parent_ctx);
7001 mutex_lock(&ctx->mutex);
7002 perf_install_in_context(ctx, event, cpu);
7003 ++ctx->generation;
fe4b04fa 7004 perf_unpin_context(ctx);
fb0459d7
AV
7005 mutex_unlock(&ctx->mutex);
7006
fb0459d7
AV
7007 return event;
7008
c3f00c70
PZ
7009err_free:
7010 free_event(event);
7011err:
c6567f64 7012 return ERR_PTR(err);
9b51f66d 7013}
fb0459d7 7014EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7015
0cda4c02
YZ
7016void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7017{
7018 struct perf_event_context *src_ctx;
7019 struct perf_event_context *dst_ctx;
7020 struct perf_event *event, *tmp;
7021 LIST_HEAD(events);
7022
7023 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7024 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7025
7026 mutex_lock(&src_ctx->mutex);
7027 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7028 event_entry) {
54b3f8df 7029 perf_remove_from_context(event, false);
0cda4c02
YZ
7030 put_ctx(src_ctx);
7031 list_add(&event->event_entry, &events);
7032 }
7033 mutex_unlock(&src_ctx->mutex);
7034
7035 synchronize_rcu();
7036
7037 mutex_lock(&dst_ctx->mutex);
7038 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7039 list_del(&event->event_entry);
7040 if (event->state >= PERF_EVENT_STATE_OFF)
7041 event->state = PERF_EVENT_STATE_INACTIVE;
7042 perf_install_in_context(dst_ctx, event, dst_cpu);
7043 get_ctx(dst_ctx);
7044 }
7045 mutex_unlock(&dst_ctx->mutex);
7046}
7047EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7048
cdd6c482 7049static void sync_child_event(struct perf_event *child_event,
38b200d6 7050 struct task_struct *child)
d859e29f 7051{
cdd6c482 7052 struct perf_event *parent_event = child_event->parent;
8bc20959 7053 u64 child_val;
d859e29f 7054
cdd6c482
IM
7055 if (child_event->attr.inherit_stat)
7056 perf_event_read_event(child_event, child);
38b200d6 7057
b5e58793 7058 child_val = perf_event_count(child_event);
d859e29f
PM
7059
7060 /*
7061 * Add back the child's count to the parent's count:
7062 */
a6e6dea6 7063 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7064 atomic64_add(child_event->total_time_enabled,
7065 &parent_event->child_total_time_enabled);
7066 atomic64_add(child_event->total_time_running,
7067 &parent_event->child_total_time_running);
d859e29f
PM
7068
7069 /*
cdd6c482 7070 * Remove this event from the parent's list
d859e29f 7071 */
cdd6c482
IM
7072 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7073 mutex_lock(&parent_event->child_mutex);
7074 list_del_init(&child_event->child_list);
7075 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7076
7077 /*
cdd6c482 7078 * Release the parent event, if this was the last
d859e29f
PM
7079 * reference to it.
7080 */
a6fa941d 7081 put_event(parent_event);
d859e29f
PM
7082}
7083
9b51f66d 7084static void
cdd6c482
IM
7085__perf_event_exit_task(struct perf_event *child_event,
7086 struct perf_event_context *child_ctx,
38b200d6 7087 struct task_struct *child)
9b51f66d 7088{
54b3f8df 7089 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7090
9b51f66d 7091 /*
38b435b1 7092 * It can happen that the parent exits first, and has events
9b51f66d 7093 * that are still around due to the child reference. These
38b435b1 7094 * events need to be zapped.
9b51f66d 7095 */
38b435b1 7096 if (child_event->parent) {
cdd6c482
IM
7097 sync_child_event(child_event, child);
7098 free_event(child_event);
4bcf349a 7099 }
9b51f66d
IM
7100}
7101
8dc85d54 7102static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7103{
cdd6c482
IM
7104 struct perf_event *child_event, *tmp;
7105 struct perf_event_context *child_ctx;
a63eaf34 7106 unsigned long flags;
9b51f66d 7107
8dc85d54 7108 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7109 perf_event_task(child, NULL, 0);
9b51f66d 7110 return;
9f498cc5 7111 }
9b51f66d 7112
a63eaf34 7113 local_irq_save(flags);
ad3a37de
PM
7114 /*
7115 * We can't reschedule here because interrupts are disabled,
7116 * and either child is current or it is a task that can't be
7117 * scheduled, so we are now safe from rescheduling changing
7118 * our context.
7119 */
806839b2 7120 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7121
7122 /*
7123 * Take the context lock here so that if find_get_context is
cdd6c482 7124 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7125 * incremented the context's refcount before we do put_ctx below.
7126 */
e625cce1 7127 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7128 task_ctx_sched_out(child_ctx);
8dc85d54 7129 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7130 /*
7131 * If this context is a clone; unclone it so it can't get
7132 * swapped to another process while we're removing all
cdd6c482 7133 * the events from it.
71a851b4
PZ
7134 */
7135 unclone_ctx(child_ctx);
5e942bb3 7136 update_context_time(child_ctx);
e625cce1 7137 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7138
7139 /*
cdd6c482
IM
7140 * Report the task dead after unscheduling the events so that we
7141 * won't get any samples after PERF_RECORD_EXIT. We can however still
7142 * get a few PERF_RECORD_READ events.
9f498cc5 7143 */
cdd6c482 7144 perf_event_task(child, child_ctx, 0);
a63eaf34 7145
66fff224
PZ
7146 /*
7147 * We can recurse on the same lock type through:
7148 *
cdd6c482
IM
7149 * __perf_event_exit_task()
7150 * sync_child_event()
a6fa941d
AV
7151 * put_event()
7152 * mutex_lock(&ctx->mutex)
66fff224
PZ
7153 *
7154 * But since its the parent context it won't be the same instance.
7155 */
a0507c84 7156 mutex_lock(&child_ctx->mutex);
a63eaf34 7157
8bc20959 7158again:
889ff015
FW
7159 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7160 group_entry)
7161 __perf_event_exit_task(child_event, child_ctx, child);
7162
7163 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7164 group_entry)
cdd6c482 7165 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7166
7167 /*
cdd6c482 7168 * If the last event was a group event, it will have appended all
8bc20959
PZ
7169 * its siblings to the list, but we obtained 'tmp' before that which
7170 * will still point to the list head terminating the iteration.
7171 */
889ff015
FW
7172 if (!list_empty(&child_ctx->pinned_groups) ||
7173 !list_empty(&child_ctx->flexible_groups))
8bc20959 7174 goto again;
a63eaf34
PM
7175
7176 mutex_unlock(&child_ctx->mutex);
7177
7178 put_ctx(child_ctx);
9b51f66d
IM
7179}
7180
8dc85d54
PZ
7181/*
7182 * When a child task exits, feed back event values to parent events.
7183 */
7184void perf_event_exit_task(struct task_struct *child)
7185{
8882135b 7186 struct perf_event *event, *tmp;
8dc85d54
PZ
7187 int ctxn;
7188
8882135b
PZ
7189 mutex_lock(&child->perf_event_mutex);
7190 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7191 owner_entry) {
7192 list_del_init(&event->owner_entry);
7193
7194 /*
7195 * Ensure the list deletion is visible before we clear
7196 * the owner, closes a race against perf_release() where
7197 * we need to serialize on the owner->perf_event_mutex.
7198 */
7199 smp_wmb();
7200 event->owner = NULL;
7201 }
7202 mutex_unlock(&child->perf_event_mutex);
7203
8dc85d54
PZ
7204 for_each_task_context_nr(ctxn)
7205 perf_event_exit_task_context(child, ctxn);
7206}
7207
889ff015
FW
7208static void perf_free_event(struct perf_event *event,
7209 struct perf_event_context *ctx)
7210{
7211 struct perf_event *parent = event->parent;
7212
7213 if (WARN_ON_ONCE(!parent))
7214 return;
7215
7216 mutex_lock(&parent->child_mutex);
7217 list_del_init(&event->child_list);
7218 mutex_unlock(&parent->child_mutex);
7219
a6fa941d 7220 put_event(parent);
889ff015 7221
8a49542c 7222 perf_group_detach(event);
889ff015
FW
7223 list_del_event(event, ctx);
7224 free_event(event);
7225}
7226
bbbee908
PZ
7227/*
7228 * free an unexposed, unused context as created by inheritance by
8dc85d54 7229 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7230 */
cdd6c482 7231void perf_event_free_task(struct task_struct *task)
bbbee908 7232{
8dc85d54 7233 struct perf_event_context *ctx;
cdd6c482 7234 struct perf_event *event, *tmp;
8dc85d54 7235 int ctxn;
bbbee908 7236
8dc85d54
PZ
7237 for_each_task_context_nr(ctxn) {
7238 ctx = task->perf_event_ctxp[ctxn];
7239 if (!ctx)
7240 continue;
bbbee908 7241
8dc85d54 7242 mutex_lock(&ctx->mutex);
bbbee908 7243again:
8dc85d54
PZ
7244 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7245 group_entry)
7246 perf_free_event(event, ctx);
bbbee908 7247
8dc85d54
PZ
7248 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7249 group_entry)
7250 perf_free_event(event, ctx);
bbbee908 7251
8dc85d54
PZ
7252 if (!list_empty(&ctx->pinned_groups) ||
7253 !list_empty(&ctx->flexible_groups))
7254 goto again;
bbbee908 7255
8dc85d54 7256 mutex_unlock(&ctx->mutex);
bbbee908 7257
8dc85d54
PZ
7258 put_ctx(ctx);
7259 }
889ff015
FW
7260}
7261
4e231c79
PZ
7262void perf_event_delayed_put(struct task_struct *task)
7263{
7264 int ctxn;
7265
7266 for_each_task_context_nr(ctxn)
7267 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7268}
7269
97dee4f3
PZ
7270/*
7271 * inherit a event from parent task to child task:
7272 */
7273static struct perf_event *
7274inherit_event(struct perf_event *parent_event,
7275 struct task_struct *parent,
7276 struct perf_event_context *parent_ctx,
7277 struct task_struct *child,
7278 struct perf_event *group_leader,
7279 struct perf_event_context *child_ctx)
7280{
7281 struct perf_event *child_event;
cee010ec 7282 unsigned long flags;
97dee4f3
PZ
7283
7284 /*
7285 * Instead of creating recursive hierarchies of events,
7286 * we link inherited events back to the original parent,
7287 * which has a filp for sure, which we use as the reference
7288 * count:
7289 */
7290 if (parent_event->parent)
7291 parent_event = parent_event->parent;
7292
7293 child_event = perf_event_alloc(&parent_event->attr,
7294 parent_event->cpu,
d580ff86 7295 child,
97dee4f3 7296 group_leader, parent_event,
4dc0da86 7297 NULL, NULL);
97dee4f3
PZ
7298 if (IS_ERR(child_event))
7299 return child_event;
a6fa941d
AV
7300
7301 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7302 free_event(child_event);
7303 return NULL;
7304 }
7305
97dee4f3
PZ
7306 get_ctx(child_ctx);
7307
7308 /*
7309 * Make the child state follow the state of the parent event,
7310 * not its attr.disabled bit. We hold the parent's mutex,
7311 * so we won't race with perf_event_{en, dis}able_family.
7312 */
7313 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7314 child_event->state = PERF_EVENT_STATE_INACTIVE;
7315 else
7316 child_event->state = PERF_EVENT_STATE_OFF;
7317
7318 if (parent_event->attr.freq) {
7319 u64 sample_period = parent_event->hw.sample_period;
7320 struct hw_perf_event *hwc = &child_event->hw;
7321
7322 hwc->sample_period = sample_period;
7323 hwc->last_period = sample_period;
7324
7325 local64_set(&hwc->period_left, sample_period);
7326 }
7327
7328 child_event->ctx = child_ctx;
7329 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7330 child_event->overflow_handler_context
7331 = parent_event->overflow_handler_context;
97dee4f3 7332
614b6780
TG
7333 /*
7334 * Precalculate sample_data sizes
7335 */
7336 perf_event__header_size(child_event);
6844c09d 7337 perf_event__id_header_size(child_event);
614b6780 7338
97dee4f3
PZ
7339 /*
7340 * Link it up in the child's context:
7341 */
cee010ec 7342 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7343 add_event_to_ctx(child_event, child_ctx);
cee010ec 7344 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7345
97dee4f3
PZ
7346 /*
7347 * Link this into the parent event's child list
7348 */
7349 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7350 mutex_lock(&parent_event->child_mutex);
7351 list_add_tail(&child_event->child_list, &parent_event->child_list);
7352 mutex_unlock(&parent_event->child_mutex);
7353
7354 return child_event;
7355}
7356
7357static int inherit_group(struct perf_event *parent_event,
7358 struct task_struct *parent,
7359 struct perf_event_context *parent_ctx,
7360 struct task_struct *child,
7361 struct perf_event_context *child_ctx)
7362{
7363 struct perf_event *leader;
7364 struct perf_event *sub;
7365 struct perf_event *child_ctr;
7366
7367 leader = inherit_event(parent_event, parent, parent_ctx,
7368 child, NULL, child_ctx);
7369 if (IS_ERR(leader))
7370 return PTR_ERR(leader);
7371 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7372 child_ctr = inherit_event(sub, parent, parent_ctx,
7373 child, leader, child_ctx);
7374 if (IS_ERR(child_ctr))
7375 return PTR_ERR(child_ctr);
7376 }
7377 return 0;
889ff015
FW
7378}
7379
7380static int
7381inherit_task_group(struct perf_event *event, struct task_struct *parent,
7382 struct perf_event_context *parent_ctx,
8dc85d54 7383 struct task_struct *child, int ctxn,
889ff015
FW
7384 int *inherited_all)
7385{
7386 int ret;
8dc85d54 7387 struct perf_event_context *child_ctx;
889ff015
FW
7388
7389 if (!event->attr.inherit) {
7390 *inherited_all = 0;
7391 return 0;
bbbee908
PZ
7392 }
7393
fe4b04fa 7394 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7395 if (!child_ctx) {
7396 /*
7397 * This is executed from the parent task context, so
7398 * inherit events that have been marked for cloning.
7399 * First allocate and initialize a context for the
7400 * child.
7401 */
bbbee908 7402
f38bac3d 7403 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7404 if (!child_ctx)
7405 return -ENOMEM;
bbbee908 7406
8dc85d54 7407 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7408 }
7409
7410 ret = inherit_group(event, parent, parent_ctx,
7411 child, child_ctx);
7412
7413 if (ret)
7414 *inherited_all = 0;
7415
7416 return ret;
bbbee908
PZ
7417}
7418
9b51f66d 7419/*
cdd6c482 7420 * Initialize the perf_event context in task_struct
9b51f66d 7421 */
8dc85d54 7422int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7423{
889ff015 7424 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7425 struct perf_event_context *cloned_ctx;
7426 struct perf_event *event;
9b51f66d 7427 struct task_struct *parent = current;
564c2b21 7428 int inherited_all = 1;
dddd3379 7429 unsigned long flags;
6ab423e0 7430 int ret = 0;
9b51f66d 7431
8dc85d54 7432 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7433 return 0;
7434
ad3a37de 7435 /*
25346b93
PM
7436 * If the parent's context is a clone, pin it so it won't get
7437 * swapped under us.
ad3a37de 7438 */
8dc85d54 7439 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7440
ad3a37de
PM
7441 /*
7442 * No need to check if parent_ctx != NULL here; since we saw
7443 * it non-NULL earlier, the only reason for it to become NULL
7444 * is if we exit, and since we're currently in the middle of
7445 * a fork we can't be exiting at the same time.
7446 */
ad3a37de 7447
9b51f66d
IM
7448 /*
7449 * Lock the parent list. No need to lock the child - not PID
7450 * hashed yet and not running, so nobody can access it.
7451 */
d859e29f 7452 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7453
7454 /*
7455 * We dont have to disable NMIs - we are only looking at
7456 * the list, not manipulating it:
7457 */
889ff015 7458 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7459 ret = inherit_task_group(event, parent, parent_ctx,
7460 child, ctxn, &inherited_all);
889ff015
FW
7461 if (ret)
7462 break;
7463 }
b93f7978 7464
dddd3379
TG
7465 /*
7466 * We can't hold ctx->lock when iterating the ->flexible_group list due
7467 * to allocations, but we need to prevent rotation because
7468 * rotate_ctx() will change the list from interrupt context.
7469 */
7470 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7471 parent_ctx->rotate_disable = 1;
7472 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7473
889ff015 7474 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7475 ret = inherit_task_group(event, parent, parent_ctx,
7476 child, ctxn, &inherited_all);
889ff015 7477 if (ret)
9b51f66d 7478 break;
564c2b21
PM
7479 }
7480
dddd3379
TG
7481 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7482 parent_ctx->rotate_disable = 0;
dddd3379 7483
8dc85d54 7484 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7485
05cbaa28 7486 if (child_ctx && inherited_all) {
564c2b21
PM
7487 /*
7488 * Mark the child context as a clone of the parent
7489 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7490 *
7491 * Note that if the parent is a clone, the holding of
7492 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7493 */
c5ed5145 7494 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7495 if (cloned_ctx) {
7496 child_ctx->parent_ctx = cloned_ctx;
25346b93 7497 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7498 } else {
7499 child_ctx->parent_ctx = parent_ctx;
7500 child_ctx->parent_gen = parent_ctx->generation;
7501 }
7502 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7503 }
7504
c5ed5145 7505 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7506 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7507
25346b93 7508 perf_unpin_context(parent_ctx);
fe4b04fa 7509 put_ctx(parent_ctx);
ad3a37de 7510
6ab423e0 7511 return ret;
9b51f66d
IM
7512}
7513
8dc85d54
PZ
7514/*
7515 * Initialize the perf_event context in task_struct
7516 */
7517int perf_event_init_task(struct task_struct *child)
7518{
7519 int ctxn, ret;
7520
8550d7cb
ON
7521 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7522 mutex_init(&child->perf_event_mutex);
7523 INIT_LIST_HEAD(&child->perf_event_list);
7524
8dc85d54
PZ
7525 for_each_task_context_nr(ctxn) {
7526 ret = perf_event_init_context(child, ctxn);
bee870fc
PZ
7527 if (ret) {
7528 perf_event_free_task(child);
8dc85d54 7529 return ret;
bee870fc 7530 }
8dc85d54
PZ
7531 }
7532
7533 return 0;
7534}
7535
220b140b
PM
7536static void __init perf_event_init_all_cpus(void)
7537{
b28ab83c 7538 struct swevent_htable *swhash;
220b140b 7539 int cpu;
220b140b
PM
7540
7541 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7542 swhash = &per_cpu(swevent_htable, cpu);
7543 mutex_init(&swhash->hlist_mutex);
e9d2b064 7544 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7545 }
7546}
7547
cdd6c482 7548static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7549{
108b02cf 7550 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7551
b28ab83c 7552 mutex_lock(&swhash->hlist_mutex);
26616604 7553 swhash->online = true;
4536e4d1 7554 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7555 struct swevent_hlist *hlist;
7556
b28ab83c
PZ
7557 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7558 WARN_ON(!hlist);
7559 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7560 }
b28ab83c 7561 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7562}
7563
c277443c 7564#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7565static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7566{
e9d2b064
PZ
7567 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7568
7569 WARN_ON(!irqs_disabled());
7570
7571 list_del_init(&cpuctx->rotation_list);
7572}
7573
108b02cf 7574static void __perf_event_exit_context(void *__info)
0793a61d 7575{
54b3f8df 7576 struct remove_event re = { .detach_group = false };
108b02cf 7577 struct perf_event_context *ctx = __info;
0793a61d 7578
108b02cf 7579 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7580
35d1c833 7581 rcu_read_lock();
54b3f8df
PZ
7582 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7583 __perf_remove_from_context(&re);
35d1c833 7584 rcu_read_unlock();
0793a61d 7585}
108b02cf
PZ
7586
7587static void perf_event_exit_cpu_context(int cpu)
7588{
7589 struct perf_event_context *ctx;
7590 struct pmu *pmu;
7591 int idx;
7592
7593 idx = srcu_read_lock(&pmus_srcu);
7594 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7595 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7596
7597 mutex_lock(&ctx->mutex);
7598 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7599 mutex_unlock(&ctx->mutex);
7600 }
7601 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7602}
7603
cdd6c482 7604static void perf_event_exit_cpu(int cpu)
0793a61d 7605{
b28ab83c 7606 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7607
35d1c833
PZ
7608 perf_event_exit_cpu_context(cpu);
7609
b28ab83c 7610 mutex_lock(&swhash->hlist_mutex);
26616604 7611 swhash->online = false;
b28ab83c
PZ
7612 swevent_hlist_release(swhash);
7613 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7614}
7615#else
cdd6c482 7616static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7617#endif
7618
c277443c
PZ
7619static int
7620perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7621{
7622 int cpu;
7623
7624 for_each_online_cpu(cpu)
7625 perf_event_exit_cpu(cpu);
7626
7627 return NOTIFY_OK;
7628}
7629
7630/*
7631 * Run the perf reboot notifier at the very last possible moment so that
7632 * the generic watchdog code runs as long as possible.
7633 */
7634static struct notifier_block perf_reboot_notifier = {
7635 .notifier_call = perf_reboot,
7636 .priority = INT_MIN,
7637};
7638
0793a61d
TG
7639static int __cpuinit
7640perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7641{
7642 unsigned int cpu = (long)hcpu;
7643
4536e4d1 7644 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7645
7646 case CPU_UP_PREPARE:
5e11637e 7647 case CPU_DOWN_FAILED:
cdd6c482 7648 perf_event_init_cpu(cpu);
0793a61d
TG
7649 break;
7650
5e11637e 7651 case CPU_UP_CANCELED:
0793a61d 7652 case CPU_DOWN_PREPARE:
cdd6c482 7653 perf_event_exit_cpu(cpu);
0793a61d
TG
7654 break;
7655
7656 default:
7657 break;
7658 }
7659
7660 return NOTIFY_OK;
7661}
7662
cdd6c482 7663void __init perf_event_init(void)
0793a61d 7664{
3c502e7a
JW
7665 int ret;
7666
2e80a82a
PZ
7667 idr_init(&pmu_idr);
7668
220b140b 7669 perf_event_init_all_cpus();
b0a873eb 7670 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7671 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7672 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7673 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7674 perf_tp_register();
7675 perf_cpu_notifier(perf_cpu_notify);
c277443c 7676 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7677
7678 ret = init_hw_breakpoint();
7679 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7680
7681 /* do not patch jump label more than once per second */
7682 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7683
7684 /*
7685 * Build time assertion that we keep the data_head at the intended
7686 * location. IOW, validation we got the __reserved[] size right.
7687 */
7688 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7689 != 1024);
0793a61d 7690}
abe43400
PZ
7691
7692static int __init perf_event_sysfs_init(void)
7693{
7694 struct pmu *pmu;
7695 int ret;
7696
7697 mutex_lock(&pmus_lock);
7698
7699 ret = bus_register(&pmu_bus);
7700 if (ret)
7701 goto unlock;
7702
7703 list_for_each_entry(pmu, &pmus, entry) {
7704 if (!pmu->name || pmu->type < 0)
7705 continue;
7706
7707 ret = pmu_dev_alloc(pmu);
7708 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7709 }
7710 pmu_bus_running = 1;
7711 ret = 0;
7712
7713unlock:
7714 mutex_unlock(&pmus_lock);
7715
7716 return ret;
7717}
7718device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7719
7720#ifdef CONFIG_CGROUP_PERF
92fb9748 7721static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7722{
7723 struct perf_cgroup *jc;
e5d1367f 7724
1b15d055 7725 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7726 if (!jc)
7727 return ERR_PTR(-ENOMEM);
7728
e5d1367f
SE
7729 jc->info = alloc_percpu(struct perf_cgroup_info);
7730 if (!jc->info) {
7731 kfree(jc);
7732 return ERR_PTR(-ENOMEM);
7733 }
7734
e5d1367f
SE
7735 return &jc->css;
7736}
7737
92fb9748 7738static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7739{
7740 struct perf_cgroup *jc;
7741 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7742 struct perf_cgroup, css);
7743 free_percpu(jc->info);
7744 kfree(jc);
7745}
7746
7747static int __perf_cgroup_move(void *info)
7748{
7749 struct task_struct *task = info;
7750 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7751 return 0;
7752}
7753
761b3ef5 7754static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7755{
bb9d97b6
TH
7756 struct task_struct *task;
7757
7758 cgroup_taskset_for_each(task, cgrp, tset)
7759 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7760}
7761
761b3ef5
LZ
7762static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7763 struct task_struct *task)
e5d1367f
SE
7764{
7765 /*
7766 * cgroup_exit() is called in the copy_process() failure path.
7767 * Ignore this case since the task hasn't ran yet, this avoids
7768 * trying to poke a half freed task state from generic code.
7769 */
7770 if (!(task->flags & PF_EXITING))
7771 return;
7772
bb9d97b6 7773 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7774}
7775
7776struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7777 .name = "perf_event",
7778 .subsys_id = perf_subsys_id,
92fb9748
TH
7779 .css_alloc = perf_cgroup_css_alloc,
7780 .css_free = perf_cgroup_css_free,
e7e7ee2e 7781 .exit = perf_cgroup_exit,
bb9d97b6 7782 .attach = perf_cgroup_attach,
e5d1367f
SE
7783};
7784#endif /* CONFIG_CGROUP_PERF */