drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
3e0d98b9 90 struct fmeter fmeter; /* memory_pressure filter */
029190c5 91
452477fa
TH
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
029190c5
PJ
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
8d033948 104 struct work_struct hotplug_work;
1da177e4
LT
105};
106
8793d854
PM
107/* Retrieve the cpuset for a cgroup */
108static inline struct cpuset *cgroup_cs(struct cgroup *cont)
109{
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
112}
113
114/* Retrieve the cpuset for a task */
115static inline struct cpuset *task_cs(struct task_struct *task)
116{
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
119}
8793d854 120
c431069f
TH
121static inline struct cpuset *parent_cs(const struct cpuset *cs)
122{
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128}
129
b246272e
DR
130#ifdef CONFIG_NUMA
131static inline bool task_has_mempolicy(struct task_struct *task)
132{
133 return task->mempolicy;
134}
135#else
136static inline bool task_has_mempolicy(struct task_struct *task)
137{
138 return false;
139}
140#endif
141
142
1da177e4
LT
143/* bits in struct cpuset flags field */
144typedef enum {
efeb77b2 145 CS_ONLINE,
1da177e4
LT
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
78608366 148 CS_MEM_HARDWALL,
45b07ef3 149 CS_MEMORY_MIGRATE,
029190c5 150 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
1da177e4
LT
153} cpuset_flagbits_t;
154
155/* convenient tests for these bits */
efeb77b2
TH
156static inline bool is_cpuset_online(const struct cpuset *cs)
157{
158 return test_bit(CS_ONLINE, &cs->flags);
159}
160
1da177e4
LT
161static inline int is_cpu_exclusive(const struct cpuset *cs)
162{
7b5b9ef0 163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
164}
165
166static inline int is_mem_exclusive(const struct cpuset *cs)
167{
7b5b9ef0 168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
169}
170
78608366
PM
171static inline int is_mem_hardwall(const struct cpuset *cs)
172{
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174}
175
029190c5
PJ
176static inline int is_sched_load_balance(const struct cpuset *cs)
177{
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179}
180
45b07ef3
PJ
181static inline int is_memory_migrate(const struct cpuset *cs)
182{
7b5b9ef0 183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
184}
185
825a46af
PJ
186static inline int is_spread_page(const struct cpuset *cs)
187{
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189}
190
191static inline int is_spread_slab(const struct cpuset *cs)
192{
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194}
195
1da177e4 196static struct cpuset top_cpuset = {
efeb77b2
TH
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
199};
200
ae8086ce
TH
201/**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
fc560a26
TH
214/**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
1da177e4 228/*
5d21cc2d
TH
229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
230 * and callback_mutex. The latter may nest inside the former. We also
231 * require taking task_lock() when dereferencing a task's cpuset pointer.
232 * See "The task_lock() exception", at the end of this comment.
233 *
234 * A task must hold both mutexes to modify cpusets. If a task holds
235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
236 * is the only task able to also acquire callback_mutex and be able to
237 * modify cpusets. It can perform various checks on the cpuset structure
238 * first, knowing nothing will change. It can also allocate memory while
239 * just holding cpuset_mutex. While it is performing these checks, various
240 * callback routines can briefly acquire callback_mutex to query cpusets.
241 * Once it is ready to make the changes, it takes callback_mutex, blocking
242 * everyone else.
053199ed
PJ
243 *
244 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 245 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
246 * from one of the callbacks into the cpuset code from within
247 * __alloc_pages().
248 *
3d3f26a7 249 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
250 * access to cpusets.
251 *
58568d2a
MX
252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
253 * by other task, we use alloc_lock in the task_struct fields to protect
254 * them.
053199ed 255 *
3d3f26a7 256 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
257 * small pieces of code, such as when reading out possibly multi-word
258 * cpumasks and nodemasks.
259 *
2df167a3
PM
260 * Accessing a task's cpuset should be done in accordance with the
261 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
262 */
263
5d21cc2d 264static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 265static DEFINE_MUTEX(callback_mutex);
4247bdc6 266
3a5a6d0c
TH
267/*
268 * CPU / memory hotplug is handled asynchronously.
269 */
8d033948
TH
270static struct workqueue_struct *cpuset_propagate_hotplug_wq;
271
3a5a6d0c 272static void cpuset_hotplug_workfn(struct work_struct *work);
8d033948 273static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
02bb5863 274static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
3a5a6d0c
TH
275
276static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
277
cf417141
MK
278/*
279 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 280 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
281 * silently switch it to mount "cgroup" instead
282 */
f7e83571
AV
283static struct dentry *cpuset_mount(struct file_system_type *fs_type,
284 int flags, const char *unused_dev_name, void *data)
1da177e4 285{
8793d854 286 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 287 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
288 if (cgroup_fs) {
289 char mountopts[] =
290 "cpuset,noprefix,"
291 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
292 ret = cgroup_fs->mount(cgroup_fs, flags,
293 unused_dev_name, mountopts);
8793d854
PM
294 put_filesystem(cgroup_fs);
295 }
296 return ret;
1da177e4
LT
297}
298
299static struct file_system_type cpuset_fs_type = {
300 .name = "cpuset",
f7e83571 301 .mount = cpuset_mount,
1da177e4
LT
302};
303
1da177e4 304/*
300ed6cb 305 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
306 * are online. If none are online, walk up the cpuset hierarchy
307 * until we find one that does have some online cpus. If we get
308 * all the way to the top and still haven't found any online cpus,
5f054e31
RR
309 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
310 * task, return cpu_online_mask.
1da177e4
LT
311 *
312 * One way or another, we guarantee to return some non-empty subset
5f054e31 313 * of cpu_online_mask.
1da177e4 314 *
3d3f26a7 315 * Call with callback_mutex held.
1da177e4
LT
316 */
317
6af866af
LZ
318static void guarantee_online_cpus(const struct cpuset *cs,
319 struct cpumask *pmask)
1da177e4 320{
300ed6cb 321 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 322 cs = parent_cs(cs);
1da177e4 323 if (cs)
300ed6cb 324 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 325 else
300ed6cb
LZ
326 cpumask_copy(pmask, cpu_online_mask);
327 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
328}
329
330/*
331 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
332 * are online, with memory. If none are online with memory, walk
333 * up the cpuset hierarchy until we find one that does have some
334 * online mems. If we get all the way to the top and still haven't
38d7bee9 335 * found any online mems, return node_states[N_MEMORY].
1da177e4
LT
336 *
337 * One way or another, we guarantee to return some non-empty subset
38d7bee9 338 * of node_states[N_MEMORY].
1da177e4 339 *
3d3f26a7 340 * Call with callback_mutex held.
1da177e4
LT
341 */
342
343static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
344{
0e1e7c7a 345 while (cs && !nodes_intersects(cs->mems_allowed,
38d7bee9 346 node_states[N_MEMORY]))
c431069f 347 cs = parent_cs(cs);
1da177e4 348 if (cs)
0e1e7c7a 349 nodes_and(*pmask, cs->mems_allowed,
38d7bee9 350 node_states[N_MEMORY]);
1da177e4 351 else
38d7bee9
LJ
352 *pmask = node_states[N_MEMORY];
353 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
1da177e4
LT
354}
355
f3b39d47
MX
356/*
357 * update task's spread flag if cpuset's page/slab spread flag is set
358 *
5d21cc2d 359 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
360 */
361static void cpuset_update_task_spread_flag(struct cpuset *cs,
362 struct task_struct *tsk)
363{
364 if (is_spread_page(cs))
365 tsk->flags |= PF_SPREAD_PAGE;
366 else
367 tsk->flags &= ~PF_SPREAD_PAGE;
368 if (is_spread_slab(cs))
369 tsk->flags |= PF_SPREAD_SLAB;
370 else
371 tsk->flags &= ~PF_SPREAD_SLAB;
372}
373
1da177e4
LT
374/*
375 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
376 *
377 * One cpuset is a subset of another if all its allowed CPUs and
378 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 379 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
380 */
381
382static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
383{
300ed6cb 384 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
385 nodes_subset(p->mems_allowed, q->mems_allowed) &&
386 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
387 is_mem_exclusive(p) <= is_mem_exclusive(q);
388}
389
645fcc9d
LZ
390/**
391 * alloc_trial_cpuset - allocate a trial cpuset
392 * @cs: the cpuset that the trial cpuset duplicates
393 */
394static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
395{
300ed6cb
LZ
396 struct cpuset *trial;
397
398 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
399 if (!trial)
400 return NULL;
401
402 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
403 kfree(trial);
404 return NULL;
405 }
406 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
407
408 return trial;
645fcc9d
LZ
409}
410
411/**
412 * free_trial_cpuset - free the trial cpuset
413 * @trial: the trial cpuset to be freed
414 */
415static void free_trial_cpuset(struct cpuset *trial)
416{
300ed6cb 417 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
418 kfree(trial);
419}
420
1da177e4
LT
421/*
422 * validate_change() - Used to validate that any proposed cpuset change
423 * follows the structural rules for cpusets.
424 *
425 * If we replaced the flag and mask values of the current cpuset
426 * (cur) with those values in the trial cpuset (trial), would
427 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 428 * cpuset_mutex held.
1da177e4
LT
429 *
430 * 'cur' is the address of an actual, in-use cpuset. Operations
431 * such as list traversal that depend on the actual address of the
432 * cpuset in the list must use cur below, not trial.
433 *
434 * 'trial' is the address of bulk structure copy of cur, with
435 * perhaps one or more of the fields cpus_allowed, mems_allowed,
436 * or flags changed to new, trial values.
437 *
438 * Return 0 if valid, -errno if not.
439 */
440
441static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
442{
8793d854 443 struct cgroup *cont;
1da177e4 444 struct cpuset *c, *par;
ae8086ce
TH
445 int ret;
446
447 rcu_read_lock();
1da177e4
LT
448
449 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
450 ret = -EBUSY;
451 cpuset_for_each_child(c, cont, cur)
452 if (!is_cpuset_subset(c, trial))
453 goto out;
1da177e4
LT
454
455 /* Remaining checks don't apply to root cpuset */
ae8086ce 456 ret = 0;
69604067 457 if (cur == &top_cpuset)
ae8086ce 458 goto out;
1da177e4 459
c431069f 460 par = parent_cs(cur);
69604067 461
1da177e4 462 /* We must be a subset of our parent cpuset */
ae8086ce 463 ret = -EACCES;
1da177e4 464 if (!is_cpuset_subset(trial, par))
ae8086ce 465 goto out;
1da177e4 466
2df167a3
PM
467 /*
468 * If either I or some sibling (!= me) is exclusive, we can't
469 * overlap
470 */
ae8086ce
TH
471 ret = -EINVAL;
472 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
473 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
474 c != cur &&
300ed6cb 475 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 476 goto out;
1da177e4
LT
477 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
478 c != cur &&
479 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 480 goto out;
1da177e4
LT
481 }
482
452477fa
TH
483 /*
484 * Cpusets with tasks - existing or newly being attached - can't
485 * have empty cpus_allowed or mems_allowed.
486 */
ae8086ce 487 ret = -ENOSPC;
452477fa 488 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
489 (cpumask_empty(trial->cpus_allowed) ||
490 nodes_empty(trial->mems_allowed)))
491 goto out;
020958b6 492
ae8086ce
TH
493 ret = 0;
494out:
495 rcu_read_unlock();
496 return ret;
1da177e4
LT
497}
498
db7f47cf 499#ifdef CONFIG_SMP
029190c5 500/*
cf417141 501 * Helper routine for generate_sched_domains().
029190c5
PJ
502 * Do cpusets a, b have overlapping cpus_allowed masks?
503 */
029190c5
PJ
504static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
505{
300ed6cb 506 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
507}
508
1d3504fc
HS
509static void
510update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
511{
1d3504fc
HS
512 if (dattr->relax_domain_level < c->relax_domain_level)
513 dattr->relax_domain_level = c->relax_domain_level;
514 return;
515}
516
fc560a26
TH
517static void update_domain_attr_tree(struct sched_domain_attr *dattr,
518 struct cpuset *root_cs)
f5393693 519{
fc560a26
TH
520 struct cpuset *cp;
521 struct cgroup *pos_cgrp;
f5393693 522
fc560a26
TH
523 rcu_read_lock();
524 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
525 /* skip the whole subtree if @cp doesn't have any CPU */
526 if (cpumask_empty(cp->cpus_allowed)) {
527 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 528 continue;
fc560a26 529 }
f5393693
LJ
530
531 if (is_sched_load_balance(cp))
532 update_domain_attr(dattr, cp);
f5393693 533 }
fc560a26 534 rcu_read_unlock();
f5393693
LJ
535}
536
029190c5 537/*
cf417141
MK
538 * generate_sched_domains()
539 *
540 * This function builds a partial partition of the systems CPUs
541 * A 'partial partition' is a set of non-overlapping subsets whose
542 * union is a subset of that set.
543 * The output of this function needs to be passed to kernel/sched.c
544 * partition_sched_domains() routine, which will rebuild the scheduler's
545 * load balancing domains (sched domains) as specified by that partial
546 * partition.
029190c5 547 *
45ce80fb 548 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
549 * for a background explanation of this.
550 *
551 * Does not return errors, on the theory that the callers of this
552 * routine would rather not worry about failures to rebuild sched
553 * domains when operating in the severe memory shortage situations
554 * that could cause allocation failures below.
555 *
5d21cc2d 556 * Must be called with cpuset_mutex held.
029190c5
PJ
557 *
558 * The three key local variables below are:
aeed6824 559 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
560 * top-down scan of all cpusets. This scan loads a pointer
561 * to each cpuset marked is_sched_load_balance into the
562 * array 'csa'. For our purposes, rebuilding the schedulers
563 * sched domains, we can ignore !is_sched_load_balance cpusets.
564 * csa - (for CpuSet Array) Array of pointers to all the cpusets
565 * that need to be load balanced, for convenient iterative
566 * access by the subsequent code that finds the best partition,
567 * i.e the set of domains (subsets) of CPUs such that the
568 * cpus_allowed of every cpuset marked is_sched_load_balance
569 * is a subset of one of these domains, while there are as
570 * many such domains as possible, each as small as possible.
571 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
572 * the kernel/sched.c routine partition_sched_domains() in a
573 * convenient format, that can be easily compared to the prior
574 * value to determine what partition elements (sched domains)
575 * were changed (added or removed.)
576 *
577 * Finding the best partition (set of domains):
578 * The triple nested loops below over i, j, k scan over the
579 * load balanced cpusets (using the array of cpuset pointers in
580 * csa[]) looking for pairs of cpusets that have overlapping
581 * cpus_allowed, but which don't have the same 'pn' partition
582 * number and gives them in the same partition number. It keeps
583 * looping on the 'restart' label until it can no longer find
584 * any such pairs.
585 *
586 * The union of the cpus_allowed masks from the set of
587 * all cpusets having the same 'pn' value then form the one
588 * element of the partition (one sched domain) to be passed to
589 * partition_sched_domains().
590 */
acc3f5d7 591static int generate_sched_domains(cpumask_var_t **domains,
cf417141 592 struct sched_domain_attr **attributes)
029190c5 593{
029190c5
PJ
594 struct cpuset *cp; /* scans q */
595 struct cpuset **csa; /* array of all cpuset ptrs */
596 int csn; /* how many cpuset ptrs in csa so far */
597 int i, j, k; /* indices for partition finding loops */
acc3f5d7 598 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 599 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 600 int ndoms = 0; /* number of sched domains in result */
6af866af 601 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 602 struct cgroup *pos_cgrp;
029190c5 603
029190c5 604 doms = NULL;
1d3504fc 605 dattr = NULL;
cf417141 606 csa = NULL;
029190c5
PJ
607
608 /* Special case for the 99% of systems with one, full, sched domain */
609 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
610 ndoms = 1;
611 doms = alloc_sched_domains(ndoms);
029190c5 612 if (!doms)
cf417141
MK
613 goto done;
614
1d3504fc
HS
615 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
616 if (dattr) {
617 *dattr = SD_ATTR_INIT;
93a65575 618 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 619 }
acc3f5d7 620 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 621
cf417141 622 goto done;
029190c5
PJ
623 }
624
029190c5
PJ
625 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
626 if (!csa)
627 goto done;
628 csn = 0;
629
fc560a26
TH
630 rcu_read_lock();
631 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 632 /*
fc560a26
TH
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
f5393693 639 */
fc560a26
TH
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
f5393693 642 continue;
489a5393 643
fc560a26
TH
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
648 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
649 }
650 rcu_read_unlock();
029190c5
PJ
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
cf417141
MK
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
acc3f5d7 683 doms = alloc_sched_domains(ndoms);
700018e0 684 if (!doms)
cf417141 685 goto done;
cf417141
MK
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
1d3504fc 691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
6af866af 695 struct cpumask *dp;
029190c5
PJ
696 int apn = a->pn;
697
cf417141
MK
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
acc3f5d7 703 dp = doms[nslot];
cf417141
MK
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
708 printk(KERN_WARNING
709 "rebuild_sched_domains confused:"
710 " nslot %d, ndoms %d, csn %d, i %d,"
711 " apn %d\n",
712 nslot, ndoms, csn, i, apn);
713 warnings--;
029190c5 714 }
cf417141
MK
715 continue;
716 }
029190c5 717
6af866af 718 cpumask_clear(dp);
cf417141
MK
719 if (dattr)
720 *(dattr + nslot) = SD_ATTR_INIT;
721 for (j = i; j < csn; j++) {
722 struct cpuset *b = csa[j];
723
724 if (apn == b->pn) {
300ed6cb 725 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
726 if (dattr)
727 update_domain_attr_tree(dattr + nslot, b);
728
729 /* Done with this partition */
730 b->pn = -1;
029190c5 731 }
029190c5 732 }
cf417141 733 nslot++;
029190c5
PJ
734 }
735 BUG_ON(nslot != ndoms);
736
cf417141
MK
737done:
738 kfree(csa);
739
700018e0
LZ
740 /*
741 * Fallback to the default domain if kmalloc() failed.
742 * See comments in partition_sched_domains().
743 */
744 if (doms == NULL)
745 ndoms = 1;
746
cf417141
MK
747 *domains = doms;
748 *attributes = dattr;
749 return ndoms;
750}
751
752/*
753 * Rebuild scheduler domains.
754 *
699140ba
TH
755 * If the flag 'sched_load_balance' of any cpuset with non-empty
756 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
757 * which has that flag enabled, or if any cpuset with a non-empty
758 * 'cpus' is removed, then call this routine to rebuild the
759 * scheduler's dynamic sched domains.
cf417141 760 *
5d21cc2d 761 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 762 */
699140ba 763static void rebuild_sched_domains_locked(void)
cf417141
MK
764{
765 struct sched_domain_attr *attr;
acc3f5d7 766 cpumask_var_t *doms;
cf417141
MK
767 int ndoms;
768
5d21cc2d 769 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 770 get_online_cpus();
cf417141 771
5b16c2a4
LZ
772 /*
773 * We have raced with CPU hotplug. Don't do anything to avoid
774 * passing doms with offlined cpu to partition_sched_domains().
775 * Anyways, hotplug work item will rebuild sched domains.
776 */
777 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
778 goto out;
779
cf417141 780 /* Generate domain masks and attrs */
cf417141 781 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
782
783 /* Have scheduler rebuild the domains */
784 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 785out:
86ef5c9a 786 put_online_cpus();
cf417141 787}
db7f47cf 788#else /* !CONFIG_SMP */
699140ba 789static void rebuild_sched_domains_locked(void)
db7f47cf
PM
790{
791}
db7f47cf 792#endif /* CONFIG_SMP */
029190c5 793
cf417141
MK
794void rebuild_sched_domains(void)
795{
5d21cc2d 796 mutex_lock(&cpuset_mutex);
699140ba 797 rebuild_sched_domains_locked();
5d21cc2d 798 mutex_unlock(&cpuset_mutex);
029190c5
PJ
799}
800
58f4790b
CW
801/**
802 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
803 * @tsk: task to test
804 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
805 *
5d21cc2d 806 * Call with cpuset_mutex held. May take callback_mutex during call.
58f4790b
CW
807 * Called for each task in a cgroup by cgroup_scan_tasks().
808 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
809 * words, if its mask is not equal to its cpuset's mask).
053199ed 810 */
9e0c914c
AB
811static int cpuset_test_cpumask(struct task_struct *tsk,
812 struct cgroup_scanner *scan)
58f4790b 813{
300ed6cb 814 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
815 (cgroup_cs(scan->cg))->cpus_allowed);
816}
053199ed 817
58f4790b
CW
818/**
819 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
820 * @tsk: task to test
821 * @scan: struct cgroup_scanner containing the cgroup of the task
822 *
823 * Called by cgroup_scan_tasks() for each task in a cgroup whose
824 * cpus_allowed mask needs to be changed.
825 *
826 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 827 * holding cpuset_mutex at this point.
58f4790b 828 */
9e0c914c
AB
829static void cpuset_change_cpumask(struct task_struct *tsk,
830 struct cgroup_scanner *scan)
58f4790b 831{
300ed6cb 832 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
833}
834
0b2f630a
MX
835/**
836 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
837 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 838 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 839 *
5d21cc2d 840 * Called with cpuset_mutex held
0b2f630a
MX
841 *
842 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
843 * calling callback functions for each.
844 *
4e74339a
LZ
845 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
846 * if @heap != NULL.
0b2f630a 847 */
4e74339a 848static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
849{
850 struct cgroup_scanner scan;
0b2f630a
MX
851
852 scan.cg = cs->css.cgroup;
853 scan.test_task = cpuset_test_cpumask;
854 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
855 scan.heap = heap;
856 cgroup_scan_tasks(&scan);
0b2f630a
MX
857}
858
58f4790b
CW
859/**
860 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
861 * @cs: the cpuset to consider
862 * @buf: buffer of cpu numbers written to this cpuset
863 */
645fcc9d
LZ
864static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
865 const char *buf)
1da177e4 866{
4e74339a 867 struct ptr_heap heap;
58f4790b
CW
868 int retval;
869 int is_load_balanced;
1da177e4 870
5f054e31 871 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
872 if (cs == &top_cpuset)
873 return -EACCES;
874
6f7f02e7 875 /*
c8d9c90c 876 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
877 * Since cpulist_parse() fails on an empty mask, we special case
878 * that parsing. The validate_change() call ensures that cpusets
879 * with tasks have cpus.
6f7f02e7 880 */
020958b6 881 if (!*buf) {
300ed6cb 882 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 883 } else {
300ed6cb 884 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
885 if (retval < 0)
886 return retval;
37340746 887
6ad4c188 888 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 889 return -EINVAL;
6f7f02e7 890 }
645fcc9d 891 retval = validate_change(cs, trialcs);
85d7b949
DG
892 if (retval < 0)
893 return retval;
029190c5 894
8707d8b8 895 /* Nothing to do if the cpus didn't change */
300ed6cb 896 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 897 return 0;
58f4790b 898
4e74339a
LZ
899 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
900 if (retval)
901 return retval;
902
645fcc9d 903 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 904
3d3f26a7 905 mutex_lock(&callback_mutex);
300ed6cb 906 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 907 mutex_unlock(&callback_mutex);
029190c5 908
8707d8b8
PM
909 /*
910 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 911 * that need an update.
8707d8b8 912 */
4e74339a
LZ
913 update_tasks_cpumask(cs, &heap);
914
915 heap_free(&heap);
58f4790b 916
8707d8b8 917 if (is_load_balanced)
699140ba 918 rebuild_sched_domains_locked();
85d7b949 919 return 0;
1da177e4
LT
920}
921
e4e364e8
PJ
922/*
923 * cpuset_migrate_mm
924 *
925 * Migrate memory region from one set of nodes to another.
926 *
927 * Temporarilly set tasks mems_allowed to target nodes of migration,
928 * so that the migration code can allocate pages on these nodes.
929 *
5d21cc2d 930 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 931 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
932 * calls. Therefore we don't need to take task_lock around the
933 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 934 * our task's cpuset.
e4e364e8 935 *
e4e364e8
PJ
936 * While the mm_struct we are migrating is typically from some
937 * other task, the task_struct mems_allowed that we are hacking
938 * is for our current task, which must allocate new pages for that
939 * migrating memory region.
e4e364e8
PJ
940 */
941
942static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
943 const nodemask_t *to)
944{
945 struct task_struct *tsk = current;
946
e4e364e8 947 tsk->mems_allowed = *to;
e4e364e8
PJ
948
949 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
950
8793d854 951 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
952}
953
3b6766fe 954/*
58568d2a
MX
955 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
956 * @tsk: the task to change
957 * @newmems: new nodes that the task will be set
958 *
959 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
960 * we structure updates as setting all new allowed nodes, then clearing newly
961 * disallowed ones.
58568d2a
MX
962 */
963static void cpuset_change_task_nodemask(struct task_struct *tsk,
964 nodemask_t *newmems)
965{
b246272e 966 bool need_loop;
89e8a244 967
c0ff7453
MX
968 /*
969 * Allow tasks that have access to memory reserves because they have
970 * been OOM killed to get memory anywhere.
971 */
972 if (unlikely(test_thread_flag(TIF_MEMDIE)))
973 return;
974 if (current->flags & PF_EXITING) /* Let dying task have memory */
975 return;
976
977 task_lock(tsk);
b246272e
DR
978 /*
979 * Determine if a loop is necessary if another thread is doing
980 * get_mems_allowed(). If at least one node remains unchanged and
981 * tsk does not have a mempolicy, then an empty nodemask will not be
982 * possible when mems_allowed is larger than a word.
983 */
984 need_loop = task_has_mempolicy(tsk) ||
985 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 986
ddff5ada
PZ
987 if (need_loop) {
988 local_irq_disable();
cc9a6c87 989 write_seqcount_begin(&tsk->mems_allowed_seq);
ddff5ada 990 }
c0ff7453 991
cc9a6c87
MG
992 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
993 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
994
995 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 996 tsk->mems_allowed = *newmems;
cc9a6c87 997
ddff5ada 998 if (need_loop) {
cc9a6c87 999 write_seqcount_end(&tsk->mems_allowed_seq);
ddff5ada
PZ
1000 local_irq_enable();
1001 }
cc9a6c87 1002
c0ff7453 1003 task_unlock(tsk);
58568d2a
MX
1004}
1005
1006/*
1007 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1008 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1009 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1010 */
1011static void cpuset_change_nodemask(struct task_struct *p,
1012 struct cgroup_scanner *scan)
1013{
1014 struct mm_struct *mm;
1015 struct cpuset *cs;
1016 int migrate;
1017 const nodemask_t *oldmem = scan->data;
5d21cc2d 1018 static nodemask_t newmems; /* protected by cpuset_mutex */
58568d2a
MX
1019
1020 cs = cgroup_cs(scan->cg);
ee24d379 1021 guarantee_online_mems(cs, &newmems);
58568d2a 1022
ee24d379 1023 cpuset_change_task_nodemask(p, &newmems);
53feb297 1024
3b6766fe
LZ
1025 mm = get_task_mm(p);
1026 if (!mm)
1027 return;
1028
3b6766fe
LZ
1029 migrate = is_memory_migrate(cs);
1030
1031 mpol_rebind_mm(mm, &cs->mems_allowed);
1032 if (migrate)
1033 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1034 mmput(mm);
1035}
1036
8793d854
PM
1037static void *cpuset_being_rebound;
1038
0b2f630a
MX
1039/**
1040 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1041 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1042 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1043 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1044 *
5d21cc2d 1045 * Called with cpuset_mutex held
010cfac4
LZ
1046 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1047 * if @heap != NULL.
0b2f630a 1048 */
010cfac4
LZ
1049static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1050 struct ptr_heap *heap)
1da177e4 1051{
3b6766fe 1052 struct cgroup_scanner scan;
59dac16f 1053
846a16bf 1054 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1055
3b6766fe
LZ
1056 scan.cg = cs->css.cgroup;
1057 scan.test_task = NULL;
1058 scan.process_task = cpuset_change_nodemask;
010cfac4 1059 scan.heap = heap;
3b6766fe 1060 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1061
1062 /*
3b6766fe
LZ
1063 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1064 * take while holding tasklist_lock. Forks can happen - the
1065 * mpol_dup() cpuset_being_rebound check will catch such forks,
1066 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1067 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1068 * will be contending for the global variable cpuset_being_rebound.
4225399a 1069 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1070 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1071 */
010cfac4 1072 cgroup_scan_tasks(&scan);
4225399a 1073
2df167a3 1074 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1075 cpuset_being_rebound = NULL;
1da177e4
LT
1076}
1077
0b2f630a
MX
1078/*
1079 * Handle user request to change the 'mems' memory placement
1080 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1081 * cpusets mems_allowed, and for each task in the cpuset,
1082 * update mems_allowed and rebind task's mempolicy and any vma
1083 * mempolicies and if the cpuset is marked 'memory_migrate',
1084 * migrate the tasks pages to the new memory.
0b2f630a 1085 *
5d21cc2d 1086 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1087 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1088 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1089 * their mempolicies to the cpusets new mems_allowed.
1090 */
645fcc9d
LZ
1091static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1092 const char *buf)
0b2f630a 1093{
53feb297 1094 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1095 int retval;
010cfac4 1096 struct ptr_heap heap;
0b2f630a 1097
53feb297
MX
1098 if (!oldmem)
1099 return -ENOMEM;
1100
0b2f630a 1101 /*
38d7bee9 1102 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1103 * it's read-only
1104 */
53feb297
MX
1105 if (cs == &top_cpuset) {
1106 retval = -EACCES;
1107 goto done;
1108 }
0b2f630a 1109
0b2f630a
MX
1110 /*
1111 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1112 * Since nodelist_parse() fails on an empty mask, we special case
1113 * that parsing. The validate_change() call ensures that cpusets
1114 * with tasks have memory.
1115 */
1116 if (!*buf) {
645fcc9d 1117 nodes_clear(trialcs->mems_allowed);
0b2f630a 1118 } else {
645fcc9d 1119 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1120 if (retval < 0)
1121 goto done;
1122
645fcc9d 1123 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1124 node_states[N_MEMORY])) {
53feb297
MX
1125 retval = -EINVAL;
1126 goto done;
1127 }
0b2f630a 1128 }
53feb297
MX
1129 *oldmem = cs->mems_allowed;
1130 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1131 retval = 0; /* Too easy - nothing to do */
1132 goto done;
1133 }
645fcc9d 1134 retval = validate_change(cs, trialcs);
0b2f630a
MX
1135 if (retval < 0)
1136 goto done;
1137
010cfac4
LZ
1138 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1139 if (retval < 0)
1140 goto done;
1141
0b2f630a 1142 mutex_lock(&callback_mutex);
645fcc9d 1143 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1144 mutex_unlock(&callback_mutex);
1145
53feb297 1146 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1147
1148 heap_free(&heap);
0b2f630a 1149done:
53feb297 1150 NODEMASK_FREE(oldmem);
0b2f630a
MX
1151 return retval;
1152}
1153
8793d854
PM
1154int current_cpuset_is_being_rebound(void)
1155{
3c33a9bd
GZ
1156 int ret;
1157
1158 rcu_read_lock();
1159 ret = task_cs(current) == cpuset_being_rebound;
1160 rcu_read_unlock();
1161
1162 return ret;
8793d854
PM
1163}
1164
5be7a479 1165static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1166{
db7f47cf 1167#ifdef CONFIG_SMP
60495e77 1168 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1169 return -EINVAL;
db7f47cf 1170#endif
1d3504fc
HS
1171
1172 if (val != cs->relax_domain_level) {
1173 cs->relax_domain_level = val;
300ed6cb
LZ
1174 if (!cpumask_empty(cs->cpus_allowed) &&
1175 is_sched_load_balance(cs))
699140ba 1176 rebuild_sched_domains_locked();
1d3504fc
HS
1177 }
1178
1179 return 0;
1180}
1181
950592f7
MX
1182/*
1183 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1184 * @tsk: task to be updated
1185 * @scan: struct cgroup_scanner containing the cgroup of the task
1186 *
1187 * Called by cgroup_scan_tasks() for each task in a cgroup.
1188 *
1189 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1190 * holding cpuset_mutex at this point.
950592f7
MX
1191 */
1192static void cpuset_change_flag(struct task_struct *tsk,
1193 struct cgroup_scanner *scan)
1194{
1195 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1196}
1197
1198/*
1199 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1200 * @cs: the cpuset in which each task's spread flags needs to be changed
1201 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1202 *
5d21cc2d 1203 * Called with cpuset_mutex held
950592f7
MX
1204 *
1205 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1206 * calling callback functions for each.
1207 *
1208 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1209 * if @heap != NULL.
1210 */
1211static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1212{
1213 struct cgroup_scanner scan;
1214
1215 scan.cg = cs->css.cgroup;
1216 scan.test_task = NULL;
1217 scan.process_task = cpuset_change_flag;
1218 scan.heap = heap;
1219 cgroup_scan_tasks(&scan);
1220}
1221
1da177e4
LT
1222/*
1223 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1224 * bit: the bit to update (see cpuset_flagbits_t)
1225 * cs: the cpuset to update
1226 * turning_on: whether the flag is being set or cleared
053199ed 1227 *
5d21cc2d 1228 * Call with cpuset_mutex held.
1da177e4
LT
1229 */
1230
700fe1ab
PM
1231static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1232 int turning_on)
1da177e4 1233{
645fcc9d 1234 struct cpuset *trialcs;
40b6a762 1235 int balance_flag_changed;
950592f7
MX
1236 int spread_flag_changed;
1237 struct ptr_heap heap;
1238 int err;
1da177e4 1239
645fcc9d
LZ
1240 trialcs = alloc_trial_cpuset(cs);
1241 if (!trialcs)
1242 return -ENOMEM;
1243
1da177e4 1244 if (turning_on)
645fcc9d 1245 set_bit(bit, &trialcs->flags);
1da177e4 1246 else
645fcc9d 1247 clear_bit(bit, &trialcs->flags);
1da177e4 1248
645fcc9d 1249 err = validate_change(cs, trialcs);
85d7b949 1250 if (err < 0)
645fcc9d 1251 goto out;
029190c5 1252
950592f7
MX
1253 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1254 if (err < 0)
1255 goto out;
1256
029190c5 1257 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1258 is_sched_load_balance(trialcs));
029190c5 1259
950592f7
MX
1260 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1261 || (is_spread_page(cs) != is_spread_page(trialcs)));
1262
3d3f26a7 1263 mutex_lock(&callback_mutex);
645fcc9d 1264 cs->flags = trialcs->flags;
3d3f26a7 1265 mutex_unlock(&callback_mutex);
85d7b949 1266
300ed6cb 1267 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1268 rebuild_sched_domains_locked();
029190c5 1269
950592f7
MX
1270 if (spread_flag_changed)
1271 update_tasks_flags(cs, &heap);
1272 heap_free(&heap);
645fcc9d
LZ
1273out:
1274 free_trial_cpuset(trialcs);
1275 return err;
1da177e4
LT
1276}
1277
3e0d98b9 1278/*
80f7228b 1279 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1280 *
1281 * These routines manage a digitally filtered, constant time based,
1282 * event frequency meter. There are four routines:
1283 * fmeter_init() - initialize a frequency meter.
1284 * fmeter_markevent() - called each time the event happens.
1285 * fmeter_getrate() - returns the recent rate of such events.
1286 * fmeter_update() - internal routine used to update fmeter.
1287 *
1288 * A common data structure is passed to each of these routines,
1289 * which is used to keep track of the state required to manage the
1290 * frequency meter and its digital filter.
1291 *
1292 * The filter works on the number of events marked per unit time.
1293 * The filter is single-pole low-pass recursive (IIR). The time unit
1294 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1295 * simulate 3 decimal digits of precision (multiplied by 1000).
1296 *
1297 * With an FM_COEF of 933, and a time base of 1 second, the filter
1298 * has a half-life of 10 seconds, meaning that if the events quit
1299 * happening, then the rate returned from the fmeter_getrate()
1300 * will be cut in half each 10 seconds, until it converges to zero.
1301 *
1302 * It is not worth doing a real infinitely recursive filter. If more
1303 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1304 * just compute FM_MAXTICKS ticks worth, by which point the level
1305 * will be stable.
1306 *
1307 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1308 * arithmetic overflow in the fmeter_update() routine.
1309 *
1310 * Given the simple 32 bit integer arithmetic used, this meter works
1311 * best for reporting rates between one per millisecond (msec) and
1312 * one per 32 (approx) seconds. At constant rates faster than one
1313 * per msec it maxes out at values just under 1,000,000. At constant
1314 * rates between one per msec, and one per second it will stabilize
1315 * to a value N*1000, where N is the rate of events per second.
1316 * At constant rates between one per second and one per 32 seconds,
1317 * it will be choppy, moving up on the seconds that have an event,
1318 * and then decaying until the next event. At rates slower than
1319 * about one in 32 seconds, it decays all the way back to zero between
1320 * each event.
1321 */
1322
1323#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1324#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1325#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1326#define FM_SCALE 1000 /* faux fixed point scale */
1327
1328/* Initialize a frequency meter */
1329static void fmeter_init(struct fmeter *fmp)
1330{
1331 fmp->cnt = 0;
1332 fmp->val = 0;
1333 fmp->time = 0;
1334 spin_lock_init(&fmp->lock);
1335}
1336
1337/* Internal meter update - process cnt events and update value */
1338static void fmeter_update(struct fmeter *fmp)
1339{
1340 time_t now = get_seconds();
1341 time_t ticks = now - fmp->time;
1342
1343 if (ticks == 0)
1344 return;
1345
1346 ticks = min(FM_MAXTICKS, ticks);
1347 while (ticks-- > 0)
1348 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1349 fmp->time = now;
1350
1351 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1352 fmp->cnt = 0;
1353}
1354
1355/* Process any previous ticks, then bump cnt by one (times scale). */
1356static void fmeter_markevent(struct fmeter *fmp)
1357{
1358 spin_lock(&fmp->lock);
1359 fmeter_update(fmp);
1360 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1361 spin_unlock(&fmp->lock);
1362}
1363
1364/* Process any previous ticks, then return current value. */
1365static int fmeter_getrate(struct fmeter *fmp)
1366{
1367 int val;
1368
1369 spin_lock(&fmp->lock);
1370 fmeter_update(fmp);
1371 val = fmp->val;
1372 spin_unlock(&fmp->lock);
1373 return val;
1374}
1375
5d21cc2d 1376/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1377static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1378{
2f7ee569 1379 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1380 struct task_struct *task;
1381 int ret;
1da177e4 1382
5d21cc2d
TH
1383 mutex_lock(&cpuset_mutex);
1384
1385 ret = -ENOSPC;
300ed6cb 1386 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
5d21cc2d 1387 goto out_unlock;
9985b0ba 1388
bb9d97b6
TH
1389 cgroup_taskset_for_each(task, cgrp, tset) {
1390 /*
14a40ffc
TH
1391 * Kthreads which disallow setaffinity shouldn't be moved
1392 * to a new cpuset; we don't want to change their cpu
1393 * affinity and isolating such threads by their set of
1394 * allowed nodes is unnecessary. Thus, cpusets are not
1395 * applicable for such threads. This prevents checking for
1396 * success of set_cpus_allowed_ptr() on all attached tasks
1397 * before cpus_allowed may be changed.
bb9d97b6 1398 */
5d21cc2d 1399 ret = -EINVAL;
14a40ffc 1400 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1401 goto out_unlock;
1402 ret = security_task_setscheduler(task);
1403 if (ret)
1404 goto out_unlock;
bb9d97b6 1405 }
f780bdb7 1406
452477fa
TH
1407 /*
1408 * Mark attach is in progress. This makes validate_change() fail
1409 * changes which zero cpus/mems_allowed.
1410 */
1411 cs->attach_in_progress++;
5d21cc2d
TH
1412 ret = 0;
1413out_unlock:
1414 mutex_unlock(&cpuset_mutex);
1415 return ret;
8793d854 1416}
f780bdb7 1417
452477fa
TH
1418static void cpuset_cancel_attach(struct cgroup *cgrp,
1419 struct cgroup_taskset *tset)
1420{
5d21cc2d 1421 mutex_lock(&cpuset_mutex);
452477fa 1422 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1423 mutex_unlock(&cpuset_mutex);
8793d854 1424}
1da177e4 1425
4e4c9a14 1426/*
5d21cc2d 1427 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1428 * but we can't allocate it dynamically there. Define it global and
1429 * allocate from cpuset_init().
1430 */
1431static cpumask_var_t cpus_attach;
1432
761b3ef5 1433static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1434{
5d21cc2d 1435 /* static bufs protected by cpuset_mutex */
4e4c9a14
TH
1436 static nodemask_t cpuset_attach_nodemask_from;
1437 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1438 struct mm_struct *mm;
bb9d97b6
TH
1439 struct task_struct *task;
1440 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1441 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1442 struct cpuset *cs = cgroup_cs(cgrp);
1443 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1444
5d21cc2d
TH
1445 mutex_lock(&cpuset_mutex);
1446
4e4c9a14
TH
1447 /* prepare for attach */
1448 if (cs == &top_cpuset)
1449 cpumask_copy(cpus_attach, cpu_possible_mask);
1450 else
1451 guarantee_online_cpus(cs, cpus_attach);
1452
1453 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1454
bb9d97b6
TH
1455 cgroup_taskset_for_each(task, cgrp, tset) {
1456 /*
1457 * can_attach beforehand should guarantee that this doesn't
1458 * fail. TODO: have a better way to handle failure here
1459 */
1460 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1461
1462 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1463 cpuset_update_task_spread_flag(cs, task);
1464 }
22fb52dd 1465
f780bdb7
BB
1466 /*
1467 * Change mm, possibly for multiple threads in a threadgroup. This is
1468 * expensive and may sleep.
1469 */
1470 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1471 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1472 mm = get_task_mm(leader);
4225399a 1473 if (mm) {
f780bdb7 1474 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1475 if (is_memory_migrate(cs))
f780bdb7
BB
1476 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1477 &cpuset_attach_nodemask_to);
4225399a
PJ
1478 mmput(mm);
1479 }
452477fa
TH
1480
1481 cs->attach_in_progress--;
02bb5863
TH
1482
1483 /*
1484 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1485 * propagation if @cs doesn't have any CPU or memory. It will move
1486 * the newly added tasks to the nearest parent which can execute.
1487 */
1488 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1489 schedule_cpuset_propagate_hotplug(cs);
5d21cc2d
TH
1490
1491 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1492}
1493
1494/* The various types of files and directories in a cpuset file system */
1495
1496typedef enum {
45b07ef3 1497 FILE_MEMORY_MIGRATE,
1da177e4
LT
1498 FILE_CPULIST,
1499 FILE_MEMLIST,
1500 FILE_CPU_EXCLUSIVE,
1501 FILE_MEM_EXCLUSIVE,
78608366 1502 FILE_MEM_HARDWALL,
029190c5 1503 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1504 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1505 FILE_MEMORY_PRESSURE_ENABLED,
1506 FILE_MEMORY_PRESSURE,
825a46af
PJ
1507 FILE_SPREAD_PAGE,
1508 FILE_SPREAD_SLAB,
1da177e4
LT
1509} cpuset_filetype_t;
1510
700fe1ab
PM
1511static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1512{
700fe1ab
PM
1513 struct cpuset *cs = cgroup_cs(cgrp);
1514 cpuset_filetype_t type = cft->private;
9fa60186 1515 int retval = 0;
700fe1ab 1516
5d21cc2d 1517 mutex_lock(&cpuset_mutex);
9fa60186
LZ
1518 if (!is_cpuset_online(cs)) {
1519 retval = -ENODEV;
5d21cc2d 1520 goto out_unlock;
9fa60186 1521 }
700fe1ab
PM
1522
1523 switch (type) {
1da177e4 1524 case FILE_CPU_EXCLUSIVE:
700fe1ab 1525 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1526 break;
1527 case FILE_MEM_EXCLUSIVE:
700fe1ab 1528 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1529 break;
78608366
PM
1530 case FILE_MEM_HARDWALL:
1531 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1532 break;
029190c5 1533 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1534 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1535 break;
45b07ef3 1536 case FILE_MEMORY_MIGRATE:
700fe1ab 1537 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1538 break;
3e0d98b9 1539 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1540 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1541 break;
1542 case FILE_MEMORY_PRESSURE:
1543 retval = -EACCES;
1544 break;
825a46af 1545 case FILE_SPREAD_PAGE:
700fe1ab 1546 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1547 break;
1548 case FILE_SPREAD_SLAB:
700fe1ab 1549 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1550 break;
1da177e4
LT
1551 default:
1552 retval = -EINVAL;
700fe1ab 1553 break;
1da177e4 1554 }
5d21cc2d
TH
1555out_unlock:
1556 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1557 return retval;
1558}
1559
5be7a479
PM
1560static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1561{
5be7a479
PM
1562 struct cpuset *cs = cgroup_cs(cgrp);
1563 cpuset_filetype_t type = cft->private;
5d21cc2d 1564 int retval = -ENODEV;
5be7a479 1565
5d21cc2d
TH
1566 mutex_lock(&cpuset_mutex);
1567 if (!is_cpuset_online(cs))
1568 goto out_unlock;
e3712395 1569
5be7a479
PM
1570 switch (type) {
1571 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1572 retval = update_relax_domain_level(cs, val);
1573 break;
1574 default:
1575 retval = -EINVAL;
1576 break;
1577 }
5d21cc2d
TH
1578out_unlock:
1579 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1580 return retval;
1581}
1582
e3712395
PM
1583/*
1584 * Common handling for a write to a "cpus" or "mems" file.
1585 */
1586static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1587 const char *buf)
1588{
645fcc9d
LZ
1589 struct cpuset *cs = cgroup_cs(cgrp);
1590 struct cpuset *trialcs;
5d21cc2d 1591 int retval = -ENODEV;
e3712395 1592
3a5a6d0c
TH
1593 /*
1594 * CPU or memory hotunplug may leave @cs w/o any execution
1595 * resources, in which case the hotplug code asynchronously updates
1596 * configuration and transfers all tasks to the nearest ancestor
1597 * which can execute.
1598 *
1599 * As writes to "cpus" or "mems" may restore @cs's execution
1600 * resources, wait for the previously scheduled operations before
1601 * proceeding, so that we don't end up keep removing tasks added
1602 * after execution capability is restored.
02bb5863
TH
1603 *
1604 * Flushing cpuset_hotplug_work is enough to synchronize against
1605 * hotplug hanlding; however, cpuset_attach() may schedule
1606 * propagation work directly. Flush the workqueue too.
3a5a6d0c
TH
1607 */
1608 flush_work(&cpuset_hotplug_work);
02bb5863 1609 flush_workqueue(cpuset_propagate_hotplug_wq);
3a5a6d0c 1610
5d21cc2d
TH
1611 mutex_lock(&cpuset_mutex);
1612 if (!is_cpuset_online(cs))
1613 goto out_unlock;
e3712395 1614
645fcc9d 1615 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1616 if (!trialcs) {
1617 retval = -ENOMEM;
5d21cc2d 1618 goto out_unlock;
b75f38d6 1619 }
645fcc9d 1620
e3712395
PM
1621 switch (cft->private) {
1622 case FILE_CPULIST:
645fcc9d 1623 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1624 break;
1625 case FILE_MEMLIST:
645fcc9d 1626 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1627 break;
1628 default:
1629 retval = -EINVAL;
1630 break;
1631 }
645fcc9d
LZ
1632
1633 free_trial_cpuset(trialcs);
5d21cc2d
TH
1634out_unlock:
1635 mutex_unlock(&cpuset_mutex);
e3712395
PM
1636 return retval;
1637}
1638
1da177e4
LT
1639/*
1640 * These ascii lists should be read in a single call, by using a user
1641 * buffer large enough to hold the entire map. If read in smaller
1642 * chunks, there is no guarantee of atomicity. Since the display format
1643 * used, list of ranges of sequential numbers, is variable length,
1644 * and since these maps can change value dynamically, one could read
1645 * gibberish by doing partial reads while a list was changing.
1646 * A single large read to a buffer that crosses a page boundary is
1647 * ok, because the result being copied to user land is not recomputed
1648 * across a page fault.
1649 */
1650
9303e0c4 1651static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1652{
9303e0c4 1653 size_t count;
1da177e4 1654
3d3f26a7 1655 mutex_lock(&callback_mutex);
9303e0c4 1656 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1657 mutex_unlock(&callback_mutex);
1da177e4 1658
9303e0c4 1659 return count;
1da177e4
LT
1660}
1661
9303e0c4 1662static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1663{
9303e0c4 1664 size_t count;
1da177e4 1665
3d3f26a7 1666 mutex_lock(&callback_mutex);
9303e0c4 1667 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1668 mutex_unlock(&callback_mutex);
1da177e4 1669
9303e0c4 1670 return count;
1da177e4
LT
1671}
1672
8793d854
PM
1673static ssize_t cpuset_common_file_read(struct cgroup *cont,
1674 struct cftype *cft,
1675 struct file *file,
1676 char __user *buf,
1677 size_t nbytes, loff_t *ppos)
1da177e4 1678{
8793d854 1679 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1680 cpuset_filetype_t type = cft->private;
1681 char *page;
1682 ssize_t retval = 0;
1683 char *s;
1da177e4 1684
e12ba74d 1685 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1686 return -ENOMEM;
1687
1688 s = page;
1689
1690 switch (type) {
1691 case FILE_CPULIST:
1692 s += cpuset_sprintf_cpulist(s, cs);
1693 break;
1694 case FILE_MEMLIST:
1695 s += cpuset_sprintf_memlist(s, cs);
1696 break;
1da177e4
LT
1697 default:
1698 retval = -EINVAL;
1699 goto out;
1700 }
1701 *s++ = '\n';
1da177e4 1702
eacaa1f5 1703 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1704out:
1705 free_page((unsigned long)page);
1706 return retval;
1707}
1708
700fe1ab
PM
1709static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1710{
1711 struct cpuset *cs = cgroup_cs(cont);
1712 cpuset_filetype_t type = cft->private;
1713 switch (type) {
1714 case FILE_CPU_EXCLUSIVE:
1715 return is_cpu_exclusive(cs);
1716 case FILE_MEM_EXCLUSIVE:
1717 return is_mem_exclusive(cs);
78608366
PM
1718 case FILE_MEM_HARDWALL:
1719 return is_mem_hardwall(cs);
700fe1ab
PM
1720 case FILE_SCHED_LOAD_BALANCE:
1721 return is_sched_load_balance(cs);
1722 case FILE_MEMORY_MIGRATE:
1723 return is_memory_migrate(cs);
1724 case FILE_MEMORY_PRESSURE_ENABLED:
1725 return cpuset_memory_pressure_enabled;
1726 case FILE_MEMORY_PRESSURE:
1727 return fmeter_getrate(&cs->fmeter);
1728 case FILE_SPREAD_PAGE:
1729 return is_spread_page(cs);
1730 case FILE_SPREAD_SLAB:
1731 return is_spread_slab(cs);
1732 default:
1733 BUG();
1734 }
cf417141
MK
1735
1736 /* Unreachable but makes gcc happy */
1737 return 0;
700fe1ab 1738}
1da177e4 1739
5be7a479
PM
1740static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1741{
1742 struct cpuset *cs = cgroup_cs(cont);
1743 cpuset_filetype_t type = cft->private;
1744 switch (type) {
1745 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1746 return cs->relax_domain_level;
1747 default:
1748 BUG();
1749 }
cf417141
MK
1750
1751 /* Unrechable but makes gcc happy */
1752 return 0;
5be7a479
PM
1753}
1754
1da177e4
LT
1755
1756/*
1757 * for the common functions, 'private' gives the type of file
1758 */
1759
addf2c73
PM
1760static struct cftype files[] = {
1761 {
1762 .name = "cpus",
1763 .read = cpuset_common_file_read,
e3712395
PM
1764 .write_string = cpuset_write_resmask,
1765 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1766 .private = FILE_CPULIST,
1767 },
1768
1769 {
1770 .name = "mems",
1771 .read = cpuset_common_file_read,
e3712395
PM
1772 .write_string = cpuset_write_resmask,
1773 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1774 .private = FILE_MEMLIST,
1775 },
1776
1777 {
1778 .name = "cpu_exclusive",
1779 .read_u64 = cpuset_read_u64,
1780 .write_u64 = cpuset_write_u64,
1781 .private = FILE_CPU_EXCLUSIVE,
1782 },
1783
1784 {
1785 .name = "mem_exclusive",
1786 .read_u64 = cpuset_read_u64,
1787 .write_u64 = cpuset_write_u64,
1788 .private = FILE_MEM_EXCLUSIVE,
1789 },
1790
78608366
PM
1791 {
1792 .name = "mem_hardwall",
1793 .read_u64 = cpuset_read_u64,
1794 .write_u64 = cpuset_write_u64,
1795 .private = FILE_MEM_HARDWALL,
1796 },
1797
addf2c73
PM
1798 {
1799 .name = "sched_load_balance",
1800 .read_u64 = cpuset_read_u64,
1801 .write_u64 = cpuset_write_u64,
1802 .private = FILE_SCHED_LOAD_BALANCE,
1803 },
1804
1805 {
1806 .name = "sched_relax_domain_level",
5be7a479
PM
1807 .read_s64 = cpuset_read_s64,
1808 .write_s64 = cpuset_write_s64,
addf2c73
PM
1809 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1810 },
1811
1812 {
1813 .name = "memory_migrate",
1814 .read_u64 = cpuset_read_u64,
1815 .write_u64 = cpuset_write_u64,
1816 .private = FILE_MEMORY_MIGRATE,
1817 },
1818
1819 {
1820 .name = "memory_pressure",
1821 .read_u64 = cpuset_read_u64,
1822 .write_u64 = cpuset_write_u64,
1823 .private = FILE_MEMORY_PRESSURE,
099fca32 1824 .mode = S_IRUGO,
addf2c73
PM
1825 },
1826
1827 {
1828 .name = "memory_spread_page",
1829 .read_u64 = cpuset_read_u64,
1830 .write_u64 = cpuset_write_u64,
1831 .private = FILE_SPREAD_PAGE,
1832 },
1833
1834 {
1835 .name = "memory_spread_slab",
1836 .read_u64 = cpuset_read_u64,
1837 .write_u64 = cpuset_write_u64,
1838 .private = FILE_SPREAD_SLAB,
1839 },
3e0d98b9 1840
4baf6e33
TH
1841 {
1842 .name = "memory_pressure_enabled",
1843 .flags = CFTYPE_ONLY_ON_ROOT,
1844 .read_u64 = cpuset_read_u64,
1845 .write_u64 = cpuset_write_u64,
1846 .private = FILE_MEMORY_PRESSURE_ENABLED,
1847 },
1da177e4 1848
4baf6e33
TH
1849 { } /* terminate */
1850};
1da177e4
LT
1851
1852/*
92fb9748 1853 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1854 * cont: control group that the new cpuset will be part of
1da177e4
LT
1855 */
1856
92fb9748 1857static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1858{
c8f699bb 1859 struct cpuset *cs;
1da177e4 1860
c8f699bb 1861 if (!cont->parent)
8793d854 1862 return &top_cpuset.css;
033fa1c5 1863
c8f699bb 1864 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1865 if (!cs)
8793d854 1866 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1867 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1868 kfree(cs);
1869 return ERR_PTR(-ENOMEM);
1870 }
1da177e4 1871
029190c5 1872 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1873 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1874 nodes_clear(cs->mems_allowed);
3e0d98b9 1875 fmeter_init(&cs->fmeter);
8d033948 1876 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1d3504fc 1877 cs->relax_domain_level = -1;
1da177e4 1878
c8f699bb
TH
1879 return &cs->css;
1880}
1881
1882static int cpuset_css_online(struct cgroup *cgrp)
1883{
1884 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1885 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1886 struct cpuset *tmp_cs;
1887 struct cgroup *pos_cg;
c8f699bb
TH
1888
1889 if (!parent)
1890 return 0;
1891
5d21cc2d
TH
1892 mutex_lock(&cpuset_mutex);
1893
efeb77b2 1894 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1895 if (is_spread_page(parent))
1896 set_bit(CS_SPREAD_PAGE, &cs->flags);
1897 if (is_spread_slab(parent))
1898 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1899
202f72d5 1900 number_of_cpusets++;
033fa1c5 1901
c8f699bb 1902 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1903 goto out_unlock;
033fa1c5
TH
1904
1905 /*
1906 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1907 * set. This flag handling is implemented in cgroup core for
1908 * histrical reasons - the flag may be specified during mount.
1909 *
1910 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1911 * refuse to clone the configuration - thereby refusing the task to
1912 * be entered, and as a result refusing the sys_unshare() or
1913 * clone() which initiated it. If this becomes a problem for some
1914 * users who wish to allow that scenario, then this could be
1915 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1916 * (and likewise for mems) to the new cgroup.
1917 */
ae8086ce
TH
1918 rcu_read_lock();
1919 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1920 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1921 rcu_read_unlock();
5d21cc2d 1922 goto out_unlock;
ae8086ce 1923 }
033fa1c5 1924 }
ae8086ce 1925 rcu_read_unlock();
033fa1c5
TH
1926
1927 mutex_lock(&callback_mutex);
1928 cs->mems_allowed = parent->mems_allowed;
1929 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1930 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1931out_unlock:
1932 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1933 return 0;
1934}
1935
1936static void cpuset_css_offline(struct cgroup *cgrp)
1937{
1938 struct cpuset *cs = cgroup_cs(cgrp);
1939
5d21cc2d 1940 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1941
1942 if (is_sched_load_balance(cs))
1943 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1944
1945 number_of_cpusets--;
efeb77b2 1946 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1947
5d21cc2d 1948 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1949}
1950
029190c5 1951/*
029190c5
PJ
1952 * If the cpuset being removed has its flag 'sched_load_balance'
1953 * enabled, then simulate turning sched_load_balance off, which
699140ba 1954 * will call rebuild_sched_domains_locked().
029190c5
PJ
1955 */
1956
92fb9748 1957static void cpuset_css_free(struct cgroup *cont)
1da177e4 1958{
8793d854 1959 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1960
300ed6cb 1961 free_cpumask_var(cs->cpus_allowed);
8793d854 1962 kfree(cs);
1da177e4
LT
1963}
1964
8793d854
PM
1965struct cgroup_subsys cpuset_subsys = {
1966 .name = "cpuset",
92fb9748 1967 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1968 .css_online = cpuset_css_online,
1969 .css_offline = cpuset_css_offline,
92fb9748 1970 .css_free = cpuset_css_free,
8793d854 1971 .can_attach = cpuset_can_attach,
452477fa 1972 .cancel_attach = cpuset_cancel_attach,
8793d854 1973 .attach = cpuset_attach,
8793d854 1974 .subsys_id = cpuset_subsys_id,
4baf6e33 1975 .base_cftypes = files,
8793d854
PM
1976 .early_init = 1,
1977};
1978
1da177e4
LT
1979/**
1980 * cpuset_init - initialize cpusets at system boot
1981 *
1982 * Description: Initialize top_cpuset and the cpuset internal file system,
1983 **/
1984
1985int __init cpuset_init(void)
1986{
8793d854 1987 int err = 0;
1da177e4 1988
58568d2a
MX
1989 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1990 BUG();
1991
300ed6cb 1992 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1993 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1994
3e0d98b9 1995 fmeter_init(&top_cpuset.fmeter);
029190c5 1996 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1997 top_cpuset.relax_domain_level = -1;
1da177e4 1998
1da177e4
LT
1999 err = register_filesystem(&cpuset_fs_type);
2000 if (err < 0)
8793d854
PM
2001 return err;
2002
2341d1b6
LZ
2003 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2004 BUG();
2005
202f72d5 2006 number_of_cpusets = 1;
8793d854 2007 return 0;
1da177e4
LT
2008}
2009
b1aac8bb 2010/*
cf417141 2011 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2012 * or memory nodes, we need to walk over the cpuset hierarchy,
2013 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2014 * last CPU or node from a cpuset, then move the tasks in the empty
2015 * cpuset to its next-highest non-empty parent.
b1aac8bb 2016 */
956db3ca
CW
2017static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2018{
2019 struct cpuset *parent;
2020
956db3ca
CW
2021 /*
2022 * Find its next-highest non-empty parent, (top cpuset
2023 * has online cpus, so can't be empty).
2024 */
c431069f 2025 parent = parent_cs(cs);
300ed6cb 2026 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2027 nodes_empty(parent->mems_allowed))
c431069f 2028 parent = parent_cs(parent);
956db3ca 2029
8cc99345
TH
2030 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2031 rcu_read_lock();
2032 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2033 cgroup_name(cs->css.cgroup));
2034 rcu_read_unlock();
2035 }
956db3ca
CW
2036}
2037
deb7aa30 2038/**
8d033948 2039 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
deb7aa30 2040 * @cs: cpuset in interest
956db3ca 2041 *
deb7aa30
TH
2042 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2043 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2044 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2045 */
8d033948 2046static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
80d1fa64 2047{
deb7aa30
TH
2048 static cpumask_t off_cpus;
2049 static nodemask_t off_mems, tmp_mems;
8d033948 2050 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
5d21cc2d 2051 bool is_empty;
80d1fa64 2052
5d21cc2d 2053 mutex_lock(&cpuset_mutex);
7ddf96b0 2054
deb7aa30
TH
2055 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2056 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2057
deb7aa30
TH
2058 /* remove offline cpus from @cs */
2059 if (!cpumask_empty(&off_cpus)) {
2060 mutex_lock(&callback_mutex);
2061 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2062 mutex_unlock(&callback_mutex);
2063 update_tasks_cpumask(cs, NULL);
80d1fa64
SB
2064 }
2065
deb7aa30
TH
2066 /* remove offline mems from @cs */
2067 if (!nodes_empty(off_mems)) {
2068 tmp_mems = cs->mems_allowed;
2069 mutex_lock(&callback_mutex);
2070 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2071 mutex_unlock(&callback_mutex);
2072 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2073 }
deb7aa30 2074
5d21cc2d
TH
2075 is_empty = cpumask_empty(cs->cpus_allowed) ||
2076 nodes_empty(cs->mems_allowed);
8d033948 2077
5d21cc2d
TH
2078 mutex_unlock(&cpuset_mutex);
2079
2080 /*
2081 * If @cs became empty, move tasks to the nearest ancestor with
2082 * execution resources. This is full cgroup operation which will
2083 * also call back into cpuset. Should be done outside any lock.
2084 */
2085 if (is_empty)
2086 remove_tasks_in_empty_cpuset(cs);
8d033948
TH
2087
2088 /* the following may free @cs, should be the last operation */
2089 css_put(&cs->css);
80d1fa64
SB
2090}
2091
8d033948
TH
2092/**
2093 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2094 * @cs: cpuset of interest
2095 *
2096 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2097 * memory masks according to top_cpuset.
2098 */
2099static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2100{
2101 /*
2102 * Pin @cs. The refcnt will be released when the work item
2103 * finishes executing.
2104 */
2105 if (!css_tryget(&cs->css))
2106 return;
80d1fa64 2107
8d033948
TH
2108 /*
2109 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2110 * cpuset_propagate_hotplug_wq is ordered and propagation will
2111 * happen in the order this function is called.
2112 */
2113 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2114 css_put(&cs->css);
b1aac8bb
PJ
2115}
2116
deb7aa30 2117/**
3a5a6d0c 2118 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2119 *
deb7aa30
TH
2120 * This function is called after either CPU or memory configuration has
2121 * changed and updates cpuset accordingly. The top_cpuset is always
2122 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2123 * order to make cpusets transparent (of no affect) on systems that are
2124 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2125 *
deb7aa30
TH
2126 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2127 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2128 * descendants.
956db3ca 2129 *
deb7aa30
TH
2130 * Note that CPU offlining during suspend is ignored. We don't modify
2131 * cpusets across suspend/resume cycles at all.
956db3ca 2132 */
3a5a6d0c 2133static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2134{
deb7aa30
TH
2135 static cpumask_t new_cpus, tmp_cpus;
2136 static nodemask_t new_mems, tmp_mems;
2137 bool cpus_updated, mems_updated;
2138 bool cpus_offlined, mems_offlined;
b1aac8bb 2139
5d21cc2d 2140 mutex_lock(&cpuset_mutex);
956db3ca 2141
deb7aa30
TH
2142 /* fetch the available cpus/mems and find out which changed how */
2143 cpumask_copy(&new_cpus, cpu_active_mask);
2144 new_mems = node_states[N_MEMORY];
7ddf96b0 2145
deb7aa30
TH
2146 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2147 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2148 &new_cpus);
7ddf96b0 2149
deb7aa30
TH
2150 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2151 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2152 mems_offlined = !nodes_empty(tmp_mems);
7ddf96b0 2153
deb7aa30
TH
2154 /* synchronize cpus_allowed to cpu_active_mask */
2155 if (cpus_updated) {
2156 mutex_lock(&callback_mutex);
2157 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2158 mutex_unlock(&callback_mutex);
2159 /* we don't mess with cpumasks of tasks in top_cpuset */
2160 }
b4501295 2161
deb7aa30
TH
2162 /* synchronize mems_allowed to N_MEMORY */
2163 if (mems_updated) {
2164 tmp_mems = top_cpuset.mems_allowed;
2165 mutex_lock(&callback_mutex);
2166 top_cpuset.mems_allowed = new_mems;
2167 mutex_unlock(&callback_mutex);
2168 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2169 }
b4501295 2170
deb7aa30
TH
2171 /* if cpus or mems went down, we need to propagate to descendants */
2172 if (cpus_offlined || mems_offlined) {
2173 struct cpuset *cs;
fc560a26 2174 struct cgroup *pos_cgrp;
f9b4fb8d 2175
fc560a26
TH
2176 rcu_read_lock();
2177 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2178 schedule_cpuset_propagate_hotplug(cs);
2179 rcu_read_unlock();
deb7aa30 2180 }
7ddf96b0 2181
5d21cc2d 2182 mutex_unlock(&cpuset_mutex);
b4501295 2183
8d033948
TH
2184 /* wait for propagations to finish */
2185 flush_workqueue(cpuset_propagate_hotplug_wq);
2186
deb7aa30 2187 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2188 if (cpus_updated)
2189 rebuild_sched_domains();
b1aac8bb
PJ
2190}
2191
7ddf96b0 2192void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2193{
3a5a6d0c
TH
2194 /*
2195 * We're inside cpu hotplug critical region which usually nests
2196 * inside cgroup synchronization. Bounce actual hotplug processing
2197 * to a work item to avoid reverse locking order.
2198 *
2199 * We still need to do partition_sched_domains() synchronously;
2200 * otherwise, the scheduler will get confused and put tasks to the
2201 * dead CPU. Fall back to the default single domain.
2202 * cpuset_hotplug_workfn() will rebuild it as necessary.
2203 */
2204 partition_sched_domains(1, NULL, NULL);
2205 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2206}
4c4d50f7 2207
38837fc7 2208/*
38d7bee9
LJ
2209 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2210 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2211 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2212 */
f481891f
MX
2213static int cpuset_track_online_nodes(struct notifier_block *self,
2214 unsigned long action, void *arg)
38837fc7 2215{
3a5a6d0c 2216 schedule_work(&cpuset_hotplug_work);
f481891f 2217 return NOTIFY_OK;
38837fc7 2218}
d8f10cb3
AM
2219
2220static struct notifier_block cpuset_track_online_nodes_nb = {
2221 .notifier_call = cpuset_track_online_nodes,
2222 .priority = 10, /* ??! */
2223};
38837fc7 2224
1da177e4
LT
2225/**
2226 * cpuset_init_smp - initialize cpus_allowed
2227 *
2228 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2229 */
1da177e4
LT
2230void __init cpuset_init_smp(void)
2231{
6ad4c188 2232 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2233 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2234
d8f10cb3 2235 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
f90d4118 2236
8d033948
TH
2237 cpuset_propagate_hotplug_wq =
2238 alloc_ordered_workqueue("cpuset_hotplug", 0);
2239 BUG_ON(!cpuset_propagate_hotplug_wq);
1da177e4
LT
2240}
2241
2242/**
1da177e4
LT
2243 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2244 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2245 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2246 *
300ed6cb 2247 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2248 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2249 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2250 * tasks cpuset.
2251 **/
2252
6af866af 2253void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2254{
3d3f26a7 2255 mutex_lock(&callback_mutex);
909d75a3 2256 task_lock(tsk);
f9a86fcb 2257 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2258 task_unlock(tsk);
897f0b3c 2259 mutex_unlock(&callback_mutex);
1da177e4
LT
2260}
2261
2baab4e9 2262void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2263{
2264 const struct cpuset *cs;
9084bb82
ON
2265
2266 rcu_read_lock();
2267 cs = task_cs(tsk);
2268 if (cs)
1e1b6c51 2269 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2270 rcu_read_unlock();
2271
2272 /*
2273 * We own tsk->cpus_allowed, nobody can change it under us.
2274 *
2275 * But we used cs && cs->cpus_allowed lockless and thus can
2276 * race with cgroup_attach_task() or update_cpumask() and get
2277 * the wrong tsk->cpus_allowed. However, both cases imply the
2278 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2279 * which takes task_rq_lock().
2280 *
2281 * If we are called after it dropped the lock we must see all
2282 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2283 * set any mask even if it is not right from task_cs() pov,
2284 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2285 *
2286 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2287 * if required.
9084bb82 2288 */
9084bb82
ON
2289}
2290
1da177e4
LT
2291void cpuset_init_current_mems_allowed(void)
2292{
f9a86fcb 2293 nodes_setall(current->mems_allowed);
1da177e4
LT
2294}
2295
909d75a3
PJ
2296/**
2297 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2298 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2299 *
2300 * Description: Returns the nodemask_t mems_allowed of the cpuset
2301 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2302 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2303 * tasks cpuset.
2304 **/
2305
2306nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2307{
2308 nodemask_t mask;
2309
3d3f26a7 2310 mutex_lock(&callback_mutex);
909d75a3 2311 task_lock(tsk);
8793d854 2312 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2313 task_unlock(tsk);
3d3f26a7 2314 mutex_unlock(&callback_mutex);
909d75a3
PJ
2315
2316 return mask;
2317}
2318
d9fd8a6d 2319/**
19770b32
MG
2320 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2321 * @nodemask: the nodemask to be checked
d9fd8a6d 2322 *
19770b32 2323 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2324 */
19770b32 2325int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2326{
19770b32 2327 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2328}
2329
9bf2229f 2330/*
78608366
PM
2331 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2332 * mem_hardwall ancestor to the specified cpuset. Call holding
2333 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2334 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2335 */
78608366 2336static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2337{
c431069f
TH
2338 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2339 cs = parent_cs(cs);
9bf2229f
PJ
2340 return cs;
2341}
2342
d9fd8a6d 2343/**
a1bc5a4e
DR
2344 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2345 * @node: is this an allowed node?
02a0e53d 2346 * @gfp_mask: memory allocation flags
d9fd8a6d 2347 *
a1bc5a4e
DR
2348 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2349 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2350 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2351 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2352 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2353 * flag, yes.
9bf2229f
PJ
2354 * Otherwise, no.
2355 *
a1bc5a4e
DR
2356 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2357 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2358 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2359 *
a1bc5a4e
DR
2360 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2361 * cpusets, and never sleeps.
02a0e53d
PJ
2362 *
2363 * The __GFP_THISNODE placement logic is really handled elsewhere,
2364 * by forcibly using a zonelist starting at a specified node, and by
2365 * (in get_page_from_freelist()) refusing to consider the zones for
2366 * any node on the zonelist except the first. By the time any such
2367 * calls get to this routine, we should just shut up and say 'yes'.
2368 *
9bf2229f 2369 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2370 * and do not allow allocations outside the current tasks cpuset
2371 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2372 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2373 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2374 *
02a0e53d
PJ
2375 * Scanning up parent cpusets requires callback_mutex. The
2376 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2377 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2378 * current tasks mems_allowed came up empty on the first pass over
2379 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2380 * cpuset are short of memory, might require taking the callback_mutex
2381 * mutex.
9bf2229f 2382 *
36be57ff 2383 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2384 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2385 * so no allocation on a node outside the cpuset is allowed (unless
2386 * in interrupt, of course).
36be57ff
PJ
2387 *
2388 * The second pass through get_page_from_freelist() doesn't even call
2389 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2390 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2391 * in alloc_flags. That logic and the checks below have the combined
2392 * affect that:
9bf2229f
PJ
2393 * in_interrupt - any node ok (current task context irrelevant)
2394 * GFP_ATOMIC - any node ok
c596d9f3 2395 * TIF_MEMDIE - any node ok
78608366 2396 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2397 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2398 *
2399 * Rule:
a1bc5a4e 2400 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2401 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2402 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2403 */
a1bc5a4e 2404int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2405{
9bf2229f 2406 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2407 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2408
9b819d20 2409 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2410 return 1;
92d1dbd2 2411 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2412 if (node_isset(node, current->mems_allowed))
2413 return 1;
c596d9f3
DR
2414 /*
2415 * Allow tasks that have access to memory reserves because they have
2416 * been OOM killed to get memory anywhere.
2417 */
2418 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2419 return 1;
9bf2229f
PJ
2420 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2421 return 0;
2422
5563e770
BP
2423 if (current->flags & PF_EXITING) /* Let dying task have memory */
2424 return 1;
2425
9bf2229f 2426 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2427 mutex_lock(&callback_mutex);
053199ed 2428
053199ed 2429 task_lock(current);
78608366 2430 cs = nearest_hardwall_ancestor(task_cs(current));
4bdd401e 2431 allowed = node_isset(node, cs->mems_allowed);
053199ed
PJ
2432 task_unlock(current);
2433
3d3f26a7 2434 mutex_unlock(&callback_mutex);
9bf2229f 2435 return allowed;
1da177e4
LT
2436}
2437
02a0e53d 2438/*
a1bc5a4e
DR
2439 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2440 * @node: is this an allowed node?
02a0e53d
PJ
2441 * @gfp_mask: memory allocation flags
2442 *
a1bc5a4e
DR
2443 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2444 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2445 * yes. If the task has been OOM killed and has access to memory reserves as
2446 * specified by the TIF_MEMDIE flag, yes.
2447 * Otherwise, no.
02a0e53d
PJ
2448 *
2449 * The __GFP_THISNODE placement logic is really handled elsewhere,
2450 * by forcibly using a zonelist starting at a specified node, and by
2451 * (in get_page_from_freelist()) refusing to consider the zones for
2452 * any node on the zonelist except the first. By the time any such
2453 * calls get to this routine, we should just shut up and say 'yes'.
2454 *
a1bc5a4e
DR
2455 * Unlike the cpuset_node_allowed_softwall() variant, above,
2456 * this variant requires that the node be in the current task's
02a0e53d
PJ
2457 * mems_allowed or that we're in interrupt. It does not scan up the
2458 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2459 * It never sleeps.
2460 */
a1bc5a4e 2461int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2462{
02a0e53d
PJ
2463 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2464 return 1;
02a0e53d
PJ
2465 if (node_isset(node, current->mems_allowed))
2466 return 1;
dedf8b79
DW
2467 /*
2468 * Allow tasks that have access to memory reserves because they have
2469 * been OOM killed to get memory anywhere.
2470 */
2471 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2472 return 1;
02a0e53d
PJ
2473 return 0;
2474}
2475
825a46af 2476/**
6adef3eb
JS
2477 * cpuset_mem_spread_node() - On which node to begin search for a file page
2478 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2479 *
2480 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2481 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2482 * and if the memory allocation used cpuset_mem_spread_node()
2483 * to determine on which node to start looking, as it will for
2484 * certain page cache or slab cache pages such as used for file
2485 * system buffers and inode caches, then instead of starting on the
2486 * local node to look for a free page, rather spread the starting
2487 * node around the tasks mems_allowed nodes.
2488 *
2489 * We don't have to worry about the returned node being offline
2490 * because "it can't happen", and even if it did, it would be ok.
2491 *
2492 * The routines calling guarantee_online_mems() are careful to
2493 * only set nodes in task->mems_allowed that are online. So it
2494 * should not be possible for the following code to return an
2495 * offline node. But if it did, that would be ok, as this routine
2496 * is not returning the node where the allocation must be, only
2497 * the node where the search should start. The zonelist passed to
2498 * __alloc_pages() will include all nodes. If the slab allocator
2499 * is passed an offline node, it will fall back to the local node.
2500 * See kmem_cache_alloc_node().
2501 */
2502
6adef3eb 2503static int cpuset_spread_node(int *rotor)
825a46af
PJ
2504{
2505 int node;
2506
6adef3eb 2507 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2508 if (node == MAX_NUMNODES)
2509 node = first_node(current->mems_allowed);
6adef3eb 2510 *rotor = node;
825a46af
PJ
2511 return node;
2512}
6adef3eb
JS
2513
2514int cpuset_mem_spread_node(void)
2515{
778d3b0f
MH
2516 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2517 current->cpuset_mem_spread_rotor =
2518 node_random(&current->mems_allowed);
2519
6adef3eb
JS
2520 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2521}
2522
2523int cpuset_slab_spread_node(void)
2524{
778d3b0f
MH
2525 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2526 current->cpuset_slab_spread_rotor =
2527 node_random(&current->mems_allowed);
2528
6adef3eb
JS
2529 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2530}
2531
825a46af
PJ
2532EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2533
ef08e3b4 2534/**
bbe373f2
DR
2535 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2536 * @tsk1: pointer to task_struct of some task.
2537 * @tsk2: pointer to task_struct of some other task.
2538 *
2539 * Description: Return true if @tsk1's mems_allowed intersects the
2540 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2541 * one of the task's memory usage might impact the memory available
2542 * to the other.
ef08e3b4
PJ
2543 **/
2544
bbe373f2
DR
2545int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2546 const struct task_struct *tsk2)
ef08e3b4 2547{
bbe373f2 2548 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2549}
2550
f440d98f
LZ
2551#define CPUSET_NODELIST_LEN (256)
2552
75aa1994
DR
2553/**
2554 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2555 * @task: pointer to task_struct of some task.
2556 *
2557 * Description: Prints @task's name, cpuset name, and cached copy of its
2558 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2559 * dereferencing task_cs(task).
2560 */
2561void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2562{
f440d98f
LZ
2563 /* Statically allocated to prevent using excess stack. */
2564 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2565 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2566
f440d98f 2567 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2568
cfb5966b 2569 rcu_read_lock();
f440d98f 2570 spin_lock(&cpuset_buffer_lock);
63f43f55 2571
75aa1994
DR
2572 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2573 tsk->mems_allowed);
2574 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2575 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2576
75aa1994 2577 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2578 rcu_read_unlock();
75aa1994
DR
2579}
2580
3e0d98b9
PJ
2581/*
2582 * Collection of memory_pressure is suppressed unless
2583 * this flag is enabled by writing "1" to the special
2584 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2585 */
2586
c5b2aff8 2587int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2588
2589/**
2590 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2591 *
2592 * Keep a running average of the rate of synchronous (direct)
2593 * page reclaim efforts initiated by tasks in each cpuset.
2594 *
2595 * This represents the rate at which some task in the cpuset
2596 * ran low on memory on all nodes it was allowed to use, and
2597 * had to enter the kernels page reclaim code in an effort to
2598 * create more free memory by tossing clean pages or swapping
2599 * or writing dirty pages.
2600 *
2601 * Display to user space in the per-cpuset read-only file
2602 * "memory_pressure". Value displayed is an integer
2603 * representing the recent rate of entry into the synchronous
2604 * (direct) page reclaim by any task attached to the cpuset.
2605 **/
2606
2607void __cpuset_memory_pressure_bump(void)
2608{
3e0d98b9 2609 task_lock(current);
8793d854 2610 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2611 task_unlock(current);
2612}
2613
8793d854 2614#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2615/*
2616 * proc_cpuset_show()
2617 * - Print tasks cpuset path into seq_file.
2618 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2619 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2620 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2621 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2622 * anyway.
1da177e4 2623 */
8d8b97ba 2624int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2625{
13b41b09 2626 struct pid *pid;
1da177e4
LT
2627 struct task_struct *tsk;
2628 char *buf;
8793d854 2629 struct cgroup_subsys_state *css;
99f89551 2630 int retval;
1da177e4 2631
99f89551 2632 retval = -ENOMEM;
1da177e4
LT
2633 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2634 if (!buf)
99f89551
EB
2635 goto out;
2636
2637 retval = -ESRCH;
13b41b09
EB
2638 pid = m->private;
2639 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2640 if (!tsk)
2641 goto out_free;
1da177e4 2642
27e89ae5 2643 rcu_read_lock();
8793d854
PM
2644 css = task_subsys_state(tsk, cpuset_subsys_id);
2645 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2646 rcu_read_unlock();
1da177e4 2647 if (retval < 0)
27e89ae5 2648 goto out_put_task;
1da177e4
LT
2649 seq_puts(m, buf);
2650 seq_putc(m, '\n');
27e89ae5 2651out_put_task:
99f89551
EB
2652 put_task_struct(tsk);
2653out_free:
1da177e4 2654 kfree(buf);
99f89551 2655out:
1da177e4
LT
2656 return retval;
2657}
8793d854 2658#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2659
d01d4827 2660/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2661void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2662{
df5f8314 2663 seq_printf(m, "Mems_allowed:\t");
30e8e136 2664 seq_nodemask(m, &task->mems_allowed);
df5f8314 2665 seq_printf(m, "\n");
39106dcf 2666 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2667 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2668 seq_printf(m, "\n");
1da177e4 2669}