drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
3dc1c1b2 70#include <linux/compat.h>
4b9e9796 71#include <linux/uaccess.h>
fe7752ba 72#include "audit.h"
1da177e4 73
d7e7528b
EP
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
4b9e9796
S
79/* no execve audit message should be longer than this (userspace limits),
80 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
81#define MAX_EXECVE_AUDIT_LEN 7500
82
471a5c7c
AV
83/* number of audit rules */
84int audit_n_rules;
85
e54dc243
AG
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
1da177e4
LT
89struct audit_aux_data {
90 struct audit_aux_data *next;
91 int type;
92};
93
94#define AUDIT_AUX_IPCPERM 0
95
e54dc243
AG
96/* Number of target pids per aux struct. */
97#define AUDIT_AUX_PIDS 16
98
473ae30b
AV
99struct audit_aux_data_execve {
100 struct audit_aux_data d;
101 int argc;
102 int envc;
bdf4c48a 103 struct mm_struct *mm;
473ae30b
AV
104};
105
e54dc243
AG
106struct audit_aux_data_pids {
107 struct audit_aux_data d;
108 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 109 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 110 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 111 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 112 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 113 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
114 int pid_count;
115};
116
3fc689e9
EP
117struct audit_aux_data_bprm_fcaps {
118 struct audit_aux_data d;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 struct audit_cap_data old_pcap;
122 struct audit_cap_data new_pcap;
123};
124
e68b75a0
EP
125struct audit_aux_data_capset {
126 struct audit_aux_data d;
127 pid_t pid;
128 struct audit_cap_data cap;
129};
130
74c3cbe3
AV
131struct audit_tree_refs {
132 struct audit_tree_refs *next;
133 struct audit_chunk *c[31];
134};
135
55669bfa
AV
136static inline int open_arg(int flags, int mask)
137{
138 int n = ACC_MODE(flags);
139 if (flags & (O_TRUNC | O_CREAT))
140 n |= AUDIT_PERM_WRITE;
141 return n & mask;
142}
143
144static int audit_match_perm(struct audit_context *ctx, int mask)
145{
c4bacefb 146 unsigned n;
1a61c88d 147 if (unlikely(!ctx))
148 return 0;
c4bacefb 149 n = ctx->major;
dbda4c0b 150
55669bfa
AV
151 switch (audit_classify_syscall(ctx->arch, n)) {
152 case 0: /* native */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR, n))
161 return 1;
162 return 0;
163 case 1: /* 32bit on biarch */
164 if ((mask & AUDIT_PERM_WRITE) &&
165 audit_match_class(AUDIT_CLASS_WRITE_32, n))
166 return 1;
167 if ((mask & AUDIT_PERM_READ) &&
168 audit_match_class(AUDIT_CLASS_READ_32, n))
169 return 1;
170 if ((mask & AUDIT_PERM_ATTR) &&
171 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
172 return 1;
173 return 0;
174 case 2: /* open */
175 return mask & ACC_MODE(ctx->argv[1]);
176 case 3: /* openat */
177 return mask & ACC_MODE(ctx->argv[2]);
178 case 4: /* socketcall */
179 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
180 case 5: /* execve */
181 return mask & AUDIT_PERM_EXEC;
182 default:
183 return 0;
184 }
185}
186
5ef30ee5 187static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 188{
5195d8e2 189 struct audit_names *n;
5ef30ee5 190 umode_t mode = (umode_t)val;
1a61c88d 191
192 if (unlikely(!ctx))
193 return 0;
194
5195d8e2
EP
195 list_for_each_entry(n, &ctx->names_list, list) {
196 if ((n->ino != -1) &&
197 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
198 return 1;
199 }
5195d8e2 200
5ef30ee5 201 return 0;
8b67dca9
AV
202}
203
74c3cbe3
AV
204/*
205 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
206 * ->first_trees points to its beginning, ->trees - to the current end of data.
207 * ->tree_count is the number of free entries in array pointed to by ->trees.
208 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
209 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
210 * it's going to remain 1-element for almost any setup) until we free context itself.
211 * References in it _are_ dropped - at the same time we free/drop aux stuff.
212 */
213
214#ifdef CONFIG_AUDIT_TREE
679173b7
EP
215static void audit_set_auditable(struct audit_context *ctx)
216{
217 if (!ctx->prio) {
218 ctx->prio = 1;
219 ctx->current_state = AUDIT_RECORD_CONTEXT;
220 }
221}
222
74c3cbe3
AV
223static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
224{
225 struct audit_tree_refs *p = ctx->trees;
226 int left = ctx->tree_count;
227 if (likely(left)) {
228 p->c[--left] = chunk;
229 ctx->tree_count = left;
230 return 1;
231 }
232 if (!p)
233 return 0;
234 p = p->next;
235 if (p) {
236 p->c[30] = chunk;
237 ctx->trees = p;
238 ctx->tree_count = 30;
239 return 1;
240 }
241 return 0;
242}
243
244static int grow_tree_refs(struct audit_context *ctx)
245{
246 struct audit_tree_refs *p = ctx->trees;
247 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
248 if (!ctx->trees) {
249 ctx->trees = p;
250 return 0;
251 }
252 if (p)
253 p->next = ctx->trees;
254 else
255 ctx->first_trees = ctx->trees;
256 ctx->tree_count = 31;
257 return 1;
258}
259#endif
260
261static void unroll_tree_refs(struct audit_context *ctx,
262 struct audit_tree_refs *p, int count)
263{
264#ifdef CONFIG_AUDIT_TREE
265 struct audit_tree_refs *q;
266 int n;
267 if (!p) {
268 /* we started with empty chain */
269 p = ctx->first_trees;
270 count = 31;
271 /* if the very first allocation has failed, nothing to do */
272 if (!p)
273 return;
274 }
275 n = count;
276 for (q = p; q != ctx->trees; q = q->next, n = 31) {
277 while (n--) {
278 audit_put_chunk(q->c[n]);
279 q->c[n] = NULL;
280 }
281 }
282 while (n-- > ctx->tree_count) {
283 audit_put_chunk(q->c[n]);
284 q->c[n] = NULL;
285 }
286 ctx->trees = p;
287 ctx->tree_count = count;
288#endif
289}
290
291static void free_tree_refs(struct audit_context *ctx)
292{
293 struct audit_tree_refs *p, *q;
294 for (p = ctx->first_trees; p; p = q) {
295 q = p->next;
296 kfree(p);
297 }
298}
299
300static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
301{
302#ifdef CONFIG_AUDIT_TREE
303 struct audit_tree_refs *p;
304 int n;
305 if (!tree)
306 return 0;
307 /* full ones */
308 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
309 for (n = 0; n < 31; n++)
310 if (audit_tree_match(p->c[n], tree))
311 return 1;
312 }
313 /* partial */
314 if (p) {
315 for (n = ctx->tree_count; n < 31; n++)
316 if (audit_tree_match(p->c[n], tree))
317 return 1;
318 }
319#endif
320 return 0;
321}
322
ca57ec0f
EB
323static int audit_compare_uid(kuid_t uid,
324 struct audit_names *name,
325 struct audit_field *f,
326 struct audit_context *ctx)
b34b0393
EP
327{
328 struct audit_names *n;
b34b0393 329 int rc;
ca57ec0f 330
b34b0393 331 if (name) {
ca57ec0f 332 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
333 if (rc)
334 return rc;
335 }
ca57ec0f 336
b34b0393
EP
337 if (ctx) {
338 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
339 rc = audit_uid_comparator(uid, f->op, n->uid);
340 if (rc)
341 return rc;
342 }
343 }
344 return 0;
345}
b34b0393 346
ca57ec0f
EB
347static int audit_compare_gid(kgid_t gid,
348 struct audit_names *name,
349 struct audit_field *f,
350 struct audit_context *ctx)
351{
352 struct audit_names *n;
353 int rc;
354
355 if (name) {
356 rc = audit_gid_comparator(gid, f->op, name->gid);
357 if (rc)
358 return rc;
359 }
360
361 if (ctx) {
362 list_for_each_entry(n, &ctx->names_list, list) {
363 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
364 if (rc)
365 return rc;
366 }
367 }
368 return 0;
369}
370
02d86a56
EP
371static int audit_field_compare(struct task_struct *tsk,
372 const struct cred *cred,
373 struct audit_field *f,
374 struct audit_context *ctx,
375 struct audit_names *name)
376{
02d86a56 377 switch (f->val) {
4a6633ed 378 /* process to file object comparisons */
02d86a56 379 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 380 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 381 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 382 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 383 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 384 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 385 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 386 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 387 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 388 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 389 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 390 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 391 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 392 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 393 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 394 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 395 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 396 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
397 /* uid comparisons */
398 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 399 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 400 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 401 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 402 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 403 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 404 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 405 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
406 /* auid comparisons */
407 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 408 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 409 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 410 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 411 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 412 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
413 /* euid comparisons */
414 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 415 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 416 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 417 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
418 /* suid comparisons */
419 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 420 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
421 /* gid comparisons */
422 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 423 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 424 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 425 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 426 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 427 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
428 /* egid comparisons */
429 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 430 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 431 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 432 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
433 /* sgid comparison */
434 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 435 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
436 default:
437 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
438 return 0;
439 }
440 return 0;
441}
442
f368c07d 443/* Determine if any context name data matches a rule's watch data */
1da177e4 444/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
445 * otherwise.
446 *
447 * If task_creation is true, this is an explicit indication that we are
448 * filtering a task rule at task creation time. This and tsk == current are
449 * the only situations where tsk->cred may be accessed without an rcu read lock.
450 */
1da177e4 451static int audit_filter_rules(struct task_struct *tsk,
93315ed6 452 struct audit_krule *rule,
1da177e4 453 struct audit_context *ctx,
f368c07d 454 struct audit_names *name,
f5629883
TJ
455 enum audit_state *state,
456 bool task_creation)
1da177e4 457{
f5629883 458 const struct cred *cred;
5195d8e2 459 int i, need_sid = 1;
3dc7e315
DG
460 u32 sid;
461
f5629883
TJ
462 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
463
1da177e4 464 for (i = 0; i < rule->field_count; i++) {
93315ed6 465 struct audit_field *f = &rule->fields[i];
5195d8e2 466 struct audit_names *n;
1da177e4
LT
467 int result = 0;
468
93315ed6 469 switch (f->type) {
1da177e4 470 case AUDIT_PID:
93315ed6 471 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 472 break;
3c66251e 473 case AUDIT_PPID:
419c58f1
AV
474 if (ctx) {
475 if (!ctx->ppid)
476 ctx->ppid = sys_getppid();
3c66251e 477 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 478 }
3c66251e 479 break;
1da177e4 480 case AUDIT_UID:
ca57ec0f 481 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
482 break;
483 case AUDIT_EUID:
ca57ec0f 484 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
485 break;
486 case AUDIT_SUID:
ca57ec0f 487 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
488 break;
489 case AUDIT_FSUID:
ca57ec0f 490 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
491 break;
492 case AUDIT_GID:
ca57ec0f 493 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
494 if (f->op == Audit_equal) {
495 if (!result)
496 result = in_group_p(f->gid);
497 } else if (f->op == Audit_not_equal) {
498 if (result)
499 result = !in_group_p(f->gid);
500 }
1da177e4
LT
501 break;
502 case AUDIT_EGID:
ca57ec0f 503 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
504 if (f->op == Audit_equal) {
505 if (!result)
506 result = in_egroup_p(f->gid);
507 } else if (f->op == Audit_not_equal) {
508 if (result)
509 result = !in_egroup_p(f->gid);
510 }
1da177e4
LT
511 break;
512 case AUDIT_SGID:
ca57ec0f 513 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
514 break;
515 case AUDIT_FSGID:
ca57ec0f 516 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
517 break;
518 case AUDIT_PERS:
93315ed6 519 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 520 break;
2fd6f58b 521 case AUDIT_ARCH:
9f8dbe9c 522 if (ctx)
93315ed6 523 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 524 break;
1da177e4
LT
525
526 case AUDIT_EXIT:
527 if (ctx && ctx->return_valid)
93315ed6 528 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
529 break;
530 case AUDIT_SUCCESS:
b01f2cc1 531 if (ctx && ctx->return_valid) {
93315ed6
AG
532 if (f->val)
533 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 534 else
93315ed6 535 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 536 }
1da177e4
LT
537 break;
538 case AUDIT_DEVMAJOR:
16c174bd
EP
539 if (name) {
540 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
541 audit_comparator(MAJOR(name->rdev), f->op, f->val))
542 ++result;
543 } else if (ctx) {
5195d8e2 544 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
545 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
546 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
547 ++result;
548 break;
549 }
550 }
551 }
552 break;
553 case AUDIT_DEVMINOR:
16c174bd
EP
554 if (name) {
555 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
556 audit_comparator(MINOR(name->rdev), f->op, f->val))
557 ++result;
558 } else if (ctx) {
5195d8e2 559 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
560 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
561 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
562 ++result;
563 break;
564 }
565 }
566 }
567 break;
568 case AUDIT_INODE:
f368c07d 569 if (name)
9c937dcc 570 result = (name->ino == f->val);
f368c07d 571 else if (ctx) {
5195d8e2
EP
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
574 ++result;
575 break;
576 }
577 }
578 }
579 break;
efaffd6e
EP
580 case AUDIT_OBJ_UID:
581 if (name) {
ca57ec0f 582 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
583 } else if (ctx) {
584 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 585 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
586 ++result;
587 break;
588 }
589 }
590 }
591 break;
54d3218b
EP
592 case AUDIT_OBJ_GID:
593 if (name) {
ca57ec0f 594 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
595 } else if (ctx) {
596 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 597 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
598 ++result;
599 break;
600 }
601 }
602 }
603 break;
f368c07d 604 case AUDIT_WATCH:
ae7b8f41
EP
605 if (name)
606 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 607 break;
74c3cbe3
AV
608 case AUDIT_DIR:
609 if (ctx)
610 result = match_tree_refs(ctx, rule->tree);
611 break;
1da177e4
LT
612 case AUDIT_LOGINUID:
613 result = 0;
614 if (ctx)
ca57ec0f 615 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 616 break;
780a7654
EB
617 case AUDIT_LOGINUID_SET:
618 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
619 break;
3a6b9f85
DG
620 case AUDIT_SUBJ_USER:
621 case AUDIT_SUBJ_ROLE:
622 case AUDIT_SUBJ_TYPE:
623 case AUDIT_SUBJ_SEN:
624 case AUDIT_SUBJ_CLR:
3dc7e315
DG
625 /* NOTE: this may return negative values indicating
626 a temporary error. We simply treat this as a
627 match for now to avoid losing information that
628 may be wanted. An error message will also be
629 logged upon error */
04305e4a 630 if (f->lsm_rule) {
2ad312d2 631 if (need_sid) {
2a862b32 632 security_task_getsecid(tsk, &sid);
2ad312d2
SG
633 need_sid = 0;
634 }
d7a96f3a 635 result = security_audit_rule_match(sid, f->type,
3dc7e315 636 f->op,
04305e4a 637 f->lsm_rule,
3dc7e315 638 ctx);
2ad312d2 639 }
3dc7e315 640 break;
6e5a2d1d
DG
641 case AUDIT_OBJ_USER:
642 case AUDIT_OBJ_ROLE:
643 case AUDIT_OBJ_TYPE:
644 case AUDIT_OBJ_LEV_LOW:
645 case AUDIT_OBJ_LEV_HIGH:
646 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
647 also applies here */
04305e4a 648 if (f->lsm_rule) {
6e5a2d1d
DG
649 /* Find files that match */
650 if (name) {
d7a96f3a 651 result = security_audit_rule_match(
6e5a2d1d 652 name->osid, f->type, f->op,
04305e4a 653 f->lsm_rule, ctx);
6e5a2d1d 654 } else if (ctx) {
5195d8e2
EP
655 list_for_each_entry(n, &ctx->names_list, list) {
656 if (security_audit_rule_match(n->osid, f->type,
657 f->op, f->lsm_rule,
658 ctx)) {
6e5a2d1d
DG
659 ++result;
660 break;
661 }
662 }
663 }
664 /* Find ipc objects that match */
a33e6751
AV
665 if (!ctx || ctx->type != AUDIT_IPC)
666 break;
667 if (security_audit_rule_match(ctx->ipc.osid,
668 f->type, f->op,
669 f->lsm_rule, ctx))
670 ++result;
6e5a2d1d
DG
671 }
672 break;
1da177e4
LT
673 case AUDIT_ARG0:
674 case AUDIT_ARG1:
675 case AUDIT_ARG2:
676 case AUDIT_ARG3:
677 if (ctx)
93315ed6 678 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 679 break;
5adc8a6a
AG
680 case AUDIT_FILTERKEY:
681 /* ignore this field for filtering */
682 result = 1;
683 break;
55669bfa
AV
684 case AUDIT_PERM:
685 result = audit_match_perm(ctx, f->val);
686 break;
8b67dca9
AV
687 case AUDIT_FILETYPE:
688 result = audit_match_filetype(ctx, f->val);
689 break;
02d86a56
EP
690 case AUDIT_FIELD_COMPARE:
691 result = audit_field_compare(tsk, cred, f, ctx, name);
692 break;
1da177e4 693 }
f5629883 694 if (!result)
1da177e4
LT
695 return 0;
696 }
0590b933
AV
697
698 if (ctx) {
699 if (rule->prio <= ctx->prio)
700 return 0;
701 if (rule->filterkey) {
702 kfree(ctx->filterkey);
703 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
704 }
705 ctx->prio = rule->prio;
706 }
1da177e4
LT
707 switch (rule->action) {
708 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
709 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
710 }
711 return 1;
712}
713
714/* At process creation time, we can determine if system-call auditing is
715 * completely disabled for this task. Since we only have the task
716 * structure at this point, we can only check uid and gid.
717 */
e048e02c 718static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
719{
720 struct audit_entry *e;
721 enum audit_state state;
722
723 rcu_read_lock();
0f45aa18 724 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
725 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
726 &state, true)) {
e048e02c
AV
727 if (state == AUDIT_RECORD_CONTEXT)
728 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
729 rcu_read_unlock();
730 return state;
731 }
732 }
733 rcu_read_unlock();
734 return AUDIT_BUILD_CONTEXT;
735}
736
553a8725
AL
737static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
738{
739 int word, bit;
740
741 if (val > 0xffffffff)
742 return false;
743
744 word = AUDIT_WORD(val);
745 if (word >= AUDIT_BITMASK_SIZE)
746 return false;
747
748 bit = AUDIT_BIT(val);
749
750 return rule->mask[word] & bit;
751}
752
1da177e4
LT
753/* At syscall entry and exit time, this filter is called if the
754 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 755 * also not high enough that we already know we have to write an audit
b0dd25a8 756 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
757 */
758static enum audit_state audit_filter_syscall(struct task_struct *tsk,
759 struct audit_context *ctx,
760 struct list_head *list)
761{
762 struct audit_entry *e;
c3896495 763 enum audit_state state;
1da177e4 764
351bb722 765 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
766 return AUDIT_DISABLED;
767
1da177e4 768 rcu_read_lock();
c3896495 769 if (!list_empty(list)) {
b63862f4 770 list_for_each_entry_rcu(e, list, list) {
553a8725 771 if (audit_in_mask(&e->rule, ctx->major) &&
f368c07d 772 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 773 &state, false)) {
f368c07d 774 rcu_read_unlock();
0590b933 775 ctx->current_state = state;
f368c07d
AG
776 return state;
777 }
778 }
779 }
780 rcu_read_unlock();
781 return AUDIT_BUILD_CONTEXT;
782}
783
5195d8e2
EP
784/*
785 * Given an audit_name check the inode hash table to see if they match.
786 * Called holding the rcu read lock to protect the use of audit_inode_hash
787 */
788static int audit_filter_inode_name(struct task_struct *tsk,
789 struct audit_names *n,
790 struct audit_context *ctx) {
5195d8e2
EP
791 int h = audit_hash_ino((u32)n->ino);
792 struct list_head *list = &audit_inode_hash[h];
793 struct audit_entry *e;
794 enum audit_state state;
795
5195d8e2
EP
796 if (list_empty(list))
797 return 0;
798
799 list_for_each_entry_rcu(e, list, list) {
553a8725 800 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
801 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
802 ctx->current_state = state;
803 return 1;
804 }
805 }
806
807 return 0;
808}
809
810/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 811 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 812 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
813 * Regarding audit_state, same rules apply as for audit_filter_syscall().
814 */
0590b933 815void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 816{
5195d8e2 817 struct audit_names *n;
f368c07d
AG
818
819 if (audit_pid && tsk->tgid == audit_pid)
0590b933 820 return;
f368c07d
AG
821
822 rcu_read_lock();
f368c07d 823
5195d8e2
EP
824 list_for_each_entry(n, &ctx->names_list, list) {
825 if (audit_filter_inode_name(tsk, n, ctx))
826 break;
0f45aa18
DW
827 }
828 rcu_read_unlock();
0f45aa18
DW
829}
830
1da177e4
LT
831static inline struct audit_context *audit_get_context(struct task_struct *tsk,
832 int return_valid,
6d208da8 833 long return_code)
1da177e4
LT
834{
835 struct audit_context *context = tsk->audit_context;
836
56179a6e 837 if (!context)
1da177e4
LT
838 return NULL;
839 context->return_valid = return_valid;
f701b75e
EP
840
841 /*
842 * we need to fix up the return code in the audit logs if the actual
843 * return codes are later going to be fixed up by the arch specific
844 * signal handlers
845 *
846 * This is actually a test for:
847 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
848 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
849 *
850 * but is faster than a bunch of ||
851 */
852 if (unlikely(return_code <= -ERESTARTSYS) &&
853 (return_code >= -ERESTART_RESTARTBLOCK) &&
854 (return_code != -ENOIOCTLCMD))
855 context->return_code = -EINTR;
856 else
857 context->return_code = return_code;
1da177e4 858
0590b933
AV
859 if (context->in_syscall && !context->dummy) {
860 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
861 audit_filter_inodes(tsk, context);
1da177e4
LT
862 }
863
1da177e4
LT
864 tsk->audit_context = NULL;
865 return context;
866}
867
868static inline void audit_free_names(struct audit_context *context)
869{
5195d8e2 870 struct audit_names *n, *next;
1da177e4
LT
871
872#if AUDIT_DEBUG == 2
0590b933 873 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
874 int i = 0;
875
73241ccc 876 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
877 " name_count=%d put_count=%d"
878 " ino_count=%d [NOT freeing]\n",
73241ccc 879 __FILE__, __LINE__,
1da177e4
LT
880 context->serial, context->major, context->in_syscall,
881 context->name_count, context->put_count,
882 context->ino_count);
5195d8e2 883 list_for_each_entry(n, &context->names_list, list) {
34c474de 884 printk(KERN_ERR "names[%d] = %p = %s\n", i++,
91a27b2a 885 n->name, n->name->name ?: "(null)");
8c8570fb 886 }
1da177e4
LT
887 dump_stack();
888 return;
889 }
890#endif
891#if AUDIT_DEBUG
892 context->put_count = 0;
893 context->ino_count = 0;
894#endif
895
5195d8e2
EP
896 list_for_each_entry_safe(n, next, &context->names_list, list) {
897 list_del(&n->list);
898 if (n->name && n->name_put)
65ada7bc 899 final_putname(n->name);
5195d8e2
EP
900 if (n->should_free)
901 kfree(n);
8c8570fb 902 }
1da177e4 903 context->name_count = 0;
44707fdf
JB
904 path_put(&context->pwd);
905 context->pwd.dentry = NULL;
906 context->pwd.mnt = NULL;
1da177e4
LT
907}
908
909static inline void audit_free_aux(struct audit_context *context)
910{
911 struct audit_aux_data *aux;
912
913 while ((aux = context->aux)) {
914 context->aux = aux->next;
915 kfree(aux);
916 }
e54dc243
AG
917 while ((aux = context->aux_pids)) {
918 context->aux_pids = aux->next;
919 kfree(aux);
920 }
1da177e4
LT
921}
922
1da177e4
LT
923static inline struct audit_context *audit_alloc_context(enum audit_state state)
924{
925 struct audit_context *context;
926
17c6ee70
RM
927 context = kzalloc(sizeof(*context), GFP_KERNEL);
928 if (!context)
1da177e4 929 return NULL;
e2c5adc8
AM
930 context->state = state;
931 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 932 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 933 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
934 return context;
935}
936
b0dd25a8
RD
937/**
938 * audit_alloc - allocate an audit context block for a task
939 * @tsk: task
940 *
941 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
942 * if necessary. Doing so turns on system call auditing for the
943 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
944 * needed.
945 */
1da177e4
LT
946int audit_alloc(struct task_struct *tsk)
947{
948 struct audit_context *context;
949 enum audit_state state;
e048e02c 950 char *key = NULL;
1da177e4 951
b593d384 952 if (likely(!audit_ever_enabled))
1da177e4
LT
953 return 0; /* Return if not auditing. */
954
e048e02c 955 state = audit_filter_task(tsk, &key);
56179a6e 956 if (state == AUDIT_DISABLED)
1da177e4
LT
957 return 0;
958
959 if (!(context = audit_alloc_context(state))) {
e048e02c 960 kfree(key);
1da177e4
LT
961 audit_log_lost("out of memory in audit_alloc");
962 return -ENOMEM;
963 }
e048e02c 964 context->filterkey = key;
1da177e4 965
1da177e4
LT
966 tsk->audit_context = context;
967 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
968 return 0;
969}
970
971static inline void audit_free_context(struct audit_context *context)
972{
c62d773a
AV
973 audit_free_names(context);
974 unroll_tree_refs(context, NULL, 0);
975 free_tree_refs(context);
976 audit_free_aux(context);
977 kfree(context->filterkey);
978 kfree(context->sockaddr);
979 kfree(context);
1da177e4
LT
980}
981
e54dc243 982static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 983 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 984 u32 sid, char *comm)
e54dc243
AG
985{
986 struct audit_buffer *ab;
2a862b32 987 char *ctx = NULL;
e54dc243
AG
988 u32 len;
989 int rc = 0;
990
991 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
992 if (!ab)
6246ccab 993 return rc;
e54dc243 994
e1760bd5
EB
995 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
996 from_kuid(&init_user_ns, auid),
cca080d9 997 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
998 if (sid) {
999 if (security_secid_to_secctx(sid, &ctx, &len)) {
1000 audit_log_format(ab, " obj=(none)");
1001 rc = 1;
1002 } else {
1003 audit_log_format(ab, " obj=%s", ctx);
1004 security_release_secctx(ctx, len);
1005 }
2a862b32 1006 }
c2a7780e
EP
1007 audit_log_format(ab, " ocomm=");
1008 audit_log_untrustedstring(ab, comm);
e54dc243 1009 audit_log_end(ab);
e54dc243
AG
1010
1011 return rc;
1012}
1013
4b9e9796
S
1014static void audit_log_execve_info(struct audit_context *context,
1015 struct audit_buffer **ab)
bdf4c48a 1016{
4b9e9796
S
1017 long len_max;
1018 long len_rem;
1019 long len_full;
1020 long len_buf;
1021 long len_abuf;
1022 long len_tmp;
1023 bool require_data;
1024 bool encode;
1025 unsigned int iter;
1026 unsigned int arg;
1027 char *buf_head;
1028 char *buf;
1029 const char __user *p = (const char __user *)current->mm->arg_start;
1030
1031 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1032 * data we put in the audit record for this argument (see the
1033 * code below) ... at this point in time 96 is plenty */
1034 char abuf[96];
1035
1036 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1037 * current value of 7500 is not as important as the fact that it
1038 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1039 * room if we go over a little bit in the logging below */
1040 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1041 len_max = MAX_EXECVE_AUDIT_LEN;
1042
1043 /* scratch buffer to hold the userspace args */
1044 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1045 if (!buf_head) {
1046 audit_panic("out of memory for argv string");
1047 return;
de6bbd1d 1048 }
4b9e9796
S
1049 buf = buf_head;
1050
1051 audit_log_format(*ab, "argc=%d", context->execve.argc);
1052
1053 len_rem = len_max;
1054 len_buf = 0;
1055 len_full = 0;
1056 require_data = true;
1057 encode = false;
1058 iter = 0;
1059 arg = 0;
040b3a2d 1060
de6bbd1d 1061 do {
4b9e9796
S
1062 /* NOTE: we don't ever want to trust this value for anything
1063 * serious, but the audit record format insists we
1064 * provide an argument length for really long arguments,
1065 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1066 * to use strncpy_from_user() to obtain this value for
1067 * recording in the log, although we don't use it
1068 * anywhere here to avoid a double-fetch problem */
1069 if (len_full == 0)
1070 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1071
1072 /* read more data from userspace */
1073 if (require_data) {
1074 /* can we make more room in the buffer? */
1075 if (buf != buf_head) {
1076 memmove(buf_head, buf, len_buf);
1077 buf = buf_head;
1078 }
bdf4c48a 1079
4b9e9796
S
1080 /* fetch as much as we can of the argument */
1081 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1082 len_max - len_buf);
1083 if (len_tmp == -EFAULT) {
1084 /* unable to copy from userspace */
1085 send_sig(SIGKILL, current, 0);
1086 goto out;
1087 } else if (len_tmp == (len_max - len_buf)) {
1088 /* buffer is not large enough */
1089 require_data = true;
1090 /* NOTE: if we are going to span multiple
1091 * buffers force the encoding so we stand
1092 * a chance at a sane len_full value and
1093 * consistent record encoding */
1094 encode = true;
1095 len_full = len_full * 2;
1096 p += len_tmp;
1097 } else {
1098 require_data = false;
1099 if (!encode)
1100 encode = audit_string_contains_control(
1101 buf, len_tmp);
1102 /* try to use a trusted value for len_full */
1103 if (len_full < len_max)
1104 len_full = (encode ?
1105 len_tmp * 2 : len_tmp);
1106 p += len_tmp + 1;
1107 }
1108 len_buf += len_tmp;
1109 buf_head[len_buf] = '\0';
de6bbd1d 1110
4b9e9796
S
1111 /* length of the buffer in the audit record? */
1112 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1113
4b9e9796 1114 }
de6bbd1d 1115
4b9e9796
S
1116 /* write as much as we can to the audit log */
1117 if (len_buf > 0) {
1118 /* NOTE: some magic numbers here - basically if we
1119 * can't fit a reasonable amount of data into the
1120 * existing audit buffer, flush it and start with
1121 * a new buffer */
1122 if ((sizeof(abuf) + 8) > len_rem) {
1123 len_rem = len_max;
1124 audit_log_end(*ab);
1125 *ab = audit_log_start(context,
1126 GFP_KERNEL, AUDIT_EXECVE);
1127 if (!*ab)
1128 goto out;
1129 }
bdf4c48a 1130
4b9e9796
S
1131 /* create the non-arg portion of the arg record */
1132 len_tmp = 0;
1133 if (require_data || (iter > 0) ||
1134 ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 if (iter == 0) {
1136 len_tmp += snprintf(&abuf[len_tmp],
1137 sizeof(abuf) - len_tmp,
1138 " a%d_len=%lu",
1139 arg, len_full);
1140 }
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1143 " a%d[%d]=", arg, iter++);
1144 } else
1145 len_tmp += snprintf(&abuf[len_tmp],
1146 sizeof(abuf) - len_tmp,
1147 " a%d=", arg);
1148 WARN_ON(len_tmp >= sizeof(abuf));
1149 abuf[sizeof(abuf) - 1] = '\0';
1150
1151 /* log the arg in the audit record */
1152 audit_log_format(*ab, "%s", abuf);
1153 len_rem -= len_tmp;
1154 len_tmp = len_buf;
1155 if (encode) {
1156 if (len_abuf > len_rem)
1157 len_tmp = len_rem / 2; /* encoding */
1158 audit_log_n_hex(*ab, buf, len_tmp);
1159 len_rem -= len_tmp * 2;
1160 len_abuf -= len_tmp * 2;
1161 } else {
1162 if (len_abuf > len_rem)
1163 len_tmp = len_rem - 2; /* quotes */
1164 audit_log_n_string(*ab, buf, len_tmp);
1165 len_rem -= len_tmp + 2;
1166 /* don't subtract the "2" because we still need
1167 * to add quotes to the remaining string */
1168 len_abuf -= len_tmp;
1169 }
1170 len_buf -= len_tmp;
1171 buf += len_tmp;
1172 }
de6bbd1d 1173
4b9e9796
S
1174 /* ready to move to the next argument? */
1175 if ((len_buf == 0) && !require_data) {
1176 arg++;
1177 iter = 0;
1178 len_full = 0;
1179 require_data = true;
1180 encode = false;
1181 }
1182 } while (arg < context->execve.argc);
de6bbd1d 1183
4b9e9796
S
1184 /* NOTE: the caller handles the final audit_log_end() call */
1185
1186out:
1187 kfree(buf_head);
bdf4c48a
PZ
1188}
1189
a33e6751 1190static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1191{
1192 struct audit_buffer *ab;
1193 int i;
1194
1195 ab = audit_log_start(context, GFP_KERNEL, context->type);
1196 if (!ab)
1197 return;
1198
1199 switch (context->type) {
1200 case AUDIT_SOCKETCALL: {
1201 int nargs = context->socketcall.nargs;
1202 audit_log_format(ab, "nargs=%d", nargs);
1203 for (i = 0; i < nargs; i++)
1204 audit_log_format(ab, " a%d=%lx", i,
1205 context->socketcall.args[i]);
1206 break; }
a33e6751
AV
1207 case AUDIT_IPC: {
1208 u32 osid = context->ipc.osid;
1209
2570ebbd 1210 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1211 from_kuid(&init_user_ns, context->ipc.uid),
1212 from_kgid(&init_user_ns, context->ipc.gid),
1213 context->ipc.mode);
a33e6751
AV
1214 if (osid) {
1215 char *ctx = NULL;
1216 u32 len;
1217 if (security_secid_to_secctx(osid, &ctx, &len)) {
1218 audit_log_format(ab, " osid=%u", osid);
1219 *call_panic = 1;
1220 } else {
1221 audit_log_format(ab, " obj=%s", ctx);
1222 security_release_secctx(ctx, len);
1223 }
1224 }
e816f370
AV
1225 if (context->ipc.has_perm) {
1226 audit_log_end(ab);
1227 ab = audit_log_start(context, GFP_KERNEL,
1228 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1229 if (unlikely(!ab))
1230 return;
e816f370 1231 audit_log_format(ab,
2570ebbd 1232 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1233 context->ipc.qbytes,
1234 context->ipc.perm_uid,
1235 context->ipc.perm_gid,
1236 context->ipc.perm_mode);
e816f370 1237 }
a33e6751 1238 break; }
564f6993
AV
1239 case AUDIT_MQ_OPEN: {
1240 audit_log_format(ab,
df0a4283 1241 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1242 "mq_msgsize=%ld mq_curmsgs=%ld",
1243 context->mq_open.oflag, context->mq_open.mode,
1244 context->mq_open.attr.mq_flags,
1245 context->mq_open.attr.mq_maxmsg,
1246 context->mq_open.attr.mq_msgsize,
1247 context->mq_open.attr.mq_curmsgs);
1248 break; }
c32c8af4
AV
1249 case AUDIT_MQ_SENDRECV: {
1250 audit_log_format(ab,
1251 "mqdes=%d msg_len=%zd msg_prio=%u "
1252 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1253 context->mq_sendrecv.mqdes,
1254 context->mq_sendrecv.msg_len,
1255 context->mq_sendrecv.msg_prio,
1256 context->mq_sendrecv.abs_timeout.tv_sec,
1257 context->mq_sendrecv.abs_timeout.tv_nsec);
1258 break; }
20114f71
AV
1259 case AUDIT_MQ_NOTIFY: {
1260 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1261 context->mq_notify.mqdes,
1262 context->mq_notify.sigev_signo);
1263 break; }
7392906e
AV
1264 case AUDIT_MQ_GETSETATTR: {
1265 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1266 audit_log_format(ab,
1267 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1268 "mq_curmsgs=%ld ",
1269 context->mq_getsetattr.mqdes,
1270 attr->mq_flags, attr->mq_maxmsg,
1271 attr->mq_msgsize, attr->mq_curmsgs);
1272 break; }
57f71a0a
AV
1273 case AUDIT_CAPSET: {
1274 audit_log_format(ab, "pid=%d", context->capset.pid);
1275 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1276 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1277 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1278 break; }
120a795d
AV
1279 case AUDIT_MMAP: {
1280 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1281 context->mmap.flags);
1282 break; }
f3298dc4
AV
1283 }
1284 audit_log_end(ab);
1285}
1286
e495149b 1287static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1288{
9c7aa6aa 1289 int i, call_panic = 0;
1da177e4 1290 struct audit_buffer *ab;
7551ced3 1291 struct audit_aux_data *aux;
5195d8e2 1292 struct audit_names *n;
1da177e4 1293
e495149b 1294 /* tsk == current */
3f2792ff 1295 context->personality = tsk->personality;
e495149b
AV
1296
1297 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1298 if (!ab)
1299 return; /* audit_panic has been called */
bccf6ae0
DW
1300 audit_log_format(ab, "arch=%x syscall=%d",
1301 context->arch, context->major);
1da177e4
LT
1302 if (context->personality != PER_LINUX)
1303 audit_log_format(ab, " per=%lx", context->personality);
1304 if (context->return_valid)
9f8dbe9c 1305 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1306 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1307 context->return_code);
eb84a20e 1308
1da177e4 1309 audit_log_format(ab,
e23eb920
PM
1310 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1311 context->argv[0],
1312 context->argv[1],
1313 context->argv[2],
1314 context->argv[3],
1315 context->name_count);
eb84a20e 1316
e495149b 1317 audit_log_task_info(ab, tsk);
9d960985 1318 audit_log_key(ab, context->filterkey);
1da177e4 1319 audit_log_end(ab);
1da177e4 1320
7551ced3 1321 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1322
e495149b 1323 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1324 if (!ab)
1325 continue; /* audit_panic has been called */
1326
1da177e4 1327 switch (aux->type) {
20ca73bc 1328
473ae30b 1329 case AUDIT_EXECVE: {
4b9e9796 1330 audit_log_execve_info(context, &ab);
473ae30b 1331 break; }
073115d6 1332
3fc689e9
EP
1333 case AUDIT_BPRM_FCAPS: {
1334 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1335 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1336 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1337 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1338 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1339 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1340 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1341 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1342 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1343 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1344 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1345 break; }
1346
1da177e4
LT
1347 }
1348 audit_log_end(ab);
1da177e4
LT
1349 }
1350
f3298dc4 1351 if (context->type)
a33e6751 1352 show_special(context, &call_panic);
f3298dc4 1353
157cf649
AV
1354 if (context->fds[0] >= 0) {
1355 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1356 if (ab) {
1357 audit_log_format(ab, "fd0=%d fd1=%d",
1358 context->fds[0], context->fds[1]);
1359 audit_log_end(ab);
1360 }
1361 }
1362
4f6b434f
AV
1363 if (context->sockaddr_len) {
1364 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1365 if (ab) {
1366 audit_log_format(ab, "saddr=");
1367 audit_log_n_hex(ab, (void *)context->sockaddr,
1368 context->sockaddr_len);
1369 audit_log_end(ab);
1370 }
1371 }
1372
e54dc243
AG
1373 for (aux = context->aux_pids; aux; aux = aux->next) {
1374 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1375
1376 for (i = 0; i < axs->pid_count; i++)
1377 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1378 axs->target_auid[i],
1379 axs->target_uid[i],
4746ec5b 1380 axs->target_sessionid[i],
c2a7780e
EP
1381 axs->target_sid[i],
1382 axs->target_comm[i]))
e54dc243 1383 call_panic = 1;
a5cb013d
AV
1384 }
1385
e54dc243
AG
1386 if (context->target_pid &&
1387 audit_log_pid_context(context, context->target_pid,
c2a7780e 1388 context->target_auid, context->target_uid,
4746ec5b 1389 context->target_sessionid,
c2a7780e 1390 context->target_sid, context->target_comm))
e54dc243
AG
1391 call_panic = 1;
1392
44707fdf 1393 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1394 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1395 if (ab) {
c158a35c 1396 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1397 audit_log_end(ab);
1398 }
1399 }
73241ccc 1400
5195d8e2 1401 i = 0;
24dccf86
JL
1402 list_for_each_entry(n, &context->names_list, list) {
1403 if (n->hidden)
1404 continue;
b24a30a7 1405 audit_log_name(context, n, NULL, i++, &call_panic);
24dccf86 1406 }
c0641f28
EP
1407
1408 /* Send end of event record to help user space know we are finished */
1409 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1410 if (ab)
1411 audit_log_end(ab);
9c7aa6aa
SG
1412 if (call_panic)
1413 audit_panic("error converting sid to string");
1da177e4
LT
1414}
1415
b0dd25a8
RD
1416/**
1417 * audit_free - free a per-task audit context
1418 * @tsk: task whose audit context block to free
1419 *
fa84cb93 1420 * Called from copy_process and do_exit
b0dd25a8 1421 */
a4ff8dba 1422void __audit_free(struct task_struct *tsk)
1da177e4
LT
1423{
1424 struct audit_context *context;
1425
1da177e4 1426 context = audit_get_context(tsk, 0, 0);
56179a6e 1427 if (!context)
1da177e4
LT
1428 return;
1429
1430 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1431 * function (e.g., exit_group), then free context block.
1432 * We use GFP_ATOMIC here because we might be doing this
f5561964 1433 * in the context of the idle thread */
e495149b 1434 /* that can happen only if we are called from do_exit() */
0590b933 1435 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1436 audit_log_exit(context, tsk);
916d7576
AV
1437 if (!list_empty(&context->killed_trees))
1438 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1439
1440 audit_free_context(context);
1441}
1442
b0dd25a8
RD
1443/**
1444 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1445 * @arch: architecture type
1446 * @major: major syscall type (function)
1447 * @a1: additional syscall register 1
1448 * @a2: additional syscall register 2
1449 * @a3: additional syscall register 3
1450 * @a4: additional syscall register 4
1451 *
1452 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1453 * audit context was created when the task was created and the state or
1454 * filters demand the audit context be built. If the state from the
1455 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1456 * then the record will be written at syscall exit time (otherwise, it
1457 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1458 * be written).
1459 */
b05d8447 1460void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1461 unsigned long a1, unsigned long a2,
1462 unsigned long a3, unsigned long a4)
1463{
5411be59 1464 struct task_struct *tsk = current;
1da177e4
LT
1465 struct audit_context *context = tsk->audit_context;
1466 enum audit_state state;
1467
56179a6e 1468 if (!context)
86a1c34a 1469 return;
1da177e4 1470
1da177e4
LT
1471 BUG_ON(context->in_syscall || context->name_count);
1472
1473 if (!audit_enabled)
1474 return;
1475
2fd6f58b 1476 context->arch = arch;
1da177e4
LT
1477 context->major = major;
1478 context->argv[0] = a1;
1479 context->argv[1] = a2;
1480 context->argv[2] = a3;
1481 context->argv[3] = a4;
1482
1483 state = context->state;
d51374ad 1484 context->dummy = !audit_n_rules;
0590b933
AV
1485 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1486 context->prio = 0;
0f45aa18 1487 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1488 }
56179a6e 1489 if (state == AUDIT_DISABLED)
1da177e4
LT
1490 return;
1491
ce625a80 1492 context->serial = 0;
1da177e4
LT
1493 context->ctime = CURRENT_TIME;
1494 context->in_syscall = 1;
0590b933 1495 context->current_state = state;
419c58f1 1496 context->ppid = 0;
1da177e4
LT
1497}
1498
b0dd25a8
RD
1499/**
1500 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1501 * @success: success value of the syscall
1502 * @return_code: return value of the syscall
b0dd25a8
RD
1503 *
1504 * Tear down after system call. If the audit context has been marked as
1da177e4 1505 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1506 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1507 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1508 * free the names stored from getname().
1509 */
d7e7528b 1510void __audit_syscall_exit(int success, long return_code)
1da177e4 1511{
5411be59 1512 struct task_struct *tsk = current;
1da177e4
LT
1513 struct audit_context *context;
1514
d7e7528b
EP
1515 if (success)
1516 success = AUDITSC_SUCCESS;
1517 else
1518 success = AUDITSC_FAILURE;
1da177e4 1519
d7e7528b 1520 context = audit_get_context(tsk, success, return_code);
56179a6e 1521 if (!context)
97e94c45 1522 return;
1da177e4 1523
0590b933 1524 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1525 audit_log_exit(context, tsk);
1da177e4
LT
1526
1527 context->in_syscall = 0;
0590b933 1528 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1529
916d7576
AV
1530 if (!list_empty(&context->killed_trees))
1531 audit_kill_trees(&context->killed_trees);
1532
c62d773a
AV
1533 audit_free_names(context);
1534 unroll_tree_refs(context, NULL, 0);
1535 audit_free_aux(context);
1536 context->aux = NULL;
1537 context->aux_pids = NULL;
1538 context->target_pid = 0;
1539 context->target_sid = 0;
1540 context->sockaddr_len = 0;
1541 context->type = 0;
1542 context->fds[0] = -1;
1543 if (context->state != AUDIT_RECORD_CONTEXT) {
1544 kfree(context->filterkey);
1545 context->filterkey = NULL;
1da177e4 1546 }
c62d773a 1547 tsk->audit_context = context;
1da177e4
LT
1548}
1549
74c3cbe3
AV
1550static inline void handle_one(const struct inode *inode)
1551{
1552#ifdef CONFIG_AUDIT_TREE
1553 struct audit_context *context;
1554 struct audit_tree_refs *p;
1555 struct audit_chunk *chunk;
1556 int count;
e61ce867 1557 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1558 return;
1559 context = current->audit_context;
1560 p = context->trees;
1561 count = context->tree_count;
1562 rcu_read_lock();
1563 chunk = audit_tree_lookup(inode);
1564 rcu_read_unlock();
1565 if (!chunk)
1566 return;
1567 if (likely(put_tree_ref(context, chunk)))
1568 return;
1569 if (unlikely(!grow_tree_refs(context))) {
436c405c 1570 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1571 audit_set_auditable(context);
1572 audit_put_chunk(chunk);
1573 unroll_tree_refs(context, p, count);
1574 return;
1575 }
1576 put_tree_ref(context, chunk);
1577#endif
1578}
1579
1580static void handle_path(const struct dentry *dentry)
1581{
1582#ifdef CONFIG_AUDIT_TREE
1583 struct audit_context *context;
1584 struct audit_tree_refs *p;
1585 const struct dentry *d, *parent;
1586 struct audit_chunk *drop;
1587 unsigned long seq;
1588 int count;
1589
1590 context = current->audit_context;
1591 p = context->trees;
1592 count = context->tree_count;
1593retry:
1594 drop = NULL;
1595 d = dentry;
1596 rcu_read_lock();
1597 seq = read_seqbegin(&rename_lock);
1598 for(;;) {
1599 struct inode *inode = d->d_inode;
e61ce867 1600 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1601 struct audit_chunk *chunk;
1602 chunk = audit_tree_lookup(inode);
1603 if (chunk) {
1604 if (unlikely(!put_tree_ref(context, chunk))) {
1605 drop = chunk;
1606 break;
1607 }
1608 }
1609 }
1610 parent = d->d_parent;
1611 if (parent == d)
1612 break;
1613 d = parent;
1614 }
1615 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1616 rcu_read_unlock();
1617 if (!drop) {
1618 /* just a race with rename */
1619 unroll_tree_refs(context, p, count);
1620 goto retry;
1621 }
1622 audit_put_chunk(drop);
1623 if (grow_tree_refs(context)) {
1624 /* OK, got more space */
1625 unroll_tree_refs(context, p, count);
1626 goto retry;
1627 }
1628 /* too bad */
1629 printk(KERN_WARNING
436c405c 1630 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1631 unroll_tree_refs(context, p, count);
1632 audit_set_auditable(context);
1633 return;
1634 }
1635 rcu_read_unlock();
1636#endif
1637}
1638
78e2e802
JL
1639static struct audit_names *audit_alloc_name(struct audit_context *context,
1640 unsigned char type)
5195d8e2
EP
1641{
1642 struct audit_names *aname;
1643
1644 if (context->name_count < AUDIT_NAMES) {
1645 aname = &context->preallocated_names[context->name_count];
1646 memset(aname, 0, sizeof(*aname));
1647 } else {
1648 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1649 if (!aname)
1650 return NULL;
1651 aname->should_free = true;
1652 }
1653
1654 aname->ino = (unsigned long)-1;
78e2e802 1655 aname->type = type;
5195d8e2
EP
1656 list_add_tail(&aname->list, &context->names_list);
1657
1658 context->name_count++;
1659#if AUDIT_DEBUG
1660 context->ino_count++;
1661#endif
1662 return aname;
1663}
1664
7ac86265
JL
1665/**
1666 * audit_reusename - fill out filename with info from existing entry
1667 * @uptr: userland ptr to pathname
1668 *
1669 * Search the audit_names list for the current audit context. If there is an
1670 * existing entry with a matching "uptr" then return the filename
1671 * associated with that audit_name. If not, return NULL.
1672 */
1673struct filename *
1674__audit_reusename(const __user char *uptr)
1675{
1676 struct audit_context *context = current->audit_context;
1677 struct audit_names *n;
1678
1679 list_for_each_entry(n, &context->names_list, list) {
1680 if (!n->name)
1681 continue;
1682 if (n->name->uptr == uptr)
1683 return n->name;
1684 }
1685 return NULL;
1686}
1687
b0dd25a8
RD
1688/**
1689 * audit_getname - add a name to the list
1690 * @name: name to add
1691 *
1692 * Add a name to the list of audit names for this context.
1693 * Called from fs/namei.c:getname().
1694 */
91a27b2a 1695void __audit_getname(struct filename *name)
1da177e4
LT
1696{
1697 struct audit_context *context = current->audit_context;
5195d8e2 1698 struct audit_names *n;
1da177e4 1699
1da177e4
LT
1700 if (!context->in_syscall) {
1701#if AUDIT_DEBUG == 2
1702 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1703 __FILE__, __LINE__, context->serial, name);
1704 dump_stack();
1705#endif
1706 return;
1707 }
5195d8e2 1708
91a27b2a
JL
1709#if AUDIT_DEBUG
1710 /* The filename _must_ have a populated ->name */
1711 BUG_ON(!name->name);
1712#endif
1713
78e2e802 1714 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1715 if (!n)
1716 return;
1717
1718 n->name = name;
1719 n->name_len = AUDIT_NAME_FULL;
1720 n->name_put = true;
adb5c247 1721 name->aname = n;
5195d8e2 1722
f7ad3c6b
MS
1723 if (!context->pwd.dentry)
1724 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1725}
1726
b0dd25a8
RD
1727/* audit_putname - intercept a putname request
1728 * @name: name to intercept and delay for putname
1729 *
1730 * If we have stored the name from getname in the audit context,
1731 * then we delay the putname until syscall exit.
1732 * Called from include/linux/fs.h:putname().
1733 */
91a27b2a 1734void audit_putname(struct filename *name)
1da177e4
LT
1735{
1736 struct audit_context *context = current->audit_context;
1737
1738 BUG_ON(!context);
1739 if (!context->in_syscall) {
1740#if AUDIT_DEBUG == 2
65ada7bc 1741 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1742 __FILE__, __LINE__, context->serial, name);
1743 if (context->name_count) {
5195d8e2 1744 struct audit_names *n;
34c474de 1745 int i = 0;
5195d8e2
EP
1746
1747 list_for_each_entry(n, &context->names_list, list)
34c474de 1748 printk(KERN_ERR "name[%d] = %p = %s\n", i++,
91a27b2a 1749 n->name, n->name->name ?: "(null)");
5195d8e2 1750 }
1da177e4 1751#endif
65ada7bc 1752 final_putname(name);
1da177e4
LT
1753 }
1754#if AUDIT_DEBUG
1755 else {
1756 ++context->put_count;
1757 if (context->put_count > context->name_count) {
1758 printk(KERN_ERR "%s:%d(:%d): major=%d"
1759 " in_syscall=%d putname(%p) name_count=%d"
1760 " put_count=%d\n",
1761 __FILE__, __LINE__,
1762 context->serial, context->major,
91a27b2a
JL
1763 context->in_syscall, name->name,
1764 context->name_count, context->put_count);
1da177e4
LT
1765 dump_stack();
1766 }
1767 }
1768#endif
1769}
1770
b0dd25a8 1771/**
bfcec708 1772 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1773 * @name: name being audited
481968f4 1774 * @dentry: dentry being audited
24dccf86 1775 * @flags: attributes for this particular entry
b0dd25a8 1776 */
adb5c247 1777void __audit_inode(struct filename *name, const struct dentry *dentry,
24dccf86 1778 unsigned int flags)
1da177e4 1779{
1da177e4 1780 struct audit_context *context = current->audit_context;
74c3cbe3 1781 const struct inode *inode = dentry->d_inode;
5195d8e2 1782 struct audit_names *n;
24dccf86 1783 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1784
1785 if (!context->in_syscall)
1786 return;
5195d8e2 1787
9cec9d68
JL
1788 if (!name)
1789 goto out_alloc;
1790
adb5c247
JL
1791#if AUDIT_DEBUG
1792 /* The struct filename _must_ have a populated ->name */
1793 BUG_ON(!name->name);
1794#endif
1795 /*
1796 * If we have a pointer to an audit_names entry already, then we can
1797 * just use it directly if the type is correct.
1798 */
1799 n = name->aname;
1800 if (n) {
1801 if (parent) {
1802 if (n->type == AUDIT_TYPE_PARENT ||
1803 n->type == AUDIT_TYPE_UNKNOWN)
1804 goto out;
1805 } else {
1806 if (n->type != AUDIT_TYPE_PARENT)
1807 goto out;
1808 }
1809 }
1810
5195d8e2 1811 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 1812 /* does the name pointer match? */
adb5c247 1813 if (!n->name || n->name->name != name->name)
bfcec708
JL
1814 continue;
1815
1816 /* match the correct record type */
1817 if (parent) {
1818 if (n->type == AUDIT_TYPE_PARENT ||
1819 n->type == AUDIT_TYPE_UNKNOWN)
1820 goto out;
1821 } else {
1822 if (n->type != AUDIT_TYPE_PARENT)
1823 goto out;
1824 }
1da177e4 1825 }
5195d8e2 1826
9cec9d68 1827out_alloc:
bfcec708
JL
1828 /* unable to find the name from a previous getname(). Allocate a new
1829 * anonymous entry.
1830 */
78e2e802 1831 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
1832 if (!n)
1833 return;
1834out:
bfcec708 1835 if (parent) {
91a27b2a 1836 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1837 n->type = AUDIT_TYPE_PARENT;
24dccf86
JL
1838 if (flags & AUDIT_INODE_HIDDEN)
1839 n->hidden = true;
bfcec708
JL
1840 } else {
1841 n->name_len = AUDIT_NAME_FULL;
1842 n->type = AUDIT_TYPE_NORMAL;
1843 }
74c3cbe3 1844 handle_path(dentry);
5195d8e2 1845 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1846}
1847
1848/**
c43a25ab 1849 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1850 * @parent: inode of dentry parent
c43a25ab 1851 * @dentry: dentry being audited
4fa6b5ec 1852 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created. Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
c43a25ab 1862void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1863 const struct dentry *dentry,
1864 const unsigned char type)
73241ccc 1865{
73241ccc 1866 struct audit_context *context = current->audit_context;
5a190ae6 1867 const struct inode *inode = dentry->d_inode;
cccc6bba 1868 const char *dname = dentry->d_name.name;
4fa6b5ec 1869 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1870
1871 if (!context->in_syscall)
1872 return;
1873
74c3cbe3
AV
1874 if (inode)
1875 handle_one(inode);
73241ccc 1876
4fa6b5ec 1877 /* look for a parent entry first */
5195d8e2 1878 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1879 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1880 continue;
1881
1882 if (n->ino == parent->i_ino &&
91a27b2a 1883 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1884 found_parent = n;
1885 break;
f368c07d 1886 }
5712e88f 1887 }
73241ccc 1888
4fa6b5ec 1889 /* is there a matching child entry? */
5195d8e2 1890 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1891 /* can only match entries that have a name */
1892 if (!n->name || n->type != type)
1893 continue;
1894
1895 /* if we found a parent, make sure this one is a child of it */
1896 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1897 continue;
1898
91a27b2a
JL
1899 if (!strcmp(dname, n->name->name) ||
1900 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1901 found_parent ?
1902 found_parent->name_len :
e3d6b07b 1903 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1904 found_child = n;
1905 break;
5712e88f 1906 }
ac9910ce 1907 }
5712e88f 1908
5712e88f 1909 if (!found_parent) {
4fa6b5ec
JL
1910 /* create a new, "anonymous" parent record */
1911 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1912 if (!n)
ac9910ce 1913 return;
5195d8e2 1914 audit_copy_inode(n, NULL, parent);
73d3ec5a 1915 }
5712e88f
AG
1916
1917 if (!found_child) {
4fa6b5ec
JL
1918 found_child = audit_alloc_name(context, type);
1919 if (!found_child)
5712e88f 1920 return;
5712e88f
AG
1921
1922 /* Re-use the name belonging to the slot for a matching parent
1923 * directory. All names for this context are relinquished in
1924 * audit_free_names() */
1925 if (found_parent) {
4fa6b5ec
JL
1926 found_child->name = found_parent->name;
1927 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 1928 /* don't call __putname() */
4fa6b5ec 1929 found_child->name_put = false;
5712e88f 1930 }
5712e88f 1931 }
4fa6b5ec
JL
1932 if (inode)
1933 audit_copy_inode(found_child, dentry, inode);
1934 else
1935 found_child->ino = (unsigned long)-1;
3e2efce0 1936}
50e437d5 1937EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1938
b0dd25a8
RD
1939/**
1940 * auditsc_get_stamp - get local copies of audit_context values
1941 * @ctx: audit_context for the task
1942 * @t: timespec to store time recorded in the audit_context
1943 * @serial: serial value that is recorded in the audit_context
1944 *
1945 * Also sets the context as auditable.
1946 */
48887e63 1947int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1948 struct timespec *t, unsigned int *serial)
1da177e4 1949{
48887e63
AV
1950 if (!ctx->in_syscall)
1951 return 0;
ce625a80
DW
1952 if (!ctx->serial)
1953 ctx->serial = audit_serial();
bfb4496e
DW
1954 t->tv_sec = ctx->ctime.tv_sec;
1955 t->tv_nsec = ctx->ctime.tv_nsec;
1956 *serial = ctx->serial;
0590b933
AV
1957 if (!ctx->prio) {
1958 ctx->prio = 1;
1959 ctx->current_state = AUDIT_RECORD_CONTEXT;
1960 }
48887e63 1961 return 1;
1da177e4
LT
1962}
1963
4746ec5b
EP
1964/* global counter which is incremented every time something logs in */
1965static atomic_t session_id = ATOMIC_INIT(0);
1966
b0dd25a8 1967/**
0a300be6 1968 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
1969 * @loginuid: loginuid value
1970 *
1971 * Returns 0.
1972 *
1973 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1974 */
e1760bd5 1975int audit_set_loginuid(kuid_t loginuid)
1da177e4 1976{
0a300be6 1977 struct task_struct *task = current;
41757106 1978 struct audit_context *context = task->audit_context;
633b4545 1979 unsigned int sessionid;
41757106 1980
633b4545 1981#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
780a7654 1982 if (audit_loginuid_set(task))
633b4545
EP
1983 return -EPERM;
1984#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1985 if (!capable(CAP_AUDIT_CONTROL))
1986 return -EPERM;
1987#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1988
1989 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
1990 if (context && context->in_syscall) {
1991 struct audit_buffer *ab;
1992
1993 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1994 if (ab) {
1995 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
1996 "old auid=%u new auid=%u"
1997 " old ses=%u new ses=%u",
cca080d9
EB
1998 task->pid,
1999 from_kuid(&init_user_ns, task_uid(task)),
e1760bd5
EB
2000 from_kuid(&init_user_ns, task->loginuid),
2001 from_kuid(&init_user_ns, loginuid),
4746ec5b 2002 task->sessionid, sessionid);
bfef93a5 2003 audit_log_end(ab);
c0404993 2004 }
1da177e4 2005 }
4746ec5b 2006 task->sessionid = sessionid;
bfef93a5 2007 task->loginuid = loginuid;
1da177e4
LT
2008 return 0;
2009}
2010
20ca73bc
GW
2011/**
2012 * __audit_mq_open - record audit data for a POSIX MQ open
2013 * @oflag: open flag
2014 * @mode: mode bits
6b962559 2015 * @attr: queue attributes
20ca73bc 2016 *
20ca73bc 2017 */
df0a4283 2018void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2019{
20ca73bc
GW
2020 struct audit_context *context = current->audit_context;
2021
564f6993
AV
2022 if (attr)
2023 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2024 else
2025 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2026
564f6993
AV
2027 context->mq_open.oflag = oflag;
2028 context->mq_open.mode = mode;
20ca73bc 2029
564f6993 2030 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2031}
2032
2033/**
c32c8af4 2034 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2035 * @mqdes: MQ descriptor
2036 * @msg_len: Message length
2037 * @msg_prio: Message priority
c32c8af4 2038 * @abs_timeout: Message timeout in absolute time
20ca73bc 2039 *
20ca73bc 2040 */
c32c8af4
AV
2041void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2042 const struct timespec *abs_timeout)
20ca73bc 2043{
20ca73bc 2044 struct audit_context *context = current->audit_context;
c32c8af4 2045 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2046
c32c8af4
AV
2047 if (abs_timeout)
2048 memcpy(p, abs_timeout, sizeof(struct timespec));
2049 else
2050 memset(p, 0, sizeof(struct timespec));
20ca73bc 2051
c32c8af4
AV
2052 context->mq_sendrecv.mqdes = mqdes;
2053 context->mq_sendrecv.msg_len = msg_len;
2054 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2055
c32c8af4 2056 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2057}
2058
2059/**
2060 * __audit_mq_notify - record audit data for a POSIX MQ notify
2061 * @mqdes: MQ descriptor
6b962559 2062 * @notification: Notification event
20ca73bc 2063 *
20ca73bc
GW
2064 */
2065
20114f71 2066void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2067{
20ca73bc
GW
2068 struct audit_context *context = current->audit_context;
2069
20114f71
AV
2070 if (notification)
2071 context->mq_notify.sigev_signo = notification->sigev_signo;
2072 else
2073 context->mq_notify.sigev_signo = 0;
20ca73bc 2074
20114f71
AV
2075 context->mq_notify.mqdes = mqdes;
2076 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2077}
2078
2079/**
2080 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2081 * @mqdes: MQ descriptor
2082 * @mqstat: MQ flags
2083 *
20ca73bc 2084 */
7392906e 2085void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2086{
20ca73bc 2087 struct audit_context *context = current->audit_context;
7392906e
AV
2088 context->mq_getsetattr.mqdes = mqdes;
2089 context->mq_getsetattr.mqstat = *mqstat;
2090 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2091}
2092
b0dd25a8 2093/**
073115d6
SG
2094 * audit_ipc_obj - record audit data for ipc object
2095 * @ipcp: ipc permissions
2096 *
073115d6 2097 */
a33e6751 2098void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2099{
073115d6 2100 struct audit_context *context = current->audit_context;
a33e6751
AV
2101 context->ipc.uid = ipcp->uid;
2102 context->ipc.gid = ipcp->gid;
2103 context->ipc.mode = ipcp->mode;
e816f370 2104 context->ipc.has_perm = 0;
a33e6751
AV
2105 security_ipc_getsecid(ipcp, &context->ipc.osid);
2106 context->type = AUDIT_IPC;
073115d6
SG
2107}
2108
2109/**
2110 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2111 * @qbytes: msgq bytes
2112 * @uid: msgq user id
2113 * @gid: msgq group id
2114 * @mode: msgq mode (permissions)
2115 *
e816f370 2116 * Called only after audit_ipc_obj().
b0dd25a8 2117 */
2570ebbd 2118void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2119{
1da177e4
LT
2120 struct audit_context *context = current->audit_context;
2121
e816f370
AV
2122 context->ipc.qbytes = qbytes;
2123 context->ipc.perm_uid = uid;
2124 context->ipc.perm_gid = gid;
2125 context->ipc.perm_mode = mode;
2126 context->ipc.has_perm = 1;
1da177e4 2127}
c2f0c7c3 2128
07c49417 2129int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2130{
2131 struct audit_aux_data_execve *ax;
2132 struct audit_context *context = current->audit_context;
473ae30b 2133
bdf4c48a 2134 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2135 if (!ax)
2136 return -ENOMEM;
2137
2138 ax->argc = bprm->argc;
2139 ax->envc = bprm->envc;
bdf4c48a 2140 ax->mm = bprm->mm;
473ae30b
AV
2141 ax->d.type = AUDIT_EXECVE;
2142 ax->d.next = context->aux;
2143 context->aux = (void *)ax;
2144 return 0;
2145}
2146
2147
b0dd25a8
RD
2148/**
2149 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2150 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2151 * @args: args array
2152 *
b0dd25a8 2153 */
2950fa9d 2154int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2155{
3ec3b2fb
DW
2156 struct audit_context *context = current->audit_context;
2157
2950fa9d
CG
2158 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2159 return -EINVAL;
f3298dc4
AV
2160 context->type = AUDIT_SOCKETCALL;
2161 context->socketcall.nargs = nargs;
2162 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2163 return 0;
3ec3b2fb
DW
2164}
2165
db349509
AV
2166/**
2167 * __audit_fd_pair - record audit data for pipe and socketpair
2168 * @fd1: the first file descriptor
2169 * @fd2: the second file descriptor
2170 *
db349509 2171 */
157cf649 2172void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2173{
2174 struct audit_context *context = current->audit_context;
157cf649
AV
2175 context->fds[0] = fd1;
2176 context->fds[1] = fd2;
db349509
AV
2177}
2178
b0dd25a8
RD
2179/**
2180 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2181 * @len: data length in user space
2182 * @a: data address in kernel space
2183 *
2184 * Returns 0 for success or NULL context or < 0 on error.
2185 */
07c49417 2186int __audit_sockaddr(int len, void *a)
3ec3b2fb 2187{
3ec3b2fb
DW
2188 struct audit_context *context = current->audit_context;
2189
4f6b434f
AV
2190 if (!context->sockaddr) {
2191 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2192 if (!p)
2193 return -ENOMEM;
2194 context->sockaddr = p;
2195 }
3ec3b2fb 2196
4f6b434f
AV
2197 context->sockaddr_len = len;
2198 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2199 return 0;
2200}
2201
a5cb013d
AV
2202void __audit_ptrace(struct task_struct *t)
2203{
2204 struct audit_context *context = current->audit_context;
2205
2206 context->target_pid = t->pid;
c2a7780e 2207 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2208 context->target_uid = task_uid(t);
4746ec5b 2209 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2210 security_task_getsecid(t, &context->target_sid);
c2a7780e 2211 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2212}
2213
b0dd25a8
RD
2214/**
2215 * audit_signal_info - record signal info for shutting down audit subsystem
2216 * @sig: signal value
2217 * @t: task being signaled
2218 *
2219 * If the audit subsystem is being terminated, record the task (pid)
2220 * and uid that is doing that.
2221 */
e54dc243 2222int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2223{
e54dc243
AG
2224 struct audit_aux_data_pids *axp;
2225 struct task_struct *tsk = current;
2226 struct audit_context *ctx = tsk->audit_context;
cca080d9 2227 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2228
175fc484 2229 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2230 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2231 audit_sig_pid = tsk->pid;
e1760bd5 2232 if (uid_valid(tsk->loginuid))
bfef93a5 2233 audit_sig_uid = tsk->loginuid;
175fc484 2234 else
c69e8d9c 2235 audit_sig_uid = uid;
2a862b32 2236 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2237 }
2238 if (!audit_signals || audit_dummy_context())
2239 return 0;
c2f0c7c3 2240 }
e54dc243 2241
e54dc243
AG
2242 /* optimize the common case by putting first signal recipient directly
2243 * in audit_context */
2244 if (!ctx->target_pid) {
2245 ctx->target_pid = t->tgid;
c2a7780e 2246 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2247 ctx->target_uid = t_uid;
4746ec5b 2248 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2249 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2250 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2251 return 0;
2252 }
2253
2254 axp = (void *)ctx->aux_pids;
2255 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2256 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2257 if (!axp)
2258 return -ENOMEM;
2259
2260 axp->d.type = AUDIT_OBJ_PID;
2261 axp->d.next = ctx->aux_pids;
2262 ctx->aux_pids = (void *)axp;
2263 }
88ae704c 2264 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2265
2266 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2267 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2268 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2269 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2270 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2271 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2272 axp->pid_count++;
2273
2274 return 0;
c2f0c7c3 2275}
0a4ff8c2 2276
3fc689e9
EP
2277/**
2278 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2279 * @bprm: pointer to the bprm being processed
2280 * @new: the proposed new credentials
2281 * @old: the old credentials
3fc689e9
EP
2282 *
2283 * Simply check if the proc already has the caps given by the file and if not
2284 * store the priv escalation info for later auditing at the end of the syscall
2285 *
3fc689e9
EP
2286 * -Eric
2287 */
d84f4f99
DH
2288int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2289 const struct cred *new, const struct cred *old)
3fc689e9
EP
2290{
2291 struct audit_aux_data_bprm_fcaps *ax;
2292 struct audit_context *context = current->audit_context;
2293 struct cpu_vfs_cap_data vcaps;
2294 struct dentry *dentry;
2295
2296 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2297 if (!ax)
d84f4f99 2298 return -ENOMEM;
3fc689e9
EP
2299
2300 ax->d.type = AUDIT_BPRM_FCAPS;
2301 ax->d.next = context->aux;
2302 context->aux = (void *)ax;
2303
2304 dentry = dget(bprm->file->f_dentry);
2305 get_vfs_caps_from_disk(dentry, &vcaps);
2306 dput(dentry);
2307
2308 ax->fcap.permitted = vcaps.permitted;
2309 ax->fcap.inheritable = vcaps.inheritable;
2310 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2311 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2312
d84f4f99
DH
2313 ax->old_pcap.permitted = old->cap_permitted;
2314 ax->old_pcap.inheritable = old->cap_inheritable;
2315 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2316
d84f4f99
DH
2317 ax->new_pcap.permitted = new->cap_permitted;
2318 ax->new_pcap.inheritable = new->cap_inheritable;
2319 ax->new_pcap.effective = new->cap_effective;
2320 return 0;
3fc689e9
EP
2321}
2322
e68b75a0
EP
2323/**
2324 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2325 * @pid: target pid of the capset call
2326 * @new: the new credentials
2327 * @old: the old (current) credentials
e68b75a0
EP
2328 *
2329 * Record the aguments userspace sent to sys_capset for later printing by the
2330 * audit system if applicable
2331 */
57f71a0a 2332void __audit_log_capset(pid_t pid,
d84f4f99 2333 const struct cred *new, const struct cred *old)
e68b75a0 2334{
e68b75a0 2335 struct audit_context *context = current->audit_context;
57f71a0a
AV
2336 context->capset.pid = pid;
2337 context->capset.cap.effective = new->cap_effective;
2338 context->capset.cap.inheritable = new->cap_effective;
2339 context->capset.cap.permitted = new->cap_permitted;
2340 context->type = AUDIT_CAPSET;
e68b75a0
EP
2341}
2342
120a795d
AV
2343void __audit_mmap_fd(int fd, int flags)
2344{
2345 struct audit_context *context = current->audit_context;
2346 context->mmap.fd = fd;
2347 context->mmap.flags = flags;
2348 context->type = AUDIT_MMAP;
2349}
2350
7b9205bd 2351static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2352{
cca080d9
EB
2353 kuid_t auid, uid;
2354 kgid_t gid;
85e7bac3
EP
2355 unsigned int sessionid;
2356
2357 auid = audit_get_loginuid(current);
2358 sessionid = audit_get_sessionid(current);
2359 current_uid_gid(&uid, &gid);
2360
2361 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2362 from_kuid(&init_user_ns, auid),
2363 from_kuid(&init_user_ns, uid),
2364 from_kgid(&init_user_ns, gid),
2365 sessionid);
85e7bac3
EP
2366 audit_log_task_context(ab);
2367 audit_log_format(ab, " pid=%d comm=", current->pid);
2368 audit_log_untrustedstring(ab, current->comm);
7b9205bd
KC
2369}
2370
2371static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2372{
2373 audit_log_task(ab);
85e7bac3
EP
2374 audit_log_format(ab, " reason=");
2375 audit_log_string(ab, reason);
2376 audit_log_format(ab, " sig=%ld", signr);
2377}
0a4ff8c2
SG
2378/**
2379 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2380 * @signr: signal value
0a4ff8c2
SG
2381 *
2382 * If a process ends with a core dump, something fishy is going on and we
2383 * should record the event for investigation.
2384 */
2385void audit_core_dumps(long signr)
2386{
2387 struct audit_buffer *ab;
0a4ff8c2
SG
2388
2389 if (!audit_enabled)
2390 return;
2391
2392 if (signr == SIGQUIT) /* don't care for those */
2393 return;
2394
2395 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2396 if (unlikely(!ab))
2397 return;
85e7bac3
EP
2398 audit_log_abend(ab, "memory violation", signr);
2399 audit_log_end(ab);
2400}
0a4ff8c2 2401
3dc1c1b2 2402void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2403{
2404 struct audit_buffer *ab;
2405
7b9205bd
KC
2406 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2407 if (unlikely(!ab))
2408 return;
2409 audit_log_task(ab);
2410 audit_log_format(ab, " sig=%ld", signr);
85e7bac3 2411 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2412 audit_log_format(ab, " compat=%d", is_compat_task());
2413 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2414 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2415 audit_log_end(ab);
2416}
916d7576
AV
2417
2418struct list_head *audit_killed_trees(void)
2419{
2420 struct audit_context *ctx = current->audit_context;
2421 if (likely(!ctx || !ctx->in_syscall))
2422 return NULL;
2423 return &ctx->killed_trees;
2424}