Merge tag 'v3.10.63' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
6fa3eb70
S
42#ifdef CONFIG_MTKPASR
43 MIGRATE_MTKPASR,
44#endif
47118af0
MN
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
194159fb 63#ifdef CONFIG_MEMORY_ISOLATION
47118af0 64 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 65#endif
47118af0
MN
66 MIGRATE_TYPES
67};
68
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71#else
72# define is_migrate_cma(migratetype) false
73#endif
b2a0ac88 74
6fa3eb70
S
75#ifdef CONFIG_MTKPASR
76#define is_migrate_mtkpasr(mt) unlikely((mt) == MIGRATE_MTKPASR)
77#else
78#define is_migrate_mtkpasr(mt) false
79#endif
80
b2a0ac88
MG
81#define for_each_migratetype_order(order, type) \
82 for (order = 0; order < MAX_ORDER; order++) \
83 for (type = 0; type < MIGRATE_TYPES; type++)
84
467c996c
MG
85extern int page_group_by_mobility_disabled;
86
87static inline int get_pageblock_migratetype(struct page *page)
88{
467c996c
MG
89 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
90}
91
1da177e4 92struct free_area {
b2a0ac88 93 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
94 unsigned long nr_free;
95};
96
97struct pglist_data;
98
99/*
100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101 * So add a wild amount of padding here to ensure that they fall into separate
102 * cachelines. There are very few zone structures in the machine, so space
103 * consumption is not a concern here.
104 */
105#if defined(CONFIG_SMP)
106struct zone_padding {
107 char x[0];
22fc6ecc 108} ____cacheline_internodealigned_in_smp;
1da177e4
LT
109#define ZONE_PADDING(name) struct zone_padding name;
110#else
111#define ZONE_PADDING(name)
112#endif
113
2244b95a 114enum zone_stat_item {
51ed4491 115 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 116 NR_FREE_PAGES,
b69408e8 117 NR_LRU_BASE,
4f98a2fe
RR
118 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
119 NR_ACTIVE_ANON, /* " " " " " */
120 NR_INACTIVE_FILE, /* " " " " " */
121 NR_ACTIVE_FILE, /* " " " " " */
894bc310 122 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 123 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
124 NR_ANON_PAGES, /* Mapped anonymous pages */
125 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 126 only modified from process context */
347ce434 127 NR_FILE_PAGES,
b1e7a8fd 128 NR_FILE_DIRTY,
ce866b34 129 NR_WRITEBACK,
51ed4491
CL
130 NR_SLAB_RECLAIMABLE,
131 NR_SLAB_UNRECLAIMABLE,
132 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
133 NR_KERNEL_STACK,
134 /* Second 128 byte cacheline */
fd39fc85 135 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 136 NR_BOUNCE,
e129b5c2 137 NR_VMSCAN_WRITE,
49ea7eb6 138 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 139 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
140 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
141 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 142 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
143 NR_DIRTIED, /* page dirtyings since bootup */
144 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
145#ifdef CONFIG_NUMA
146 NUMA_HIT, /* allocated in intended node */
147 NUMA_MISS, /* allocated in non intended node */
148 NUMA_FOREIGN, /* was intended here, hit elsewhere */
149 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
150 NUMA_LOCAL, /* allocation from local node */
151 NUMA_OTHER, /* allocation from other node */
152#endif
79134171 153 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 154 NR_FREE_CMA_PAGES,
2244b95a
CL
155 NR_VM_ZONE_STAT_ITEMS };
156
4f98a2fe
RR
157/*
158 * We do arithmetic on the LRU lists in various places in the code,
159 * so it is important to keep the active lists LRU_ACTIVE higher in
160 * the array than the corresponding inactive lists, and to keep
161 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
162 *
163 * This has to be kept in sync with the statistics in zone_stat_item
164 * above and the descriptions in vmstat_text in mm/vmstat.c
165 */
166#define LRU_BASE 0
167#define LRU_ACTIVE 1
168#define LRU_FILE 2
169
b69408e8 170enum lru_list {
4f98a2fe
RR
171 LRU_INACTIVE_ANON = LRU_BASE,
172 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
173 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
174 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 175 LRU_UNEVICTABLE,
894bc310
LS
176 NR_LRU_LISTS
177};
b69408e8 178
4111304d 179#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 180
4111304d 181#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 182
4111304d 183static inline int is_file_lru(enum lru_list lru)
4f98a2fe 184{
4111304d 185 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
186}
187
4111304d 188static inline int is_active_lru(enum lru_list lru)
b69408e8 189{
4111304d 190 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
191}
192
4111304d 193static inline int is_unevictable_lru(enum lru_list lru)
894bc310 194{
4111304d 195 return (lru == LRU_UNEVICTABLE);
894bc310
LS
196}
197
89abfab1
HD
198struct zone_reclaim_stat {
199 /*
200 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 201 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
202 * The higher the rotated/scanned ratio, the more valuable
203 * that cache is.
204 *
205 * The anon LRU stats live in [0], file LRU stats in [1]
206 */
207 unsigned long recent_rotated[2];
208 unsigned long recent_scanned[2];
209};
210
6290df54
JW
211struct lruvec {
212 struct list_head lists[NR_LRU_LISTS];
89abfab1 213 struct zone_reclaim_stat reclaim_stat;
c255a458 214#ifdef CONFIG_MEMCG
7f5e86c2
KK
215 struct zone *zone;
216#endif
6290df54
JW
217};
218
bb2a0de9
KH
219/* Mask used at gathering information at once (see memcontrol.c) */
220#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
221#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
222#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
223
39deaf85 224/* Isolate clean file */
f3fd4a61 225#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 226/* Isolate unmapped file */
f3fd4a61 227#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 228/* Isolate for asynchronous migration */
f3fd4a61 229#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
230/* Isolate unevictable pages */
231#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
232
233/* LRU Isolation modes. */
234typedef unsigned __bitwise__ isolate_mode_t;
235
41858966
MG
236enum zone_watermarks {
237 WMARK_MIN,
238 WMARK_LOW,
239 WMARK_HIGH,
240 NR_WMARK
241};
242
243#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
244#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
245#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
246
1da177e4
LT
247struct per_cpu_pages {
248 int count; /* number of pages in the list */
1da177e4
LT
249 int high; /* high watermark, emptying needed */
250 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
251
252 /* Lists of pages, one per migrate type stored on the pcp-lists */
253 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
254};
255
256struct per_cpu_pageset {
3dfa5721 257 struct per_cpu_pages pcp;
4037d452
CL
258#ifdef CONFIG_NUMA
259 s8 expire;
260#endif
2244b95a 261#ifdef CONFIG_SMP
df9ecaba 262 s8 stat_threshold;
2244b95a
CL
263 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
264#endif
99dcc3e5 265};
e7c8d5c9 266
97965478
CL
267#endif /* !__GENERATING_BOUNDS.H */
268
2f1b6248 269enum zone_type {
4b51d669 270#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
271 /*
272 * ZONE_DMA is used when there are devices that are not able
273 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
274 * carve out the portion of memory that is needed for these devices.
275 * The range is arch specific.
276 *
277 * Some examples
278 *
279 * Architecture Limit
280 * ---------------------------
281 * parisc, ia64, sparc <4G
282 * s390 <2G
2f1b6248
CL
283 * arm Various
284 * alpha Unlimited or 0-16MB.
285 *
286 * i386, x86_64 and multiple other arches
287 * <16M.
288 */
289 ZONE_DMA,
4b51d669 290#endif
fb0e7942 291#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
292 /*
293 * x86_64 needs two ZONE_DMAs because it supports devices that are
294 * only able to do DMA to the lower 16M but also 32 bit devices that
295 * can only do DMA areas below 4G.
296 */
297 ZONE_DMA32,
fb0e7942 298#endif
2f1b6248
CL
299 /*
300 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
301 * performed on pages in ZONE_NORMAL if the DMA devices support
302 * transfers to all addressable memory.
303 */
304 ZONE_NORMAL,
e53ef38d 305#ifdef CONFIG_HIGHMEM
2f1b6248
CL
306 /*
307 * A memory area that is only addressable by the kernel through
308 * mapping portions into its own address space. This is for example
309 * used by i386 to allow the kernel to address the memory beyond
310 * 900MB. The kernel will set up special mappings (page
311 * table entries on i386) for each page that the kernel needs to
312 * access.
313 */
314 ZONE_HIGHMEM,
e53ef38d 315#endif
2a1e274a 316 ZONE_MOVABLE,
97965478 317 __MAX_NR_ZONES
2f1b6248 318};
1da177e4 319
97965478
CL
320#ifndef __GENERATING_BOUNDS_H
321
1da177e4
LT
322struct zone {
323 /* Fields commonly accessed by the page allocator */
41858966
MG
324
325 /* zone watermarks, access with *_wmark_pages(zone) macros */
326 unsigned long watermark[NR_WMARK];
327
aa454840
CL
328 /*
329 * When free pages are below this point, additional steps are taken
330 * when reading the number of free pages to avoid per-cpu counter
331 * drift allowing watermarks to be breached
332 */
333 unsigned long percpu_drift_mark;
334
1da177e4
LT
335 /*
336 * We don't know if the memory that we're going to allocate will be freeable
337 * or/and it will be released eventually, so to avoid totally wasting several
338 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
339 * to run OOM on the lower zones despite there's tons of freeable ram
340 * on the higher zones). This array is recalculated at runtime if the
341 * sysctl_lowmem_reserve_ratio sysctl changes.
342 */
343 unsigned long lowmem_reserve[MAX_NR_ZONES];
344
ab8fabd4
JW
345 /*
346 * This is a per-zone reserve of pages that should not be
347 * considered dirtyable memory.
348 */
349 unsigned long dirty_balance_reserve;
350
e7c8d5c9 351#ifdef CONFIG_NUMA
d5f541ed 352 int node;
9614634f
CL
353 /*
354 * zone reclaim becomes active if more unmapped pages exist.
355 */
8417bba4 356 unsigned long min_unmapped_pages;
0ff38490 357 unsigned long min_slab_pages;
e7c8d5c9 358#endif
43cf38eb 359 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
360 /*
361 * free areas of different sizes
362 */
363 spinlock_t lock;
93e4a89a 364 int all_unreclaimable; /* All pages pinned */
bb13ffeb 365#if defined CONFIG_COMPACTION || defined CONFIG_CMA
62997027
MG
366 /* Set to true when the PG_migrate_skip bits should be cleared */
367 bool compact_blockskip_flush;
c89511ab
MG
368
369 /* pfns where compaction scanners should start */
370 unsigned long compact_cached_free_pfn;
371 unsigned long compact_cached_migrate_pfn;
bb13ffeb 372#endif
bdc8cb98
DH
373#ifdef CONFIG_MEMORY_HOTPLUG
374 /* see spanned/present_pages for more description */
375 seqlock_t span_seqlock;
376#endif
1da177e4
LT
377 struct free_area free_area[MAX_ORDER];
378
835c134e
MG
379#ifndef CONFIG_SPARSEMEM
380 /*
d9c23400 381 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
382 * In SPARSEMEM, this map is stored in struct mem_section
383 */
384 unsigned long *pageblock_flags;
385#endif /* CONFIG_SPARSEMEM */
386
4f92e258
MG
387#ifdef CONFIG_COMPACTION
388 /*
389 * On compaction failure, 1<<compact_defer_shift compactions
390 * are skipped before trying again. The number attempted since
391 * last failure is tracked with compact_considered.
392 */
393 unsigned int compact_considered;
394 unsigned int compact_defer_shift;
aff62249 395 int compact_order_failed;
4f92e258 396#endif
1da177e4
LT
397
398 ZONE_PADDING(_pad1_)
399
400 /* Fields commonly accessed by the page reclaim scanner */
6290df54
JW
401 spinlock_t lru_lock;
402 struct lruvec lruvec;
4f98a2fe 403
1da177e4 404 unsigned long pages_scanned; /* since last reclaim */
e815af95 405 unsigned long flags; /* zone flags, see below */
753ee728 406
2244b95a
CL
407 /* Zone statistics */
408 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 409
556adecb
RR
410 /*
411 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
412 * this zone's LRU. Maintained by the pageout code.
413 */
414 unsigned int inactive_ratio;
415
1da177e4
LT
416
417 ZONE_PADDING(_pad2_)
418 /* Rarely used or read-mostly fields */
419
420 /*
421 * wait_table -- the array holding the hash table
02b694de 422 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
423 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
424 *
425 * The purpose of all these is to keep track of the people
426 * waiting for a page to become available and make them
427 * runnable again when possible. The trouble is that this
428 * consumes a lot of space, especially when so few things
429 * wait on pages at a given time. So instead of using
430 * per-page waitqueues, we use a waitqueue hash table.
431 *
432 * The bucket discipline is to sleep on the same queue when
433 * colliding and wake all in that wait queue when removing.
434 * When something wakes, it must check to be sure its page is
435 * truly available, a la thundering herd. The cost of a
436 * collision is great, but given the expected load of the
437 * table, they should be so rare as to be outweighed by the
438 * benefits from the saved space.
439 *
440 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
441 * primary users of these fields, and in mm/page_alloc.c
442 * free_area_init_core() performs the initialization of them.
443 */
444 wait_queue_head_t * wait_table;
02b694de 445 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
446 unsigned long wait_table_bits;
447
448 /*
449 * Discontig memory support fields.
450 */
451 struct pglist_data *zone_pgdat;
1da177e4
LT
452 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
453 unsigned long zone_start_pfn;
454
bdc8cb98 455 /*
9feedc9d
JL
456 * spanned_pages is the total pages spanned by the zone, including
457 * holes, which is calculated as:
458 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 459 *
9feedc9d
JL
460 * present_pages is physical pages existing within the zone, which
461 * is calculated as:
8761e31c 462 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
463 *
464 * managed_pages is present pages managed by the buddy system, which
465 * is calculated as (reserved_pages includes pages allocated by the
466 * bootmem allocator):
467 * managed_pages = present_pages - reserved_pages;
468 *
469 * So present_pages may be used by memory hotplug or memory power
470 * management logic to figure out unmanaged pages by checking
471 * (present_pages - managed_pages). And managed_pages should be used
472 * by page allocator and vm scanner to calculate all kinds of watermarks
473 * and thresholds.
474 *
475 * Locking rules:
476 *
477 * zone_start_pfn and spanned_pages are protected by span_seqlock.
478 * It is a seqlock because it has to be read outside of zone->lock,
479 * and it is done in the main allocator path. But, it is written
480 * quite infrequently.
481 *
482 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
483 * frequently read in proximity to zone->lock. It's good to
484 * give them a chance of being in the same cacheline.
9feedc9d
JL
485 *
486 * Write access to present_pages and managed_pages at runtime should
487 * be protected by lock_memory_hotplug()/unlock_memory_hotplug().
488 * Any reader who can't tolerant drift of present_pages and
489 * managed_pages should hold memory hotplug lock to get a stable value.
bdc8cb98 490 */
9feedc9d
JL
491 unsigned long spanned_pages;
492 unsigned long present_pages;
493 unsigned long managed_pages;
1da177e4
LT
494
495 /*
496 * rarely used fields:
497 */
15ad7cdc 498 const char *name;
22fc6ecc 499} ____cacheline_internodealigned_in_smp;
1da177e4 500
e815af95 501typedef enum {
e815af95 502 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 503 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
504 ZONE_CONGESTED, /* zone has many dirty pages backed by
505 * a congested BDI
506 */
e815af95
DR
507} zone_flags_t;
508
509static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
510{
511 set_bit(flag, &zone->flags);
512}
d773ed6b
DR
513
514static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
515{
516 return test_and_set_bit(flag, &zone->flags);
517}
518
e815af95
DR
519static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
520{
521 clear_bit(flag, &zone->flags);
522}
523
0e093d99
MG
524static inline int zone_is_reclaim_congested(const struct zone *zone)
525{
526 return test_bit(ZONE_CONGESTED, &zone->flags);
527}
528
e815af95
DR
529static inline int zone_is_reclaim_locked(const struct zone *zone)
530{
531 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
532}
d773ed6b 533
098d7f12
DR
534static inline int zone_is_oom_locked(const struct zone *zone)
535{
536 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
537}
e815af95 538
f9228b20 539static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
540{
541 return zone->zone_start_pfn + zone->spanned_pages;
542}
543
544static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
545{
546 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
547}
548
2a6e3ebe
CS
549static inline bool zone_is_initialized(struct zone *zone)
550{
551 return !!zone->wait_table;
552}
553
554static inline bool zone_is_empty(struct zone *zone)
555{
556 return zone->spanned_pages == 0;
557}
558
1da177e4
LT
559/*
560 * The "priority" of VM scanning is how much of the queues we will scan in one
561 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
562 * queues ("queue_length >> 12") during an aging round.
563 */
564#define DEF_PRIORITY 12
565
9276b1bc
PJ
566/* Maximum number of zones on a zonelist */
567#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
568
569#ifdef CONFIG_NUMA
523b9458
CL
570
571/*
25a64ec1 572 * The NUMA zonelists are doubled because we need zonelists that restrict the
523b9458
CL
573 * allocations to a single node for GFP_THISNODE.
574 *
54a6eb5c
MG
575 * [0] : Zonelist with fallback
576 * [1] : No fallback (GFP_THISNODE)
523b9458 577 */
54a6eb5c 578#define MAX_ZONELISTS 2
523b9458
CL
579
580
9276b1bc
PJ
581/*
582 * We cache key information from each zonelist for smaller cache
583 * footprint when scanning for free pages in get_page_from_freelist().
584 *
585 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
586 * up short of free memory since the last time (last_fullzone_zap)
587 * we zero'd fullzones.
588 * 2) The array z_to_n[] maps each zone in the zonelist to its node
589 * id, so that we can efficiently evaluate whether that node is
590 * set in the current tasks mems_allowed.
591 *
592 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
593 * indexed by a zones offset in the zonelist zones[] array.
594 *
595 * The get_page_from_freelist() routine does two scans. During the
596 * first scan, we skip zones whose corresponding bit in 'fullzones'
597 * is set or whose corresponding node in current->mems_allowed (which
598 * comes from cpusets) is not set. During the second scan, we bypass
599 * this zonelist_cache, to ensure we look methodically at each zone.
600 *
601 * Once per second, we zero out (zap) fullzones, forcing us to
602 * reconsider nodes that might have regained more free memory.
603 * The field last_full_zap is the time we last zapped fullzones.
604 *
605 * This mechanism reduces the amount of time we waste repeatedly
606 * reexaming zones for free memory when they just came up low on
607 * memory momentarilly ago.
608 *
609 * The zonelist_cache struct members logically belong in struct
610 * zonelist. However, the mempolicy zonelists constructed for
611 * MPOL_BIND are intentionally variable length (and usually much
612 * shorter). A general purpose mechanism for handling structs with
613 * multiple variable length members is more mechanism than we want
614 * here. We resort to some special case hackery instead.
615 *
616 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
617 * part because they are shorter), so we put the fixed length stuff
618 * at the front of the zonelist struct, ending in a variable length
619 * zones[], as is needed by MPOL_BIND.
620 *
621 * Then we put the optional zonelist cache on the end of the zonelist
622 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
623 * the fixed length portion at the front of the struct. This pointer
624 * both enables us to find the zonelist cache, and in the case of
625 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
626 * to know that the zonelist cache is not there.
627 *
628 * The end result is that struct zonelists come in two flavors:
629 * 1) The full, fixed length version, shown below, and
630 * 2) The custom zonelists for MPOL_BIND.
631 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
632 *
633 * Even though there may be multiple CPU cores on a node modifying
634 * fullzones or last_full_zap in the same zonelist_cache at the same
635 * time, we don't lock it. This is just hint data - if it is wrong now
636 * and then, the allocator will still function, perhaps a bit slower.
637 */
638
639
640struct zonelist_cache {
9276b1bc 641 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 642 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
643 unsigned long last_full_zap; /* when last zap'd (jiffies) */
644};
645#else
54a6eb5c 646#define MAX_ZONELISTS 1
9276b1bc
PJ
647struct zonelist_cache;
648#endif
649
dd1a239f
MG
650/*
651 * This struct contains information about a zone in a zonelist. It is stored
652 * here to avoid dereferences into large structures and lookups of tables
653 */
654struct zoneref {
655 struct zone *zone; /* Pointer to actual zone */
656 int zone_idx; /* zone_idx(zoneref->zone) */
657};
658
1da177e4
LT
659/*
660 * One allocation request operates on a zonelist. A zonelist
661 * is a list of zones, the first one is the 'goal' of the
662 * allocation, the other zones are fallback zones, in decreasing
663 * priority.
664 *
9276b1bc
PJ
665 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
666 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
667 * *
668 * To speed the reading of the zonelist, the zonerefs contain the zone index
669 * of the entry being read. Helper functions to access information given
670 * a struct zoneref are
671 *
672 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
673 * zonelist_zone_idx() - Return the index of the zone for an entry
674 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
675 */
676struct zonelist {
9276b1bc 677 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 678 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
679#ifdef CONFIG_NUMA
680 struct zonelist_cache zlcache; // optional ...
681#endif
1da177e4
LT
682};
683
0ee332c1 684#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
685struct node_active_region {
686 unsigned long start_pfn;
687 unsigned long end_pfn;
688 int nid;
689};
0ee332c1 690#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1da177e4 691
5b99cd0e
HC
692#ifndef CONFIG_DISCONTIGMEM
693/* The array of struct pages - for discontigmem use pgdat->lmem_map */
694extern struct page *mem_map;
695#endif
696
1da177e4
LT
697/*
698 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
699 * (mostly NUMA machines?) to denote a higher-level memory zone than the
700 * zone denotes.
701 *
702 * On NUMA machines, each NUMA node would have a pg_data_t to describe
703 * it's memory layout.
704 *
705 * Memory statistics and page replacement data structures are maintained on a
706 * per-zone basis.
707 */
708struct bootmem_data;
709typedef struct pglist_data {
710 struct zone node_zones[MAX_NR_ZONES];
523b9458 711 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 712 int nr_zones;
52d4b9ac 713#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 714 struct page *node_mem_map;
c255a458 715#ifdef CONFIG_MEMCG
52d4b9ac
KH
716 struct page_cgroup *node_page_cgroup;
717#endif
d41dee36 718#endif
08677214 719#ifndef CONFIG_NO_BOOTMEM
1da177e4 720 struct bootmem_data *bdata;
08677214 721#endif
208d54e5
DH
722#ifdef CONFIG_MEMORY_HOTPLUG
723 /*
724 * Must be held any time you expect node_start_pfn, node_present_pages
725 * or node_spanned_pages stay constant. Holding this will also
726 * guarantee that any pfn_valid() stays that way.
727 *
728 * Nests above zone->lock and zone->size_seqlock.
729 */
730 spinlock_t node_size_lock;
731#endif
1da177e4
LT
732 unsigned long node_start_pfn;
733 unsigned long node_present_pages; /* total number of physical pages */
734 unsigned long node_spanned_pages; /* total size of physical page
735 range, including holes */
736 int node_id;
957f822a 737 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
1da177e4 738 wait_queue_head_t kswapd_wait;
5515061d 739 wait_queue_head_t pfmemalloc_wait;
d8adde17 740 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
1da177e4 741 int kswapd_max_order;
99504748 742 enum zone_type classzone_idx;
8177a420
AA
743#ifdef CONFIG_NUMA_BALANCING
744 /*
745 * Lock serializing the per destination node AutoNUMA memory
746 * migration rate limiting data.
747 */
748 spinlock_t numabalancing_migrate_lock;
749
750 /* Rate limiting time interval */
751 unsigned long numabalancing_migrate_next_window;
752
753 /* Number of pages migrated during the rate limiting time interval */
754 unsigned long numabalancing_migrate_nr_pages;
755#endif
1da177e4
LT
756} pg_data_t;
757
758#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
759#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 760#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 761#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
762#else
763#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
764#endif
408fde81 765#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 766
c6830c22 767#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 768#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 769
da3649e1
CS
770static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
771{
772 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
773}
774
775static inline bool pgdat_is_empty(pg_data_t *pgdat)
776{
777 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
778}
c6830c22 779
208d54e5
DH
780#include <linux/memory_hotplug.h>
781
4eaf3f64 782extern struct mutex zonelists_mutex;
9adb62a5 783void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 784void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
785bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
786 int classzone_idx, int alloc_flags);
787bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 788 int classzone_idx, int alloc_flags);
a2f3aa02
DH
789enum memmap_context {
790 MEMMAP_EARLY,
791 MEMMAP_HOTPLUG,
792};
718127cc 793extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
794 unsigned long size,
795 enum memmap_context context);
718127cc 796
bea8c150 797extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
798
799static inline struct zone *lruvec_zone(struct lruvec *lruvec)
800{
c255a458 801#ifdef CONFIG_MEMCG
7f5e86c2
KK
802 return lruvec->zone;
803#else
804 return container_of(lruvec, struct zone, lruvec);
805#endif
806}
807
1da177e4
LT
808#ifdef CONFIG_HAVE_MEMORY_PRESENT
809void memory_present(int nid, unsigned long start, unsigned long end);
810#else
811static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
812#endif
813
7aac7898
LS
814#ifdef CONFIG_HAVE_MEMORYLESS_NODES
815int local_memory_node(int node_id);
816#else
817static inline int local_memory_node(int node_id) { return node_id; };
818#endif
819
1da177e4
LT
820#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
821unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
822#endif
823
824/*
825 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
826 */
827#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
828
f3fe6512
CK
829static inline int populated_zone(struct zone *zone)
830{
831 return (!!zone->present_pages);
832}
833
2a1e274a
MG
834extern int movable_zone;
835
836static inline int zone_movable_is_highmem(void)
837{
fe03025d 838#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
2a1e274a
MG
839 return movable_zone == ZONE_HIGHMEM;
840#else
841 return 0;
842#endif
843}
844
2f1b6248 845static inline int is_highmem_idx(enum zone_type idx)
1da177e4 846{
e53ef38d 847#ifdef CONFIG_HIGHMEM
2a1e274a
MG
848 return (idx == ZONE_HIGHMEM ||
849 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
850#else
851 return 0;
852#endif
1da177e4
LT
853}
854
2f1b6248 855static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
856{
857 return (idx == ZONE_NORMAL);
858}
9328b8fa 859
1da177e4
LT
860/**
861 * is_highmem - helper function to quickly check if a struct zone is a
862 * highmem zone or not. This is an attempt to keep references
863 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
864 * @zone - pointer to struct zone variable
865 */
866static inline int is_highmem(struct zone *zone)
867{
e53ef38d 868#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
869 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
870 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
871 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
872 zone_movable_is_highmem());
e53ef38d
CL
873#else
874 return 0;
875#endif
1da177e4
LT
876}
877
878static inline int is_normal(struct zone *zone)
879{
880 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
881}
882
9328b8fa
NP
883static inline int is_dma32(struct zone *zone)
884{
fb0e7942 885#ifdef CONFIG_ZONE_DMA32
9328b8fa 886 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
887#else
888 return 0;
889#endif
9328b8fa
NP
890}
891
892static inline int is_dma(struct zone *zone)
893{
4b51d669 894#ifdef CONFIG_ZONE_DMA
9328b8fa 895 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
896#else
897 return 0;
898#endif
9328b8fa
NP
899}
900
1da177e4
LT
901/* These two functions are used to setup the per zone pages min values */
902struct ctl_table;
8d65af78 903int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
904 void __user *, size_t *, loff_t *);
905extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 906int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 907 void __user *, size_t *, loff_t *);
8d65af78 908int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 909 void __user *, size_t *, loff_t *);
9614634f 910int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 911 void __user *, size_t *, loff_t *);
0ff38490 912int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 913 void __user *, size_t *, loff_t *);
1da177e4 914
f0c0b2b8 915extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 916 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
917extern char numa_zonelist_order[];
918#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
919
93b7504e 920#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
921
922extern struct pglist_data contig_page_data;
923#define NODE_DATA(nid) (&contig_page_data)
924#define NODE_MEM_MAP(nid) mem_map
1da177e4 925
93b7504e 926#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
927
928#include <asm/mmzone.h>
929
93b7504e 930#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 931
6fa3eb70
S
932#ifdef CONFIG_MTKPASR
933#ifdef CONFIG_HIGHMEM
934#define MTKPASR_ZONE (NODE_DATA(0)->node_zones + ZONE_HIGHMEM)
935#else
936#define MTKPASR_ZONE (NODE_DATA(0)->node_zones)
937#endif
938#endif
939
95144c78
KH
940extern struct pglist_data *first_online_pgdat(void);
941extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
942extern struct zone *next_zone(struct zone *zone);
8357f869
KH
943
944/**
12d15f0d 945 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
946 * @pgdat - pointer to a pg_data_t variable
947 */
948#define for_each_online_pgdat(pgdat) \
949 for (pgdat = first_online_pgdat(); \
950 pgdat; \
951 pgdat = next_online_pgdat(pgdat))
8357f869
KH
952/**
953 * for_each_zone - helper macro to iterate over all memory zones
954 * @zone - pointer to struct zone variable
955 *
956 * The user only needs to declare the zone variable, for_each_zone
957 * fills it in.
958 */
959#define for_each_zone(zone) \
960 for (zone = (first_online_pgdat())->node_zones; \
961 zone; \
962 zone = next_zone(zone))
963
ee99c71c
KM
964#define for_each_populated_zone(zone) \
965 for (zone = (first_online_pgdat())->node_zones; \
966 zone; \
967 zone = next_zone(zone)) \
968 if (!populated_zone(zone)) \
969 ; /* do nothing */ \
970 else
971
dd1a239f
MG
972static inline struct zone *zonelist_zone(struct zoneref *zoneref)
973{
974 return zoneref->zone;
975}
976
977static inline int zonelist_zone_idx(struct zoneref *zoneref)
978{
979 return zoneref->zone_idx;
980}
981
982static inline int zonelist_node_idx(struct zoneref *zoneref)
983{
984#ifdef CONFIG_NUMA
985 /* zone_to_nid not available in this context */
986 return zoneref->zone->node;
987#else
988 return 0;
989#endif /* CONFIG_NUMA */
990}
991
19770b32
MG
992/**
993 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
994 * @z - The cursor used as a starting point for the search
995 * @highest_zoneidx - The zone index of the highest zone to return
996 * @nodes - An optional nodemask to filter the zonelist with
997 * @zone - The first suitable zone found is returned via this parameter
998 *
999 * This function returns the next zone at or below a given zone index that is
1000 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1001 * search. The zoneref returned is a cursor that represents the current zone
1002 * being examined. It should be advanced by one before calling
1003 * next_zones_zonelist again.
19770b32
MG
1004 */
1005struct zoneref *next_zones_zonelist(struct zoneref *z,
1006 enum zone_type highest_zoneidx,
1007 nodemask_t *nodes,
1008 struct zone **zone);
dd1a239f 1009
19770b32
MG
1010/**
1011 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1012 * @zonelist - The zonelist to search for a suitable zone
1013 * @highest_zoneidx - The zone index of the highest zone to return
1014 * @nodes - An optional nodemask to filter the zonelist with
1015 * @zone - The first suitable zone found is returned via this parameter
1016 *
1017 * This function returns the first zone at or below a given zone index that is
1018 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1019 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1020 * one before calling.
19770b32 1021 */
dd1a239f 1022static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
1023 enum zone_type highest_zoneidx,
1024 nodemask_t *nodes,
1025 struct zone **zone)
54a6eb5c 1026{
19770b32
MG
1027 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1028 zone);
54a6eb5c
MG
1029}
1030
19770b32
MG
1031/**
1032 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1033 * @zone - The current zone in the iterator
1034 * @z - The current pointer within zonelist->zones being iterated
1035 * @zlist - The zonelist being iterated
1036 * @highidx - The zone index of the highest zone to return
1037 * @nodemask - Nodemask allowed by the allocator
1038 *
1039 * This iterator iterates though all zones at or below a given zone index and
1040 * within a given nodemask
1041 */
1042#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1043 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1044 zone; \
5bead2a0 1045 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
1046
1047/**
1048 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1049 * @zone - The current zone in the iterator
1050 * @z - The current pointer within zonelist->zones being iterated
1051 * @zlist - The zonelist being iterated
1052 * @highidx - The zone index of the highest zone to return
1053 *
1054 * This iterator iterates though all zones at or below a given zone index.
1055 */
1056#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1057 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1058
d41dee36
AW
1059#ifdef CONFIG_SPARSEMEM
1060#include <asm/sparsemem.h>
1061#endif
1062
c713216d 1063#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1064 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1065static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1066{
1067 return 0;
1068}
b159d43f
AW
1069#endif
1070
2bdaf115
AW
1071#ifdef CONFIG_FLATMEM
1072#define pfn_to_nid(pfn) (0)
1073#endif
1074
d41dee36
AW
1075#ifdef CONFIG_SPARSEMEM
1076
1077/*
1078 * SECTION_SHIFT #bits space required to store a section #
1079 *
1080 * PA_SECTION_SHIFT physical address to/from section number
1081 * PFN_SECTION_SHIFT pfn to/from section number
1082 */
d41dee36
AW
1083#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1084#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1085
1086#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1087
1088#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1089#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1090
835c134e 1091#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1092 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1093
d41dee36
AW
1094#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1095#error Allocator MAX_ORDER exceeds SECTION_SIZE
1096#endif
1097
e3c40f37
DK
1098#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1099#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1100
a539f353
DK
1101#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1102#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1103
d41dee36 1104struct page;
52d4b9ac 1105struct page_cgroup;
d41dee36 1106struct mem_section {
29751f69
AW
1107 /*
1108 * This is, logically, a pointer to an array of struct
1109 * pages. However, it is stored with some other magic.
1110 * (see sparse.c::sparse_init_one_section())
1111 *
30c253e6
AW
1112 * Additionally during early boot we encode node id of
1113 * the location of the section here to guide allocation.
1114 * (see sparse.c::memory_present())
1115 *
29751f69
AW
1116 * Making it a UL at least makes someone do a cast
1117 * before using it wrong.
1118 */
1119 unsigned long section_mem_map;
5c0e3066
MG
1120
1121 /* See declaration of similar field in struct zone */
1122 unsigned long *pageblock_flags;
c255a458 1123#ifdef CONFIG_MEMCG
52d4b9ac
KH
1124 /*
1125 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1126 * section. (see memcontrol.h/page_cgroup.h about this.)
1127 */
1128 struct page_cgroup *page_cgroup;
1129 unsigned long pad;
1130#endif
d41dee36
AW
1131};
1132
3e347261
BP
1133#ifdef CONFIG_SPARSEMEM_EXTREME
1134#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1135#else
1136#define SECTIONS_PER_ROOT 1
1137#endif
802f192e 1138
3e347261 1139#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1140#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1141#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1142
3e347261
BP
1143#ifdef CONFIG_SPARSEMEM_EXTREME
1144extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1145#else
3e347261
BP
1146extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1147#endif
d41dee36 1148
29751f69
AW
1149static inline struct mem_section *__nr_to_section(unsigned long nr)
1150{
3e347261
BP
1151 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1152 return NULL;
1153 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1154}
4ca644d9 1155extern int __section_nr(struct mem_section* ms);
04753278 1156extern unsigned long usemap_size(void);
29751f69
AW
1157
1158/*
1159 * We use the lower bits of the mem_map pointer to store
1160 * a little bit of information. There should be at least
1161 * 3 bits here due to 32-bit alignment.
1162 */
1163#define SECTION_MARKED_PRESENT (1UL<<0)
1164#define SECTION_HAS_MEM_MAP (1UL<<1)
1165#define SECTION_MAP_LAST_BIT (1UL<<2)
1166#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1167#define SECTION_NID_SHIFT 2
29751f69
AW
1168
1169static inline struct page *__section_mem_map_addr(struct mem_section *section)
1170{
1171 unsigned long map = section->section_mem_map;
1172 map &= SECTION_MAP_MASK;
1173 return (struct page *)map;
1174}
1175
540557b9 1176static inline int present_section(struct mem_section *section)
29751f69 1177{
802f192e 1178 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1179}
1180
540557b9
AW
1181static inline int present_section_nr(unsigned long nr)
1182{
1183 return present_section(__nr_to_section(nr));
1184}
1185
1186static inline int valid_section(struct mem_section *section)
29751f69 1187{
802f192e 1188 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1189}
1190
1191static inline int valid_section_nr(unsigned long nr)
1192{
1193 return valid_section(__nr_to_section(nr));
1194}
1195
d41dee36
AW
1196static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1197{
29751f69 1198 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1199}
1200
7b7bf499 1201#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1202static inline int pfn_valid(unsigned long pfn)
1203{
1204 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1205 return 0;
29751f69 1206 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1207}
7b7bf499 1208#endif
d41dee36 1209
540557b9
AW
1210static inline int pfn_present(unsigned long pfn)
1211{
1212 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1213 return 0;
1214 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1215}
1216
d41dee36
AW
1217/*
1218 * These are _only_ used during initialisation, therefore they
1219 * can use __initdata ... They could have names to indicate
1220 * this restriction.
1221 */
1222#ifdef CONFIG_NUMA
161599ff
AW
1223#define pfn_to_nid(pfn) \
1224({ \
1225 unsigned long __pfn_to_nid_pfn = (pfn); \
1226 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1227})
2bdaf115
AW
1228#else
1229#define pfn_to_nid(pfn) (0)
d41dee36
AW
1230#endif
1231
d41dee36
AW
1232#define early_pfn_valid(pfn) pfn_valid(pfn)
1233void sparse_init(void);
1234#else
1235#define sparse_init() do {} while (0)
28ae55c9 1236#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1237#endif /* CONFIG_SPARSEMEM */
1238
75167957 1239#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1240bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1241#else
1242#define early_pfn_in_nid(pfn, nid) (1)
1243#endif
1244
d41dee36
AW
1245#ifndef early_pfn_valid
1246#define early_pfn_valid(pfn) (1)
1247#endif
1248
1249void memory_present(int nid, unsigned long start, unsigned long end);
1250unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1251
14e07298
AW
1252/*
1253 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1254 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1255 * pfn_valid_within() should be used in this case; we optimise this away
1256 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1257 */
1258#ifdef CONFIG_HOLES_IN_ZONE
1259#define pfn_valid_within(pfn) pfn_valid(pfn)
1260#else
1261#define pfn_valid_within(pfn) (1)
1262#endif
1263
eb33575c
MG
1264#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1265/*
1266 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1267 * associated with it or not. In FLATMEM, it is expected that holes always
1268 * have valid memmap as long as there is valid PFNs either side of the hole.
1269 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1270 * entire section.
1271 *
1272 * However, an ARM, and maybe other embedded architectures in the future
1273 * free memmap backing holes to save memory on the assumption the memmap is
1274 * never used. The page_zone linkages are then broken even though pfn_valid()
1275 * returns true. A walker of the full memmap must then do this additional
1276 * check to ensure the memmap they are looking at is sane by making sure
1277 * the zone and PFN linkages are still valid. This is expensive, but walkers
1278 * of the full memmap are extremely rare.
1279 */
1280int memmap_valid_within(unsigned long pfn,
1281 struct page *page, struct zone *zone);
1282#else
1283static inline int memmap_valid_within(unsigned long pfn,
1284 struct page *page, struct zone *zone)
1285{
1286 return 1;
1287}
1288#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1289
97965478 1290#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1291#endif /* !__ASSEMBLY__ */
1da177e4 1292#endif /* _LINUX_MMZONE_H */