nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / jiffies.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_JIFFIES_H
2#define _LINUX_JIFFIES_H
3
f8bd2258 4#include <linux/math64.h>
1da177e4
LT
5#include <linux/kernel.h>
6#include <linux/types.h>
7#include <linux/time.h>
8#include <linux/timex.h>
9#include <asm/param.h> /* for HZ */
1da177e4
LT
10
11/*
12 * The following defines establish the engineering parameters of the PLL
13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
16 * nearest power of two in order to avoid hardware multiply operations.
17 */
18#if HZ >= 12 && HZ < 24
19# define SHIFT_HZ 4
20#elif HZ >= 24 && HZ < 48
21# define SHIFT_HZ 5
22#elif HZ >= 48 && HZ < 96
23# define SHIFT_HZ 6
24#elif HZ >= 96 && HZ < 192
25# define SHIFT_HZ 7
26#elif HZ >= 192 && HZ < 384
27# define SHIFT_HZ 8
28#elif HZ >= 384 && HZ < 768
29# define SHIFT_HZ 9
30#elif HZ >= 768 && HZ < 1536
31# define SHIFT_HZ 10
e118adef
PM
32#elif HZ >= 1536 && HZ < 3072
33# define SHIFT_HZ 11
34#elif HZ >= 3072 && HZ < 6144
35# define SHIFT_HZ 12
36#elif HZ >= 6144 && HZ < 12288
37# define SHIFT_HZ 13
1da177e4 38#else
37679011 39# error Invalid value of HZ.
1da177e4
LT
40#endif
41
25985edc 42/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
1da177e4
LT
43 * improve accuracy by shifting LSH bits, hence calculating:
44 * (NOM << LSH) / DEN
45 * This however means trouble for large NOM, because (NOM << LSH) may no
46 * longer fit in 32 bits. The following way of calculating this gives us
47 * some slack, under the following conditions:
48 * - (NOM / DEN) fits in (32 - LSH) bits.
49 * - (NOM % DEN) fits in (32 - LSH) bits.
50 */
0d94df56
UZ
51#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
52 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
1da177e4 53
a7ea3bbf 54/* LATCH is used in the interval timer and ftape setup. */
015a830d 55#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
a7ea3bbf 56
b3c869d3 57extern int register_refined_jiffies(long clock_tick_rate);
1da177e4 58
02ab20ae 59/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
b3c869d3 60#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
1da177e4
LT
61
62/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
63#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
64
1da177e4
LT
65/* some arch's have a small-data section that can be accessed register-relative
66 * but that can only take up to, say, 4-byte variables. jiffies being part of
67 * an 8-byte variable may not be correctly accessed unless we force the issue
68 */
69#define __jiffy_data __attribute__((section(".data")))
70
71/*
98c4f0c3 72 * The 64-bit value is not atomic - you MUST NOT read it
d6ad4187 73 * without sampling the sequence number in jiffies_lock.
1da177e4
LT
74 * get_jiffies_64() will do this for you as appropriate.
75 */
76extern u64 __jiffy_data jiffies_64;
77extern unsigned long volatile __jiffy_data jiffies;
78
79#if (BITS_PER_LONG < 64)
80u64 get_jiffies_64(void);
81#else
82static inline u64 get_jiffies_64(void)
83{
84 return (u64)jiffies;
85}
86#endif
87
88/*
89 * These inlines deal with timer wrapping correctly. You are
90 * strongly encouraged to use them
91 * 1. Because people otherwise forget
92 * 2. Because if the timer wrap changes in future you won't have to
93 * alter your driver code.
94 *
95 * time_after(a,b) returns true if the time a is after time b.
96 *
97 * Do this with "<0" and ">=0" to only test the sign of the result. A
98 * good compiler would generate better code (and a really good compiler
99 * wouldn't care). Gcc is currently neither.
100 */
101#define time_after(a,b) \
102 (typecheck(unsigned long, a) && \
103 typecheck(unsigned long, b) && \
5a0b9c33 104 ((long)((b) - (a)) < 0))
1da177e4
LT
105#define time_before(a,b) time_after(b,a)
106
107#define time_after_eq(a,b) \
108 (typecheck(unsigned long, a) && \
109 typecheck(unsigned long, b) && \
5a0b9c33 110 ((long)((a) - (b)) >= 0))
1da177e4
LT
111#define time_before_eq(a,b) time_after_eq(b,a)
112
64672d55
PS
113/*
114 * Calculate whether a is in the range of [b, c].
115 */
c7e15961
FOL
116#define time_in_range(a,b,c) \
117 (time_after_eq(a,b) && \
118 time_before_eq(a,c))
119
64672d55
PS
120/*
121 * Calculate whether a is in the range of [b, c).
122 */
123#define time_in_range_open(a,b,c) \
124 (time_after_eq(a,b) && \
125 time_before(a,c))
126
3b171672
DZ
127/* Same as above, but does so with platform independent 64bit types.
128 * These must be used when utilizing jiffies_64 (i.e. return value of
129 * get_jiffies_64() */
130#define time_after64(a,b) \
131 (typecheck(__u64, a) && \
132 typecheck(__u64, b) && \
5a0b9c33 133 ((__s64)((b) - (a)) < 0))
3b171672
DZ
134#define time_before64(a,b) time_after64(b,a)
135
136#define time_after_eq64(a,b) \
137 (typecheck(__u64, a) && \
138 typecheck(__u64, b) && \
5a0b9c33 139 ((__s64)((a) - (b)) >= 0))
3b171672
DZ
140#define time_before_eq64(a,b) time_after_eq64(b,a)
141
3f34d024
DY
142/*
143 * These four macros compare jiffies and 'a' for convenience.
144 */
145
146/* time_is_before_jiffies(a) return true if a is before jiffies */
147#define time_is_before_jiffies(a) time_after(jiffies, a)
148
149/* time_is_after_jiffies(a) return true if a is after jiffies */
150#define time_is_after_jiffies(a) time_before(jiffies, a)
151
152/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
153#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
154
155/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
156#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
157
1da177e4
LT
158/*
159 * Have the 32 bit jiffies value wrap 5 minutes after boot
160 * so jiffies wrap bugs show up earlier.
161 */
162#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
163
164/*
165 * Change timeval to jiffies, trying to avoid the
166 * most obvious overflows..
167 *
168 * And some not so obvious.
169 *
9f907c01 170 * Note that we don't want to return LONG_MAX, because
1da177e4
LT
171 * for various timeout reasons we often end up having
172 * to wait "jiffies+1" in order to guarantee that we wait
173 * at _least_ "jiffies" - so "jiffies+1" had better still
174 * be positive.
175 */
9f907c01 176#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
1da177e4 177
bfe8df3d
RD
178extern unsigned long preset_lpj;
179
1da177e4
LT
180/*
181 * We want to do realistic conversions of time so we need to use the same
182 * values the update wall clock code uses as the jiffies size. This value
183 * is: TICK_NSEC (which is defined in timex.h). This
3eb05676 184 * is a constant and is in nanoseconds. We will use scaled math
1da177e4
LT
185 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
186 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
187 * constants and so are computed at compile time. SHIFT_HZ (computed in
188 * timex.h) adjusts the scaling for different HZ values.
189
190 * Scaled math??? What is that?
191 *
192 * Scaled math is a way to do integer math on values that would,
193 * otherwise, either overflow, underflow, or cause undesired div
194 * instructions to appear in the execution path. In short, we "scale"
195 * up the operands so they take more bits (more precision, less
196 * underflow), do the desired operation and then "scale" the result back
197 * by the same amount. If we do the scaling by shifting we avoid the
198 * costly mpy and the dastardly div instructions.
199
200 * Suppose, for example, we want to convert from seconds to jiffies
201 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
202 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
203 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
204 * might calculate at compile time, however, the result will only have
205 * about 3-4 bits of precision (less for smaller values of HZ).
206 *
207 * So, we scale as follows:
208 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
209 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
210 * Then we make SCALE a power of two so:
211 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
212 * Now we define:
213 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
214 * jiff = (sec * SEC_CONV) >> SCALE;
215 *
216 * Often the math we use will expand beyond 32-bits so we tell C how to
217 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
218 * which should take the result back to 32-bits. We want this expansion
219 * to capture as much precision as possible. At the same time we don't
220 * want to overflow so we pick the SCALE to avoid this. In this file,
221 * that means using a different scale for each range of HZ values (as
222 * defined in timex.h).
223 *
224 * For those who want to know, gcc will give a 64-bit result from a "*"
225 * operator if the result is a long long AND at least one of the
226 * operands is cast to long long (usually just prior to the "*" so as
227 * not to confuse it into thinking it really has a 64-bit operand,
3eb05676 228 * which, buy the way, it can do, but it takes more code and at least 2
1da177e4
LT
229 * mpys).
230
231 * We also need to be aware that one second in nanoseconds is only a
232 * couple of bits away from overflowing a 32-bit word, so we MUST use
233 * 64-bits to get the full range time in nanoseconds.
234
235 */
236
237/*
238 * Here are the scales we will use. One for seconds, nanoseconds and
239 * microseconds.
240 *
241 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
242 * check if the sign bit is set. If not, we bump the shift count by 1.
243 * (Gets an extra bit of precision where we can use it.)
244 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
245 * Haven't tested others.
246
247 * Limits of cpp (for #if expressions) only long (no long long), but
248 * then we only need the most signicant bit.
249 */
250
251#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
252#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
253#undef SEC_JIFFIE_SC
254#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
255#endif
256#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
1da177e4
LT
257#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
258 TICK_NSEC -1) / (u64)TICK_NSEC))
259
260#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
261 TICK_NSEC -1) / (u64)TICK_NSEC))
1da177e4
LT
262/*
263 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
264 * into seconds. The 64-bit case will overflow if we are not careful,
265 * so use the messy SH_DIV macro to do it. Still all constants.
266 */
267#if BITS_PER_LONG < 64
268# define MAX_SEC_IN_JIFFIES \
269 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
270#else /* take care of overflow on 64 bits machines */
271# define MAX_SEC_IN_JIFFIES \
272 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
273
274#endif
275
276/*
8b9365d7 277 * Convert various time units to each other:
1da177e4 278 */
8b9365d7
IM
279extern unsigned int jiffies_to_msecs(const unsigned long j);
280extern unsigned int jiffies_to_usecs(const unsigned long j);
281extern unsigned long msecs_to_jiffies(const unsigned int m);
282extern unsigned long usecs_to_jiffies(const unsigned int u);
283extern unsigned long timespec_to_jiffies(const struct timespec *value);
284extern void jiffies_to_timespec(const unsigned long jiffies,
285 struct timespec *value);
286extern unsigned long timeval_to_jiffies(const struct timeval *value);
287extern void jiffies_to_timeval(const unsigned long jiffies,
288 struct timeval *value);
a399a805 289
cbbc719f 290extern clock_t jiffies_to_clock_t(unsigned long x);
a399a805
ED
291static inline clock_t jiffies_delta_to_clock_t(long delta)
292{
293 return jiffies_to_clock_t(max(0L, delta));
294}
295
8b9365d7
IM
296extern unsigned long clock_t_to_jiffies(unsigned long x);
297extern u64 jiffies_64_to_clock_t(u64 x);
298extern u64 nsec_to_clock_t(u64 x);
a1dabb6b 299extern u64 nsecs_to_jiffies64(u64 n);
b7b20df9 300extern unsigned long nsecs_to_jiffies(u64 n);
8b9365d7
IM
301
302#define TIMESTAMP_SIZE 30
1da177e4
LT
303
304#endif