asm-generic, mm: pgtable: convert my_zero_pfn() to macros to fix build
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
673eae82 4#ifndef __ASSEMBLY__
9535239f 5#ifdef CONFIG_MMU
673eae82 6
fbd71844 7#include <linux/mm_types.h>
187f1882 8#include <linux/bug.h>
fbd71844 9
1da177e4 10#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
11extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14#endif
15
16#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
1da177e4
LT
20#endif
21
22#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
23static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26{
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34}
35#endif
36
37#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38#ifdef CONFIG_TRANSPARENT_HUGEPAGE
39static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42{
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50}
51#else /* CONFIG_TRANSPARENT_HUGEPAGE */
52static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55{
56 BUG();
57 return 0;
58}
59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
60#endif
61
62#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
63int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65#endif
66
67#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
1da177e4
LT
70#endif
71
1da177e4 72#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
73static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76{
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80}
81#endif
82
83#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84#ifdef CONFIG_TRANSPARENT_HUGEPAGE
85static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88{
89 pmd_t pmd = *pmdp;
2d28a227 90 pmd_clear(pmdp);
e2cda322 91 return pmd;
49b24d6b 92}
e2cda322 93#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
94#endif
95
a600388d 96#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
97static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100{
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104}
a600388d
ZA
105#endif
106
9888a1ca
ZA
107/*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
113static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117{
118 pte_clear(mm, address, ptep);
119}
a600388d
ZA
120#endif
121
1da177e4 122#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
123extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126#endif
127
128#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
1da177e4
LT
132#endif
133
134#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 135struct mm_struct;
1da177e4
LT
136static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137{
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140}
141#endif
142
e2cda322
AA
143#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
145static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147{
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150}
151#else /* CONFIG_TRANSPARENT_HUGEPAGE */
152static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154{
155 BUG();
156}
157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158#endif
159
160#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
73636b1a
CM
161extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp);
e2cda322
AA
163#endif
164
e3ebcf64
GS
165#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
166extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
167#endif
168
169#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
170extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
171#endif
172
46dcde73
GS
173#ifndef __HAVE_ARCH_PMDP_INVALIDATE
174extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
175 pmd_t *pmdp);
176#endif
177
1da177e4 178#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
179static inline int pte_same(pte_t pte_a, pte_t pte_b)
180{
181 return pte_val(pte_a) == pte_val(pte_b);
182}
183#endif
184
185#ifndef __HAVE_ARCH_PMD_SAME
186#ifdef CONFIG_TRANSPARENT_HUGEPAGE
187static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
188{
189 return pmd_val(pmd_a) == pmd_val(pmd_b);
190}
191#else /* CONFIG_TRANSPARENT_HUGEPAGE */
192static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
193{
194 BUG();
195 return 0;
196}
197#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
198#endif
199
2d42552d
MS
200#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
201#define page_test_and_clear_dirty(pfn, mapped) (0)
6c210482
MS
202#endif
203
2d42552d 204#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
b4955ce3
AK
205#define pte_maybe_dirty(pte) pte_dirty(pte)
206#else
207#define pte_maybe_dirty(pte) (1)
1da177e4
LT
208#endif
209
210#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2d42552d 211#define page_test_and_clear_young(pfn) (0)
1da177e4
LT
212#endif
213
214#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
215#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
216#endif
217
0b0968a3 218#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 219#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
220#endif
221
2c3cf556
RR
222#ifndef pte_accessible
223# define pte_accessible(pte) ((void)(pte),1)
224#endif
225
61c77326
SL
226#ifndef flush_tlb_fix_spurious_fault
227#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
228#endif
229
0634a632
PM
230#ifndef pgprot_noncached
231#define pgprot_noncached(prot) (prot)
232#endif
233
2520bd31 234#ifndef pgprot_writecombine
235#define pgprot_writecombine pgprot_noncached
236#endif
237
1da177e4 238/*
8f6c99c1
HD
239 * When walking page tables, get the address of the next boundary,
240 * or the end address of the range if that comes earlier. Although no
241 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
242 */
243
1da177e4
LT
244#define pgd_addr_end(addr, end) \
245({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
246 (__boundary - 1 < (end) - 1)? __boundary: (end); \
247})
1da177e4
LT
248
249#ifndef pud_addr_end
250#define pud_addr_end(addr, end) \
251({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
252 (__boundary - 1 < (end) - 1)? __boundary: (end); \
253})
254#endif
255
256#ifndef pmd_addr_end
257#define pmd_addr_end(addr, end) \
258({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
259 (__boundary - 1 < (end) - 1)? __boundary: (end); \
260})
261#endif
262
1da177e4
LT
263/*
264 * When walking page tables, we usually want to skip any p?d_none entries;
265 * and any p?d_bad entries - reporting the error before resetting to none.
266 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
267 */
268void pgd_clear_bad(pgd_t *);
269void pud_clear_bad(pud_t *);
270void pmd_clear_bad(pmd_t *);
271
272static inline int pgd_none_or_clear_bad(pgd_t *pgd)
273{
274 if (pgd_none(*pgd))
275 return 1;
276 if (unlikely(pgd_bad(*pgd))) {
277 pgd_clear_bad(pgd);
278 return 1;
279 }
280 return 0;
281}
282
283static inline int pud_none_or_clear_bad(pud_t *pud)
284{
285 if (pud_none(*pud))
286 return 1;
287 if (unlikely(pud_bad(*pud))) {
288 pud_clear_bad(pud);
289 return 1;
290 }
291 return 0;
292}
293
294static inline int pmd_none_or_clear_bad(pmd_t *pmd)
295{
296 if (pmd_none(*pmd))
297 return 1;
298 if (unlikely(pmd_bad(*pmd))) {
299 pmd_clear_bad(pmd);
300 return 1;
301 }
302 return 0;
303}
9535239f 304
1ea0704e
JF
305static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
306 unsigned long addr,
307 pte_t *ptep)
308{
309 /*
310 * Get the current pte state, but zero it out to make it
311 * non-present, preventing the hardware from asynchronously
312 * updating it.
313 */
314 return ptep_get_and_clear(mm, addr, ptep);
315}
316
317static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
318 unsigned long addr,
319 pte_t *ptep, pte_t pte)
320{
321 /*
322 * The pte is non-present, so there's no hardware state to
323 * preserve.
324 */
325 set_pte_at(mm, addr, ptep, pte);
326}
327
328#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
329/*
330 * Start a pte protection read-modify-write transaction, which
331 * protects against asynchronous hardware modifications to the pte.
332 * The intention is not to prevent the hardware from making pte
333 * updates, but to prevent any updates it may make from being lost.
334 *
335 * This does not protect against other software modifications of the
336 * pte; the appropriate pte lock must be held over the transation.
337 *
338 * Note that this interface is intended to be batchable, meaning that
339 * ptep_modify_prot_commit may not actually update the pte, but merely
340 * queue the update to be done at some later time. The update must be
341 * actually committed before the pte lock is released, however.
342 */
343static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
344 unsigned long addr,
345 pte_t *ptep)
346{
347 return __ptep_modify_prot_start(mm, addr, ptep);
348}
349
350/*
351 * Commit an update to a pte, leaving any hardware-controlled bits in
352 * the PTE unmodified.
353 */
354static inline void ptep_modify_prot_commit(struct mm_struct *mm,
355 unsigned long addr,
356 pte_t *ptep, pte_t pte)
357{
358 __ptep_modify_prot_commit(mm, addr, ptep, pte);
359}
360#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 361#endif /* CONFIG_MMU */
1ea0704e 362
9535239f
GU
363/*
364 * A facility to provide lazy MMU batching. This allows PTE updates and
365 * page invalidations to be delayed until a call to leave lazy MMU mode
366 * is issued. Some architectures may benefit from doing this, and it is
367 * beneficial for both shadow and direct mode hypervisors, which may batch
368 * the PTE updates which happen during this window. Note that using this
369 * interface requires that read hazards be removed from the code. A read
370 * hazard could result in the direct mode hypervisor case, since the actual
371 * write to the page tables may not yet have taken place, so reads though
372 * a raw PTE pointer after it has been modified are not guaranteed to be
373 * up to date. This mode can only be entered and left under the protection of
374 * the page table locks for all page tables which may be modified. In the UP
375 * case, this is required so that preemption is disabled, and in the SMP case,
376 * it must synchronize the delayed page table writes properly on other CPUs.
377 */
378#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
379#define arch_enter_lazy_mmu_mode() do {} while (0)
380#define arch_leave_lazy_mmu_mode() do {} while (0)
381#define arch_flush_lazy_mmu_mode() do {} while (0)
382#endif
383
384/*
7fd7d83d
JF
385 * A facility to provide batching of the reload of page tables and
386 * other process state with the actual context switch code for
387 * paravirtualized guests. By convention, only one of the batched
388 * update (lazy) modes (CPU, MMU) should be active at any given time,
389 * entry should never be nested, and entry and exits should always be
390 * paired. This is for sanity of maintaining and reasoning about the
391 * kernel code. In this case, the exit (end of the context switch) is
392 * in architecture-specific code, and so doesn't need a generic
393 * definition.
9535239f 394 */
7fd7d83d 395#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 396#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
397#endif
398
34801ba9 399#ifndef __HAVE_PFNMAP_TRACKING
400/*
5180da41
SS
401 * Interfaces that can be used by architecture code to keep track of
402 * memory type of pfn mappings specified by the remap_pfn_range,
403 * vm_insert_pfn.
404 */
405
406/*
407 * track_pfn_remap is called when a _new_ pfn mapping is being established
408 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 409 */
5180da41 410static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
411 unsigned long pfn, unsigned long addr,
412 unsigned long size)
34801ba9 413{
414 return 0;
415}
416
417/*
5180da41
SS
418 * track_pfn_insert is called when a _new_ single pfn is established
419 * by vm_insert_pfn().
420 */
421static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
422 unsigned long pfn)
423{
424 return 0;
425}
426
427/*
428 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 429 * copied through copy_page_range().
430 */
5180da41 431static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 432{
433 return 0;
434}
435
436/*
34801ba9 437 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
438 * untrack can be called for a specific region indicated by pfn and size or
5180da41 439 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 440 */
5180da41
SS
441static inline void untrack_pfn(struct vm_area_struct *vma,
442 unsigned long pfn, unsigned long size)
34801ba9 443{
444}
445#else
5180da41 446extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
447 unsigned long pfn, unsigned long addr,
448 unsigned long size);
5180da41
SS
449extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
450 unsigned long pfn);
451extern int track_pfn_copy(struct vm_area_struct *vma);
452extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
453 unsigned long size);
34801ba9 454#endif
455
816422ad
KS
456#ifdef __HAVE_COLOR_ZERO_PAGE
457static inline int is_zero_pfn(unsigned long pfn)
458{
459 extern unsigned long zero_pfn;
460 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
461 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
462}
463
2f91ec8c
KS
464#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
465
816422ad
KS
466#else
467static inline int is_zero_pfn(unsigned long pfn)
468{
469 extern unsigned long zero_pfn;
470 return pfn == zero_pfn;
471}
472
473static inline unsigned long my_zero_pfn(unsigned long addr)
474{
475 extern unsigned long zero_pfn;
476 return zero_pfn;
477}
478#endif
479
1a5a9906
AA
480#ifdef CONFIG_MMU
481
5f6e8da7
AA
482#ifndef CONFIG_TRANSPARENT_HUGEPAGE
483static inline int pmd_trans_huge(pmd_t pmd)
484{
485 return 0;
486}
487static inline int pmd_trans_splitting(pmd_t pmd)
488{
489 return 0;
490}
e2cda322
AA
491#ifndef __HAVE_ARCH_PMD_WRITE
492static inline int pmd_write(pmd_t pmd)
493{
494 BUG();
495 return 0;
496}
497#endif /* __HAVE_ARCH_PMD_WRITE */
1a5a9906
AA
498#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
499
26c19178
AA
500#ifndef pmd_read_atomic
501static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
502{
503 /*
504 * Depend on compiler for an atomic pmd read. NOTE: this is
505 * only going to work, if the pmdval_t isn't larger than
506 * an unsigned long.
507 */
508 return *pmdp;
509}
510#endif
511
1a5a9906
AA
512/*
513 * This function is meant to be used by sites walking pagetables with
514 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
515 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
516 * into a null pmd and the transhuge page fault can convert a null pmd
517 * into an hugepmd or into a regular pmd (if the hugepage allocation
518 * fails). While holding the mmap_sem in read mode the pmd becomes
519 * stable and stops changing under us only if it's not null and not a
520 * transhuge pmd. When those races occurs and this function makes a
521 * difference vs the standard pmd_none_or_clear_bad, the result is
522 * undefined so behaving like if the pmd was none is safe (because it
523 * can return none anyway). The compiler level barrier() is critically
524 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
525 *
526 * For 32bit kernels with a 64bit large pmd_t this automatically takes
527 * care of reading the pmd atomically to avoid SMP race conditions
528 * against pmd_populate() when the mmap_sem is hold for reading by the
529 * caller (a special atomic read not done by "gcc" as in the generic
530 * version above, is also needed when THP is disabled because the page
531 * fault can populate the pmd from under us).
1a5a9906
AA
532 */
533static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
534{
26c19178 535 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
536 /*
537 * The barrier will stabilize the pmdval in a register or on
538 * the stack so that it will stop changing under the code.
e4eed03f
AA
539 *
540 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
541 * pmd_read_atomic is allowed to return a not atomic pmdval
542 * (for example pointing to an hugepage that has never been
543 * mapped in the pmd). The below checks will only care about
544 * the low part of the pmd with 32bit PAE x86 anyway, with the
545 * exception of pmd_none(). So the important thing is that if
546 * the low part of the pmd is found null, the high part will
547 * be also null or the pmd_none() check below would be
548 * confused.
1a5a9906
AA
549 */
550#ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 barrier();
552#endif
553 if (pmd_none(pmdval))
554 return 1;
555 if (unlikely(pmd_bad(pmdval))) {
556 if (!pmd_trans_huge(pmdval))
557 pmd_clear_bad(pmd);
558 return 1;
559 }
560 return 0;
561}
562
563/*
564 * This is a noop if Transparent Hugepage Support is not built into
565 * the kernel. Otherwise it is equivalent to
566 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
567 * places that already verified the pmd is not none and they want to
568 * walk ptes while holding the mmap sem in read mode (write mode don't
569 * need this). If THP is not enabled, the pmd can't go away under the
570 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
571 * run a pmd_trans_unstable before walking the ptes after
572 * split_huge_page_pmd returns (because it may have run when the pmd
573 * become null, but then a page fault can map in a THP and not a
574 * regular page).
575 */
576static inline int pmd_trans_unstable(pmd_t *pmd)
577{
578#ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 return pmd_none_or_trans_huge_or_clear_bad(pmd);
580#else
581 return 0;
5f6e8da7 582#endif
1a5a9906
AA
583}
584
be3a7284
AA
585#ifdef CONFIG_NUMA_BALANCING
586#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
587/*
588 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
589 * same bit too). It's set only when _PAGE_PRESET is not set and it's
590 * never set if _PAGE_PRESENT is set.
591 *
592 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
593 * fault triggers on those regions if pte/pmd_numa returns true
594 * (because _PAGE_PRESENT is not set).
595 */
596#ifndef pte_numa
597static inline int pte_numa(pte_t pte)
598{
599 return (pte_flags(pte) &
600 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
601}
602#endif
603
604#ifndef pmd_numa
605static inline int pmd_numa(pmd_t pmd)
606{
607 return (pmd_flags(pmd) &
608 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
609}
610#endif
611
612/*
613 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
614 * because they're called by the NUMA hinting minor page fault. If we
615 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
616 * would be forced to set it later while filling the TLB after we
617 * return to userland. That would trigger a second write to memory
618 * that we optimize away by setting _PAGE_ACCESSED here.
619 */
620#ifndef pte_mknonnuma
621static inline pte_t pte_mknonnuma(pte_t pte)
622{
623 pte = pte_clear_flags(pte, _PAGE_NUMA);
624 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
625}
626#endif
627
628#ifndef pmd_mknonnuma
629static inline pmd_t pmd_mknonnuma(pmd_t pmd)
630{
631 pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
632 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
633}
634#endif
635
636#ifndef pte_mknuma
637static inline pte_t pte_mknuma(pte_t pte)
638{
639 pte = pte_set_flags(pte, _PAGE_NUMA);
640 return pte_clear_flags(pte, _PAGE_PRESENT);
641}
642#endif
643
644#ifndef pmd_mknuma
645static inline pmd_t pmd_mknuma(pmd_t pmd)
646{
647 pmd = pmd_set_flags(pmd, _PAGE_NUMA);
648 return pmd_clear_flags(pmd, _PAGE_PRESENT);
649}
650#endif
651#else
652extern int pte_numa(pte_t pte);
653extern int pmd_numa(pmd_t pmd);
654extern pte_t pte_mknonnuma(pte_t pte);
655extern pmd_t pmd_mknonnuma(pmd_t pmd);
656extern pte_t pte_mknuma(pte_t pte);
657extern pmd_t pmd_mknuma(pmd_t pmd);
658#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
659#else
660static inline int pmd_numa(pmd_t pmd)
661{
662 return 0;
663}
664
665static inline int pte_numa(pte_t pte)
666{
667 return 0;
668}
669
670static inline pte_t pte_mknonnuma(pte_t pte)
671{
672 return pte;
673}
674
675static inline pmd_t pmd_mknonnuma(pmd_t pmd)
676{
677 return pmd;
678}
679
680static inline pte_t pte_mknuma(pte_t pte)
681{
682 return pte;
683}
684
685static inline pmd_t pmd_mknuma(pmd_t pmd)
686{
687 return pmd;
688}
689#endif /* CONFIG_NUMA_BALANCING */
690
1a5a9906 691#endif /* CONFIG_MMU */
5f6e8da7 692
1da177e4
LT
693#endif /* !__ASSEMBLY__ */
694
695#endif /* _ASM_GENERIC_PGTABLE_H */