[XFS] cleanup btree record / key / ptr addressing macros.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451
NS
25#include "xfs_inum.h"
26#include "xfs_imap.h"
1da177e4
LT
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_sb.h"
30#include "xfs_ag.h"
1da177e4
LT
31#include "xfs_dir2.h"
32#include "xfs_dmapi.h"
33#include "xfs_mount.h"
1da177e4 34#include "xfs_bmap_btree.h"
a844f451 35#include "xfs_alloc_btree.h"
1da177e4 36#include "xfs_ialloc_btree.h"
1da177e4 37#include "xfs_dir2_sf.h"
a844f451 38#include "xfs_attr_sf.h"
1da177e4 39#include "xfs_dinode.h"
1da177e4 40#include "xfs_inode.h"
1da177e4 41#include "xfs_buf_item.h"
a844f451
NS
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
8c4ed633 44#include "xfs_btree_trace.h"
a844f451
NS
45#include "xfs_alloc.h"
46#include "xfs_ialloc.h"
47#include "xfs_bmap.h"
1da177e4
LT
48#include "xfs_rw.h"
49#include "xfs_error.h"
1da177e4
LT
50#include "xfs_utils.h"
51#include "xfs_dir2_trace.h"
52#include "xfs_quota.h"
1da177e4 53#include "xfs_acl.h"
2a82b8be 54#include "xfs_filestream.h"
739bfb2a 55#include "xfs_vnodeops.h"
1da177e4 56
1da177e4
LT
57kmem_zone_t *xfs_ifork_zone;
58kmem_zone_t *xfs_inode_zone;
1da177e4
LT
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
1da177e4
LT
71#ifdef DEBUG
72/*
73 * Make sure that the extents in the given memory buffer
74 * are valid.
75 */
76STATIC void
77xfs_validate_extents(
4eea22f0 78 xfs_ifork_t *ifp,
1da177e4 79 int nrecs,
1da177e4
LT
80 xfs_exntfmt_t fmt)
81{
82 xfs_bmbt_irec_t irec;
a6f64d4a 83 xfs_bmbt_rec_host_t rec;
1da177e4
LT
84 int i;
85
86 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
87 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
88 rec.l0 = get_unaligned(&ep->l0);
89 rec.l1 = get_unaligned(&ep->l1);
90 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
91 if (fmt == XFS_EXTFMT_NOSTATE)
92 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
93 }
94}
95#else /* DEBUG */
a6f64d4a 96#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
97#endif /* DEBUG */
98
99/*
100 * Check that none of the inode's in the buffer have a next
101 * unlinked field of 0.
102 */
103#if defined(DEBUG)
104void
105xfs_inobp_check(
106 xfs_mount_t *mp,
107 xfs_buf_t *bp)
108{
109 int i;
110 int j;
111 xfs_dinode_t *dip;
112
113 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114
115 for (i = 0; i < j; i++) {
116 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
117 i * mp->m_sb.sb_inodesize);
118 if (!dip->di_next_unlinked) {
119 xfs_fs_cmn_err(CE_ALERT, mp,
120 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 bp);
122 ASSERT(dip->di_next_unlinked);
123 }
124 }
125}
126#endif
127
4ae29b43
DC
128/*
129 * Find the buffer associated with the given inode map
130 * We do basic validation checks on the buffer once it has been
131 * retrieved from disk.
132 */
133STATIC int
134xfs_imap_to_bp(
135 xfs_mount_t *mp,
136 xfs_trans_t *tp,
137 xfs_imap_t *imap,
138 xfs_buf_t **bpp,
139 uint buf_flags,
140 uint imap_flags)
141{
142 int error;
143 int i;
144 int ni;
145 xfs_buf_t *bp;
146
147 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 148 (int)imap->im_len, buf_flags, &bp);
4ae29b43 149 if (error) {
a3f74ffb
DC
150 if (error != EAGAIN) {
151 cmn_err(CE_WARN,
152 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
153 "an error %d on %s. Returning error.",
154 error, mp->m_fsname);
a3f74ffb
DC
155 } else {
156 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
157 }
4ae29b43
DC
158 return error;
159 }
160
161 /*
162 * Validate the magic number and version of every inode in the buffer
163 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 */
165#ifdef DEBUG
166 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
167#else /* usual case */
168 ni = 1;
169#endif
170
171 for (i = 0; i < ni; i++) {
172 int di_ok;
173 xfs_dinode_t *dip;
174
175 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
176 (i << mp->m_sb.sb_inodelog));
177 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
178 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
179 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
180 XFS_ERRTAG_ITOBP_INOTOBP,
181 XFS_RANDOM_ITOBP_INOTOBP))) {
182 if (imap_flags & XFS_IMAP_BULKSTAT) {
183 xfs_trans_brelse(tp, bp);
184 return XFS_ERROR(EINVAL);
185 }
186 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
187 XFS_ERRLEVEL_HIGH, mp, dip);
188#ifdef DEBUG
189 cmn_err(CE_PANIC,
190 "Device %s - bad inode magic/vsn "
191 "daddr %lld #%d (magic=%x)",
192 XFS_BUFTARG_NAME(mp->m_ddev_targp),
193 (unsigned long long)imap->im_blkno, i,
194 be16_to_cpu(dip->di_core.di_magic));
195#endif
196 xfs_trans_brelse(tp, bp);
197 return XFS_ERROR(EFSCORRUPTED);
198 }
199 }
200
201 xfs_inobp_check(mp, bp);
202
203 /*
204 * Mark the buffer as an inode buffer now that it looks good
205 */
206 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
207
208 *bpp = bp;
209 return 0;
210}
211
1da177e4
LT
212/*
213 * This routine is called to map an inode number within a file
214 * system to the buffer containing the on-disk version of the
215 * inode. It returns a pointer to the buffer containing the
216 * on-disk inode in the bpp parameter, and in the dip parameter
217 * it returns a pointer to the on-disk inode within that buffer.
218 *
219 * If a non-zero error is returned, then the contents of bpp and
220 * dipp are undefined.
221 *
222 * Use xfs_imap() to determine the size and location of the
223 * buffer to read from disk.
224 */
ba0f32d4 225STATIC int
1da177e4
LT
226xfs_inotobp(
227 xfs_mount_t *mp,
228 xfs_trans_t *tp,
229 xfs_ino_t ino,
230 xfs_dinode_t **dipp,
231 xfs_buf_t **bpp,
232 int *offset)
233{
1da177e4
LT
234 xfs_imap_t imap;
235 xfs_buf_t *bp;
236 int error;
1da177e4 237
1da177e4
LT
238 imap.im_blkno = 0;
239 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
4ae29b43 240 if (error)
1da177e4 241 return error;
1da177e4 242
4ae29b43
DC
243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
244 if (error)
1da177e4 245 return error;
1da177e4 246
1da177e4
LT
247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 *bpp = bp;
249 *offset = imap.im_boffset;
250 return 0;
251}
252
253
254/*
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
259 * that buffer.
260 *
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
263 *
264 * If the inode is new and has not yet been initialized, use xfs_imap()
265 * to determine the size and location of the buffer to read from disk.
266 * If the inode has already been mapped to its buffer and read in once,
267 * then use the mapping information stored in the inode rather than
268 * calling xfs_imap(). This allows us to avoid the overhead of looking
269 * at the inode btree for small block file systems (see xfs_dilocate()).
270 * We can tell whether the inode has been mapped in before by comparing
271 * its disk block address to 0. Only uninitialized inodes will have
272 * 0 for the disk block address.
273 */
274int
275xfs_itobp(
276 xfs_mount_t *mp,
277 xfs_trans_t *tp,
278 xfs_inode_t *ip,
279 xfs_dinode_t **dipp,
280 xfs_buf_t **bpp,
b12dd342 281 xfs_daddr_t bno,
a3f74ffb
DC
282 uint imap_flags,
283 uint buf_flags)
1da177e4 284{
4d1a2ed3 285 xfs_imap_t imap;
1da177e4
LT
286 xfs_buf_t *bp;
287 int error;
1da177e4
LT
288
289 if (ip->i_blkno == (xfs_daddr_t)0) {
1da177e4 290 imap.im_blkno = bno;
4ae29b43
DC
291 error = xfs_imap(mp, tp, ip->i_ino, &imap,
292 XFS_IMAP_LOOKUP | imap_flags);
293 if (error)
1da177e4 294 return error;
1da177e4 295
1da177e4
LT
296 /*
297 * Fill in the fields in the inode that will be used to
298 * map the inode to its buffer from now on.
299 */
300 ip->i_blkno = imap.im_blkno;
301 ip->i_len = imap.im_len;
302 ip->i_boffset = imap.im_boffset;
303 } else {
304 /*
305 * We've already mapped the inode once, so just use the
306 * mapping that we saved the first time.
307 */
308 imap.im_blkno = ip->i_blkno;
309 imap.im_len = ip->i_len;
310 imap.im_boffset = ip->i_boffset;
311 }
312 ASSERT(bno == 0 || bno == imap.im_blkno);
313
a3f74ffb 314 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
4ae29b43 315 if (error)
1da177e4 316 return error;
1da177e4 317
a3f74ffb
DC
318 if (!bp) {
319 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
320 ASSERT(tp == NULL);
321 *bpp = NULL;
322 return EAGAIN;
323 }
324
1da177e4
LT
325 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
326 *bpp = bp;
327 return 0;
328}
329
330/*
331 * Move inode type and inode format specific information from the
332 * on-disk inode to the in-core inode. For fifos, devs, and sockets
333 * this means set if_rdev to the proper value. For files, directories,
334 * and symlinks this means to bring in the in-line data or extent
335 * pointers. For a file in B-tree format, only the root is immediately
336 * brought in-core. The rest will be in-lined in if_extents when it
337 * is first referenced (see xfs_iread_extents()).
338 */
339STATIC int
340xfs_iformat(
341 xfs_inode_t *ip,
342 xfs_dinode_t *dip)
343{
344 xfs_attr_shortform_t *atp;
345 int size;
346 int error;
347 xfs_fsize_t di_size;
348 ip->i_df.if_ext_max =
349 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
350 error = 0;
351
347d1c01
CH
352 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
353 be16_to_cpu(dip->di_core.di_anextents) >
354 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
355 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
356 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 357 (unsigned long long)ip->i_ino,
347d1c01
CH
358 (int)(be32_to_cpu(dip->di_core.di_nextents) +
359 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 360 (unsigned long long)
347d1c01 361 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
362 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
363 ip->i_mount, dip);
364 return XFS_ERROR(EFSCORRUPTED);
365 }
366
347d1c01 367 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
368 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
369 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 370 (unsigned long long)ip->i_ino,
347d1c01 371 dip->di_core.di_forkoff);
1da177e4
LT
372 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
373 ip->i_mount, dip);
374 return XFS_ERROR(EFSCORRUPTED);
375 }
376
377 switch (ip->i_d.di_mode & S_IFMT) {
378 case S_IFIFO:
379 case S_IFCHR:
380 case S_IFBLK:
381 case S_IFSOCK:
347d1c01 382 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
383 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
384 ip->i_mount, dip);
385 return XFS_ERROR(EFSCORRUPTED);
386 }
387 ip->i_d.di_size = 0;
ba87ea69 388 ip->i_size = 0;
347d1c01 389 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
390 break;
391
392 case S_IFREG:
393 case S_IFLNK:
394 case S_IFDIR:
347d1c01 395 switch (dip->di_core.di_format) {
1da177e4
LT
396 case XFS_DINODE_FMT_LOCAL:
397 /*
398 * no local regular files yet
399 */
347d1c01 400 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
401 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
402 "corrupt inode %Lu "
403 "(local format for regular file).",
1da177e4
LT
404 (unsigned long long) ip->i_ino);
405 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
406 XFS_ERRLEVEL_LOW,
407 ip->i_mount, dip);
408 return XFS_ERROR(EFSCORRUPTED);
409 }
410
347d1c01 411 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 412 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
413 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
414 "corrupt inode %Lu "
415 "(bad size %Ld for local inode).",
1da177e4
LT
416 (unsigned long long) ip->i_ino,
417 (long long) di_size);
418 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
419 XFS_ERRLEVEL_LOW,
420 ip->i_mount, dip);
421 return XFS_ERROR(EFSCORRUPTED);
422 }
423
424 size = (int)di_size;
425 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
426 break;
427 case XFS_DINODE_FMT_EXTENTS:
428 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
429 break;
430 case XFS_DINODE_FMT_BTREE:
431 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
432 break;
433 default:
434 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
435 ip->i_mount);
436 return XFS_ERROR(EFSCORRUPTED);
437 }
438 break;
439
440 default:
441 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
442 return XFS_ERROR(EFSCORRUPTED);
443 }
444 if (error) {
445 return error;
446 }
447 if (!XFS_DFORK_Q(dip))
448 return 0;
449 ASSERT(ip->i_afp == NULL);
450 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
451 ip->i_afp->if_ext_max =
452 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 453 switch (dip->di_core.di_aformat) {
1da177e4
LT
454 case XFS_DINODE_FMT_LOCAL:
455 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 456 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
457 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
458 break;
459 case XFS_DINODE_FMT_EXTENTS:
460 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
461 break;
462 case XFS_DINODE_FMT_BTREE:
463 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
464 break;
465 default:
466 error = XFS_ERROR(EFSCORRUPTED);
467 break;
468 }
469 if (error) {
470 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
471 ip->i_afp = NULL;
472 xfs_idestroy_fork(ip, XFS_DATA_FORK);
473 }
474 return error;
475}
476
477/*
478 * The file is in-lined in the on-disk inode.
479 * If it fits into if_inline_data, then copy
480 * it there, otherwise allocate a buffer for it
481 * and copy the data there. Either way, set
482 * if_data to point at the data.
483 * If we allocate a buffer for the data, make
484 * sure that its size is a multiple of 4 and
485 * record the real size in i_real_bytes.
486 */
487STATIC int
488xfs_iformat_local(
489 xfs_inode_t *ip,
490 xfs_dinode_t *dip,
491 int whichfork,
492 int size)
493{
494 xfs_ifork_t *ifp;
495 int real_size;
496
497 /*
498 * If the size is unreasonable, then something
499 * is wrong and we just bail out rather than crash in
500 * kmem_alloc() or memcpy() below.
501 */
502 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
503 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
504 "corrupt inode %Lu "
505 "(bad size %d for local fork, size = %d).",
1da177e4
LT
506 (unsigned long long) ip->i_ino, size,
507 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
508 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
509 ip->i_mount, dip);
510 return XFS_ERROR(EFSCORRUPTED);
511 }
512 ifp = XFS_IFORK_PTR(ip, whichfork);
513 real_size = 0;
514 if (size == 0)
515 ifp->if_u1.if_data = NULL;
516 else if (size <= sizeof(ifp->if_u2.if_inline_data))
517 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
518 else {
519 real_size = roundup(size, 4);
520 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
521 }
522 ifp->if_bytes = size;
523 ifp->if_real_bytes = real_size;
524 if (size)
525 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
526 ifp->if_flags &= ~XFS_IFEXTENTS;
527 ifp->if_flags |= XFS_IFINLINE;
528 return 0;
529}
530
531/*
532 * The file consists of a set of extents all
533 * of which fit into the on-disk inode.
534 * If there are few enough extents to fit into
535 * the if_inline_ext, then copy them there.
536 * Otherwise allocate a buffer for them and copy
537 * them into it. Either way, set if_extents
538 * to point at the extents.
539 */
540STATIC int
541xfs_iformat_extents(
542 xfs_inode_t *ip,
543 xfs_dinode_t *dip,
544 int whichfork)
545{
a6f64d4a 546 xfs_bmbt_rec_t *dp;
1da177e4
LT
547 xfs_ifork_t *ifp;
548 int nex;
1da177e4
LT
549 int size;
550 int i;
551
552 ifp = XFS_IFORK_PTR(ip, whichfork);
553 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
554 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
555
556 /*
557 * If the number of extents is unreasonable, then something
558 * is wrong and we just bail out rather than crash in
559 * kmem_alloc() or memcpy() below.
560 */
561 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
562 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
563 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
564 (unsigned long long) ip->i_ino, nex);
565 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
566 ip->i_mount, dip);
567 return XFS_ERROR(EFSCORRUPTED);
568 }
569
4eea22f0 570 ifp->if_real_bytes = 0;
1da177e4
LT
571 if (nex == 0)
572 ifp->if_u1.if_extents = NULL;
573 else if (nex <= XFS_INLINE_EXTS)
574 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
575 else
576 xfs_iext_add(ifp, 0, nex);
577
1da177e4 578 ifp->if_bytes = size;
1da177e4
LT
579 if (size) {
580 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 581 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 582 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 583 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
584 ep->l0 = get_unaligned_be64(&dp->l0);
585 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 586 }
3a59c94c 587 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
588 if (whichfork != XFS_DATA_FORK ||
589 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
590 if (unlikely(xfs_check_nostate_extents(
4eea22f0 591 ifp, 0, nex))) {
1da177e4
LT
592 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
593 XFS_ERRLEVEL_LOW,
594 ip->i_mount);
595 return XFS_ERROR(EFSCORRUPTED);
596 }
597 }
598 ifp->if_flags |= XFS_IFEXTENTS;
599 return 0;
600}
601
602/*
603 * The file has too many extents to fit into
604 * the inode, so they are in B-tree format.
605 * Allocate a buffer for the root of the B-tree
606 * and copy the root into it. The i_extents
607 * field will remain NULL until all of the
608 * extents are read in (when they are needed).
609 */
610STATIC int
611xfs_iformat_btree(
612 xfs_inode_t *ip,
613 xfs_dinode_t *dip,
614 int whichfork)
615{
616 xfs_bmdr_block_t *dfp;
617 xfs_ifork_t *ifp;
618 /* REFERENCED */
619 int nrecs;
620 int size;
621
622 ifp = XFS_IFORK_PTR(ip, whichfork);
623 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
624 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 625 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
626
627 /*
628 * blow out if -- fork has less extents than can fit in
629 * fork (fork shouldn't be a btree format), root btree
630 * block has more records than can fit into the fork,
631 * or the number of extents is greater than the number of
632 * blocks.
633 */
634 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
635 || XFS_BMDR_SPACE_CALC(nrecs) >
636 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
637 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
638 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
639 "corrupt inode %Lu (btree).",
1da177e4
LT
640 (unsigned long long) ip->i_ino);
641 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
642 ip->i_mount);
643 return XFS_ERROR(EFSCORRUPTED);
644 }
645
646 ifp->if_broot_bytes = size;
647 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
648 ASSERT(ifp->if_broot != NULL);
649 /*
650 * Copy and convert from the on-disk structure
651 * to the in-memory structure.
652 */
60197e8d
CH
653 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
654 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
655 ifp->if_broot, size);
1da177e4
LT
656 ifp->if_flags &= ~XFS_IFEXTENTS;
657 ifp->if_flags |= XFS_IFBROOT;
658
659 return 0;
660}
661
1da177e4 662void
347d1c01
CH
663xfs_dinode_from_disk(
664 xfs_icdinode_t *to,
665 xfs_dinode_core_t *from)
1da177e4 666{
347d1c01
CH
667 to->di_magic = be16_to_cpu(from->di_magic);
668 to->di_mode = be16_to_cpu(from->di_mode);
669 to->di_version = from ->di_version;
670 to->di_format = from->di_format;
671 to->di_onlink = be16_to_cpu(from->di_onlink);
672 to->di_uid = be32_to_cpu(from->di_uid);
673 to->di_gid = be32_to_cpu(from->di_gid);
674 to->di_nlink = be32_to_cpu(from->di_nlink);
675 to->di_projid = be16_to_cpu(from->di_projid);
676 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
677 to->di_flushiter = be16_to_cpu(from->di_flushiter);
678 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
679 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
680 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
681 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
682 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
683 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
684 to->di_size = be64_to_cpu(from->di_size);
685 to->di_nblocks = be64_to_cpu(from->di_nblocks);
686 to->di_extsize = be32_to_cpu(from->di_extsize);
687 to->di_nextents = be32_to_cpu(from->di_nextents);
688 to->di_anextents = be16_to_cpu(from->di_anextents);
689 to->di_forkoff = from->di_forkoff;
690 to->di_aformat = from->di_aformat;
691 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
692 to->di_dmstate = be16_to_cpu(from->di_dmstate);
693 to->di_flags = be16_to_cpu(from->di_flags);
694 to->di_gen = be32_to_cpu(from->di_gen);
695}
696
697void
698xfs_dinode_to_disk(
699 xfs_dinode_core_t *to,
700 xfs_icdinode_t *from)
701{
702 to->di_magic = cpu_to_be16(from->di_magic);
703 to->di_mode = cpu_to_be16(from->di_mode);
704 to->di_version = from ->di_version;
705 to->di_format = from->di_format;
706 to->di_onlink = cpu_to_be16(from->di_onlink);
707 to->di_uid = cpu_to_be32(from->di_uid);
708 to->di_gid = cpu_to_be32(from->di_gid);
709 to->di_nlink = cpu_to_be32(from->di_nlink);
710 to->di_projid = cpu_to_be16(from->di_projid);
711 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
712 to->di_flushiter = cpu_to_be16(from->di_flushiter);
713 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
714 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
715 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
716 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
717 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
718 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
719 to->di_size = cpu_to_be64(from->di_size);
720 to->di_nblocks = cpu_to_be64(from->di_nblocks);
721 to->di_extsize = cpu_to_be32(from->di_extsize);
722 to->di_nextents = cpu_to_be32(from->di_nextents);
723 to->di_anextents = cpu_to_be16(from->di_anextents);
724 to->di_forkoff = from->di_forkoff;
725 to->di_aformat = from->di_aformat;
726 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
727 to->di_dmstate = cpu_to_be16(from->di_dmstate);
728 to->di_flags = cpu_to_be16(from->di_flags);
729 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
730}
731
732STATIC uint
733_xfs_dic2xflags(
1da177e4
LT
734 __uint16_t di_flags)
735{
736 uint flags = 0;
737
738 if (di_flags & XFS_DIFLAG_ANY) {
739 if (di_flags & XFS_DIFLAG_REALTIME)
740 flags |= XFS_XFLAG_REALTIME;
741 if (di_flags & XFS_DIFLAG_PREALLOC)
742 flags |= XFS_XFLAG_PREALLOC;
743 if (di_flags & XFS_DIFLAG_IMMUTABLE)
744 flags |= XFS_XFLAG_IMMUTABLE;
745 if (di_flags & XFS_DIFLAG_APPEND)
746 flags |= XFS_XFLAG_APPEND;
747 if (di_flags & XFS_DIFLAG_SYNC)
748 flags |= XFS_XFLAG_SYNC;
749 if (di_flags & XFS_DIFLAG_NOATIME)
750 flags |= XFS_XFLAG_NOATIME;
751 if (di_flags & XFS_DIFLAG_NODUMP)
752 flags |= XFS_XFLAG_NODUMP;
753 if (di_flags & XFS_DIFLAG_RTINHERIT)
754 flags |= XFS_XFLAG_RTINHERIT;
755 if (di_flags & XFS_DIFLAG_PROJINHERIT)
756 flags |= XFS_XFLAG_PROJINHERIT;
757 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
758 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
759 if (di_flags & XFS_DIFLAG_EXTSIZE)
760 flags |= XFS_XFLAG_EXTSIZE;
761 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
762 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
763 if (di_flags & XFS_DIFLAG_NODEFRAG)
764 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
765 if (di_flags & XFS_DIFLAG_FILESTREAM)
766 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
767 }
768
769 return flags;
770}
771
772uint
773xfs_ip2xflags(
774 xfs_inode_t *ip)
775{
347d1c01 776 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 777
a916e2bd 778 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 779 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
780}
781
782uint
783xfs_dic2xflags(
45ba598e 784 xfs_dinode_t *dip)
1da177e4 785{
45ba598e
CH
786 xfs_dinode_core_t *dic = &dip->di_core;
787
347d1c01 788 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
45ba598e 789 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
790}
791
07c8f675
DC
792/*
793 * Allocate and initialise an xfs_inode.
794 */
795struct xfs_inode *
796xfs_inode_alloc(
797 struct xfs_mount *mp,
798 xfs_ino_t ino)
799{
800 struct xfs_inode *ip;
801
802 /*
803 * if this didn't occur in transactions, we could use
804 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
805 * code up to do this anyway.
806 */
807 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
808 if (!ip)
809 return NULL;
810
811 ASSERT(atomic_read(&ip->i_iocount) == 0);
812 ASSERT(atomic_read(&ip->i_pincount) == 0);
813 ASSERT(!spin_is_locked(&ip->i_flags_lock));
814 ASSERT(list_empty(&ip->i_reclaim));
815
816 ip->i_ino = ino;
817 ip->i_mount = mp;
818 ip->i_blkno = 0;
819 ip->i_len = 0;
820 ip->i_boffset =0;
821 ip->i_afp = NULL;
822 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
823 ip->i_flags = 0;
824 ip->i_update_core = 0;
825 ip->i_update_size = 0;
826 ip->i_delayed_blks = 0;
827 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
828 ip->i_size = 0;
829 ip->i_new_size = 0;
830
831 /*
832 * Initialize inode's trace buffers.
833 */
834#ifdef XFS_INODE_TRACE
835 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
836#endif
837#ifdef XFS_BMAP_TRACE
838 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
839#endif
8c4ed633 840#ifdef XFS_BTREE_TRACE
07c8f675
DC
841 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
842#endif
843#ifdef XFS_RW_TRACE
844 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
845#endif
846#ifdef XFS_ILOCK_TRACE
847 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
848#endif
849#ifdef XFS_DIR2_TRACE
850 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
851#endif
852
853 return ip;
854}
855
1da177e4
LT
856/*
857 * Given a mount structure and an inode number, return a pointer
c41564b5 858 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
859 * inode number.
860 *
861 * Initialize the inode's attributes and extent pointers if it
862 * already has them (it will not if the inode has no links).
863 */
864int
865xfs_iread(
866 xfs_mount_t *mp,
867 xfs_trans_t *tp,
868 xfs_ino_t ino,
869 xfs_inode_t **ipp,
745b1f47
NS
870 xfs_daddr_t bno,
871 uint imap_flags)
1da177e4
LT
872{
873 xfs_buf_t *bp;
874 xfs_dinode_t *dip;
875 xfs_inode_t *ip;
876 int error;
877
07c8f675
DC
878 ip = xfs_inode_alloc(mp, ino);
879 if (!ip)
880 return ENOMEM;
1da177e4
LT
881
882 /*
883 * Get pointer's to the on-disk inode and the buffer containing it.
884 * If the inode number refers to a block outside the file system
885 * then xfs_itobp() will return NULL. In this case we should
886 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
887 * know that this is a new incore inode.
888 */
a3f74ffb 889 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
b12dd342 890 if (error) {
d07c60e5 891 xfs_idestroy(ip);
1da177e4
LT
892 return error;
893 }
894
1da177e4
LT
895 /*
896 * If we got something that isn't an inode it means someone
897 * (nfs or dmi) has a stale handle.
898 */
347d1c01 899 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
07c8f675 900 xfs_idestroy(ip);
1da177e4
LT
901 xfs_trans_brelse(tp, bp);
902#ifdef DEBUG
903 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
904 "dip->di_core.di_magic (0x%x) != "
905 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 906 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
907 XFS_DINODE_MAGIC);
908#endif /* DEBUG */
909 return XFS_ERROR(EINVAL);
910 }
911
912 /*
913 * If the on-disk inode is already linked to a directory
914 * entry, copy all of the inode into the in-core inode.
915 * xfs_iformat() handles copying in the inode format
916 * specific information.
917 * Otherwise, just get the truly permanent information.
918 */
919 if (dip->di_core.di_mode) {
347d1c01 920 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
921 error = xfs_iformat(ip, dip);
922 if (error) {
07c8f675 923 xfs_idestroy(ip);
1da177e4
LT
924 xfs_trans_brelse(tp, bp);
925#ifdef DEBUG
926 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
927 "xfs_iformat() returned error %d",
928 error);
929#endif /* DEBUG */
930 return error;
931 }
932 } else {
347d1c01
CH
933 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
934 ip->i_d.di_version = dip->di_core.di_version;
935 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
936 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
937 /*
938 * Make sure to pull in the mode here as well in
939 * case the inode is released without being used.
940 * This ensures that xfs_inactive() will see that
941 * the inode is already free and not try to mess
942 * with the uninitialized part of it.
943 */
944 ip->i_d.di_mode = 0;
945 /*
946 * Initialize the per-fork minima and maxima for a new
947 * inode here. xfs_iformat will do it for old inodes.
948 */
949 ip->i_df.if_ext_max =
950 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
951 }
952
1da177e4
LT
953 /*
954 * The inode format changed when we moved the link count and
955 * made it 32 bits long. If this is an old format inode,
956 * convert it in memory to look like a new one. If it gets
957 * flushed to disk we will convert back before flushing or
958 * logging it. We zero out the new projid field and the old link
959 * count field. We'll handle clearing the pad field (the remains
960 * of the old uuid field) when we actually convert the inode to
961 * the new format. We don't change the version number so that we
962 * can distinguish this from a real new format inode.
963 */
964 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
965 ip->i_d.di_nlink = ip->i_d.di_onlink;
966 ip->i_d.di_onlink = 0;
967 ip->i_d.di_projid = 0;
968 }
969
970 ip->i_delayed_blks = 0;
ba87ea69 971 ip->i_size = ip->i_d.di_size;
1da177e4
LT
972
973 /*
974 * Mark the buffer containing the inode as something to keep
975 * around for a while. This helps to keep recently accessed
976 * meta-data in-core longer.
977 */
978 XFS_BUF_SET_REF(bp, XFS_INO_REF);
979
980 /*
981 * Use xfs_trans_brelse() to release the buffer containing the
982 * on-disk inode, because it was acquired with xfs_trans_read_buf()
983 * in xfs_itobp() above. If tp is NULL, this is just a normal
984 * brelse(). If we're within a transaction, then xfs_trans_brelse()
985 * will only release the buffer if it is not dirty within the
986 * transaction. It will be OK to release the buffer in this case,
987 * because inodes on disk are never destroyed and we will be
988 * locking the new in-core inode before putting it in the hash
989 * table where other processes can find it. Thus we don't have
990 * to worry about the inode being changed just because we released
991 * the buffer.
992 */
993 xfs_trans_brelse(tp, bp);
994 *ipp = ip;
995 return 0;
996}
997
998/*
999 * Read in extents from a btree-format inode.
1000 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1001 */
1002int
1003xfs_iread_extents(
1004 xfs_trans_t *tp,
1005 xfs_inode_t *ip,
1006 int whichfork)
1007{
1008 int error;
1009 xfs_ifork_t *ifp;
4eea22f0 1010 xfs_extnum_t nextents;
1da177e4
LT
1011 size_t size;
1012
1013 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1014 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1015 ip->i_mount);
1016 return XFS_ERROR(EFSCORRUPTED);
1017 }
4eea22f0
MK
1018 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1019 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1020 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1021
1da177e4
LT
1022 /*
1023 * We know that the size is valid (it's checked in iformat_btree)
1024 */
1da177e4 1025 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1026 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1027 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1028 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1029 error = xfs_bmap_read_extents(tp, ip, whichfork);
1030 if (error) {
4eea22f0 1031 xfs_iext_destroy(ifp);
1da177e4
LT
1032 ifp->if_flags &= ~XFS_IFEXTENTS;
1033 return error;
1034 }
a6f64d4a 1035 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1036 return 0;
1037}
1038
1039/*
1040 * Allocate an inode on disk and return a copy of its in-core version.
1041 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1042 * appropriately within the inode. The uid and gid for the inode are
1043 * set according to the contents of the given cred structure.
1044 *
1045 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1046 * has a free inode available, call xfs_iget()
1047 * to obtain the in-core version of the allocated inode. Finally,
1048 * fill in the inode and log its initial contents. In this case,
1049 * ialloc_context would be set to NULL and call_again set to false.
1050 *
1051 * If xfs_dialloc() does not have an available inode,
1052 * it will replenish its supply by doing an allocation. Since we can
1053 * only do one allocation within a transaction without deadlocks, we
1054 * must commit the current transaction before returning the inode itself.
1055 * In this case, therefore, we will set call_again to true and return.
1056 * The caller should then commit the current transaction, start a new
1057 * transaction, and call xfs_ialloc() again to actually get the inode.
1058 *
1059 * To ensure that some other process does not grab the inode that
1060 * was allocated during the first call to xfs_ialloc(), this routine
1061 * also returns the [locked] bp pointing to the head of the freelist
1062 * as ialloc_context. The caller should hold this buffer across
1063 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1064 *
1065 * If we are allocating quota inodes, we do not have a parent inode
1066 * to attach to or associate with (i.e. pip == NULL) because they
1067 * are not linked into the directory structure - they are attached
1068 * directly to the superblock - and so have no parent.
1da177e4
LT
1069 */
1070int
1071xfs_ialloc(
1072 xfs_trans_t *tp,
1073 xfs_inode_t *pip,
1074 mode_t mode,
31b084ae 1075 xfs_nlink_t nlink,
1da177e4
LT
1076 xfs_dev_t rdev,
1077 cred_t *cr,
1078 xfs_prid_t prid,
1079 int okalloc,
1080 xfs_buf_t **ialloc_context,
1081 boolean_t *call_again,
1082 xfs_inode_t **ipp)
1083{
1084 xfs_ino_t ino;
1085 xfs_inode_t *ip;
1da177e4
LT
1086 uint flags;
1087 int error;
dff35fd4 1088 timespec_t tv;
1da177e4
LT
1089
1090 /*
1091 * Call the space management code to pick
1092 * the on-disk inode to be allocated.
1093 */
b11f94d5 1094 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4
LT
1095 ialloc_context, call_again, &ino);
1096 if (error != 0) {
1097 return error;
1098 }
1099 if (*call_again || ino == NULLFSINO) {
1100 *ipp = NULL;
1101 return 0;
1102 }
1103 ASSERT(*ialloc_context == NULL);
1104
1105 /*
1106 * Get the in-core inode with the lock held exclusively.
1107 * This is because we're setting fields here we need
1108 * to prevent others from looking at until we're done.
1109 */
1110 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1111 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1112 if (error != 0) {
1113 return error;
1114 }
1115 ASSERT(ip != NULL);
1116
1da177e4
LT
1117 ip->i_d.di_mode = (__uint16_t)mode;
1118 ip->i_d.di_onlink = 0;
1119 ip->i_d.di_nlink = nlink;
1120 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1121 ip->i_d.di_uid = current_fsuid();
1122 ip->i_d.di_gid = current_fsgid();
1da177e4
LT
1123 ip->i_d.di_projid = prid;
1124 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1125
1126 /*
1127 * If the superblock version is up to where we support new format
1128 * inodes and this is currently an old format inode, then change
1129 * the inode version number now. This way we only do the conversion
1130 * here rather than here and in the flush/logging code.
1131 */
62118709 1132 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1da177e4
LT
1133 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1134 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1135 /*
1136 * We've already zeroed the old link count, the projid field,
1137 * and the pad field.
1138 */
1139 }
1140
1141 /*
1142 * Project ids won't be stored on disk if we are using a version 1 inode.
1143 */
2a82b8be 1144 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1145 xfs_bump_ino_vers2(tp, ip);
1146
bd186aa9 1147 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1148 ip->i_d.di_gid = pip->i_d.di_gid;
1149 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1150 ip->i_d.di_mode |= S_ISGID;
1151 }
1152 }
1153
1154 /*
1155 * If the group ID of the new file does not match the effective group
1156 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1157 * (and only if the irix_sgid_inherit compatibility variable is set).
1158 */
1159 if ((irix_sgid_inherit) &&
1160 (ip->i_d.di_mode & S_ISGID) &&
1161 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1162 ip->i_d.di_mode &= ~S_ISGID;
1163 }
1164
1165 ip->i_d.di_size = 0;
ba87ea69 1166 ip->i_size = 0;
1da177e4
LT
1167 ip->i_d.di_nextents = 0;
1168 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1169
1170 nanotime(&tv);
1171 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1172 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1173 ip->i_d.di_atime = ip->i_d.di_mtime;
1174 ip->i_d.di_ctime = ip->i_d.di_mtime;
1175
1da177e4
LT
1176 /*
1177 * di_gen will have been taken care of in xfs_iread.
1178 */
1179 ip->i_d.di_extsize = 0;
1180 ip->i_d.di_dmevmask = 0;
1181 ip->i_d.di_dmstate = 0;
1182 ip->i_d.di_flags = 0;
1183 flags = XFS_ILOG_CORE;
1184 switch (mode & S_IFMT) {
1185 case S_IFIFO:
1186 case S_IFCHR:
1187 case S_IFBLK:
1188 case S_IFSOCK:
1189 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1190 ip->i_df.if_u2.if_rdev = rdev;
1191 ip->i_df.if_flags = 0;
1192 flags |= XFS_ILOG_DEV;
1193 break;
1194 case S_IFREG:
b11f94d5 1195 if (pip && xfs_inode_is_filestream(pip)) {
2a82b8be
DC
1196 error = xfs_filestream_associate(pip, ip);
1197 if (error < 0)
1198 return -error;
1199 if (!error)
1200 xfs_iflags_set(ip, XFS_IFILESTREAM);
1201 }
1202 /* fall through */
1da177e4 1203 case S_IFDIR:
b11f94d5 1204 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1205 uint di_flags = 0;
1206
1207 if ((mode & S_IFMT) == S_IFDIR) {
1208 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1209 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1210 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1211 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1212 ip->i_d.di_extsize = pip->i_d.di_extsize;
1213 }
1214 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1215 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1216 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1217 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1218 di_flags |= XFS_DIFLAG_EXTSIZE;
1219 ip->i_d.di_extsize = pip->i_d.di_extsize;
1220 }
1da177e4
LT
1221 }
1222 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1223 xfs_inherit_noatime)
365ca83d 1224 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1225 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1226 xfs_inherit_nodump)
365ca83d 1227 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1228 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1229 xfs_inherit_sync)
365ca83d 1230 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1231 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1232 xfs_inherit_nosymlinks)
365ca83d
NS
1233 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1234 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1235 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1236 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1237 xfs_inherit_nodefrag)
1238 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1239 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1240 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1241 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1242 }
1243 /* FALLTHROUGH */
1244 case S_IFLNK:
1245 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1246 ip->i_df.if_flags = XFS_IFEXTENTS;
1247 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1248 ip->i_df.if_u1.if_extents = NULL;
1249 break;
1250 default:
1251 ASSERT(0);
1252 }
1253 /*
1254 * Attribute fork settings for new inode.
1255 */
1256 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1257 ip->i_d.di_anextents = 0;
1258
1259 /*
1260 * Log the new values stuffed into the inode.
1261 */
1262 xfs_trans_log_inode(tp, ip, flags);
1263
b83bd138 1264 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1265 xfs_setup_inode(ip);
1da177e4
LT
1266
1267 *ipp = ip;
1268 return 0;
1269}
1270
1271/*
1272 * Check to make sure that there are no blocks allocated to the
1273 * file beyond the size of the file. We don't check this for
1274 * files with fixed size extents or real time extents, but we
1275 * at least do it for regular files.
1276 */
1277#ifdef DEBUG
1278void
1279xfs_isize_check(
1280 xfs_mount_t *mp,
1281 xfs_inode_t *ip,
1282 xfs_fsize_t isize)
1283{
1284 xfs_fileoff_t map_first;
1285 int nimaps;
1286 xfs_bmbt_irec_t imaps[2];
1287
1288 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1289 return;
1290
71ddabb9
ES
1291 if (XFS_IS_REALTIME_INODE(ip))
1292 return;
1293
1294 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1295 return;
1296
1297 nimaps = 2;
1298 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1299 /*
1300 * The filesystem could be shutting down, so bmapi may return
1301 * an error.
1302 */
1303 if (xfs_bmapi(NULL, ip, map_first,
1304 (XFS_B_TO_FSB(mp,
1305 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1306 map_first),
1307 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1308 NULL, NULL))
1da177e4
LT
1309 return;
1310 ASSERT(nimaps == 1);
1311 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1312}
1313#endif /* DEBUG */
1314
1315/*
1316 * Calculate the last possible buffered byte in a file. This must
1317 * include data that was buffered beyond the EOF by the write code.
1318 * This also needs to deal with overflowing the xfs_fsize_t type
1319 * which can happen for sizes near the limit.
1320 *
1321 * We also need to take into account any blocks beyond the EOF. It
1322 * may be the case that they were buffered by a write which failed.
1323 * In that case the pages will still be in memory, but the inode size
1324 * will never have been updated.
1325 */
1326xfs_fsize_t
1327xfs_file_last_byte(
1328 xfs_inode_t *ip)
1329{
1330 xfs_mount_t *mp;
1331 xfs_fsize_t last_byte;
1332 xfs_fileoff_t last_block;
1333 xfs_fileoff_t size_last_block;
1334 int error;
1335
579aa9ca 1336 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1337
1338 mp = ip->i_mount;
1339 /*
1340 * Only check for blocks beyond the EOF if the extents have
1341 * been read in. This eliminates the need for the inode lock,
1342 * and it also saves us from looking when it really isn't
1343 * necessary.
1344 */
1345 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1346 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1347 XFS_DATA_FORK);
1348 if (error) {
1349 last_block = 0;
1350 }
1351 } else {
1352 last_block = 0;
1353 }
ba87ea69 1354 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1355 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1356
1357 last_byte = XFS_FSB_TO_B(mp, last_block);
1358 if (last_byte < 0) {
1359 return XFS_MAXIOFFSET(mp);
1360 }
1361 last_byte += (1 << mp->m_writeio_log);
1362 if (last_byte < 0) {
1363 return XFS_MAXIOFFSET(mp);
1364 }
1365 return last_byte;
1366}
1367
1368#if defined(XFS_RW_TRACE)
1369STATIC void
1370xfs_itrunc_trace(
1371 int tag,
1372 xfs_inode_t *ip,
1373 int flag,
1374 xfs_fsize_t new_size,
1375 xfs_off_t toss_start,
1376 xfs_off_t toss_finish)
1377{
1378 if (ip->i_rwtrace == NULL) {
1379 return;
1380 }
1381
1382 ktrace_enter(ip->i_rwtrace,
1383 (void*)((long)tag),
1384 (void*)ip,
1385 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1386 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1387 (void*)((long)flag),
1388 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1389 (void*)(unsigned long)(new_size & 0xffffffff),
1390 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1391 (void*)(unsigned long)(toss_start & 0xffffffff),
1392 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(toss_finish & 0xffffffff),
1394 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1395 (void*)(unsigned long)current_pid(),
1396 (void*)NULL,
1397 (void*)NULL,
1398 (void*)NULL);
1da177e4
LT
1399}
1400#else
1401#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1402#endif
1403
1404/*
1405 * Start the truncation of the file to new_size. The new size
1406 * must be smaller than the current size. This routine will
1407 * clear the buffer and page caches of file data in the removed
1408 * range, and xfs_itruncate_finish() will remove the underlying
1409 * disk blocks.
1410 *
1411 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1412 * must NOT have the inode lock held at all. This is because we're
1413 * calling into the buffer/page cache code and we can't hold the
1414 * inode lock when we do so.
1415 *
38e2299a
DC
1416 * We need to wait for any direct I/Os in flight to complete before we
1417 * proceed with the truncate. This is needed to prevent the extents
1418 * being read or written by the direct I/Os from being removed while the
1419 * I/O is in flight as there is no other method of synchronising
1420 * direct I/O with the truncate operation. Also, because we hold
1421 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1422 * started until the truncate completes and drops the lock. Essentially,
1423 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1424 * between direct I/Os and the truncate operation.
1425 *
1da177e4
LT
1426 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1427 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1428 * in the case that the caller is locking things out of order and
1429 * may not be able to call xfs_itruncate_finish() with the inode lock
1430 * held without dropping the I/O lock. If the caller must drop the
1431 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1432 * must be called again with all the same restrictions as the initial
1433 * call.
1434 */
d3cf2094 1435int
1da177e4
LT
1436xfs_itruncate_start(
1437 xfs_inode_t *ip,
1438 uint flags,
1439 xfs_fsize_t new_size)
1440{
1441 xfs_fsize_t last_byte;
1442 xfs_off_t toss_start;
1443 xfs_mount_t *mp;
d3cf2094 1444 int error = 0;
1da177e4 1445
579aa9ca 1446 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1447 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1448 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1449 (flags == XFS_ITRUNC_MAYBE));
1450
1451 mp = ip->i_mount;
9fa8046f 1452
c734c79b 1453 /* wait for the completion of any pending DIOs */
d112f298 1454 if (new_size == 0 || new_size < ip->i_size)
c734c79b
LM
1455 vn_iowait(ip);
1456
1da177e4 1457 /*
67fcaa73 1458 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1459 * overlapping the region being removed. We have to use
67fcaa73 1460 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1461 * caller may not be able to finish the truncate without
1462 * dropping the inode's I/O lock. Make sure
1463 * to catch any pages brought in by buffers overlapping
1464 * the EOF by searching out beyond the isize by our
1465 * block size. We round new_size up to a block boundary
1466 * so that we don't toss things on the same block as
1467 * new_size but before it.
1468 *
67fcaa73 1469 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1470 * call remapf() over the same region if the file is mapped.
1471 * This frees up mapped file references to the pages in the
67fcaa73 1472 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1473 * that we get the latest mapped changes flushed out.
1474 */
1475 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1476 toss_start = XFS_FSB_TO_B(mp, toss_start);
1477 if (toss_start < 0) {
1478 /*
1479 * The place to start tossing is beyond our maximum
1480 * file size, so there is no way that the data extended
1481 * out there.
1482 */
d3cf2094 1483 return 0;
1da177e4
LT
1484 }
1485 last_byte = xfs_file_last_byte(ip);
1486 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1487 last_byte);
1488 if (last_byte > toss_start) {
1489 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1490 xfs_tosspages(ip, toss_start,
1491 -1, FI_REMAPF_LOCKED);
1da177e4 1492 } else {
739bfb2a
CH
1493 error = xfs_flushinval_pages(ip, toss_start,
1494 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1495 }
1496 }
1497
1498#ifdef DEBUG
1499 if (new_size == 0) {
df80c933 1500 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1501 }
1502#endif
d3cf2094 1503 return error;
1da177e4
LT
1504}
1505
1506/*
f6485057
DC
1507 * Shrink the file to the given new_size. The new size must be smaller than
1508 * the current size. This will free up the underlying blocks in the removed
1509 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1510 *
f6485057
DC
1511 * The transaction passed to this routine must have made a permanent log
1512 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1513 * given transaction and start new ones, so make sure everything involved in
1514 * the transaction is tidy before calling here. Some transaction will be
1515 * returned to the caller to be committed. The incoming transaction must
1516 * already include the inode, and both inode locks must be held exclusively.
1517 * The inode must also be "held" within the transaction. On return the inode
1518 * will be "held" within the returned transaction. This routine does NOT
1519 * require any disk space to be reserved for it within the transaction.
1da177e4 1520 *
f6485057
DC
1521 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1522 * indicates the fork which is to be truncated. For the attribute fork we only
1523 * support truncation to size 0.
1da177e4 1524 *
f6485057
DC
1525 * We use the sync parameter to indicate whether or not the first transaction
1526 * we perform might have to be synchronous. For the attr fork, it needs to be
1527 * so if the unlink of the inode is not yet known to be permanent in the log.
1528 * This keeps us from freeing and reusing the blocks of the attribute fork
1529 * before the unlink of the inode becomes permanent.
1da177e4 1530 *
f6485057
DC
1531 * For the data fork, we normally have to run synchronously if we're being
1532 * called out of the inactive path or we're being called out of the create path
1533 * where we're truncating an existing file. Either way, the truncate needs to
1534 * be sync so blocks don't reappear in the file with altered data in case of a
1535 * crash. wsync filesystems can run the first case async because anything that
1536 * shrinks the inode has to run sync so by the time we're called here from
1537 * inactive, the inode size is permanently set to 0.
1da177e4 1538 *
f6485057
DC
1539 * Calls from the truncate path always need to be sync unless we're in a wsync
1540 * filesystem and the file has already been unlinked.
1da177e4 1541 *
f6485057
DC
1542 * The caller is responsible for correctly setting the sync parameter. It gets
1543 * too hard for us to guess here which path we're being called out of just
1544 * based on inode state.
1545 *
1546 * If we get an error, we must return with the inode locked and linked into the
1547 * current transaction. This keeps things simple for the higher level code,
1548 * because it always knows that the inode is locked and held in the transaction
1549 * that returns to it whether errors occur or not. We don't mark the inode
1550 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1551 */
1552int
1553xfs_itruncate_finish(
1554 xfs_trans_t **tp,
1555 xfs_inode_t *ip,
1556 xfs_fsize_t new_size,
1557 int fork,
1558 int sync)
1559{
1560 xfs_fsblock_t first_block;
1561 xfs_fileoff_t first_unmap_block;
1562 xfs_fileoff_t last_block;
1563 xfs_filblks_t unmap_len=0;
1564 xfs_mount_t *mp;
1565 xfs_trans_t *ntp;
1566 int done;
1567 int committed;
1568 xfs_bmap_free_t free_list;
1569 int error;
1570
579aa9ca 1571 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1572 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1573 ASSERT(*tp != NULL);
1574 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1575 ASSERT(ip->i_transp == *tp);
1576 ASSERT(ip->i_itemp != NULL);
1577 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1578
1579
1580 ntp = *tp;
1581 mp = (ntp)->t_mountp;
1582 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1583
1584 /*
1585 * We only support truncating the entire attribute fork.
1586 */
1587 if (fork == XFS_ATTR_FORK) {
1588 new_size = 0LL;
1589 }
1590 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1591 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1592 /*
1593 * The first thing we do is set the size to new_size permanently
1594 * on disk. This way we don't have to worry about anyone ever
1595 * being able to look at the data being freed even in the face
1596 * of a crash. What we're getting around here is the case where
1597 * we free a block, it is allocated to another file, it is written
1598 * to, and then we crash. If the new data gets written to the
1599 * file but the log buffers containing the free and reallocation
1600 * don't, then we'd end up with garbage in the blocks being freed.
1601 * As long as we make the new_size permanent before actually
1602 * freeing any blocks it doesn't matter if they get writtten to.
1603 *
1604 * The callers must signal into us whether or not the size
1605 * setting here must be synchronous. There are a few cases
1606 * where it doesn't have to be synchronous. Those cases
1607 * occur if the file is unlinked and we know the unlink is
1608 * permanent or if the blocks being truncated are guaranteed
1609 * to be beyond the inode eof (regardless of the link count)
1610 * and the eof value is permanent. Both of these cases occur
1611 * only on wsync-mounted filesystems. In those cases, we're
1612 * guaranteed that no user will ever see the data in the blocks
1613 * that are being truncated so the truncate can run async.
1614 * In the free beyond eof case, the file may wind up with
1615 * more blocks allocated to it than it needs if we crash
1616 * and that won't get fixed until the next time the file
1617 * is re-opened and closed but that's ok as that shouldn't
1618 * be too many blocks.
1619 *
1620 * However, we can't just make all wsync xactions run async
1621 * because there's one call out of the create path that needs
1622 * to run sync where it's truncating an existing file to size
1623 * 0 whose size is > 0.
1624 *
1625 * It's probably possible to come up with a test in this
1626 * routine that would correctly distinguish all the above
1627 * cases from the values of the function parameters and the
1628 * inode state but for sanity's sake, I've decided to let the
1629 * layers above just tell us. It's simpler to correctly figure
1630 * out in the layer above exactly under what conditions we
1631 * can run async and I think it's easier for others read and
1632 * follow the logic in case something has to be changed.
1633 * cscope is your friend -- rcc.
1634 *
1635 * The attribute fork is much simpler.
1636 *
1637 * For the attribute fork we allow the caller to tell us whether
1638 * the unlink of the inode that led to this call is yet permanent
1639 * in the on disk log. If it is not and we will be freeing extents
1640 * in this inode then we make the first transaction synchronous
1641 * to make sure that the unlink is permanent by the time we free
1642 * the blocks.
1643 */
1644 if (fork == XFS_DATA_FORK) {
1645 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1646 /*
1647 * If we are not changing the file size then do
1648 * not update the on-disk file size - we may be
1649 * called from xfs_inactive_free_eofblocks(). If we
1650 * update the on-disk file size and then the system
1651 * crashes before the contents of the file are
1652 * flushed to disk then the files may be full of
1653 * holes (ie NULL files bug).
1654 */
1655 if (ip->i_size != new_size) {
1656 ip->i_d.di_size = new_size;
1657 ip->i_size = new_size;
1658 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1659 }
1da177e4
LT
1660 }
1661 } else if (sync) {
1662 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1663 if (ip->i_d.di_anextents > 0)
1664 xfs_trans_set_sync(ntp);
1665 }
1666 ASSERT(fork == XFS_DATA_FORK ||
1667 (fork == XFS_ATTR_FORK &&
1668 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1669 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1670
1671 /*
1672 * Since it is possible for space to become allocated beyond
1673 * the end of the file (in a crash where the space is allocated
1674 * but the inode size is not yet updated), simply remove any
1675 * blocks which show up between the new EOF and the maximum
1676 * possible file size. If the first block to be removed is
1677 * beyond the maximum file size (ie it is the same as last_block),
1678 * then there is nothing to do.
1679 */
1680 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1681 ASSERT(first_unmap_block <= last_block);
1682 done = 0;
1683 if (last_block == first_unmap_block) {
1684 done = 1;
1685 } else {
1686 unmap_len = last_block - first_unmap_block + 1;
1687 }
1688 while (!done) {
1689 /*
1690 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1691 * will tell us whether it freed the entire range or
1692 * not. If this is a synchronous mount (wsync),
1693 * then we can tell bunmapi to keep all the
1694 * transactions asynchronous since the unlink
1695 * transaction that made this inode inactive has
1696 * already hit the disk. There's no danger of
1697 * the freed blocks being reused, there being a
1698 * crash, and the reused blocks suddenly reappearing
1699 * in this file with garbage in them once recovery
1700 * runs.
1701 */
1702 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1703 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1704 first_unmap_block, unmap_len,
1da177e4
LT
1705 XFS_BMAPI_AFLAG(fork) |
1706 (sync ? 0 : XFS_BMAPI_ASYNC),
1707 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1708 &first_block, &free_list,
1709 NULL, &done);
1da177e4
LT
1710 if (error) {
1711 /*
1712 * If the bunmapi call encounters an error,
1713 * return to the caller where the transaction
1714 * can be properly aborted. We just need to
1715 * make sure we're not holding any resources
1716 * that we were not when we came in.
1717 */
1718 xfs_bmap_cancel(&free_list);
1719 return error;
1720 }
1721
1722 /*
1723 * Duplicate the transaction that has the permanent
1724 * reservation and commit the old transaction.
1725 */
f7c99b6f 1726 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1727 ntp = *tp;
f6485057
DC
1728 if (committed) {
1729 /* link the inode into the next xact in the chain */
1730 xfs_trans_ijoin(ntp, ip,
1731 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1732 xfs_trans_ihold(ntp, ip);
1733 }
1734
1da177e4
LT
1735 if (error) {
1736 /*
f6485057
DC
1737 * If the bmap finish call encounters an error, return
1738 * to the caller where the transaction can be properly
1739 * aborted. We just need to make sure we're not
1740 * holding any resources that we were not when we came
1741 * in.
1da177e4 1742 *
f6485057
DC
1743 * Aborting from this point might lose some blocks in
1744 * the file system, but oh well.
1da177e4
LT
1745 */
1746 xfs_bmap_cancel(&free_list);
1da177e4
LT
1747 return error;
1748 }
1749
1750 if (committed) {
1751 /*
f6485057 1752 * Mark the inode dirty so it will be logged and
e5720eec 1753 * moved forward in the log as part of every commit.
1da177e4 1754 */
1da177e4
LT
1755 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1756 }
f6485057 1757
1da177e4 1758 ntp = xfs_trans_dup(ntp);
e5720eec 1759 error = xfs_trans_commit(*tp, 0);
1da177e4 1760 *tp = ntp;
e5720eec 1761
f6485057
DC
1762 /* link the inode into the next transaction in the chain */
1763 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1764 xfs_trans_ihold(ntp, ip);
1765
1766 if (!error)
1767 error = xfs_trans_reserve(ntp, 0,
1768 XFS_ITRUNCATE_LOG_RES(mp), 0,
1769 XFS_TRANS_PERM_LOG_RES,
1770 XFS_ITRUNCATE_LOG_COUNT);
1771 if (error)
1772 return error;
1da177e4
LT
1773 }
1774 /*
1775 * Only update the size in the case of the data fork, but
1776 * always re-log the inode so that our permanent transaction
1777 * can keep on rolling it forward in the log.
1778 */
1779 if (fork == XFS_DATA_FORK) {
1780 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1781 /*
1782 * If we are not changing the file size then do
1783 * not update the on-disk file size - we may be
1784 * called from xfs_inactive_free_eofblocks(). If we
1785 * update the on-disk file size and then the system
1786 * crashes before the contents of the file are
1787 * flushed to disk then the files may be full of
1788 * holes (ie NULL files bug).
1789 */
1790 if (ip->i_size != new_size) {
1791 ip->i_d.di_size = new_size;
1792 ip->i_size = new_size;
1793 }
1da177e4
LT
1794 }
1795 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1796 ASSERT((new_size != 0) ||
1797 (fork == XFS_ATTR_FORK) ||
1798 (ip->i_delayed_blks == 0));
1799 ASSERT((new_size != 0) ||
1800 (fork == XFS_ATTR_FORK) ||
1801 (ip->i_d.di_nextents == 0));
1802 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1803 return 0;
1804}
1805
1da177e4
LT
1806/*
1807 * This is called when the inode's link count goes to 0.
1808 * We place the on-disk inode on a list in the AGI. It
1809 * will be pulled from this list when the inode is freed.
1810 */
1811int
1812xfs_iunlink(
1813 xfs_trans_t *tp,
1814 xfs_inode_t *ip)
1815{
1816 xfs_mount_t *mp;
1817 xfs_agi_t *agi;
1818 xfs_dinode_t *dip;
1819 xfs_buf_t *agibp;
1820 xfs_buf_t *ibp;
1821 xfs_agnumber_t agno;
1822 xfs_daddr_t agdaddr;
1823 xfs_agino_t agino;
1824 short bucket_index;
1825 int offset;
1826 int error;
1827 int agi_ok;
1828
1829 ASSERT(ip->i_d.di_nlink == 0);
1830 ASSERT(ip->i_d.di_mode != 0);
1831 ASSERT(ip->i_transp == tp);
1832
1833 mp = tp->t_mountp;
1834
1835 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1836 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1837
1838 /*
1839 * Get the agi buffer first. It ensures lock ordering
1840 * on the list.
1841 */
1842 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1843 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1844 if (error)
1da177e4 1845 return error;
859d7182 1846
1da177e4
LT
1847 /*
1848 * Validate the magic number of the agi block.
1849 */
1850 agi = XFS_BUF_TO_AGI(agibp);
1851 agi_ok =
16259e7d
CH
1852 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1853 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1854 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1855 XFS_RANDOM_IUNLINK))) {
1856 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1857 xfs_trans_brelse(tp, agibp);
1858 return XFS_ERROR(EFSCORRUPTED);
1859 }
1860 /*
1861 * Get the index into the agi hash table for the
1862 * list this inode will go on.
1863 */
1864 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1865 ASSERT(agino != 0);
1866 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1867 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1868 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1869
16259e7d 1870 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1871 /*
1872 * There is already another inode in the bucket we need
1873 * to add ourselves to. Add us at the front of the list.
1874 * Here we put the head pointer into our next pointer,
1875 * and then we fall through to point the head at us.
1876 */
a3f74ffb 1877 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
1878 if (error)
1879 return error;
1880
347d1c01 1881 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1882 /* both on-disk, don't endian flip twice */
1883 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1884 offset = ip->i_boffset +
1885 offsetof(xfs_dinode_t, di_next_unlinked);
1886 xfs_trans_inode_buf(tp, ibp);
1887 xfs_trans_log_buf(tp, ibp, offset,
1888 (offset + sizeof(xfs_agino_t) - 1));
1889 xfs_inobp_check(mp, ibp);
1890 }
1891
1892 /*
1893 * Point the bucket head pointer at the inode being inserted.
1894 */
1895 ASSERT(agino != 0);
16259e7d 1896 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1897 offset = offsetof(xfs_agi_t, agi_unlinked) +
1898 (sizeof(xfs_agino_t) * bucket_index);
1899 xfs_trans_log_buf(tp, agibp, offset,
1900 (offset + sizeof(xfs_agino_t) - 1));
1901 return 0;
1902}
1903
1904/*
1905 * Pull the on-disk inode from the AGI unlinked list.
1906 */
1907STATIC int
1908xfs_iunlink_remove(
1909 xfs_trans_t *tp,
1910 xfs_inode_t *ip)
1911{
1912 xfs_ino_t next_ino;
1913 xfs_mount_t *mp;
1914 xfs_agi_t *agi;
1915 xfs_dinode_t *dip;
1916 xfs_buf_t *agibp;
1917 xfs_buf_t *ibp;
1918 xfs_agnumber_t agno;
1919 xfs_daddr_t agdaddr;
1920 xfs_agino_t agino;
1921 xfs_agino_t next_agino;
1922 xfs_buf_t *last_ibp;
6fdf8ccc 1923 xfs_dinode_t *last_dip = NULL;
1da177e4 1924 short bucket_index;
6fdf8ccc 1925 int offset, last_offset = 0;
1da177e4
LT
1926 int error;
1927 int agi_ok;
1928
1929 /*
1930 * First pull the on-disk inode from the AGI unlinked list.
1931 */
1932 mp = tp->t_mountp;
1933
1934 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1935 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1936
1937 /*
1938 * Get the agi buffer first. It ensures lock ordering
1939 * on the list.
1940 */
1941 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1942 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1943 if (error) {
1944 cmn_err(CE_WARN,
1945 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1946 error, mp->m_fsname);
1947 return error;
1948 }
1949 /*
1950 * Validate the magic number of the agi block.
1951 */
1952 agi = XFS_BUF_TO_AGI(agibp);
1953 agi_ok =
16259e7d
CH
1954 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1955 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1956 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1957 XFS_RANDOM_IUNLINK_REMOVE))) {
1958 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1959 mp, agi);
1960 xfs_trans_brelse(tp, agibp);
1961 cmn_err(CE_WARN,
1962 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1963 mp->m_fsname);
1964 return XFS_ERROR(EFSCORRUPTED);
1965 }
1966 /*
1967 * Get the index into the agi hash table for the
1968 * list this inode will go on.
1969 */
1970 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1971 ASSERT(agino != 0);
1972 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1973 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1974 ASSERT(agi->agi_unlinked[bucket_index]);
1975
16259e7d 1976 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1977 /*
1978 * We're at the head of the list. Get the inode's
1979 * on-disk buffer to see if there is anyone after us
1980 * on the list. Only modify our next pointer if it
1981 * is not already NULLAGINO. This saves us the overhead
1982 * of dealing with the buffer when there is no need to
1983 * change it.
1984 */
a3f74ffb 1985 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
1986 if (error) {
1987 cmn_err(CE_WARN,
1988 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1989 error, mp->m_fsname);
1990 return error;
1991 }
347d1c01 1992 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1993 ASSERT(next_agino != 0);
1994 if (next_agino != NULLAGINO) {
347d1c01 1995 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
1996 offset = ip->i_boffset +
1997 offsetof(xfs_dinode_t, di_next_unlinked);
1998 xfs_trans_inode_buf(tp, ibp);
1999 xfs_trans_log_buf(tp, ibp, offset,
2000 (offset + sizeof(xfs_agino_t) - 1));
2001 xfs_inobp_check(mp, ibp);
2002 } else {
2003 xfs_trans_brelse(tp, ibp);
2004 }
2005 /*
2006 * Point the bucket head pointer at the next inode.
2007 */
2008 ASSERT(next_agino != 0);
2009 ASSERT(next_agino != agino);
16259e7d 2010 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2011 offset = offsetof(xfs_agi_t, agi_unlinked) +
2012 (sizeof(xfs_agino_t) * bucket_index);
2013 xfs_trans_log_buf(tp, agibp, offset,
2014 (offset + sizeof(xfs_agino_t) - 1));
2015 } else {
2016 /*
2017 * We need to search the list for the inode being freed.
2018 */
16259e7d 2019 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2020 last_ibp = NULL;
2021 while (next_agino != agino) {
2022 /*
2023 * If the last inode wasn't the one pointing to
2024 * us, then release its buffer since we're not
2025 * going to do anything with it.
2026 */
2027 if (last_ibp != NULL) {
2028 xfs_trans_brelse(tp, last_ibp);
2029 }
2030 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2031 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2032 &last_ibp, &last_offset);
2033 if (error) {
2034 cmn_err(CE_WARN,
2035 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2036 error, mp->m_fsname);
2037 return error;
2038 }
347d1c01 2039 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2040 ASSERT(next_agino != NULLAGINO);
2041 ASSERT(next_agino != 0);
2042 }
2043 /*
2044 * Now last_ibp points to the buffer previous to us on
2045 * the unlinked list. Pull us from the list.
2046 */
a3f74ffb 2047 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2048 if (error) {
2049 cmn_err(CE_WARN,
2050 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2051 error, mp->m_fsname);
2052 return error;
2053 }
347d1c01 2054 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2055 ASSERT(next_agino != 0);
2056 ASSERT(next_agino != agino);
2057 if (next_agino != NULLAGINO) {
347d1c01 2058 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2059 offset = ip->i_boffset +
2060 offsetof(xfs_dinode_t, di_next_unlinked);
2061 xfs_trans_inode_buf(tp, ibp);
2062 xfs_trans_log_buf(tp, ibp, offset,
2063 (offset + sizeof(xfs_agino_t) - 1));
2064 xfs_inobp_check(mp, ibp);
2065 } else {
2066 xfs_trans_brelse(tp, ibp);
2067 }
2068 /*
2069 * Point the previous inode on the list to the next inode.
2070 */
347d1c01 2071 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2072 ASSERT(next_agino != 0);
2073 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2074 xfs_trans_inode_buf(tp, last_ibp);
2075 xfs_trans_log_buf(tp, last_ibp, offset,
2076 (offset + sizeof(xfs_agino_t) - 1));
2077 xfs_inobp_check(mp, last_ibp);
2078 }
2079 return 0;
2080}
2081
ba0f32d4 2082STATIC void
1da177e4
LT
2083xfs_ifree_cluster(
2084 xfs_inode_t *free_ip,
2085 xfs_trans_t *tp,
2086 xfs_ino_t inum)
2087{
2088 xfs_mount_t *mp = free_ip->i_mount;
2089 int blks_per_cluster;
2090 int nbufs;
2091 int ninodes;
2092 int i, j, found, pre_flushed;
2093 xfs_daddr_t blkno;
2094 xfs_buf_t *bp;
1da177e4
LT
2095 xfs_inode_t *ip, **ip_found;
2096 xfs_inode_log_item_t *iip;
2097 xfs_log_item_t *lip;
da353b0d 2098 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2099
2100 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2101 blks_per_cluster = 1;
2102 ninodes = mp->m_sb.sb_inopblock;
2103 nbufs = XFS_IALLOC_BLOCKS(mp);
2104 } else {
2105 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2106 mp->m_sb.sb_blocksize;
2107 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2108 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2109 }
2110
2111 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2112
2113 for (j = 0; j < nbufs; j++, inum += ninodes) {
2114 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2115 XFS_INO_TO_AGBNO(mp, inum));
2116
2117
2118 /*
2119 * Look for each inode in memory and attempt to lock it,
2120 * we can be racing with flush and tail pushing here.
2121 * any inode we get the locks on, add to an array of
2122 * inode items to process later.
2123 *
2124 * The get the buffer lock, we could beat a flush
2125 * or tail pushing thread to the lock here, in which
2126 * case they will go looking for the inode buffer
2127 * and fail, we need some other form of interlock
2128 * here.
2129 */
2130 found = 0;
2131 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2132 read_lock(&pag->pag_ici_lock);
2133 ip = radix_tree_lookup(&pag->pag_ici_root,
2134 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2135
2136 /* Inode not in memory or we found it already,
2137 * nothing to do
2138 */
7a18c386 2139 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2140 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2141 continue;
2142 }
2143
2144 if (xfs_inode_clean(ip)) {
da353b0d 2145 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2146 continue;
2147 }
2148
2149 /* If we can get the locks then add it to the
2150 * list, otherwise by the time we get the bp lock
2151 * below it will already be attached to the
2152 * inode buffer.
2153 */
2154
2155 /* This inode will already be locked - by us, lets
2156 * keep it that way.
2157 */
2158
2159 if (ip == free_ip) {
2160 if (xfs_iflock_nowait(ip)) {
7a18c386 2161 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2162 if (xfs_inode_clean(ip)) {
2163 xfs_ifunlock(ip);
2164 } else {
2165 ip_found[found++] = ip;
2166 }
2167 }
da353b0d 2168 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2169 continue;
2170 }
2171
2172 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2173 if (xfs_iflock_nowait(ip)) {
7a18c386 2174 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2175
2176 if (xfs_inode_clean(ip)) {
2177 xfs_ifunlock(ip);
2178 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2179 } else {
2180 ip_found[found++] = ip;
2181 }
2182 } else {
2183 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2184 }
2185 }
da353b0d 2186 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2187 }
2188
2189 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2190 mp->m_bsize * blks_per_cluster,
2191 XFS_BUF_LOCK);
2192
2193 pre_flushed = 0;
2194 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2195 while (lip) {
2196 if (lip->li_type == XFS_LI_INODE) {
2197 iip = (xfs_inode_log_item_t *)lip;
2198 ASSERT(iip->ili_logged == 1);
2199 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
287f3dad 2200 spin_lock(&mp->m_ail_lock);
1da177e4 2201 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2202 spin_unlock(&mp->m_ail_lock);
e5ffd2bb 2203 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2204 pre_flushed++;
2205 }
2206 lip = lip->li_bio_list;
2207 }
2208
2209 for (i = 0; i < found; i++) {
2210 ip = ip_found[i];
2211 iip = ip->i_itemp;
2212
2213 if (!iip) {
2214 ip->i_update_core = 0;
2215 xfs_ifunlock(ip);
2216 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2217 continue;
2218 }
2219
2220 iip->ili_last_fields = iip->ili_format.ilf_fields;
2221 iip->ili_format.ilf_fields = 0;
2222 iip->ili_logged = 1;
287f3dad 2223 spin_lock(&mp->m_ail_lock);
1da177e4 2224 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2225 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2226
2227 xfs_buf_attach_iodone(bp,
2228 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2229 xfs_istale_done, (xfs_log_item_t *)iip);
2230 if (ip != free_ip) {
2231 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2232 }
2233 }
2234
2235 if (found || pre_flushed)
2236 xfs_trans_stale_inode_buf(tp, bp);
2237 xfs_trans_binval(tp, bp);
2238 }
2239
f0e2d93c 2240 kmem_free(ip_found);
da353b0d 2241 xfs_put_perag(mp, pag);
1da177e4
LT
2242}
2243
2244/*
2245 * This is called to return an inode to the inode free list.
2246 * The inode should already be truncated to 0 length and have
2247 * no pages associated with it. This routine also assumes that
2248 * the inode is already a part of the transaction.
2249 *
2250 * The on-disk copy of the inode will have been added to the list
2251 * of unlinked inodes in the AGI. We need to remove the inode from
2252 * that list atomically with respect to freeing it here.
2253 */
2254int
2255xfs_ifree(
2256 xfs_trans_t *tp,
2257 xfs_inode_t *ip,
2258 xfs_bmap_free_t *flist)
2259{
2260 int error;
2261 int delete;
2262 xfs_ino_t first_ino;
c319b58b
VA
2263 xfs_dinode_t *dip;
2264 xfs_buf_t *ibp;
1da177e4 2265
579aa9ca 2266 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2267 ASSERT(ip->i_transp == tp);
2268 ASSERT(ip->i_d.di_nlink == 0);
2269 ASSERT(ip->i_d.di_nextents == 0);
2270 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2271 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2272 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2273 ASSERT(ip->i_d.di_nblocks == 0);
2274
2275 /*
2276 * Pull the on-disk inode from the AGI unlinked list.
2277 */
2278 error = xfs_iunlink_remove(tp, ip);
2279 if (error != 0) {
2280 return error;
2281 }
2282
2283 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2284 if (error != 0) {
2285 return error;
2286 }
2287 ip->i_d.di_mode = 0; /* mark incore inode as free */
2288 ip->i_d.di_flags = 0;
2289 ip->i_d.di_dmevmask = 0;
2290 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2291 ip->i_df.if_ext_max =
2292 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2293 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2294 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2295 /*
2296 * Bump the generation count so no one will be confused
2297 * by reincarnations of this inode.
2298 */
2299 ip->i_d.di_gen++;
c319b58b 2300
1da177e4
LT
2301 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2302
a3f74ffb 2303 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
2304 if (error)
2305 return error;
2306
2307 /*
2308 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2309 * from picking up this inode when it is reclaimed (its incore state
2310 * initialzed but not flushed to disk yet). The in-core di_mode is
2311 * already cleared and a corresponding transaction logged.
2312 * The hack here just synchronizes the in-core to on-disk
2313 * di_mode value in advance before the actual inode sync to disk.
2314 * This is OK because the inode is already unlinked and would never
2315 * change its di_mode again for this inode generation.
2316 * This is a temporary hack that would require a proper fix
2317 * in the future.
2318 */
2319 dip->di_core.di_mode = 0;
2320
1da177e4
LT
2321 if (delete) {
2322 xfs_ifree_cluster(ip, tp, first_ino);
2323 }
2324
2325 return 0;
2326}
2327
2328/*
2329 * Reallocate the space for if_broot based on the number of records
2330 * being added or deleted as indicated in rec_diff. Move the records
2331 * and pointers in if_broot to fit the new size. When shrinking this
2332 * will eliminate holes between the records and pointers created by
2333 * the caller. When growing this will create holes to be filled in
2334 * by the caller.
2335 *
2336 * The caller must not request to add more records than would fit in
2337 * the on-disk inode root. If the if_broot is currently NULL, then
2338 * if we adding records one will be allocated. The caller must also
2339 * not request that the number of records go below zero, although
2340 * it can go to zero.
2341 *
2342 * ip -- the inode whose if_broot area is changing
2343 * ext_diff -- the change in the number of records, positive or negative,
2344 * requested for the if_broot array.
2345 */
2346void
2347xfs_iroot_realloc(
2348 xfs_inode_t *ip,
2349 int rec_diff,
2350 int whichfork)
2351{
60197e8d 2352 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2353 int cur_max;
2354 xfs_ifork_t *ifp;
2355 xfs_bmbt_block_t *new_broot;
2356 int new_max;
2357 size_t new_size;
2358 char *np;
2359 char *op;
2360
2361 /*
2362 * Handle the degenerate case quietly.
2363 */
2364 if (rec_diff == 0) {
2365 return;
2366 }
2367
2368 ifp = XFS_IFORK_PTR(ip, whichfork);
2369 if (rec_diff > 0) {
2370 /*
2371 * If there wasn't any memory allocated before, just
2372 * allocate it now and get out.
2373 */
2374 if (ifp->if_broot_bytes == 0) {
2375 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2376 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2377 KM_SLEEP);
2378 ifp->if_broot_bytes = (int)new_size;
2379 return;
2380 }
2381
2382 /*
2383 * If there is already an existing if_broot, then we need
2384 * to realloc() it and shift the pointers to their new
2385 * location. The records don't change location because
2386 * they are kept butted up against the btree block header.
2387 */
60197e8d 2388 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2389 new_max = cur_max + rec_diff;
2390 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2391 ifp->if_broot = (xfs_bmbt_block_t *)
2392 kmem_realloc(ifp->if_broot,
2393 new_size,
2394 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2395 KM_SLEEP);
60197e8d
CH
2396 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2397 ifp->if_broot_bytes);
2398 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2399 (int)new_size);
1da177e4
LT
2400 ifp->if_broot_bytes = (int)new_size;
2401 ASSERT(ifp->if_broot_bytes <=
2402 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2403 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2404 return;
2405 }
2406
2407 /*
2408 * rec_diff is less than 0. In this case, we are shrinking the
2409 * if_broot buffer. It must already exist. If we go to zero
2410 * records, just get rid of the root and clear the status bit.
2411 */
2412 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2413 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2414 new_max = cur_max + rec_diff;
2415 ASSERT(new_max >= 0);
2416 if (new_max > 0)
2417 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2418 else
2419 new_size = 0;
2420 if (new_size > 0) {
2421 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2422 /*
2423 * First copy over the btree block header.
2424 */
2425 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2426 } else {
2427 new_broot = NULL;
2428 ifp->if_flags &= ~XFS_IFBROOT;
2429 }
2430
2431 /*
2432 * Only copy the records and pointers if there are any.
2433 */
2434 if (new_max > 0) {
2435 /*
2436 * First copy the records.
2437 */
136341b4
CH
2438 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2439 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2440 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2441
2442 /*
2443 * Then copy the pointers.
2444 */
60197e8d 2445 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2446 ifp->if_broot_bytes);
60197e8d 2447 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2448 (int)new_size);
2449 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2450 }
f0e2d93c 2451 kmem_free(ifp->if_broot);
1da177e4
LT
2452 ifp->if_broot = new_broot;
2453 ifp->if_broot_bytes = (int)new_size;
2454 ASSERT(ifp->if_broot_bytes <=
2455 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2456 return;
2457}
2458
2459
1da177e4
LT
2460/*
2461 * This is called when the amount of space needed for if_data
2462 * is increased or decreased. The change in size is indicated by
2463 * the number of bytes that need to be added or deleted in the
2464 * byte_diff parameter.
2465 *
2466 * If the amount of space needed has decreased below the size of the
2467 * inline buffer, then switch to using the inline buffer. Otherwise,
2468 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2469 * to what is needed.
2470 *
2471 * ip -- the inode whose if_data area is changing
2472 * byte_diff -- the change in the number of bytes, positive or negative,
2473 * requested for the if_data array.
2474 */
2475void
2476xfs_idata_realloc(
2477 xfs_inode_t *ip,
2478 int byte_diff,
2479 int whichfork)
2480{
2481 xfs_ifork_t *ifp;
2482 int new_size;
2483 int real_size;
2484
2485 if (byte_diff == 0) {
2486 return;
2487 }
2488
2489 ifp = XFS_IFORK_PTR(ip, whichfork);
2490 new_size = (int)ifp->if_bytes + byte_diff;
2491 ASSERT(new_size >= 0);
2492
2493 if (new_size == 0) {
2494 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2495 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2496 }
2497 ifp->if_u1.if_data = NULL;
2498 real_size = 0;
2499 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2500 /*
2501 * If the valid extents/data can fit in if_inline_ext/data,
2502 * copy them from the malloc'd vector and free it.
2503 */
2504 if (ifp->if_u1.if_data == NULL) {
2505 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2506 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2507 ASSERT(ifp->if_real_bytes != 0);
2508 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2509 new_size);
f0e2d93c 2510 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2511 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2512 }
2513 real_size = 0;
2514 } else {
2515 /*
2516 * Stuck with malloc/realloc.
2517 * For inline data, the underlying buffer must be
2518 * a multiple of 4 bytes in size so that it can be
2519 * logged and stay on word boundaries. We enforce
2520 * that here.
2521 */
2522 real_size = roundup(new_size, 4);
2523 if (ifp->if_u1.if_data == NULL) {
2524 ASSERT(ifp->if_real_bytes == 0);
2525 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2526 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2527 /*
2528 * Only do the realloc if the underlying size
2529 * is really changing.
2530 */
2531 if (ifp->if_real_bytes != real_size) {
2532 ifp->if_u1.if_data =
2533 kmem_realloc(ifp->if_u1.if_data,
2534 real_size,
2535 ifp->if_real_bytes,
2536 KM_SLEEP);
2537 }
2538 } else {
2539 ASSERT(ifp->if_real_bytes == 0);
2540 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2541 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2542 ifp->if_bytes);
2543 }
2544 }
2545 ifp->if_real_bytes = real_size;
2546 ifp->if_bytes = new_size;
2547 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2548}
2549
2550
2551
2552
2553/*
2554 * Map inode to disk block and offset.
2555 *
2556 * mp -- the mount point structure for the current file system
2557 * tp -- the current transaction
2558 * ino -- the inode number of the inode to be located
2559 * imap -- this structure is filled in with the information necessary
2560 * to retrieve the given inode from disk
2561 * flags -- flags to pass to xfs_dilocate indicating whether or not
2562 * lookups in the inode btree were OK or not
2563 */
2564int
2565xfs_imap(
2566 xfs_mount_t *mp,
2567 xfs_trans_t *tp,
2568 xfs_ino_t ino,
2569 xfs_imap_t *imap,
2570 uint flags)
2571{
2572 xfs_fsblock_t fsbno;
2573 int len;
2574 int off;
2575 int error;
2576
2577 fsbno = imap->im_blkno ?
2578 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2579 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
4ae29b43 2580 if (error)
1da177e4 2581 return error;
4ae29b43 2582
1da177e4
LT
2583 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2584 imap->im_len = XFS_FSB_TO_BB(mp, len);
2585 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2586 imap->im_ioffset = (ushort)off;
2587 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
4ae29b43
DC
2588
2589 /*
2590 * If the inode number maps to a block outside the bounds
2591 * of the file system then return NULL rather than calling
2592 * read_buf and panicing when we get an error from the
2593 * driver.
2594 */
2595 if ((imap->im_blkno + imap->im_len) >
2596 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2597 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2598 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2599 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2600 (unsigned long long) imap->im_blkno,
2601 (unsigned long long) imap->im_len,
2602 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2603 return EINVAL;
2604 }
1da177e4
LT
2605 return 0;
2606}
2607
2608void
2609xfs_idestroy_fork(
2610 xfs_inode_t *ip,
2611 int whichfork)
2612{
2613 xfs_ifork_t *ifp;
2614
2615 ifp = XFS_IFORK_PTR(ip, whichfork);
2616 if (ifp->if_broot != NULL) {
f0e2d93c 2617 kmem_free(ifp->if_broot);
1da177e4
LT
2618 ifp->if_broot = NULL;
2619 }
2620
2621 /*
2622 * If the format is local, then we can't have an extents
2623 * array so just look for an inline data array. If we're
2624 * not local then we may or may not have an extents list,
2625 * so check and free it up if we do.
2626 */
2627 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2628 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2629 (ifp->if_u1.if_data != NULL)) {
2630 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2631 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2632 ifp->if_u1.if_data = NULL;
2633 ifp->if_real_bytes = 0;
2634 }
2635 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2636 ((ifp->if_flags & XFS_IFEXTIREC) ||
2637 ((ifp->if_u1.if_extents != NULL) &&
2638 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2639 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2640 xfs_iext_destroy(ifp);
1da177e4
LT
2641 }
2642 ASSERT(ifp->if_u1.if_extents == NULL ||
2643 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2644 ASSERT(ifp->if_real_bytes == 0);
2645 if (whichfork == XFS_ATTR_FORK) {
2646 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2647 ip->i_afp = NULL;
2648 }
2649}
2650
2651/*
2652 * This is called free all the memory associated with an inode.
2653 * It must free the inode itself and any buffers allocated for
2654 * if_extents/if_data and if_broot. It must also free the lock
2655 * associated with the inode.
2656 */
2657void
2658xfs_idestroy(
2659 xfs_inode_t *ip)
2660{
1da177e4
LT
2661 switch (ip->i_d.di_mode & S_IFMT) {
2662 case S_IFREG:
2663 case S_IFDIR:
2664 case S_IFLNK:
2665 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2666 break;
2667 }
2668 if (ip->i_afp)
2669 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1543d79c 2670
cf441eeb 2671#ifdef XFS_INODE_TRACE
1543d79c
CH
2672 ktrace_free(ip->i_trace);
2673#endif
1da177e4
LT
2674#ifdef XFS_BMAP_TRACE
2675 ktrace_free(ip->i_xtrace);
2676#endif
8c4ed633 2677#ifdef XFS_BTREE_TRACE
1da177e4
LT
2678 ktrace_free(ip->i_btrace);
2679#endif
2680#ifdef XFS_RW_TRACE
2681 ktrace_free(ip->i_rwtrace);
2682#endif
2683#ifdef XFS_ILOCK_TRACE
2684 ktrace_free(ip->i_lock_trace);
2685#endif
2686#ifdef XFS_DIR2_TRACE
2687 ktrace_free(ip->i_dir_trace);
2688#endif
2689 if (ip->i_itemp) {
f74eaf59
DC
2690 /*
2691 * Only if we are shutting down the fs will we see an
2692 * inode still in the AIL. If it is there, we should remove
2693 * it to prevent a use-after-free from occurring.
2694 */
2695 xfs_mount_t *mp = ip->i_mount;
2696 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
f74eaf59
DC
2697
2698 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2699 XFS_FORCED_SHUTDOWN(ip->i_mount));
2700 if (lip->li_flags & XFS_LI_IN_AIL) {
287f3dad 2701 spin_lock(&mp->m_ail_lock);
f74eaf59 2702 if (lip->li_flags & XFS_LI_IN_AIL)
287f3dad 2703 xfs_trans_delete_ail(mp, lip);
f74eaf59 2704 else
287f3dad 2705 spin_unlock(&mp->m_ail_lock);
f74eaf59 2706 }
1da177e4 2707 xfs_inode_item_destroy(ip);
07c8f675 2708 ip->i_itemp = NULL;
1da177e4 2709 }
07c8f675
DC
2710 /* asserts to verify all state is correct here */
2711 ASSERT(atomic_read(&ip->i_iocount) == 0);
2712 ASSERT(atomic_read(&ip->i_pincount) == 0);
2713 ASSERT(!spin_is_locked(&ip->i_flags_lock));
2714 ASSERT(list_empty(&ip->i_reclaim));
1da177e4
LT
2715 kmem_zone_free(xfs_inode_zone, ip);
2716}
2717
2718
2719/*
2720 * Increment the pin count of the given buffer.
2721 * This value is protected by ipinlock spinlock in the mount structure.
2722 */
2723void
2724xfs_ipin(
2725 xfs_inode_t *ip)
2726{
579aa9ca 2727 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2728
2729 atomic_inc(&ip->i_pincount);
2730}
2731
2732/*
2733 * Decrement the pin count of the given inode, and wake up
2734 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2735 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2736 */
2737void
2738xfs_iunpin(
2739 xfs_inode_t *ip)
2740{
2741 ASSERT(atomic_read(&ip->i_pincount) > 0);
2742
5d51eff4 2743 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2744 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2745}
2746
2747/*
a3f74ffb
DC
2748 * This is called to unpin an inode. It can be directed to wait or to return
2749 * immediately without waiting for the inode to be unpinned. The caller must
2750 * have the inode locked in at least shared mode so that the buffer cannot be
2751 * subsequently pinned once someone is waiting for it to be unpinned.
1da177e4 2752 */
ba0f32d4 2753STATIC void
a3f74ffb
DC
2754__xfs_iunpin_wait(
2755 xfs_inode_t *ip,
2756 int wait)
1da177e4 2757{
a3f74ffb 2758 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 2759
579aa9ca 2760 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
a3f74ffb 2761 if (atomic_read(&ip->i_pincount) == 0)
1da177e4 2762 return;
1da177e4 2763
a3f74ffb
DC
2764 /* Give the log a push to start the unpinning I/O */
2765 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2766 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2767 if (wait)
2768 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2769}
1da177e4 2770
a3f74ffb
DC
2771static inline void
2772xfs_iunpin_wait(
2773 xfs_inode_t *ip)
2774{
2775 __xfs_iunpin_wait(ip, 1);
2776}
1da177e4 2777
a3f74ffb
DC
2778static inline void
2779xfs_iunpin_nowait(
2780 xfs_inode_t *ip)
2781{
2782 __xfs_iunpin_wait(ip, 0);
1da177e4
LT
2783}
2784
2785
2786/*
2787 * xfs_iextents_copy()
2788 *
2789 * This is called to copy the REAL extents (as opposed to the delayed
2790 * allocation extents) from the inode into the given buffer. It
2791 * returns the number of bytes copied into the buffer.
2792 *
2793 * If there are no delayed allocation extents, then we can just
2794 * memcpy() the extents into the buffer. Otherwise, we need to
2795 * examine each extent in turn and skip those which are delayed.
2796 */
2797int
2798xfs_iextents_copy(
2799 xfs_inode_t *ip,
a6f64d4a 2800 xfs_bmbt_rec_t *dp,
1da177e4
LT
2801 int whichfork)
2802{
2803 int copied;
1da177e4
LT
2804 int i;
2805 xfs_ifork_t *ifp;
2806 int nrecs;
2807 xfs_fsblock_t start_block;
2808
2809 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2810 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2811 ASSERT(ifp->if_bytes > 0);
2812
2813 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2814 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2815 ASSERT(nrecs > 0);
2816
2817 /*
2818 * There are some delayed allocation extents in the
2819 * inode, so copy the extents one at a time and skip
2820 * the delayed ones. There must be at least one
2821 * non-delayed extent.
2822 */
1da177e4
LT
2823 copied = 0;
2824 for (i = 0; i < nrecs; i++) {
a6f64d4a 2825 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2826 start_block = xfs_bmbt_get_startblock(ep);
2827 if (ISNULLSTARTBLOCK(start_block)) {
2828 /*
2829 * It's a delayed allocation extent, so skip it.
2830 */
1da177e4
LT
2831 continue;
2832 }
2833
2834 /* Translate to on disk format */
cd8b0a97
CH
2835 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2836 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2837 dp++;
1da177e4
LT
2838 copied++;
2839 }
2840 ASSERT(copied != 0);
a6f64d4a 2841 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2842
2843 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2844}
2845
2846/*
2847 * Each of the following cases stores data into the same region
2848 * of the on-disk inode, so only one of them can be valid at
2849 * any given time. While it is possible to have conflicting formats
2850 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2851 * in EXTENTS format, this can only happen when the fork has
2852 * changed formats after being modified but before being flushed.
2853 * In these cases, the format always takes precedence, because the
2854 * format indicates the current state of the fork.
2855 */
2856/*ARGSUSED*/
e4ac967b 2857STATIC void
1da177e4
LT
2858xfs_iflush_fork(
2859 xfs_inode_t *ip,
2860 xfs_dinode_t *dip,
2861 xfs_inode_log_item_t *iip,
2862 int whichfork,
2863 xfs_buf_t *bp)
2864{
2865 char *cp;
2866 xfs_ifork_t *ifp;
2867 xfs_mount_t *mp;
2868#ifdef XFS_TRANS_DEBUG
2869 int first;
2870#endif
2871 static const short brootflag[2] =
2872 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2873 static const short dataflag[2] =
2874 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2875 static const short extflag[2] =
2876 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2877
e4ac967b
DC
2878 if (!iip)
2879 return;
1da177e4
LT
2880 ifp = XFS_IFORK_PTR(ip, whichfork);
2881 /*
2882 * This can happen if we gave up in iformat in an error path,
2883 * for the attribute fork.
2884 */
e4ac967b 2885 if (!ifp) {
1da177e4 2886 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2887 return;
1da177e4
LT
2888 }
2889 cp = XFS_DFORK_PTR(dip, whichfork);
2890 mp = ip->i_mount;
2891 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2892 case XFS_DINODE_FMT_LOCAL:
2893 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2894 (ifp->if_bytes > 0)) {
2895 ASSERT(ifp->if_u1.if_data != NULL);
2896 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2897 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2898 }
1da177e4
LT
2899 break;
2900
2901 case XFS_DINODE_FMT_EXTENTS:
2902 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2903 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2904 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2905 (ifp->if_bytes == 0));
2906 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2907 (ifp->if_bytes > 0));
1da177e4
LT
2908 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2909 (ifp->if_bytes > 0)) {
2910 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2911 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2912 whichfork);
2913 }
2914 break;
2915
2916 case XFS_DINODE_FMT_BTREE:
2917 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2918 (ifp->if_broot_bytes > 0)) {
2919 ASSERT(ifp->if_broot != NULL);
2920 ASSERT(ifp->if_broot_bytes <=
2921 (XFS_IFORK_SIZE(ip, whichfork) +
2922 XFS_BROOT_SIZE_ADJ));
60197e8d 2923 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2924 (xfs_bmdr_block_t *)cp,
2925 XFS_DFORK_SIZE(dip, mp, whichfork));
2926 }
2927 break;
2928
2929 case XFS_DINODE_FMT_DEV:
2930 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2931 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 2932 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
2933 }
2934 break;
2935
2936 case XFS_DINODE_FMT_UUID:
2937 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2938 ASSERT(whichfork == XFS_DATA_FORK);
2939 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2940 sizeof(uuid_t));
2941 }
2942 break;
2943
2944 default:
2945 ASSERT(0);
2946 break;
2947 }
1da177e4
LT
2948}
2949
bad55843
DC
2950STATIC int
2951xfs_iflush_cluster(
2952 xfs_inode_t *ip,
2953 xfs_buf_t *bp)
2954{
2955 xfs_mount_t *mp = ip->i_mount;
2956 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2957 unsigned long first_index, mask;
c8f5f12e 2958 unsigned long inodes_per_cluster;
bad55843
DC
2959 int ilist_size;
2960 xfs_inode_t **ilist;
2961 xfs_inode_t *iq;
bad55843
DC
2962 int nr_found;
2963 int clcount = 0;
2964 int bufwasdelwri;
2965 int i;
2966
2967 ASSERT(pag->pagi_inodeok);
2968 ASSERT(pag->pag_ici_init);
2969
c8f5f12e
DC
2970 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2971 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2972 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843
DC
2973 if (!ilist)
2974 return 0;
2975
2976 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2977 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2978 read_lock(&pag->pag_ici_lock);
2979 /* really need a gang lookup range call here */
2980 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2981 first_index, inodes_per_cluster);
bad55843
DC
2982 if (nr_found == 0)
2983 goto out_free;
2984
2985 for (i = 0; i < nr_found; i++) {
2986 iq = ilist[i];
2987 if (iq == ip)
2988 continue;
2989 /* if the inode lies outside this cluster, we're done. */
2990 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2991 break;
2992 /*
2993 * Do an un-protected check to see if the inode is dirty and
2994 * is a candidate for flushing. These checks will be repeated
2995 * later after the appropriate locks are acquired.
2996 */
33540408 2997 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2998 continue;
bad55843
DC
2999
3000 /*
3001 * Try to get locks. If any are unavailable or it is pinned,
3002 * then this inode cannot be flushed and is skipped.
3003 */
3004
3005 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3006 continue;
3007 if (!xfs_iflock_nowait(iq)) {
3008 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3009 continue;
3010 }
3011 if (xfs_ipincount(iq)) {
3012 xfs_ifunlock(iq);
3013 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3014 continue;
3015 }
3016
3017 /*
3018 * arriving here means that this inode can be flushed. First
3019 * re-check that it's dirty before flushing.
3020 */
33540408
DC
3021 if (!xfs_inode_clean(iq)) {
3022 int error;
bad55843
DC
3023 error = xfs_iflush_int(iq, bp);
3024 if (error) {
3025 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3026 goto cluster_corrupt_out;
3027 }
3028 clcount++;
3029 } else {
3030 xfs_ifunlock(iq);
3031 }
3032 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3033 }
3034
3035 if (clcount) {
3036 XFS_STATS_INC(xs_icluster_flushcnt);
3037 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3038 }
3039
3040out_free:
3041 read_unlock(&pag->pag_ici_lock);
f0e2d93c 3042 kmem_free(ilist);
bad55843
DC
3043 return 0;
3044
3045
3046cluster_corrupt_out:
3047 /*
3048 * Corruption detected in the clustering loop. Invalidate the
3049 * inode buffer and shut down the filesystem.
3050 */
3051 read_unlock(&pag->pag_ici_lock);
3052 /*
3053 * Clean up the buffer. If it was B_DELWRI, just release it --
3054 * brelse can handle it with no problems. If not, shut down the
3055 * filesystem before releasing the buffer.
3056 */
3057 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3058 if (bufwasdelwri)
3059 xfs_buf_relse(bp);
3060
3061 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3062
3063 if (!bufwasdelwri) {
3064 /*
3065 * Just like incore_relse: if we have b_iodone functions,
3066 * mark the buffer as an error and call them. Otherwise
3067 * mark it as stale and brelse.
3068 */
3069 if (XFS_BUF_IODONE_FUNC(bp)) {
3070 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3071 XFS_BUF_UNDONE(bp);
3072 XFS_BUF_STALE(bp);
3073 XFS_BUF_SHUT(bp);
3074 XFS_BUF_ERROR(bp,EIO);
3075 xfs_biodone(bp);
3076 } else {
3077 XFS_BUF_STALE(bp);
3078 xfs_buf_relse(bp);
3079 }
3080 }
3081
3082 /*
3083 * Unlocks the flush lock
3084 */
3085 xfs_iflush_abort(iq);
f0e2d93c 3086 kmem_free(ilist);
bad55843
DC
3087 return XFS_ERROR(EFSCORRUPTED);
3088}
3089
1da177e4
LT
3090/*
3091 * xfs_iflush() will write a modified inode's changes out to the
3092 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
3093 * in at least shared mode and the inode flush completion must be
3094 * active as well. The inode lock will still be held upon return from
1da177e4 3095 * the call and the caller is free to unlock it.
c63942d3 3096 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
3097 * The flags indicate how the inode's buffer should be written out.
3098 */
3099int
3100xfs_iflush(
3101 xfs_inode_t *ip,
3102 uint flags)
3103{
3104 xfs_inode_log_item_t *iip;
3105 xfs_buf_t *bp;
3106 xfs_dinode_t *dip;
3107 xfs_mount_t *mp;
3108 int error;
a3f74ffb 3109 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
bad55843 3110 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3111
3112 XFS_STATS_INC(xs_iflush_count);
3113
579aa9ca 3114 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3115 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3116 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3117 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3118
3119 iip = ip->i_itemp;
3120 mp = ip->i_mount;
3121
3122 /*
3123 * If the inode isn't dirty, then just release the inode
3124 * flush lock and do nothing.
3125 */
33540408 3126 if (xfs_inode_clean(ip)) {
1da177e4
LT
3127 xfs_ifunlock(ip);
3128 return 0;
3129 }
3130
3131 /*
a3f74ffb
DC
3132 * We can't flush the inode until it is unpinned, so wait for it if we
3133 * are allowed to block. We know noone new can pin it, because we are
3134 * holding the inode lock shared and you need to hold it exclusively to
3135 * pin the inode.
3136 *
3137 * If we are not allowed to block, force the log out asynchronously so
3138 * that when we come back the inode will be unpinned. If other inodes
3139 * in the same cluster are dirty, they will probably write the inode
3140 * out for us if they occur after the log force completes.
1da177e4 3141 */
a3f74ffb
DC
3142 if (noblock && xfs_ipincount(ip)) {
3143 xfs_iunpin_nowait(ip);
3144 xfs_ifunlock(ip);
3145 return EAGAIN;
3146 }
1da177e4
LT
3147 xfs_iunpin_wait(ip);
3148
3149 /*
3150 * This may have been unpinned because the filesystem is shutting
3151 * down forcibly. If that's the case we must not write this inode
3152 * to disk, because the log record didn't make it to disk!
3153 */
3154 if (XFS_FORCED_SHUTDOWN(mp)) {
3155 ip->i_update_core = 0;
3156 if (iip)
3157 iip->ili_format.ilf_fields = 0;
3158 xfs_ifunlock(ip);
3159 return XFS_ERROR(EIO);
3160 }
3161
1da177e4
LT
3162 /*
3163 * Decide how buffer will be flushed out. This is done before
3164 * the call to xfs_iflush_int because this field is zeroed by it.
3165 */
3166 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3167 /*
3168 * Flush out the inode buffer according to the directions
3169 * of the caller. In the cases where the caller has given
3170 * us a choice choose the non-delwri case. This is because
3171 * the inode is in the AIL and we need to get it out soon.
3172 */
3173 switch (flags) {
3174 case XFS_IFLUSH_SYNC:
3175 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3176 flags = 0;
3177 break;
a3f74ffb 3178 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3179 case XFS_IFLUSH_ASYNC:
3180 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3181 flags = INT_ASYNC;
3182 break;
3183 case XFS_IFLUSH_DELWRI:
3184 flags = INT_DELWRI;
3185 break;
3186 default:
3187 ASSERT(0);
3188 flags = 0;
3189 break;
3190 }
3191 } else {
3192 switch (flags) {
3193 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3194 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3195 case XFS_IFLUSH_DELWRI:
3196 flags = INT_DELWRI;
3197 break;
a3f74ffb 3198 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3199 case XFS_IFLUSH_ASYNC:
3200 flags = INT_ASYNC;
3201 break;
3202 case XFS_IFLUSH_SYNC:
3203 flags = 0;
3204 break;
3205 default:
3206 ASSERT(0);
3207 flags = 0;
3208 break;
3209 }
3210 }
3211
a3f74ffb
DC
3212 /*
3213 * Get the buffer containing the on-disk inode.
3214 */
3215 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3216 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3217 if (error || !bp) {
3218 xfs_ifunlock(ip);
3219 return error;
3220 }
3221
1da177e4
LT
3222 /*
3223 * First flush out the inode that xfs_iflush was called with.
3224 */
3225 error = xfs_iflush_int(ip, bp);
bad55843 3226 if (error)
1da177e4 3227 goto corrupt_out;
1da177e4 3228
a3f74ffb
DC
3229 /*
3230 * If the buffer is pinned then push on the log now so we won't
3231 * get stuck waiting in the write for too long.
3232 */
3233 if (XFS_BUF_ISPINNED(bp))
3234 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3235
1da177e4
LT
3236 /*
3237 * inode clustering:
3238 * see if other inodes can be gathered into this write
3239 */
bad55843
DC
3240 error = xfs_iflush_cluster(ip, bp);
3241 if (error)
3242 goto cluster_corrupt_out;
1da177e4 3243
1da177e4
LT
3244 if (flags & INT_DELWRI) {
3245 xfs_bdwrite(mp, bp);
3246 } else if (flags & INT_ASYNC) {
db7a19f2 3247 error = xfs_bawrite(mp, bp);
1da177e4
LT
3248 } else {
3249 error = xfs_bwrite(mp, bp);
3250 }
3251 return error;
3252
3253corrupt_out:
3254 xfs_buf_relse(bp);
7d04a335 3255 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3256cluster_corrupt_out:
1da177e4
LT
3257 /*
3258 * Unlocks the flush lock
3259 */
bad55843 3260 xfs_iflush_abort(ip);
1da177e4
LT
3261 return XFS_ERROR(EFSCORRUPTED);
3262}
3263
3264
3265STATIC int
3266xfs_iflush_int(
3267 xfs_inode_t *ip,
3268 xfs_buf_t *bp)
3269{
3270 xfs_inode_log_item_t *iip;
3271 xfs_dinode_t *dip;
3272 xfs_mount_t *mp;
3273#ifdef XFS_TRANS_DEBUG
3274 int first;
3275#endif
1da177e4 3276
579aa9ca 3277 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3278 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3279 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3280 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3281
3282 iip = ip->i_itemp;
3283 mp = ip->i_mount;
3284
3285
3286 /*
3287 * If the inode isn't dirty, then just release the inode
3288 * flush lock and do nothing.
3289 */
33540408 3290 if (xfs_inode_clean(ip)) {
1da177e4
LT
3291 xfs_ifunlock(ip);
3292 return 0;
3293 }
3294
3295 /* set *dip = inode's place in the buffer */
3296 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3297
3298 /*
3299 * Clear i_update_core before copying out the data.
3300 * This is for coordination with our timestamp updates
3301 * that don't hold the inode lock. They will always
3302 * update the timestamps BEFORE setting i_update_core,
3303 * so if we clear i_update_core after they set it we
3304 * are guaranteed to see their updates to the timestamps.
3305 * I believe that this depends on strongly ordered memory
3306 * semantics, but we have that. We use the SYNCHRONIZE
3307 * macro to make sure that the compiler does not reorder
3308 * the i_update_core access below the data copy below.
3309 */
3310 ip->i_update_core = 0;
3311 SYNCHRONIZE();
3312
42fe2b1f
CH
3313 /*
3314 * Make sure to get the latest atime from the Linux inode.
3315 */
3316 xfs_synchronize_atime(ip);
3317
347d1c01 3318 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3319 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3320 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3321 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3322 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3323 goto corrupt_out;
3324 }
3325 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3326 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3327 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3328 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3329 ip->i_ino, ip, ip->i_d.di_magic);
3330 goto corrupt_out;
3331 }
3332 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3333 if (XFS_TEST_ERROR(
3334 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3335 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3336 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3337 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3338 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3339 ip->i_ino, ip);
3340 goto corrupt_out;
3341 }
3342 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3343 if (XFS_TEST_ERROR(
3344 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3345 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3346 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3347 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3348 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3349 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3350 ip->i_ino, ip);
3351 goto corrupt_out;
3352 }
3353 }
3354 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3355 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3356 XFS_RANDOM_IFLUSH_5)) {
3357 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3358 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3359 ip->i_ino,
3360 ip->i_d.di_nextents + ip->i_d.di_anextents,
3361 ip->i_d.di_nblocks,
3362 ip);
3363 goto corrupt_out;
3364 }
3365 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3366 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3367 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3368 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3369 ip->i_ino, ip->i_d.di_forkoff, ip);
3370 goto corrupt_out;
3371 }
3372 /*
3373 * bump the flush iteration count, used to detect flushes which
3374 * postdate a log record during recovery.
3375 */
3376
3377 ip->i_d.di_flushiter++;
3378
3379 /*
3380 * Copy the dirty parts of the inode into the on-disk
3381 * inode. We always copy out the core of the inode,
3382 * because if the inode is dirty at all the core must
3383 * be.
3384 */
347d1c01 3385 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3386
3387 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3388 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3389 ip->i_d.di_flushiter = 0;
3390
3391 /*
3392 * If this is really an old format inode and the superblock version
3393 * has not been updated to support only new format inodes, then
3394 * convert back to the old inode format. If the superblock version
3395 * has been updated, then make the conversion permanent.
3396 */
3397 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
62118709 3398 xfs_sb_version_hasnlink(&mp->m_sb));
1da177e4 3399 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
62118709 3400 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3401 /*
3402 * Convert it back.
3403 */
3404 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3405 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3406 } else {
3407 /*
3408 * The superblock version has already been bumped,
3409 * so just make the conversion to the new inode
3410 * format permanent.
3411 */
3412 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3413 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3414 ip->i_d.di_onlink = 0;
3415 dip->di_core.di_onlink = 0;
3416 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3417 memset(&(dip->di_core.di_pad[0]), 0,
3418 sizeof(dip->di_core.di_pad));
3419 ASSERT(ip->i_d.di_projid == 0);
3420 }
3421 }
3422
e4ac967b
DC
3423 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3424 if (XFS_IFORK_Q(ip))
3425 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3426 xfs_inobp_check(mp, bp);
3427
3428 /*
3429 * We've recorded everything logged in the inode, so we'd
3430 * like to clear the ilf_fields bits so we don't log and
3431 * flush things unnecessarily. However, we can't stop
3432 * logging all this information until the data we've copied
3433 * into the disk buffer is written to disk. If we did we might
3434 * overwrite the copy of the inode in the log with all the
3435 * data after re-logging only part of it, and in the face of
3436 * a crash we wouldn't have all the data we need to recover.
3437 *
3438 * What we do is move the bits to the ili_last_fields field.
3439 * When logging the inode, these bits are moved back to the
3440 * ilf_fields field. In the xfs_iflush_done() routine we
3441 * clear ili_last_fields, since we know that the information
3442 * those bits represent is permanently on disk. As long as
3443 * the flush completes before the inode is logged again, then
3444 * both ilf_fields and ili_last_fields will be cleared.
3445 *
3446 * We can play with the ilf_fields bits here, because the inode
3447 * lock must be held exclusively in order to set bits there
3448 * and the flush lock protects the ili_last_fields bits.
3449 * Set ili_logged so the flush done
3450 * routine can tell whether or not to look in the AIL.
3451 * Also, store the current LSN of the inode so that we can tell
3452 * whether the item has moved in the AIL from xfs_iflush_done().
3453 * In order to read the lsn we need the AIL lock, because
3454 * it is a 64 bit value that cannot be read atomically.
3455 */
3456 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3457 iip->ili_last_fields = iip->ili_format.ilf_fields;
3458 iip->ili_format.ilf_fields = 0;
3459 iip->ili_logged = 1;
3460
3461 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
287f3dad 3462 spin_lock(&mp->m_ail_lock);
1da177e4 3463 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 3464 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
3465
3466 /*
3467 * Attach the function xfs_iflush_done to the inode's
3468 * buffer. This will remove the inode from the AIL
3469 * and unlock the inode's flush lock when the inode is
3470 * completely written to disk.
3471 */
3472 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3473 xfs_iflush_done, (xfs_log_item_t *)iip);
3474
3475 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3476 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3477 } else {
3478 /*
3479 * We're flushing an inode which is not in the AIL and has
3480 * not been logged but has i_update_core set. For this
3481 * case we can use a B_DELWRI flush and immediately drop
3482 * the inode flush lock because we can avoid the whole
3483 * AIL state thing. It's OK to drop the flush lock now,
3484 * because we've already locked the buffer and to do anything
3485 * you really need both.
3486 */
3487 if (iip != NULL) {
3488 ASSERT(iip->ili_logged == 0);
3489 ASSERT(iip->ili_last_fields == 0);
3490 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3491 }
3492 xfs_ifunlock(ip);
3493 }
3494
3495 return 0;
3496
3497corrupt_out:
3498 return XFS_ERROR(EFSCORRUPTED);
3499}
3500
3501
1da177e4 3502
1da177e4
LT
3503#ifdef XFS_ILOCK_TRACE
3504ktrace_t *xfs_ilock_trace_buf;
3505
3506void
3507xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3508{
3509 ktrace_enter(ip->i_lock_trace,
3510 (void *)ip,
3511 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3512 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3513 (void *)ra, /* caller of ilock */
3514 (void *)(unsigned long)current_cpu(),
3515 (void *)(unsigned long)current_pid(),
3516 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3517}
3518#endif
4eea22f0
MK
3519
3520/*
3521 * Return a pointer to the extent record at file index idx.
3522 */
a6f64d4a 3523xfs_bmbt_rec_host_t *
4eea22f0
MK
3524xfs_iext_get_ext(
3525 xfs_ifork_t *ifp, /* inode fork pointer */
3526 xfs_extnum_t idx) /* index of target extent */
3527{
3528 ASSERT(idx >= 0);
0293ce3a
MK
3529 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3530 return ifp->if_u1.if_ext_irec->er_extbuf;
3531 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3532 xfs_ext_irec_t *erp; /* irec pointer */
3533 int erp_idx = 0; /* irec index */
3534 xfs_extnum_t page_idx = idx; /* ext index in target list */
3535
3536 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3537 return &erp->er_extbuf[page_idx];
3538 } else if (ifp->if_bytes) {
4eea22f0
MK
3539 return &ifp->if_u1.if_extents[idx];
3540 } else {
3541 return NULL;
3542 }
3543}
3544
3545/*
3546 * Insert new item(s) into the extent records for incore inode
3547 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3548 */
3549void
3550xfs_iext_insert(
3551 xfs_ifork_t *ifp, /* inode fork pointer */
3552 xfs_extnum_t idx, /* starting index of new items */
3553 xfs_extnum_t count, /* number of inserted items */
3554 xfs_bmbt_irec_t *new) /* items to insert */
3555{
4eea22f0
MK
3556 xfs_extnum_t i; /* extent record index */
3557
3558 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3559 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3560 for (i = idx; i < idx + count; i++, new++)
3561 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3562}
3563
3564/*
3565 * This is called when the amount of space required for incore file
3566 * extents needs to be increased. The ext_diff parameter stores the
3567 * number of new extents being added and the idx parameter contains
3568 * the extent index where the new extents will be added. If the new
3569 * extents are being appended, then we just need to (re)allocate and
3570 * initialize the space. Otherwise, if the new extents are being
3571 * inserted into the middle of the existing entries, a bit more work
3572 * is required to make room for the new extents to be inserted. The
3573 * caller is responsible for filling in the new extent entries upon
3574 * return.
3575 */
3576void
3577xfs_iext_add(
3578 xfs_ifork_t *ifp, /* inode fork pointer */
3579 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3580 int ext_diff) /* number of extents to add */
4eea22f0
MK
3581{
3582 int byte_diff; /* new bytes being added */
3583 int new_size; /* size of extents after adding */
3584 xfs_extnum_t nextents; /* number of extents in file */
3585
3586 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3587 ASSERT((idx >= 0) && (idx <= nextents));
3588 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3589 new_size = ifp->if_bytes + byte_diff;
3590 /*
3591 * If the new number of extents (nextents + ext_diff)
3592 * fits inside the inode, then continue to use the inline
3593 * extent buffer.
3594 */
3595 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3596 if (idx < nextents) {
3597 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3598 &ifp->if_u2.if_inline_ext[idx],
3599 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3600 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3601 }
3602 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3603 ifp->if_real_bytes = 0;
0293ce3a 3604 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3605 }
3606 /*
3607 * Otherwise use a linear (direct) extent list.
3608 * If the extents are currently inside the inode,
3609 * xfs_iext_realloc_direct will switch us from
3610 * inline to direct extent allocation mode.
3611 */
0293ce3a 3612 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3613 xfs_iext_realloc_direct(ifp, new_size);
3614 if (idx < nextents) {
3615 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3616 &ifp->if_u1.if_extents[idx],
3617 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3618 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3619 }
3620 }
0293ce3a
MK
3621 /* Indirection array */
3622 else {
3623 xfs_ext_irec_t *erp;
3624 int erp_idx = 0;
3625 int page_idx = idx;
3626
3627 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3628 if (ifp->if_flags & XFS_IFEXTIREC) {
3629 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3630 } else {
3631 xfs_iext_irec_init(ifp);
3632 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3633 erp = ifp->if_u1.if_ext_irec;
3634 }
3635 /* Extents fit in target extent page */
3636 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3637 if (page_idx < erp->er_extcount) {
3638 memmove(&erp->er_extbuf[page_idx + ext_diff],
3639 &erp->er_extbuf[page_idx],
3640 (erp->er_extcount - page_idx) *
3641 sizeof(xfs_bmbt_rec_t));
3642 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3643 }
3644 erp->er_extcount += ext_diff;
3645 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3646 }
3647 /* Insert a new extent page */
3648 else if (erp) {
3649 xfs_iext_add_indirect_multi(ifp,
3650 erp_idx, page_idx, ext_diff);
3651 }
3652 /*
3653 * If extent(s) are being appended to the last page in
3654 * the indirection array and the new extent(s) don't fit
3655 * in the page, then erp is NULL and erp_idx is set to
3656 * the next index needed in the indirection array.
3657 */
3658 else {
3659 int count = ext_diff;
3660
3661 while (count) {
3662 erp = xfs_iext_irec_new(ifp, erp_idx);
3663 erp->er_extcount = count;
3664 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3665 if (count) {
3666 erp_idx++;
3667 }
3668 }
3669 }
3670 }
4eea22f0
MK
3671 ifp->if_bytes = new_size;
3672}
3673
0293ce3a
MK
3674/*
3675 * This is called when incore extents are being added to the indirection
3676 * array and the new extents do not fit in the target extent list. The
3677 * erp_idx parameter contains the irec index for the target extent list
3678 * in the indirection array, and the idx parameter contains the extent
3679 * index within the list. The number of extents being added is stored
3680 * in the count parameter.
3681 *
3682 * |-------| |-------|
3683 * | | | | idx - number of extents before idx
3684 * | idx | | count |
3685 * | | | | count - number of extents being inserted at idx
3686 * |-------| |-------|
3687 * | count | | nex2 | nex2 - number of extents after idx + count
3688 * |-------| |-------|
3689 */
3690void
3691xfs_iext_add_indirect_multi(
3692 xfs_ifork_t *ifp, /* inode fork pointer */
3693 int erp_idx, /* target extent irec index */
3694 xfs_extnum_t idx, /* index within target list */
3695 int count) /* new extents being added */
3696{
3697 int byte_diff; /* new bytes being added */
3698 xfs_ext_irec_t *erp; /* pointer to irec entry */
3699 xfs_extnum_t ext_diff; /* number of extents to add */
3700 xfs_extnum_t ext_cnt; /* new extents still needed */
3701 xfs_extnum_t nex2; /* extents after idx + count */
3702 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3703 int nlists; /* number of irec's (lists) */
3704
3705 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3706 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3707 nex2 = erp->er_extcount - idx;
3708 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3709
3710 /*
3711 * Save second part of target extent list
3712 * (all extents past */
3713 if (nex2) {
3714 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3715 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3716 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3717 erp->er_extcount -= nex2;
3718 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3719 memset(&erp->er_extbuf[idx], 0, byte_diff);
3720 }
3721
3722 /*
3723 * Add the new extents to the end of the target
3724 * list, then allocate new irec record(s) and
3725 * extent buffer(s) as needed to store the rest
3726 * of the new extents.
3727 */
3728 ext_cnt = count;
3729 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3730 if (ext_diff) {
3731 erp->er_extcount += ext_diff;
3732 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3733 ext_cnt -= ext_diff;
3734 }
3735 while (ext_cnt) {
3736 erp_idx++;
3737 erp = xfs_iext_irec_new(ifp, erp_idx);
3738 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3739 erp->er_extcount = ext_diff;
3740 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3741 ext_cnt -= ext_diff;
3742 }
3743
3744 /* Add nex2 extents back to indirection array */
3745 if (nex2) {
3746 xfs_extnum_t ext_avail;
3747 int i;
3748
3749 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3750 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3751 i = 0;
3752 /*
3753 * If nex2 extents fit in the current page, append
3754 * nex2_ep after the new extents.
3755 */
3756 if (nex2 <= ext_avail) {
3757 i = erp->er_extcount;
3758 }
3759 /*
3760 * Otherwise, check if space is available in the
3761 * next page.
3762 */
3763 else if ((erp_idx < nlists - 1) &&
3764 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3765 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3766 erp_idx++;
3767 erp++;
3768 /* Create a hole for nex2 extents */
3769 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3770 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3771 }
3772 /*
3773 * Final choice, create a new extent page for
3774 * nex2 extents.
3775 */
3776 else {
3777 erp_idx++;
3778 erp = xfs_iext_irec_new(ifp, erp_idx);
3779 }
3780 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3781 kmem_free(nex2_ep);
0293ce3a
MK
3782 erp->er_extcount += nex2;
3783 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3784 }
3785}
3786
4eea22f0
MK
3787/*
3788 * This is called when the amount of space required for incore file
3789 * extents needs to be decreased. The ext_diff parameter stores the
3790 * number of extents to be removed and the idx parameter contains
3791 * the extent index where the extents will be removed from.
0293ce3a
MK
3792 *
3793 * If the amount of space needed has decreased below the linear
3794 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3795 * extent array. Otherwise, use kmem_realloc() to adjust the
3796 * size to what is needed.
4eea22f0
MK
3797 */
3798void
3799xfs_iext_remove(
3800 xfs_ifork_t *ifp, /* inode fork pointer */
3801 xfs_extnum_t idx, /* index to begin removing exts */
3802 int ext_diff) /* number of extents to remove */
3803{
3804 xfs_extnum_t nextents; /* number of extents in file */
3805 int new_size; /* size of extents after removal */
3806
3807 ASSERT(ext_diff > 0);
3808 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3809 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3810
3811 if (new_size == 0) {
3812 xfs_iext_destroy(ifp);
0293ce3a
MK
3813 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3814 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3815 } else if (ifp->if_real_bytes) {
3816 xfs_iext_remove_direct(ifp, idx, ext_diff);
3817 } else {
3818 xfs_iext_remove_inline(ifp, idx, ext_diff);
3819 }
3820 ifp->if_bytes = new_size;
3821}
3822
3823/*
3824 * This removes ext_diff extents from the inline buffer, beginning
3825 * at extent index idx.
3826 */
3827void
3828xfs_iext_remove_inline(
3829 xfs_ifork_t *ifp, /* inode fork pointer */
3830 xfs_extnum_t idx, /* index to begin removing exts */
3831 int ext_diff) /* number of extents to remove */
3832{
3833 int nextents; /* number of extents in file */
3834
0293ce3a 3835 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3836 ASSERT(idx < XFS_INLINE_EXTS);
3837 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3838 ASSERT(((nextents - ext_diff) > 0) &&
3839 (nextents - ext_diff) < XFS_INLINE_EXTS);
3840
3841 if (idx + ext_diff < nextents) {
3842 memmove(&ifp->if_u2.if_inline_ext[idx],
3843 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3844 (nextents - (idx + ext_diff)) *
3845 sizeof(xfs_bmbt_rec_t));
3846 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3847 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3848 } else {
3849 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3850 ext_diff * sizeof(xfs_bmbt_rec_t));
3851 }
3852}
3853
3854/*
3855 * This removes ext_diff extents from a linear (direct) extent list,
3856 * beginning at extent index idx. If the extents are being removed
3857 * from the end of the list (ie. truncate) then we just need to re-
3858 * allocate the list to remove the extra space. Otherwise, if the
3859 * extents are being removed from the middle of the existing extent
3860 * entries, then we first need to move the extent records beginning
3861 * at idx + ext_diff up in the list to overwrite the records being
3862 * removed, then remove the extra space via kmem_realloc.
3863 */
3864void
3865xfs_iext_remove_direct(
3866 xfs_ifork_t *ifp, /* inode fork pointer */
3867 xfs_extnum_t idx, /* index to begin removing exts */
3868 int ext_diff) /* number of extents to remove */
3869{
3870 xfs_extnum_t nextents; /* number of extents in file */
3871 int new_size; /* size of extents after removal */
3872
0293ce3a 3873 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3874 new_size = ifp->if_bytes -
3875 (ext_diff * sizeof(xfs_bmbt_rec_t));
3876 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3877
3878 if (new_size == 0) {
3879 xfs_iext_destroy(ifp);
3880 return;
3881 }
3882 /* Move extents up in the list (if needed) */
3883 if (idx + ext_diff < nextents) {
3884 memmove(&ifp->if_u1.if_extents[idx],
3885 &ifp->if_u1.if_extents[idx + ext_diff],
3886 (nextents - (idx + ext_diff)) *
3887 sizeof(xfs_bmbt_rec_t));
3888 }
3889 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3890 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3891 /*
3892 * Reallocate the direct extent list. If the extents
3893 * will fit inside the inode then xfs_iext_realloc_direct
3894 * will switch from direct to inline extent allocation
3895 * mode for us.
3896 */
3897 xfs_iext_realloc_direct(ifp, new_size);
3898 ifp->if_bytes = new_size;
3899}
3900
0293ce3a
MK
3901/*
3902 * This is called when incore extents are being removed from the
3903 * indirection array and the extents being removed span multiple extent
3904 * buffers. The idx parameter contains the file extent index where we
3905 * want to begin removing extents, and the count parameter contains
3906 * how many extents need to be removed.
3907 *
3908 * |-------| |-------|
3909 * | nex1 | | | nex1 - number of extents before idx
3910 * |-------| | count |
3911 * | | | | count - number of extents being removed at idx
3912 * | count | |-------|
3913 * | | | nex2 | nex2 - number of extents after idx + count
3914 * |-------| |-------|
3915 */
3916void
3917xfs_iext_remove_indirect(
3918 xfs_ifork_t *ifp, /* inode fork pointer */
3919 xfs_extnum_t idx, /* index to begin removing extents */
3920 int count) /* number of extents to remove */
3921{
3922 xfs_ext_irec_t *erp; /* indirection array pointer */
3923 int erp_idx = 0; /* indirection array index */
3924 xfs_extnum_t ext_cnt; /* extents left to remove */
3925 xfs_extnum_t ext_diff; /* extents to remove in current list */
3926 xfs_extnum_t nex1; /* number of extents before idx */
3927 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 3928 int nlists; /* entries in indirection array */
0293ce3a
MK
3929 int page_idx = idx; /* index in target extent list */
3930
3931 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3932 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3933 ASSERT(erp != NULL);
3934 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3935 nex1 = page_idx;
3936 ext_cnt = count;
3937 while (ext_cnt) {
3938 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3939 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3940 /*
3941 * Check for deletion of entire list;
3942 * xfs_iext_irec_remove() updates extent offsets.
3943 */
3944 if (ext_diff == erp->er_extcount) {
3945 xfs_iext_irec_remove(ifp, erp_idx);
3946 ext_cnt -= ext_diff;
3947 nex1 = 0;
3948 if (ext_cnt) {
3949 ASSERT(erp_idx < ifp->if_real_bytes /
3950 XFS_IEXT_BUFSZ);
3951 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3952 nex1 = 0;
3953 continue;
3954 } else {
3955 break;
3956 }
3957 }
3958 /* Move extents up (if needed) */
3959 if (nex2) {
3960 memmove(&erp->er_extbuf[nex1],
3961 &erp->er_extbuf[nex1 + ext_diff],
3962 nex2 * sizeof(xfs_bmbt_rec_t));
3963 }
3964 /* Zero out rest of page */
3965 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3966 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3967 /* Update remaining counters */
3968 erp->er_extcount -= ext_diff;
3969 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3970 ext_cnt -= ext_diff;
3971 nex1 = 0;
3972 erp_idx++;
3973 erp++;
3974 }
3975 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3976 xfs_iext_irec_compact(ifp);
3977}
3978
4eea22f0
MK
3979/*
3980 * Create, destroy, or resize a linear (direct) block of extents.
3981 */
3982void
3983xfs_iext_realloc_direct(
3984 xfs_ifork_t *ifp, /* inode fork pointer */
3985 int new_size) /* new size of extents */
3986{
3987 int rnew_size; /* real new size of extents */
3988
3989 rnew_size = new_size;
3990
0293ce3a
MK
3991 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3992 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3993 (new_size != ifp->if_real_bytes)));
3994
4eea22f0
MK
3995 /* Free extent records */
3996 if (new_size == 0) {
3997 xfs_iext_destroy(ifp);
3998 }
3999 /* Resize direct extent list and zero any new bytes */
4000 else if (ifp->if_real_bytes) {
4001 /* Check if extents will fit inside the inode */
4002 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4003 xfs_iext_direct_to_inline(ifp, new_size /
4004 (uint)sizeof(xfs_bmbt_rec_t));
4005 ifp->if_bytes = new_size;
4006 return;
4007 }
16a087d8 4008 if (!is_power_of_2(new_size)){
40ebd81d 4009 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4010 }
4011 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4012 ifp->if_u1.if_extents =
4eea22f0
MK
4013 kmem_realloc(ifp->if_u1.if_extents,
4014 rnew_size,
6785073b 4015 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
4016 }
4017 if (rnew_size > ifp->if_real_bytes) {
4018 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4019 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4020 rnew_size - ifp->if_real_bytes);
4021 }
4022 }
4023 /*
4024 * Switch from the inline extent buffer to a direct
4025 * extent list. Be sure to include the inline extent
4026 * bytes in new_size.
4027 */
4028 else {
4029 new_size += ifp->if_bytes;
16a087d8 4030 if (!is_power_of_2(new_size)) {
40ebd81d 4031 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4032 }
4033 xfs_iext_inline_to_direct(ifp, rnew_size);
4034 }
4035 ifp->if_real_bytes = rnew_size;
4036 ifp->if_bytes = new_size;
4037}
4038
4039/*
4040 * Switch from linear (direct) extent records to inline buffer.
4041 */
4042void
4043xfs_iext_direct_to_inline(
4044 xfs_ifork_t *ifp, /* inode fork pointer */
4045 xfs_extnum_t nextents) /* number of extents in file */
4046{
4047 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4048 ASSERT(nextents <= XFS_INLINE_EXTS);
4049 /*
4050 * The inline buffer was zeroed when we switched
4051 * from inline to direct extent allocation mode,
4052 * so we don't need to clear it here.
4053 */
4054 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4055 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 4056 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4057 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4058 ifp->if_real_bytes = 0;
4059}
4060
4061/*
4062 * Switch from inline buffer to linear (direct) extent records.
4063 * new_size should already be rounded up to the next power of 2
4064 * by the caller (when appropriate), so use new_size as it is.
4065 * However, since new_size may be rounded up, we can't update
4066 * if_bytes here. It is the caller's responsibility to update
4067 * if_bytes upon return.
4068 */
4069void
4070xfs_iext_inline_to_direct(
4071 xfs_ifork_t *ifp, /* inode fork pointer */
4072 int new_size) /* number of extents in file */
4073{
6785073b 4074 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
4075 memset(ifp->if_u1.if_extents, 0, new_size);
4076 if (ifp->if_bytes) {
4077 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4078 ifp->if_bytes);
4079 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4080 sizeof(xfs_bmbt_rec_t));
4081 }
4082 ifp->if_real_bytes = new_size;
4083}
4084
0293ce3a
MK
4085/*
4086 * Resize an extent indirection array to new_size bytes.
4087 */
4088void
4089xfs_iext_realloc_indirect(
4090 xfs_ifork_t *ifp, /* inode fork pointer */
4091 int new_size) /* new indirection array size */
4092{
4093 int nlists; /* number of irec's (ex lists) */
4094 int size; /* current indirection array size */
4095
4096 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4097 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4098 size = nlists * sizeof(xfs_ext_irec_t);
4099 ASSERT(ifp->if_real_bytes);
4100 ASSERT((new_size >= 0) && (new_size != size));
4101 if (new_size == 0) {
4102 xfs_iext_destroy(ifp);
4103 } else {
4104 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4105 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 4106 new_size, size, KM_NOFS);
0293ce3a
MK
4107 }
4108}
4109
4110/*
4111 * Switch from indirection array to linear (direct) extent allocations.
4112 */
4113void
4114xfs_iext_indirect_to_direct(
4115 xfs_ifork_t *ifp) /* inode fork pointer */
4116{
a6f64d4a 4117 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4118 xfs_extnum_t nextents; /* number of extents in file */
4119 int size; /* size of file extents */
4120
4121 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4122 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4123 ASSERT(nextents <= XFS_LINEAR_EXTS);
4124 size = nextents * sizeof(xfs_bmbt_rec_t);
4125
71a8c87f 4126 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
4127 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4128
4129 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 4130 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4131 ifp->if_flags &= ~XFS_IFEXTIREC;
4132 ifp->if_u1.if_extents = ep;
4133 ifp->if_bytes = size;
4134 if (nextents < XFS_LINEAR_EXTS) {
4135 xfs_iext_realloc_direct(ifp, size);
4136 }
4137}
4138
4eea22f0
MK
4139/*
4140 * Free incore file extents.
4141 */
4142void
4143xfs_iext_destroy(
4144 xfs_ifork_t *ifp) /* inode fork pointer */
4145{
0293ce3a
MK
4146 if (ifp->if_flags & XFS_IFEXTIREC) {
4147 int erp_idx;
4148 int nlists;
4149
4150 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4151 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4152 xfs_iext_irec_remove(ifp, erp_idx);
4153 }
4154 ifp->if_flags &= ~XFS_IFEXTIREC;
4155 } else if (ifp->if_real_bytes) {
f0e2d93c 4156 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4157 } else if (ifp->if_bytes) {
4158 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4159 sizeof(xfs_bmbt_rec_t));
4160 }
4161 ifp->if_u1.if_extents = NULL;
4162 ifp->if_real_bytes = 0;
4163 ifp->if_bytes = 0;
4164}
0293ce3a 4165
8867bc9b
MK
4166/*
4167 * Return a pointer to the extent record for file system block bno.
4168 */
a6f64d4a 4169xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4170xfs_iext_bno_to_ext(
4171 xfs_ifork_t *ifp, /* inode fork pointer */
4172 xfs_fileoff_t bno, /* block number to search for */
4173 xfs_extnum_t *idxp) /* index of target extent */
4174{
a6f64d4a 4175 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4176 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4177 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4178 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4179 int high; /* upper boundary in search */
8867bc9b 4180 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4181 int low; /* lower boundary in search */
8867bc9b
MK
4182 xfs_extnum_t nextents; /* number of file extents */
4183 xfs_fileoff_t startoff = 0; /* start offset of extent */
4184
4185 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4186 if (nextents == 0) {
4187 *idxp = 0;
4188 return NULL;
4189 }
4190 low = 0;
4191 if (ifp->if_flags & XFS_IFEXTIREC) {
4192 /* Find target extent list */
4193 int erp_idx = 0;
4194 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4195 base = erp->er_extbuf;
4196 high = erp->er_extcount - 1;
4197 } else {
4198 base = ifp->if_u1.if_extents;
4199 high = nextents - 1;
4200 }
4201 /* Binary search extent records */
4202 while (low <= high) {
4203 idx = (low + high) >> 1;
4204 ep = base + idx;
4205 startoff = xfs_bmbt_get_startoff(ep);
4206 blockcount = xfs_bmbt_get_blockcount(ep);
4207 if (bno < startoff) {
4208 high = idx - 1;
4209 } else if (bno >= startoff + blockcount) {
4210 low = idx + 1;
4211 } else {
4212 /* Convert back to file-based extent index */
4213 if (ifp->if_flags & XFS_IFEXTIREC) {
4214 idx += erp->er_extoff;
4215 }
4216 *idxp = idx;
4217 return ep;
4218 }
4219 }
4220 /* Convert back to file-based extent index */
4221 if (ifp->if_flags & XFS_IFEXTIREC) {
4222 idx += erp->er_extoff;
4223 }
4224 if (bno >= startoff + blockcount) {
4225 if (++idx == nextents) {
4226 ep = NULL;
4227 } else {
4228 ep = xfs_iext_get_ext(ifp, idx);
4229 }
4230 }
4231 *idxp = idx;
4232 return ep;
4233}
4234
0293ce3a
MK
4235/*
4236 * Return a pointer to the indirection array entry containing the
4237 * extent record for filesystem block bno. Store the index of the
4238 * target irec in *erp_idxp.
4239 */
8867bc9b 4240xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4241xfs_iext_bno_to_irec(
4242 xfs_ifork_t *ifp, /* inode fork pointer */
4243 xfs_fileoff_t bno, /* block number to search for */
4244 int *erp_idxp) /* irec index of target ext list */
4245{
4246 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4247 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4248 int erp_idx; /* indirection array index */
0293ce3a
MK
4249 int nlists; /* number of extent irec's (lists) */
4250 int high; /* binary search upper limit */
4251 int low; /* binary search lower limit */
4252
4253 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4254 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4255 erp_idx = 0;
4256 low = 0;
4257 high = nlists - 1;
4258 while (low <= high) {
4259 erp_idx = (low + high) >> 1;
4260 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4261 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4262 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4263 high = erp_idx - 1;
4264 } else if (erp_next && bno >=
4265 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4266 low = erp_idx + 1;
4267 } else {
4268 break;
4269 }
4270 }
4271 *erp_idxp = erp_idx;
4272 return erp;
4273}
4274
4275/*
4276 * Return a pointer to the indirection array entry containing the
4277 * extent record at file extent index *idxp. Store the index of the
4278 * target irec in *erp_idxp and store the page index of the target
4279 * extent record in *idxp.
4280 */
4281xfs_ext_irec_t *
4282xfs_iext_idx_to_irec(
4283 xfs_ifork_t *ifp, /* inode fork pointer */
4284 xfs_extnum_t *idxp, /* extent index (file -> page) */
4285 int *erp_idxp, /* pointer to target irec */
4286 int realloc) /* new bytes were just added */
4287{
4288 xfs_ext_irec_t *prev; /* pointer to previous irec */
4289 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4290 int erp_idx; /* indirection array index */
4291 int nlists; /* number of irec's (ex lists) */
4292 int high; /* binary search upper limit */
4293 int low; /* binary search lower limit */
4294 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4295
4296 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4297 ASSERT(page_idx >= 0 && page_idx <=
4298 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4299 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4300 erp_idx = 0;
4301 low = 0;
4302 high = nlists - 1;
4303
4304 /* Binary search extent irec's */
4305 while (low <= high) {
4306 erp_idx = (low + high) >> 1;
4307 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4308 prev = erp_idx > 0 ? erp - 1 : NULL;
4309 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4310 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4311 high = erp_idx - 1;
4312 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4313 (page_idx == erp->er_extoff + erp->er_extcount &&
4314 !realloc)) {
4315 low = erp_idx + 1;
4316 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4317 erp->er_extcount == XFS_LINEAR_EXTS) {
4318 ASSERT(realloc);
4319 page_idx = 0;
4320 erp_idx++;
4321 erp = erp_idx < nlists ? erp + 1 : NULL;
4322 break;
4323 } else {
4324 page_idx -= erp->er_extoff;
4325 break;
4326 }
4327 }
4328 *idxp = page_idx;
4329 *erp_idxp = erp_idx;
4330 return(erp);
4331}
4332
4333/*
4334 * Allocate and initialize an indirection array once the space needed
4335 * for incore extents increases above XFS_IEXT_BUFSZ.
4336 */
4337void
4338xfs_iext_irec_init(
4339 xfs_ifork_t *ifp) /* inode fork pointer */
4340{
4341 xfs_ext_irec_t *erp; /* indirection array pointer */
4342 xfs_extnum_t nextents; /* number of extents in file */
4343
4344 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4345 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4346 ASSERT(nextents <= XFS_LINEAR_EXTS);
4347
6785073b 4348 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
4349
4350 if (nextents == 0) {
6785073b 4351 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4352 } else if (!ifp->if_real_bytes) {
4353 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4354 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4355 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4356 }
4357 erp->er_extbuf = ifp->if_u1.if_extents;
4358 erp->er_extcount = nextents;
4359 erp->er_extoff = 0;
4360
4361 ifp->if_flags |= XFS_IFEXTIREC;
4362 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4363 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4364 ifp->if_u1.if_ext_irec = erp;
4365
4366 return;
4367}
4368
4369/*
4370 * Allocate and initialize a new entry in the indirection array.
4371 */
4372xfs_ext_irec_t *
4373xfs_iext_irec_new(
4374 xfs_ifork_t *ifp, /* inode fork pointer */
4375 int erp_idx) /* index for new irec */
4376{
4377 xfs_ext_irec_t *erp; /* indirection array pointer */
4378 int i; /* loop counter */
4379 int nlists; /* number of irec's (ex lists) */
4380
4381 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4382 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4383
4384 /* Resize indirection array */
4385 xfs_iext_realloc_indirect(ifp, ++nlists *
4386 sizeof(xfs_ext_irec_t));
4387 /*
4388 * Move records down in the array so the
4389 * new page can use erp_idx.
4390 */
4391 erp = ifp->if_u1.if_ext_irec;
4392 for (i = nlists - 1; i > erp_idx; i--) {
4393 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4394 }
4395 ASSERT(i == erp_idx);
4396
4397 /* Initialize new extent record */
4398 erp = ifp->if_u1.if_ext_irec;
6785073b 4399 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4400 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4401 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4402 erp[erp_idx].er_extcount = 0;
4403 erp[erp_idx].er_extoff = erp_idx > 0 ?
4404 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4405 return (&erp[erp_idx]);
4406}
4407
4408/*
4409 * Remove a record from the indirection array.
4410 */
4411void
4412xfs_iext_irec_remove(
4413 xfs_ifork_t *ifp, /* inode fork pointer */
4414 int erp_idx) /* irec index to remove */
4415{
4416 xfs_ext_irec_t *erp; /* indirection array pointer */
4417 int i; /* loop counter */
4418 int nlists; /* number of irec's (ex lists) */
4419
4420 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4421 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4422 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4423 if (erp->er_extbuf) {
4424 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4425 -erp->er_extcount);
f0e2d93c 4426 kmem_free(erp->er_extbuf);
0293ce3a
MK
4427 }
4428 /* Compact extent records */
4429 erp = ifp->if_u1.if_ext_irec;
4430 for (i = erp_idx; i < nlists - 1; i++) {
4431 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4432 }
4433 /*
4434 * Manually free the last extent record from the indirection
4435 * array. A call to xfs_iext_realloc_indirect() with a size
4436 * of zero would result in a call to xfs_iext_destroy() which
4437 * would in turn call this function again, creating a nasty
4438 * infinite loop.
4439 */
4440 if (--nlists) {
4441 xfs_iext_realloc_indirect(ifp,
4442 nlists * sizeof(xfs_ext_irec_t));
4443 } else {
f0e2d93c 4444 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4445 }
4446 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4447}
4448
4449/*
4450 * This is called to clean up large amounts of unused memory allocated
4451 * by the indirection array. Before compacting anything though, verify
4452 * that the indirection array is still needed and switch back to the
4453 * linear extent list (or even the inline buffer) if possible. The
4454 * compaction policy is as follows:
4455 *
4456 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4457 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4458 * No Compaction: Extents occupy at least 50% of allocated space
4459 */
4460void
4461xfs_iext_irec_compact(
4462 xfs_ifork_t *ifp) /* inode fork pointer */
4463{
4464 xfs_extnum_t nextents; /* number of extents in file */
4465 int nlists; /* number of irec's (ex lists) */
4466
4467 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4468 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4469 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4470
4471 if (nextents == 0) {
4472 xfs_iext_destroy(ifp);
4473 } else if (nextents <= XFS_INLINE_EXTS) {
4474 xfs_iext_indirect_to_direct(ifp);
4475 xfs_iext_direct_to_inline(ifp, nextents);
4476 } else if (nextents <= XFS_LINEAR_EXTS) {
4477 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4478 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4479 xfs_iext_irec_compact_pages(ifp);
4480 }
4481}
4482
4483/*
4484 * Combine extents from neighboring extent pages.
4485 */
4486void
4487xfs_iext_irec_compact_pages(
4488 xfs_ifork_t *ifp) /* inode fork pointer */
4489{
4490 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4491 int erp_idx = 0; /* indirection array index */
4492 int nlists; /* number of irec's (ex lists) */
4493
4494 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4495 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4496 while (erp_idx < nlists - 1) {
4497 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4498 erp_next = erp + 1;
4499 if (erp_next->er_extcount <=
4500 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4501 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4502 erp_next->er_extbuf, erp_next->er_extcount *
4503 sizeof(xfs_bmbt_rec_t));
4504 erp->er_extcount += erp_next->er_extcount;
4505 /*
4506 * Free page before removing extent record
4507 * so er_extoffs don't get modified in
4508 * xfs_iext_irec_remove.
4509 */
f0e2d93c 4510 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4511 erp_next->er_extbuf = NULL;
4512 xfs_iext_irec_remove(ifp, erp_idx + 1);
4513 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4514 } else {
4515 erp_idx++;
4516 }
4517 }
4518}
4519
0293ce3a
MK
4520/*
4521 * This is called to update the er_extoff field in the indirection
4522 * array when extents have been added or removed from one of the
4523 * extent lists. erp_idx contains the irec index to begin updating
4524 * at and ext_diff contains the number of extents that were added
4525 * or removed.
4526 */
4527void
4528xfs_iext_irec_update_extoffs(
4529 xfs_ifork_t *ifp, /* inode fork pointer */
4530 int erp_idx, /* irec index to update */
4531 int ext_diff) /* number of new extents */
4532{
4533 int i; /* loop counter */
4534 int nlists; /* number of irec's (ex lists */
4535
4536 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4537 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4538 for (i = erp_idx; i < nlists; i++) {
4539 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4540 }
4541}