xfs: remove xfs_flush_pages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
1da177e4
LT
20#include "xfs_log.h"
21#include "xfs_sb.h"
a844f451 22#include "xfs_ag.h"
1da177e4 23#include "xfs_trans.h"
1da177e4
LT
24#include "xfs_mount.h"
25#include "xfs_bmap_btree.h"
1da177e4 26#include "xfs_alloc.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
1da177e4 31#include "xfs_error.h"
739bfb2a 32#include "xfs_vnodeops.h"
f999a5bf 33#include "xfs_da_btree.h"
ddcd856d 34#include "xfs_ioctl.h"
dda35b8f 35#include "xfs_trace.h"
1da177e4
LT
36
37#include <linux/dcache.h>
2fe17c10 38#include <linux/falloc.h>
d126d43f 39#include <linux/pagevec.h>
1da177e4 40
f0f37e2f 41static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 42
487f84f3
DC
43/*
44 * Locking primitives for read and write IO paths to ensure we consistently use
45 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
46 */
47static inline void
48xfs_rw_ilock(
49 struct xfs_inode *ip,
50 int type)
51{
52 if (type & XFS_IOLOCK_EXCL)
53 mutex_lock(&VFS_I(ip)->i_mutex);
54 xfs_ilock(ip, type);
55}
56
57static inline void
58xfs_rw_iunlock(
59 struct xfs_inode *ip,
60 int type)
61{
62 xfs_iunlock(ip, type);
63 if (type & XFS_IOLOCK_EXCL)
64 mutex_unlock(&VFS_I(ip)->i_mutex);
65}
66
67static inline void
68xfs_rw_ilock_demote(
69 struct xfs_inode *ip,
70 int type)
71{
72 xfs_ilock_demote(ip, type);
73 if (type & XFS_IOLOCK_EXCL)
74 mutex_unlock(&VFS_I(ip)->i_mutex);
75}
76
dda35b8f
CH
77/*
78 * xfs_iozero
79 *
80 * xfs_iozero clears the specified range of buffer supplied,
81 * and marks all the affected blocks as valid and modified. If
82 * an affected block is not allocated, it will be allocated. If
83 * an affected block is not completely overwritten, and is not
84 * valid before the operation, it will be read from disk before
85 * being partially zeroed.
86 */
87STATIC int
88xfs_iozero(
89 struct xfs_inode *ip, /* inode */
90 loff_t pos, /* offset in file */
91 size_t count) /* size of data to zero */
92{
93 struct page *page;
94 struct address_space *mapping;
95 int status;
96
97 mapping = VFS_I(ip)->i_mapping;
98 do {
99 unsigned offset, bytes;
100 void *fsdata;
101
102 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
103 bytes = PAGE_CACHE_SIZE - offset;
104 if (bytes > count)
105 bytes = count;
106
107 status = pagecache_write_begin(NULL, mapping, pos, bytes,
108 AOP_FLAG_UNINTERRUPTIBLE,
109 &page, &fsdata);
110 if (status)
111 break;
112
113 zero_user(page, offset, bytes);
114
115 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
116 page, fsdata);
117 WARN_ON(status <= 0); /* can't return less than zero! */
118 pos += bytes;
119 count -= bytes;
120 status = 0;
121 } while (count);
122
123 return (-status);
124}
125
1da2f2db
CH
126/*
127 * Fsync operations on directories are much simpler than on regular files,
128 * as there is no file data to flush, and thus also no need for explicit
129 * cache flush operations, and there are no non-transaction metadata updates
130 * on directories either.
131 */
132STATIC int
133xfs_dir_fsync(
134 struct file *file,
135 loff_t start,
136 loff_t end,
137 int datasync)
138{
139 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
140 struct xfs_mount *mp = ip->i_mount;
141 xfs_lsn_t lsn = 0;
142
143 trace_xfs_dir_fsync(ip);
144
145 xfs_ilock(ip, XFS_ILOCK_SHARED);
146 if (xfs_ipincount(ip))
147 lsn = ip->i_itemp->ili_last_lsn;
148 xfs_iunlock(ip, XFS_ILOCK_SHARED);
149
150 if (!lsn)
151 return 0;
152 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
153}
154
fd3200be
CH
155STATIC int
156xfs_file_fsync(
157 struct file *file,
02c24a82
JB
158 loff_t start,
159 loff_t end,
fd3200be
CH
160 int datasync)
161{
7ea80859
CH
162 struct inode *inode = file->f_mapping->host;
163 struct xfs_inode *ip = XFS_I(inode);
a27a263b 164 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
165 int error = 0;
166 int log_flushed = 0;
b1037058 167 xfs_lsn_t lsn = 0;
fd3200be 168
cca28fb8 169 trace_xfs_file_fsync(ip);
fd3200be 170
02c24a82
JB
171 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
172 if (error)
173 return error;
174
a27a263b 175 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
176 return -XFS_ERROR(EIO);
177
178 xfs_iflags_clear(ip, XFS_ITRUNCATED);
179
a27a263b
CH
180 if (mp->m_flags & XFS_MOUNT_BARRIER) {
181 /*
182 * If we have an RT and/or log subvolume we need to make sure
183 * to flush the write cache the device used for file data
184 * first. This is to ensure newly written file data make
185 * it to disk before logging the new inode size in case of
186 * an extending write.
187 */
188 if (XFS_IS_REALTIME_INODE(ip))
189 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
190 else if (mp->m_logdev_targp != mp->m_ddev_targp)
191 xfs_blkdev_issue_flush(mp->m_ddev_targp);
192 }
193
fd3200be 194 /*
8a9c9980
CH
195 * All metadata updates are logged, which means that we just have
196 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
197 */
198 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
199 if (xfs_ipincount(ip)) {
200 if (!datasync ||
201 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
202 lsn = ip->i_itemp->ili_last_lsn;
203 }
8a9c9980 204 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 205
8a9c9980 206 if (lsn)
b1037058
CH
207 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
208
a27a263b
CH
209 /*
210 * If we only have a single device, and the log force about was
211 * a no-op we might have to flush the data device cache here.
212 * This can only happen for fdatasync/O_DSYNC if we were overwriting
213 * an already allocated file and thus do not have any metadata to
214 * commit.
215 */
216 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
217 mp->m_logdev_targp == mp->m_ddev_targp &&
218 !XFS_IS_REALTIME_INODE(ip) &&
219 !log_flushed)
220 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
221
222 return -error;
223}
224
00258e36
CH
225STATIC ssize_t
226xfs_file_aio_read(
dda35b8f
CH
227 struct kiocb *iocb,
228 const struct iovec *iovp,
00258e36
CH
229 unsigned long nr_segs,
230 loff_t pos)
dda35b8f
CH
231{
232 struct file *file = iocb->ki_filp;
233 struct inode *inode = file->f_mapping->host;
00258e36
CH
234 struct xfs_inode *ip = XFS_I(inode);
235 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
236 size_t size = 0;
237 ssize_t ret = 0;
00258e36 238 int ioflags = 0;
dda35b8f 239 xfs_fsize_t n;
dda35b8f 240
dda35b8f
CH
241 XFS_STATS_INC(xs_read_calls);
242
00258e36
CH
243 BUG_ON(iocb->ki_pos != pos);
244
245 if (unlikely(file->f_flags & O_DIRECT))
246 ioflags |= IO_ISDIRECT;
247 if (file->f_mode & FMODE_NOCMTIME)
248 ioflags |= IO_INVIS;
249
52764329
DC
250 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
251 if (ret < 0)
252 return ret;
dda35b8f
CH
253
254 if (unlikely(ioflags & IO_ISDIRECT)) {
255 xfs_buftarg_t *target =
256 XFS_IS_REALTIME_INODE(ip) ?
257 mp->m_rtdev_targp : mp->m_ddev_targp;
00258e36 258 if ((iocb->ki_pos & target->bt_smask) ||
dda35b8f 259 (size & target->bt_smask)) {
ce7ae151 260 if (iocb->ki_pos == i_size_read(inode))
00258e36 261 return 0;
dda35b8f
CH
262 return -XFS_ERROR(EINVAL);
263 }
264 }
265
32972383 266 n = mp->m_super->s_maxbytes - iocb->ki_pos;
00258e36 267 if (n <= 0 || size == 0)
dda35b8f
CH
268 return 0;
269
270 if (n < size)
271 size = n;
272
273 if (XFS_FORCED_SHUTDOWN(mp))
274 return -EIO;
275
0c38a251
DC
276 /*
277 * Locking is a bit tricky here. If we take an exclusive lock
278 * for direct IO, we effectively serialise all new concurrent
279 * read IO to this file and block it behind IO that is currently in
280 * progress because IO in progress holds the IO lock shared. We only
281 * need to hold the lock exclusive to blow away the page cache, so
282 * only take lock exclusively if the page cache needs invalidation.
283 * This allows the normal direct IO case of no page cache pages to
284 * proceeed concurrently without serialisation.
285 */
286 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
287 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
288 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
289 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
290
00258e36
CH
291 if (inode->i_mapping->nrpages) {
292 ret = -xfs_flushinval_pages(ip,
293 (iocb->ki_pos & PAGE_CACHE_MASK),
294 -1, FI_REMAPF_LOCKED);
487f84f3
DC
295 if (ret) {
296 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
297 return ret;
298 }
00258e36 299 }
487f84f3 300 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 301 }
dda35b8f 302
00258e36 303 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
dda35b8f 304
00258e36 305 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
dda35b8f
CH
306 if (ret > 0)
307 XFS_STATS_ADD(xs_read_bytes, ret);
308
487f84f3 309 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
310 return ret;
311}
312
00258e36
CH
313STATIC ssize_t
314xfs_file_splice_read(
dda35b8f
CH
315 struct file *infilp,
316 loff_t *ppos,
317 struct pipe_inode_info *pipe,
318 size_t count,
00258e36 319 unsigned int flags)
dda35b8f 320{
00258e36 321 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 322 int ioflags = 0;
dda35b8f
CH
323 ssize_t ret;
324
325 XFS_STATS_INC(xs_read_calls);
00258e36
CH
326
327 if (infilp->f_mode & FMODE_NOCMTIME)
328 ioflags |= IO_INVIS;
329
dda35b8f
CH
330 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
331 return -EIO;
332
487f84f3 333 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 334
dda35b8f
CH
335 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
336
337 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
338 if (ret > 0)
339 XFS_STATS_ADD(xs_read_bytes, ret);
340
487f84f3 341 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
342 return ret;
343}
344
487f84f3
DC
345/*
346 * xfs_file_splice_write() does not use xfs_rw_ilock() because
347 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
348 * couuld cause lock inversions between the aio_write path and the splice path
349 * if someone is doing concurrent splice(2) based writes and write(2) based
350 * writes to the same inode. The only real way to fix this is to re-implement
351 * the generic code here with correct locking orders.
352 */
00258e36
CH
353STATIC ssize_t
354xfs_file_splice_write(
dda35b8f
CH
355 struct pipe_inode_info *pipe,
356 struct file *outfilp,
357 loff_t *ppos,
358 size_t count,
00258e36 359 unsigned int flags)
dda35b8f 360{
dda35b8f 361 struct inode *inode = outfilp->f_mapping->host;
00258e36 362 struct xfs_inode *ip = XFS_I(inode);
00258e36
CH
363 int ioflags = 0;
364 ssize_t ret;
dda35b8f
CH
365
366 XFS_STATS_INC(xs_write_calls);
00258e36
CH
367
368 if (outfilp->f_mode & FMODE_NOCMTIME)
369 ioflags |= IO_INVIS;
370
dda35b8f
CH
371 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
372 return -EIO;
373
374 xfs_ilock(ip, XFS_IOLOCK_EXCL);
375
dda35b8f
CH
376 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
377
378 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
ce7ae151
CH
379 if (ret > 0)
380 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 381
dda35b8f
CH
382 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
383 return ret;
384}
385
386/*
193aec10
CH
387 * This routine is called to handle zeroing any space in the last block of the
388 * file that is beyond the EOF. We do this since the size is being increased
389 * without writing anything to that block and we don't want to read the
390 * garbage on the disk.
dda35b8f
CH
391 */
392STATIC int /* error (positive) */
393xfs_zero_last_block(
193aec10
CH
394 struct xfs_inode *ip,
395 xfs_fsize_t offset,
396 xfs_fsize_t isize)
dda35b8f 397{
193aec10
CH
398 struct xfs_mount *mp = ip->i_mount;
399 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
400 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
401 int zero_len;
402 int nimaps = 1;
403 int error = 0;
404 struct xfs_bmbt_irec imap;
dda35b8f 405
193aec10 406 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 407 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 408 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 409 if (error)
dda35b8f 410 return error;
193aec10 411
dda35b8f 412 ASSERT(nimaps > 0);
193aec10 413
dda35b8f
CH
414 /*
415 * If the block underlying isize is just a hole, then there
416 * is nothing to zero.
417 */
193aec10 418 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 419 return 0;
dda35b8f
CH
420
421 zero_len = mp->m_sb.sb_blocksize - zero_offset;
422 if (isize + zero_len > offset)
423 zero_len = offset - isize;
193aec10 424 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
425}
426
427/*
193aec10
CH
428 * Zero any on disk space between the current EOF and the new, larger EOF.
429 *
430 * This handles the normal case of zeroing the remainder of the last block in
431 * the file and the unusual case of zeroing blocks out beyond the size of the
432 * file. This second case only happens with fixed size extents and when the
433 * system crashes before the inode size was updated but after blocks were
434 * allocated.
435 *
436 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 437 */
dda35b8f
CH
438int /* error (positive) */
439xfs_zero_eof(
193aec10
CH
440 struct xfs_inode *ip,
441 xfs_off_t offset, /* starting I/O offset */
442 xfs_fsize_t isize) /* current inode size */
dda35b8f 443{
193aec10
CH
444 struct xfs_mount *mp = ip->i_mount;
445 xfs_fileoff_t start_zero_fsb;
446 xfs_fileoff_t end_zero_fsb;
447 xfs_fileoff_t zero_count_fsb;
448 xfs_fileoff_t last_fsb;
449 xfs_fileoff_t zero_off;
450 xfs_fsize_t zero_len;
451 int nimaps;
452 int error = 0;
453 struct xfs_bmbt_irec imap;
454
455 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
456 ASSERT(offset > isize);
457
458 /*
459 * First handle zeroing the block on which isize resides.
193aec10 460 *
dda35b8f
CH
461 * We only zero a part of that block so it is handled specially.
462 */
193aec10
CH
463 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
464 error = xfs_zero_last_block(ip, offset, isize);
465 if (error)
466 return error;
dda35b8f
CH
467 }
468
469 /*
193aec10
CH
470 * Calculate the range between the new size and the old where blocks
471 * needing to be zeroed may exist.
472 *
473 * To get the block where the last byte in the file currently resides,
474 * we need to subtract one from the size and truncate back to a block
475 * boundary. We subtract 1 in case the size is exactly on a block
476 * boundary.
dda35b8f
CH
477 */
478 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
479 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
480 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
481 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
482 if (last_fsb == end_zero_fsb) {
483 /*
484 * The size was only incremented on its last block.
485 * We took care of that above, so just return.
486 */
487 return 0;
488 }
489
490 ASSERT(start_zero_fsb <= end_zero_fsb);
491 while (start_zero_fsb <= end_zero_fsb) {
492 nimaps = 1;
493 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
494
495 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
496 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
497 &imap, &nimaps, 0);
193aec10
CH
498 xfs_iunlock(ip, XFS_ILOCK_EXCL);
499 if (error)
dda35b8f 500 return error;
193aec10 501
dda35b8f
CH
502 ASSERT(nimaps > 0);
503
504 if (imap.br_state == XFS_EXT_UNWRITTEN ||
505 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
506 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
507 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
508 continue;
509 }
510
511 /*
512 * There are blocks we need to zero.
dda35b8f 513 */
dda35b8f
CH
514 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
515 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
516
517 if ((zero_off + zero_len) > offset)
518 zero_len = offset - zero_off;
519
520 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
521 if (error)
522 return error;
dda35b8f
CH
523
524 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
525 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
526 }
527
528 return 0;
dda35b8f
CH
529}
530
4d8d1581
DC
531/*
532 * Common pre-write limit and setup checks.
533 *
5bf1f262
CH
534 * Called with the iolocked held either shared and exclusive according to
535 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
536 * if called for a direct write beyond i_size.
4d8d1581
DC
537 */
538STATIC ssize_t
539xfs_file_aio_write_checks(
540 struct file *file,
541 loff_t *pos,
542 size_t *count,
543 int *iolock)
544{
545 struct inode *inode = file->f_mapping->host;
546 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
547 int error = 0;
548
7271d243 549restart:
4d8d1581 550 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 551 if (error)
4d8d1581 552 return error;
4d8d1581 553
4d8d1581
DC
554 /*
555 * If the offset is beyond the size of the file, we need to zero any
556 * blocks that fall between the existing EOF and the start of this
2813d682 557 * write. If zeroing is needed and we are currently holding the
467f7899
CH
558 * iolock shared, we need to update it to exclusive which implies
559 * having to redo all checks before.
4d8d1581 560 */
2813d682 561 if (*pos > i_size_read(inode)) {
7271d243 562 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 563 xfs_rw_iunlock(ip, *iolock);
7271d243 564 *iolock = XFS_IOLOCK_EXCL;
467f7899 565 xfs_rw_ilock(ip, *iolock);
7271d243
DC
566 goto restart;
567 }
ce7ae151 568 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
569 if (error)
570 return error;
7271d243 571 }
4d8d1581 572
8a9c9980
CH
573 /*
574 * Updating the timestamps will grab the ilock again from
575 * xfs_fs_dirty_inode, so we have to call it after dropping the
576 * lock above. Eventually we should look into a way to avoid
577 * the pointless lock roundtrip.
578 */
c3b2da31
JB
579 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
580 error = file_update_time(file);
581 if (error)
582 return error;
583 }
8a9c9980 584
4d8d1581
DC
585 /*
586 * If we're writing the file then make sure to clear the setuid and
587 * setgid bits if the process is not being run by root. This keeps
588 * people from modifying setuid and setgid binaries.
589 */
590 return file_remove_suid(file);
4d8d1581
DC
591}
592
f0d26e86
DC
593/*
594 * xfs_file_dio_aio_write - handle direct IO writes
595 *
596 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 597 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
598 * follow locking changes and looping.
599 *
eda77982
DC
600 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
601 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
602 * pages are flushed out.
603 *
604 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
605 * allowing them to be done in parallel with reads and other direct IO writes.
606 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
607 * needs to do sub-block zeroing and that requires serialisation against other
608 * direct IOs to the same block. In this case we need to serialise the
609 * submission of the unaligned IOs so that we don't get racing block zeroing in
610 * the dio layer. To avoid the problem with aio, we also need to wait for
611 * outstanding IOs to complete so that unwritten extent conversion is completed
612 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 613 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 614 *
f0d26e86
DC
615 * Returns with locks held indicated by @iolock and errors indicated by
616 * negative return values.
617 */
618STATIC ssize_t
619xfs_file_dio_aio_write(
620 struct kiocb *iocb,
621 const struct iovec *iovp,
622 unsigned long nr_segs,
623 loff_t pos,
d0606464 624 size_t ocount)
f0d26e86
DC
625{
626 struct file *file = iocb->ki_filp;
627 struct address_space *mapping = file->f_mapping;
628 struct inode *inode = mapping->host;
629 struct xfs_inode *ip = XFS_I(inode);
630 struct xfs_mount *mp = ip->i_mount;
631 ssize_t ret = 0;
f0d26e86 632 size_t count = ocount;
eda77982 633 int unaligned_io = 0;
d0606464 634 int iolock;
f0d26e86
DC
635 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
636 mp->m_rtdev_targp : mp->m_ddev_targp;
637
f0d26e86
DC
638 if ((pos & target->bt_smask) || (count & target->bt_smask))
639 return -XFS_ERROR(EINVAL);
640
eda77982
DC
641 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
642 unaligned_io = 1;
643
7271d243
DC
644 /*
645 * We don't need to take an exclusive lock unless there page cache needs
646 * to be invalidated or unaligned IO is being executed. We don't need to
647 * consider the EOF extension case here because
648 * xfs_file_aio_write_checks() will relock the inode as necessary for
649 * EOF zeroing cases and fill out the new inode size as appropriate.
650 */
651 if (unaligned_io || mapping->nrpages)
d0606464 652 iolock = XFS_IOLOCK_EXCL;
f0d26e86 653 else
d0606464
CH
654 iolock = XFS_IOLOCK_SHARED;
655 xfs_rw_ilock(ip, iolock);
c58cb165
CH
656
657 /*
658 * Recheck if there are cached pages that need invalidate after we got
659 * the iolock to protect against other threads adding new pages while
660 * we were waiting for the iolock.
661 */
d0606464
CH
662 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
663 xfs_rw_iunlock(ip, iolock);
664 iolock = XFS_IOLOCK_EXCL;
665 xfs_rw_ilock(ip, iolock);
c58cb165 666 }
f0d26e86 667
d0606464 668 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 669 if (ret)
d0606464 670 goto out;
f0d26e86
DC
671
672 if (mapping->nrpages) {
f0d26e86
DC
673 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
674 FI_REMAPF_LOCKED);
675 if (ret)
d0606464 676 goto out;
f0d26e86
DC
677 }
678
eda77982
DC
679 /*
680 * If we are doing unaligned IO, wait for all other IO to drain,
681 * otherwise demote the lock if we had to flush cached pages
682 */
683 if (unaligned_io)
4a06fd26 684 inode_dio_wait(inode);
d0606464 685 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 686 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 687 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
688 }
689
690 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
691 ret = generic_file_direct_write(iocb, iovp,
692 &nr_segs, pos, &iocb->ki_pos, count, ocount);
693
d0606464
CH
694out:
695 xfs_rw_iunlock(ip, iolock);
696
f0d26e86
DC
697 /* No fallback to buffered IO on errors for XFS. */
698 ASSERT(ret < 0 || ret == count);
699 return ret;
700}
701
00258e36 702STATIC ssize_t
637bbc75 703xfs_file_buffered_aio_write(
dda35b8f
CH
704 struct kiocb *iocb,
705 const struct iovec *iovp,
00258e36 706 unsigned long nr_segs,
637bbc75 707 loff_t pos,
d0606464 708 size_t ocount)
dda35b8f
CH
709{
710 struct file *file = iocb->ki_filp;
711 struct address_space *mapping = file->f_mapping;
712 struct inode *inode = mapping->host;
00258e36 713 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
714 ssize_t ret;
715 int enospc = 0;
d0606464 716 int iolock = XFS_IOLOCK_EXCL;
637bbc75 717 size_t count = ocount;
dda35b8f 718
d0606464 719 xfs_rw_ilock(ip, iolock);
dda35b8f 720
d0606464 721 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 722 if (ret)
d0606464 723 goto out;
dda35b8f
CH
724
725 /* We can write back this queue in page reclaim */
726 current->backing_dev_info = mapping->backing_dev_info;
727
dda35b8f 728write_retry:
637bbc75
DC
729 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
730 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
9aa05000
DC
731 pos, &iocb->ki_pos, count, 0);
732
637bbc75 733 /*
9aa05000
DC
734 * If we just got an ENOSPC, try to write back all dirty inodes to
735 * convert delalloc space to free up some of the excess reserved
736 * metadata space.
637bbc75
DC
737 */
738 if (ret == -ENOSPC && !enospc) {
637bbc75 739 enospc = 1;
9aa05000
DC
740 xfs_flush_inodes(ip->i_mount);
741 goto write_retry;
dda35b8f 742 }
d0606464 743
dda35b8f 744 current->backing_dev_info = NULL;
d0606464
CH
745out:
746 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
747 return ret;
748}
749
750STATIC ssize_t
751xfs_file_aio_write(
752 struct kiocb *iocb,
753 const struct iovec *iovp,
754 unsigned long nr_segs,
755 loff_t pos)
756{
757 struct file *file = iocb->ki_filp;
758 struct address_space *mapping = file->f_mapping;
759 struct inode *inode = mapping->host;
760 struct xfs_inode *ip = XFS_I(inode);
761 ssize_t ret;
637bbc75
DC
762 size_t ocount = 0;
763
764 XFS_STATS_INC(xs_write_calls);
765
766 BUG_ON(iocb->ki_pos != pos);
767
768 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
769 if (ret)
770 return ret;
771
772 if (ocount == 0)
773 return 0;
774
d9457dc0 775 sb_start_write(inode->i_sb);
637bbc75 776
d9457dc0
JK
777 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
778 ret = -EIO;
779 goto out;
780 }
637bbc75
DC
781
782 if (unlikely(file->f_flags & O_DIRECT))
d0606464 783 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
637bbc75
DC
784 else
785 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
d0606464 786 ocount);
dda35b8f 787
d0606464
CH
788 if (ret > 0) {
789 ssize_t err;
dda35b8f 790
d0606464 791 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 792
d0606464
CH
793 /* Handle various SYNC-type writes */
794 err = generic_write_sync(file, pos, ret);
795 if (err < 0)
796 ret = err;
dda35b8f
CH
797 }
798
d9457dc0
JK
799out:
800 sb_end_write(inode->i_sb);
a363f0c2 801 return ret;
dda35b8f
CH
802}
803
2fe17c10
CH
804STATIC long
805xfs_file_fallocate(
806 struct file *file,
807 int mode,
808 loff_t offset,
809 loff_t len)
810{
811 struct inode *inode = file->f_path.dentry->d_inode;
812 long error;
813 loff_t new_size = 0;
814 xfs_flock64_t bf;
815 xfs_inode_t *ip = XFS_I(inode);
816 int cmd = XFS_IOC_RESVSP;
82878897 817 int attr_flags = XFS_ATTR_NOLOCK;
2fe17c10
CH
818
819 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
820 return -EOPNOTSUPP;
821
822 bf.l_whence = 0;
823 bf.l_start = offset;
824 bf.l_len = len;
825
826 xfs_ilock(ip, XFS_IOLOCK_EXCL);
827
828 if (mode & FALLOC_FL_PUNCH_HOLE)
829 cmd = XFS_IOC_UNRESVSP;
830
831 /* check the new inode size is valid before allocating */
832 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
833 offset + len > i_size_read(inode)) {
834 new_size = offset + len;
835 error = inode_newsize_ok(inode, new_size);
836 if (error)
837 goto out_unlock;
838 }
839
82878897
DC
840 if (file->f_flags & O_DSYNC)
841 attr_flags |= XFS_ATTR_SYNC;
842
843 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
2fe17c10
CH
844 if (error)
845 goto out_unlock;
846
847 /* Change file size if needed */
848 if (new_size) {
849 struct iattr iattr;
850
851 iattr.ia_valid = ATTR_SIZE;
852 iattr.ia_size = new_size;
c4ed4243 853 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
2fe17c10
CH
854 }
855
856out_unlock:
857 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
858 return error;
859}
860
861
1da177e4 862STATIC int
3562fd45 863xfs_file_open(
1da177e4 864 struct inode *inode,
f999a5bf 865 struct file *file)
1da177e4 866{
f999a5bf 867 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 868 return -EFBIG;
f999a5bf
CH
869 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
870 return -EIO;
871 return 0;
872}
873
874STATIC int
875xfs_dir_open(
876 struct inode *inode,
877 struct file *file)
878{
879 struct xfs_inode *ip = XFS_I(inode);
880 int mode;
881 int error;
882
883 error = xfs_file_open(inode, file);
884 if (error)
885 return error;
886
887 /*
888 * If there are any blocks, read-ahead block 0 as we're almost
889 * certain to have the next operation be a read there.
890 */
891 mode = xfs_ilock_map_shared(ip);
892 if (ip->i_d.di_nextents > 0)
893 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
894 xfs_iunlock(ip, mode);
895 return 0;
1da177e4
LT
896}
897
1da177e4 898STATIC int
3562fd45 899xfs_file_release(
1da177e4
LT
900 struct inode *inode,
901 struct file *filp)
902{
739bfb2a 903 return -xfs_release(XFS_I(inode));
1da177e4
LT
904}
905
1da177e4 906STATIC int
3562fd45 907xfs_file_readdir(
1da177e4
LT
908 struct file *filp,
909 void *dirent,
910 filldir_t filldir)
911{
051e7cd4 912 struct inode *inode = filp->f_path.dentry->d_inode;
739bfb2a 913 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
914 int error;
915 size_t bufsize;
916
917 /*
918 * The Linux API doesn't pass down the total size of the buffer
919 * we read into down to the filesystem. With the filldir concept
920 * it's not needed for correct information, but the XFS dir2 leaf
921 * code wants an estimate of the buffer size to calculate it's
922 * readahead window and size the buffers used for mapping to
923 * physical blocks.
924 *
925 * Try to give it an estimate that's good enough, maybe at some
926 * point we can change the ->readdir prototype to include the
a9cc799e 927 * buffer size. For now we use the current glibc buffer size.
051e7cd4 928 */
a9cc799e 929 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 930
739bfb2a 931 error = xfs_readdir(ip, dirent, bufsize,
051e7cd4
CH
932 (xfs_off_t *)&filp->f_pos, filldir);
933 if (error)
934 return -error;
935 return 0;
1da177e4
LT
936}
937
1da177e4 938STATIC int
3562fd45 939xfs_file_mmap(
1da177e4
LT
940 struct file *filp,
941 struct vm_area_struct *vma)
942{
3562fd45 943 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 944
fbc1462b 945 file_accessed(filp);
1da177e4
LT
946 return 0;
947}
948
4f57dbc6
DC
949/*
950 * mmap()d file has taken write protection fault and is being made
951 * writable. We can set the page state up correctly for a writable
952 * page, which means we can do correct delalloc accounting (ENOSPC
953 * checking!) and unwritten extent mapping.
954 */
955STATIC int
956xfs_vm_page_mkwrite(
957 struct vm_area_struct *vma,
c2ec175c 958 struct vm_fault *vmf)
4f57dbc6 959{
c2ec175c 960 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
961}
962
d126d43f
JL
963/*
964 * This type is designed to indicate the type of offset we would like
965 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
966 */
967enum {
968 HOLE_OFF = 0,
969 DATA_OFF,
970};
971
972/*
973 * Lookup the desired type of offset from the given page.
974 *
975 * On success, return true and the offset argument will point to the
976 * start of the region that was found. Otherwise this function will
977 * return false and keep the offset argument unchanged.
978 */
979STATIC bool
980xfs_lookup_buffer_offset(
981 struct page *page,
982 loff_t *offset,
983 unsigned int type)
984{
985 loff_t lastoff = page_offset(page);
986 bool found = false;
987 struct buffer_head *bh, *head;
988
989 bh = head = page_buffers(page);
990 do {
991 /*
992 * Unwritten extents that have data in the page
993 * cache covering them can be identified by the
994 * BH_Unwritten state flag. Pages with multiple
995 * buffers might have a mix of holes, data and
996 * unwritten extents - any buffer with valid
997 * data in it should have BH_Uptodate flag set
998 * on it.
999 */
1000 if (buffer_unwritten(bh) ||
1001 buffer_uptodate(bh)) {
1002 if (type == DATA_OFF)
1003 found = true;
1004 } else {
1005 if (type == HOLE_OFF)
1006 found = true;
1007 }
1008
1009 if (found) {
1010 *offset = lastoff;
1011 break;
1012 }
1013 lastoff += bh->b_size;
1014 } while ((bh = bh->b_this_page) != head);
1015
1016 return found;
1017}
1018
1019/*
1020 * This routine is called to find out and return a data or hole offset
1021 * from the page cache for unwritten extents according to the desired
1022 * type for xfs_seek_data() or xfs_seek_hole().
1023 *
1024 * The argument offset is used to tell where we start to search from the
1025 * page cache. Map is used to figure out the end points of the range to
1026 * lookup pages.
1027 *
1028 * Return true if the desired type of offset was found, and the argument
1029 * offset is filled with that address. Otherwise, return false and keep
1030 * offset unchanged.
1031 */
1032STATIC bool
1033xfs_find_get_desired_pgoff(
1034 struct inode *inode,
1035 struct xfs_bmbt_irec *map,
1036 unsigned int type,
1037 loff_t *offset)
1038{
1039 struct xfs_inode *ip = XFS_I(inode);
1040 struct xfs_mount *mp = ip->i_mount;
1041 struct pagevec pvec;
1042 pgoff_t index;
1043 pgoff_t end;
1044 loff_t endoff;
1045 loff_t startoff = *offset;
1046 loff_t lastoff = startoff;
1047 bool found = false;
1048
1049 pagevec_init(&pvec, 0);
1050
1051 index = startoff >> PAGE_CACHE_SHIFT;
1052 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1053 end = endoff >> PAGE_CACHE_SHIFT;
1054 do {
1055 int want;
1056 unsigned nr_pages;
1057 unsigned int i;
1058
1059 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1060 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1061 want);
1062 /*
1063 * No page mapped into given range. If we are searching holes
1064 * and if this is the first time we got into the loop, it means
1065 * that the given offset is landed in a hole, return it.
1066 *
1067 * If we have already stepped through some block buffers to find
1068 * holes but they all contains data. In this case, the last
1069 * offset is already updated and pointed to the end of the last
1070 * mapped page, if it does not reach the endpoint to search,
1071 * that means there should be a hole between them.
1072 */
1073 if (nr_pages == 0) {
1074 /* Data search found nothing */
1075 if (type == DATA_OFF)
1076 break;
1077
1078 ASSERT(type == HOLE_OFF);
1079 if (lastoff == startoff || lastoff < endoff) {
1080 found = true;
1081 *offset = lastoff;
1082 }
1083 break;
1084 }
1085
1086 /*
1087 * At lease we found one page. If this is the first time we
1088 * step into the loop, and if the first page index offset is
1089 * greater than the given search offset, a hole was found.
1090 */
1091 if (type == HOLE_OFF && lastoff == startoff &&
1092 lastoff < page_offset(pvec.pages[0])) {
1093 found = true;
1094 break;
1095 }
1096
1097 for (i = 0; i < nr_pages; i++) {
1098 struct page *page = pvec.pages[i];
1099 loff_t b_offset;
1100
1101 /*
1102 * At this point, the page may be truncated or
1103 * invalidated (changing page->mapping to NULL),
1104 * or even swizzled back from swapper_space to tmpfs
1105 * file mapping. However, page->index will not change
1106 * because we have a reference on the page.
1107 *
1108 * Searching done if the page index is out of range.
1109 * If the current offset is not reaches the end of
1110 * the specified search range, there should be a hole
1111 * between them.
1112 */
1113 if (page->index > end) {
1114 if (type == HOLE_OFF && lastoff < endoff) {
1115 *offset = lastoff;
1116 found = true;
1117 }
1118 goto out;
1119 }
1120
1121 lock_page(page);
1122 /*
1123 * Page truncated or invalidated(page->mapping == NULL).
1124 * We can freely skip it and proceed to check the next
1125 * page.
1126 */
1127 if (unlikely(page->mapping != inode->i_mapping)) {
1128 unlock_page(page);
1129 continue;
1130 }
1131
1132 if (!page_has_buffers(page)) {
1133 unlock_page(page);
1134 continue;
1135 }
1136
1137 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1138 if (found) {
1139 /*
1140 * The found offset may be less than the start
1141 * point to search if this is the first time to
1142 * come here.
1143 */
1144 *offset = max_t(loff_t, startoff, b_offset);
1145 unlock_page(page);
1146 goto out;
1147 }
1148
1149 /*
1150 * We either searching data but nothing was found, or
1151 * searching hole but found a data buffer. In either
1152 * case, probably the next page contains the desired
1153 * things, update the last offset to it so.
1154 */
1155 lastoff = page_offset(page) + PAGE_SIZE;
1156 unlock_page(page);
1157 }
1158
1159 /*
1160 * The number of returned pages less than our desired, search
1161 * done. In this case, nothing was found for searching data,
1162 * but we found a hole behind the last offset.
1163 */
1164 if (nr_pages < want) {
1165 if (type == HOLE_OFF) {
1166 *offset = lastoff;
1167 found = true;
1168 }
1169 break;
1170 }
1171
1172 index = pvec.pages[i - 1]->index + 1;
1173 pagevec_release(&pvec);
1174 } while (index <= end);
1175
1176out:
1177 pagevec_release(&pvec);
1178 return found;
1179}
1180
3fe3e6b1
JL
1181STATIC loff_t
1182xfs_seek_data(
1183 struct file *file,
834ab122 1184 loff_t start)
3fe3e6b1
JL
1185{
1186 struct inode *inode = file->f_mapping->host;
1187 struct xfs_inode *ip = XFS_I(inode);
1188 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1189 loff_t uninitialized_var(offset);
1190 xfs_fsize_t isize;
1191 xfs_fileoff_t fsbno;
1192 xfs_filblks_t end;
1193 uint lock;
1194 int error;
1195
1196 lock = xfs_ilock_map_shared(ip);
1197
1198 isize = i_size_read(inode);
1199 if (start >= isize) {
1200 error = ENXIO;
1201 goto out_unlock;
1202 }
1203
3fe3e6b1
JL
1204 /*
1205 * Try to read extents from the first block indicated
1206 * by fsbno to the end block of the file.
1207 */
52f1acc8 1208 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1209 end = XFS_B_TO_FSB(mp, isize);
52f1acc8
JL
1210 for (;;) {
1211 struct xfs_bmbt_irec map[2];
1212 int nmap = 2;
1213 unsigned int i;
3fe3e6b1 1214
52f1acc8
JL
1215 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1216 XFS_BMAPI_ENTIRE);
1217 if (error)
1218 goto out_unlock;
3fe3e6b1 1219
52f1acc8
JL
1220 /* No extents at given offset, must be beyond EOF */
1221 if (nmap == 0) {
1222 error = ENXIO;
1223 goto out_unlock;
1224 }
1225
1226 for (i = 0; i < nmap; i++) {
1227 offset = max_t(loff_t, start,
1228 XFS_FSB_TO_B(mp, map[i].br_startoff));
1229
1230 /* Landed in a data extent */
1231 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1232 (map[i].br_state == XFS_EXT_NORM &&
1233 !isnullstartblock(map[i].br_startblock)))
1234 goto out;
1235
1236 /*
1237 * Landed in an unwritten extent, try to search data
1238 * from page cache.
1239 */
1240 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1241 if (xfs_find_get_desired_pgoff(inode, &map[i],
1242 DATA_OFF, &offset))
1243 goto out;
1244 }
1245 }
1246
1247 /*
1248 * map[0] is hole or its an unwritten extent but
1249 * without data in page cache. Probably means that
1250 * we are reading after EOF if nothing in map[1].
1251 */
3fe3e6b1
JL
1252 if (nmap == 1) {
1253 error = ENXIO;
1254 goto out_unlock;
1255 }
1256
52f1acc8
JL
1257 ASSERT(i > 1);
1258
1259 /*
1260 * Nothing was found, proceed to the next round of search
1261 * if reading offset not beyond or hit EOF.
1262 */
1263 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1264 start = XFS_FSB_TO_B(mp, fsbno);
1265 if (start >= isize) {
1266 error = ENXIO;
1267 goto out_unlock;
1268 }
3fe3e6b1
JL
1269 }
1270
52f1acc8 1271out:
3fe3e6b1
JL
1272 if (offset != file->f_pos)
1273 file->f_pos = offset;
1274
1275out_unlock:
1276 xfs_iunlock_map_shared(ip, lock);
1277
1278 if (error)
1279 return -error;
1280 return offset;
1281}
1282
1283STATIC loff_t
1284xfs_seek_hole(
1285 struct file *file,
834ab122 1286 loff_t start)
3fe3e6b1
JL
1287{
1288 struct inode *inode = file->f_mapping->host;
1289 struct xfs_inode *ip = XFS_I(inode);
1290 struct xfs_mount *mp = ip->i_mount;
1291 loff_t uninitialized_var(offset);
3fe3e6b1
JL
1292 xfs_fsize_t isize;
1293 xfs_fileoff_t fsbno;
b686d1f7 1294 xfs_filblks_t end;
3fe3e6b1
JL
1295 uint lock;
1296 int error;
1297
1298 if (XFS_FORCED_SHUTDOWN(mp))
1299 return -XFS_ERROR(EIO);
1300
1301 lock = xfs_ilock_map_shared(ip);
1302
1303 isize = i_size_read(inode);
1304 if (start >= isize) {
1305 error = ENXIO;
1306 goto out_unlock;
1307 }
1308
1309 fsbno = XFS_B_TO_FSBT(mp, start);
b686d1f7
JL
1310 end = XFS_B_TO_FSB(mp, isize);
1311
1312 for (;;) {
1313 struct xfs_bmbt_irec map[2];
1314 int nmap = 2;
1315 unsigned int i;
1316
1317 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1318 XFS_BMAPI_ENTIRE);
1319 if (error)
1320 goto out_unlock;
1321
1322 /* No extents at given offset, must be beyond EOF */
1323 if (nmap == 0) {
1324 error = ENXIO;
1325 goto out_unlock;
1326 }
1327
1328 for (i = 0; i < nmap; i++) {
1329 offset = max_t(loff_t, start,
1330 XFS_FSB_TO_B(mp, map[i].br_startoff));
1331
1332 /* Landed in a hole */
1333 if (map[i].br_startblock == HOLESTARTBLOCK)
1334 goto out;
1335
1336 /*
1337 * Landed in an unwritten extent, try to search hole
1338 * from page cache.
1339 */
1340 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1341 if (xfs_find_get_desired_pgoff(inode, &map[i],
1342 HOLE_OFF, &offset))
1343 goto out;
1344 }
1345 }
3fe3e6b1 1346
3fe3e6b1 1347 /*
b686d1f7
JL
1348 * map[0] contains data or its unwritten but contains
1349 * data in page cache, probably means that we are
1350 * reading after EOF. We should fix offset to point
1351 * to the end of the file(i.e., there is an implicit
1352 * hole at the end of any file).
3fe3e6b1 1353 */
b686d1f7
JL
1354 if (nmap == 1) {
1355 offset = isize;
1356 break;
1357 }
1358
1359 ASSERT(i > 1);
1360
1361 /*
1362 * Both mappings contains data, proceed to the next round of
1363 * search if the current reading offset not beyond or hit EOF.
1364 */
1365 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1366 start = XFS_FSB_TO_B(mp, fsbno);
1367 if (start >= isize) {
1368 offset = isize;
1369 break;
1370 }
3fe3e6b1
JL
1371 }
1372
b686d1f7
JL
1373out:
1374 /*
1375 * At this point, we must have found a hole. However, the returned
1376 * offset may be bigger than the file size as it may be aligned to
1377 * page boundary for unwritten extents, we need to deal with this
1378 * situation in particular.
1379 */
1380 offset = min_t(loff_t, offset, isize);
3fe3e6b1
JL
1381 if (offset != file->f_pos)
1382 file->f_pos = offset;
1383
1384out_unlock:
1385 xfs_iunlock_map_shared(ip, lock);
1386
1387 if (error)
1388 return -error;
1389 return offset;
1390}
1391
1392STATIC loff_t
1393xfs_file_llseek(
1394 struct file *file,
1395 loff_t offset,
1396 int origin)
1397{
1398 switch (origin) {
1399 case SEEK_END:
1400 case SEEK_CUR:
1401 case SEEK_SET:
1402 return generic_file_llseek(file, offset, origin);
1403 case SEEK_DATA:
834ab122 1404 return xfs_seek_data(file, offset);
3fe3e6b1 1405 case SEEK_HOLE:
834ab122 1406 return xfs_seek_hole(file, offset);
3fe3e6b1
JL
1407 default:
1408 return -EINVAL;
1409 }
1410}
1411
4b6f5d20 1412const struct file_operations xfs_file_operations = {
3fe3e6b1 1413 .llseek = xfs_file_llseek,
1da177e4 1414 .read = do_sync_read,
bb3f724e 1415 .write = do_sync_write,
3562fd45
NS
1416 .aio_read = xfs_file_aio_read,
1417 .aio_write = xfs_file_aio_write,
1b895840
NS
1418 .splice_read = xfs_file_splice_read,
1419 .splice_write = xfs_file_splice_write,
3562fd45 1420 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1421#ifdef CONFIG_COMPAT
3562fd45 1422 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1423#endif
3562fd45
NS
1424 .mmap = xfs_file_mmap,
1425 .open = xfs_file_open,
1426 .release = xfs_file_release,
1427 .fsync = xfs_file_fsync,
2fe17c10 1428 .fallocate = xfs_file_fallocate,
1da177e4
LT
1429};
1430
4b6f5d20 1431const struct file_operations xfs_dir_file_operations = {
f999a5bf 1432 .open = xfs_dir_open,
1da177e4 1433 .read = generic_read_dir,
3562fd45 1434 .readdir = xfs_file_readdir,
59af1584 1435 .llseek = generic_file_llseek,
3562fd45 1436 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1437#ifdef CONFIG_COMPAT
3562fd45 1438 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1439#endif
1da2f2db 1440 .fsync = xfs_dir_fsync,
1da177e4
LT
1441};
1442
f0f37e2f 1443static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1444 .fault = filemap_fault,
4f57dbc6 1445 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1446 .remap_pages = generic_file_remap_pages,
6fac0cb4 1447};