jbd2: use gfp_t instead of int
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jbd2 / transaction.c
CommitLineData
470decc6 1/*
58862699 2 * linux/fs/jbd2/transaction.c
470decc6
DK
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
f7f4bccb 22#include <linux/jbd2.h>
470decc6
DK
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
470decc6
DK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e07f7183 28#include <linux/hrtimer.h>
47def826
TT
29#include <linux/backing-dev.h>
30#include <linux/module.h>
470decc6 31
7ddae860 32static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
de1b7941 33static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
7ddae860 34
470decc6 35/*
f7f4bccb 36 * jbd2_get_transaction: obtain a new transaction_t object.
470decc6
DK
37 *
38 * Simply allocate and initialise a new transaction. Create it in
39 * RUNNING state and add it to the current journal (which should not
40 * have an existing running transaction: we only make a new transaction
41 * once we have started to commit the old one).
42 *
43 * Preconditions:
44 * The journal MUST be locked. We don't perform atomic mallocs on the
45 * new transaction and we can't block without protecting against other
46 * processes trying to touch the journal while it is in transition.
47 *
470decc6
DK
48 */
49
50static transaction_t *
f7f4bccb 51jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
470decc6
DK
52{
53 transaction->t_journal = journal;
54 transaction->t_state = T_RUNNING;
e07f7183 55 transaction->t_start_time = ktime_get();
470decc6
DK
56 transaction->t_tid = journal->j_transaction_sequence++;
57 transaction->t_expires = jiffies + journal->j_commit_interval;
58 spin_lock_init(&transaction->t_handle_lock);
a51dca9c
TT
59 atomic_set(&transaction->t_updates, 0);
60 atomic_set(&transaction->t_outstanding_credits, 0);
8dd42046 61 atomic_set(&transaction->t_handle_count, 0);
c851ed54 62 INIT_LIST_HEAD(&transaction->t_inode_list);
3e624fc7 63 INIT_LIST_HEAD(&transaction->t_private_list);
470decc6
DK
64
65 /* Set up the commit timer for the new transaction. */
b1f485f2 66 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
470decc6
DK
67 add_timer(&journal->j_commit_timer);
68
69 J_ASSERT(journal->j_running_transaction == NULL);
70 journal->j_running_transaction = transaction;
8e85fb3f
JL
71 transaction->t_max_wait = 0;
72 transaction->t_start = jiffies;
470decc6
DK
73
74 return transaction;
75}
76
77/*
78 * Handle management.
79 *
80 * A handle_t is an object which represents a single atomic update to a
81 * filesystem, and which tracks all of the modifications which form part
82 * of that one update.
83 */
84
6d0bf005 85/*
28e35e42 86 * Update transaction's maximum wait time, if debugging is enabled.
6d0bf005
TT
87 *
88 * In order for t_max_wait to be reliable, it must be protected by a
89 * lock. But doing so will mean that start_this_handle() can not be
90 * run in parallel on SMP systems, which limits our scalability. So
91 * unless debugging is enabled, we no longer update t_max_wait, which
92 * means that maximum wait time reported by the jbd2_run_stats
93 * tracepoint will always be zero.
94 */
28e35e42
TM
95static inline void update_t_max_wait(transaction_t *transaction,
96 unsigned long ts)
6d0bf005
TT
97{
98#ifdef CONFIG_JBD2_DEBUG
6d0bf005
TT
99 if (jbd2_journal_enable_debug &&
100 time_after(transaction->t_start, ts)) {
101 ts = jbd2_time_diff(ts, transaction->t_start);
102 spin_lock(&transaction->t_handle_lock);
103 if (ts > transaction->t_max_wait)
104 transaction->t_max_wait = ts;
105 spin_unlock(&transaction->t_handle_lock);
106 }
107#endif
108}
109
470decc6
DK
110/*
111 * start_this_handle: Given a handle, deal with any locking or stalling
112 * needed to make sure that there is enough journal space for the handle
113 * to begin. Attach the handle to a transaction and set up the
114 * transaction's buffer credits.
115 */
116
47def826 117static int start_this_handle(journal_t *journal, handle_t *handle,
d2159fb7 118 gfp_t gfp_mask)
470decc6 119{
e4471831
TT
120 transaction_t *transaction, *new_transaction = NULL;
121 tid_t tid;
122 int needed, need_to_start;
123 int nblocks = handle->h_buffer_credits;
28e35e42 124 unsigned long ts = jiffies;
470decc6
DK
125
126 if (nblocks > journal->j_max_transaction_buffers) {
127 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
128 current->comm, nblocks,
129 journal->j_max_transaction_buffers);
47def826 130 return -ENOSPC;
470decc6
DK
131 }
132
133alloc_transaction:
134 if (!journal->j_running_transaction) {
47def826 135 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
470decc6 136 if (!new_transaction) {
47def826
TT
137 /*
138 * If __GFP_FS is not present, then we may be
139 * being called from inside the fs writeback
140 * layer, so we MUST NOT fail. Since
141 * __GFP_NOFAIL is going away, we will arrange
142 * to retry the allocation ourselves.
143 */
144 if ((gfp_mask & __GFP_FS) == 0) {
145 congestion_wait(BLK_RW_ASYNC, HZ/50);
146 goto alloc_transaction;
147 }
148 return -ENOMEM;
470decc6 149 }
470decc6
DK
150 }
151
152 jbd_debug(3, "New handle %p going live.\n", handle);
153
470decc6
DK
154 /*
155 * We need to hold j_state_lock until t_updates has been incremented,
156 * for proper journal barrier handling
157 */
a931da6a
TT
158repeat:
159 read_lock(&journal->j_state_lock);
5c2178e7 160 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
470decc6 161 if (is_journal_aborted(journal) ||
f7f4bccb 162 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
a931da6a 163 read_unlock(&journal->j_state_lock);
47def826
TT
164 kfree(new_transaction);
165 return -EROFS;
470decc6
DK
166 }
167
168 /* Wait on the journal's transaction barrier if necessary */
169 if (journal->j_barrier_count) {
a931da6a 170 read_unlock(&journal->j_state_lock);
470decc6
DK
171 wait_event(journal->j_wait_transaction_locked,
172 journal->j_barrier_count == 0);
173 goto repeat;
174 }
175
176 if (!journal->j_running_transaction) {
a931da6a
TT
177 read_unlock(&journal->j_state_lock);
178 if (!new_transaction)
470decc6 179 goto alloc_transaction;
a931da6a
TT
180 write_lock(&journal->j_state_lock);
181 if (!journal->j_running_transaction) {
182 jbd2_get_transaction(journal, new_transaction);
183 new_transaction = NULL;
470decc6 184 }
a931da6a
TT
185 write_unlock(&journal->j_state_lock);
186 goto repeat;
470decc6
DK
187 }
188
189 transaction = journal->j_running_transaction;
190
191 /*
192 * If the current transaction is locked down for commit, wait for the
193 * lock to be released.
194 */
195 if (transaction->t_state == T_LOCKED) {
196 DEFINE_WAIT(wait);
197
198 prepare_to_wait(&journal->j_wait_transaction_locked,
199 &wait, TASK_UNINTERRUPTIBLE);
a931da6a 200 read_unlock(&journal->j_state_lock);
470decc6
DK
201 schedule();
202 finish_wait(&journal->j_wait_transaction_locked, &wait);
203 goto repeat;
204 }
205
206 /*
207 * If there is not enough space left in the log to write all potential
208 * buffers requested by this operation, we need to stall pending a log
209 * checkpoint to free some more log space.
210 */
8dd42046
TT
211 needed = atomic_add_return(nblocks,
212 &transaction->t_outstanding_credits);
470decc6
DK
213
214 if (needed > journal->j_max_transaction_buffers) {
215 /*
216 * If the current transaction is already too large, then start
217 * to commit it: we can then go back and attach this handle to
218 * a new transaction.
219 */
220 DEFINE_WAIT(wait);
221
222 jbd_debug(2, "Handle %p starting new commit...\n", handle);
8dd42046 223 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
224 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
225 TASK_UNINTERRUPTIBLE);
e4471831
TT
226 tid = transaction->t_tid;
227 need_to_start = !tid_geq(journal->j_commit_request, tid);
a931da6a 228 read_unlock(&journal->j_state_lock);
e4471831
TT
229 if (need_to_start)
230 jbd2_log_start_commit(journal, tid);
470decc6
DK
231 schedule();
232 finish_wait(&journal->j_wait_transaction_locked, &wait);
233 goto repeat;
234 }
235
236 /*
237 * The commit code assumes that it can get enough log space
238 * without forcing a checkpoint. This is *critical* for
239 * correctness: a checkpoint of a buffer which is also
240 * associated with a committing transaction creates a deadlock,
241 * so commit simply cannot force through checkpoints.
242 *
243 * We must therefore ensure the necessary space in the journal
244 * *before* starting to dirty potentially checkpointed buffers
245 * in the new transaction.
246 *
247 * The worst part is, any transaction currently committing can
248 * reduce the free space arbitrarily. Be careful to account for
249 * those buffers when checkpointing.
250 */
251
252 /*
253 * @@@ AKPM: This seems rather over-defensive. We're giving commit
254 * a _lot_ of headroom: 1/4 of the journal plus the size of
255 * the committing transaction. Really, we only need to give it
256 * committing_transaction->t_outstanding_credits plus "enough" for
257 * the log control blocks.
a34f0b31 258 * Also, this test is inconsistent with the matching one in
f7f4bccb 259 * jbd2_journal_extend().
470decc6 260 */
f7f4bccb 261 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
470decc6 262 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
8dd42046 263 atomic_sub(nblocks, &transaction->t_outstanding_credits);
a931da6a
TT
264 read_unlock(&journal->j_state_lock);
265 write_lock(&journal->j_state_lock);
266 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
267 __jbd2_log_wait_for_space(journal);
268 write_unlock(&journal->j_state_lock);
269 goto repeat;
470decc6
DK
270 }
271
272 /* OK, account for the buffers that this operation expects to
8dd42046 273 * use and add the handle to the running transaction.
8dd42046 274 */
28e35e42 275 update_t_max_wait(transaction, ts);
470decc6 276 handle->h_transaction = transaction;
a51dca9c 277 atomic_inc(&transaction->t_updates);
8dd42046 278 atomic_inc(&transaction->t_handle_count);
470decc6 279 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
a51dca9c
TT
280 handle, nblocks,
281 atomic_read(&transaction->t_outstanding_credits),
f7f4bccb 282 __jbd2_log_space_left(journal));
a931da6a 283 read_unlock(&journal->j_state_lock);
9599b0e5
JK
284
285 lock_map_acquire(&handle->h_lockdep_map);
47def826
TT
286 kfree(new_transaction);
287 return 0;
470decc6
DK
288}
289
7b751066
MC
290static struct lock_class_key jbd2_handle_key;
291
470decc6
DK
292/* Allocate a new handle. This should probably be in a slab... */
293static handle_t *new_handle(int nblocks)
294{
af1e76d6 295 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
470decc6
DK
296 if (!handle)
297 return NULL;
298 memset(handle, 0, sizeof(*handle));
299 handle->h_buffer_credits = nblocks;
300 handle->h_ref = 1;
301
7b751066
MC
302 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
303 &jbd2_handle_key, 0);
304
470decc6
DK
305 return handle;
306}
307
308/**
f7f4bccb 309 * handle_t *jbd2_journal_start() - Obtain a new handle.
470decc6
DK
310 * @journal: Journal to start transaction on.
311 * @nblocks: number of block buffer we might modify
312 *
313 * We make sure that the transaction can guarantee at least nblocks of
314 * modified buffers in the log. We block until the log can guarantee
315 * that much space.
316 *
317 * This function is visible to journal users (like ext3fs), so is not
318 * called with the journal already locked.
319 *
c867516d
EG
320 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
321 * on failure.
470decc6 322 */
d2159fb7 323handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
470decc6
DK
324{
325 handle_t *handle = journal_current_handle();
326 int err;
327
328 if (!journal)
329 return ERR_PTR(-EROFS);
330
331 if (handle) {
332 J_ASSERT(handle->h_transaction->t_journal == journal);
333 handle->h_ref++;
334 return handle;
335 }
336
337 handle = new_handle(nblocks);
338 if (!handle)
339 return ERR_PTR(-ENOMEM);
340
341 current->journal_info = handle;
342
47def826 343 err = start_this_handle(journal, handle, gfp_mask);
470decc6 344 if (err < 0) {
af1e76d6 345 jbd2_free_handle(handle);
470decc6
DK
346 current->journal_info = NULL;
347 handle = ERR_PTR(err);
348 }
349 return handle;
350}
47def826
TT
351EXPORT_SYMBOL(jbd2__journal_start);
352
353
354handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
355{
356 return jbd2__journal_start(journal, nblocks, GFP_NOFS);
357}
358EXPORT_SYMBOL(jbd2_journal_start);
359
470decc6
DK
360
361/**
f7f4bccb 362 * int jbd2_journal_extend() - extend buffer credits.
470decc6
DK
363 * @handle: handle to 'extend'
364 * @nblocks: nr blocks to try to extend by.
365 *
366 * Some transactions, such as large extends and truncates, can be done
367 * atomically all at once or in several stages. The operation requests
368 * a credit for a number of buffer modications in advance, but can
369 * extend its credit if it needs more.
370 *
f7f4bccb 371 * jbd2_journal_extend tries to give the running handle more buffer credits.
470decc6
DK
372 * It does not guarantee that allocation - this is a best-effort only.
373 * The calling process MUST be able to deal cleanly with a failure to
374 * extend here.
375 *
376 * Return 0 on success, non-zero on failure.
377 *
378 * return code < 0 implies an error
379 * return code > 0 implies normal transaction-full status.
380 */
f7f4bccb 381int jbd2_journal_extend(handle_t *handle, int nblocks)
470decc6
DK
382{
383 transaction_t *transaction = handle->h_transaction;
384 journal_t *journal = transaction->t_journal;
385 int result;
386 int wanted;
387
388 result = -EIO;
389 if (is_handle_aborted(handle))
390 goto out;
391
392 result = 1;
393
a931da6a 394 read_lock(&journal->j_state_lock);
470decc6
DK
395
396 /* Don't extend a locked-down transaction! */
397 if (handle->h_transaction->t_state != T_RUNNING) {
398 jbd_debug(3, "denied handle %p %d blocks: "
399 "transaction not running\n", handle, nblocks);
400 goto error_out;
401 }
402
403 spin_lock(&transaction->t_handle_lock);
a51dca9c 404 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
470decc6
DK
405
406 if (wanted > journal->j_max_transaction_buffers) {
407 jbd_debug(3, "denied handle %p %d blocks: "
408 "transaction too large\n", handle, nblocks);
409 goto unlock;
410 }
411
f7f4bccb 412 if (wanted > __jbd2_log_space_left(journal)) {
470decc6
DK
413 jbd_debug(3, "denied handle %p %d blocks: "
414 "insufficient log space\n", handle, nblocks);
415 goto unlock;
416 }
417
418 handle->h_buffer_credits += nblocks;
a51dca9c 419 atomic_add(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
420 result = 0;
421
422 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
423unlock:
424 spin_unlock(&transaction->t_handle_lock);
425error_out:
a931da6a 426 read_unlock(&journal->j_state_lock);
470decc6
DK
427out:
428 return result;
429}
430
431
432/**
f7f4bccb 433 * int jbd2_journal_restart() - restart a handle .
470decc6
DK
434 * @handle: handle to restart
435 * @nblocks: nr credits requested
436 *
437 * Restart a handle for a multi-transaction filesystem
438 * operation.
439 *
f7f4bccb
MC
440 * If the jbd2_journal_extend() call above fails to grant new buffer credits
441 * to a running handle, a call to jbd2_journal_restart will commit the
470decc6
DK
442 * handle's transaction so far and reattach the handle to a new
443 * transaction capabable of guaranteeing the requested number of
444 * credits.
445 */
d2159fb7 446int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
470decc6
DK
447{
448 transaction_t *transaction = handle->h_transaction;
449 journal_t *journal = transaction->t_journal;
e4471831
TT
450 tid_t tid;
451 int need_to_start, ret;
470decc6
DK
452
453 /* If we've had an abort of any type, don't even think about
454 * actually doing the restart! */
455 if (is_handle_aborted(handle))
456 return 0;
457
458 /*
459 * First unlink the handle from its current transaction, and start the
460 * commit on that.
461 */
a51dca9c 462 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
463 J_ASSERT(journal_current_handle() == handle);
464
a931da6a 465 read_lock(&journal->j_state_lock);
470decc6 466 spin_lock(&transaction->t_handle_lock);
a51dca9c
TT
467 atomic_sub(handle->h_buffer_credits,
468 &transaction->t_outstanding_credits);
469 if (atomic_dec_and_test(&transaction->t_updates))
470decc6
DK
470 wake_up(&journal->j_wait_updates);
471 spin_unlock(&transaction->t_handle_lock);
472
473 jbd_debug(2, "restarting handle %p\n", handle);
e4471831
TT
474 tid = transaction->t_tid;
475 need_to_start = !tid_geq(journal->j_commit_request, tid);
a931da6a 476 read_unlock(&journal->j_state_lock);
e4471831
TT
477 if (need_to_start)
478 jbd2_log_start_commit(journal, tid);
470decc6 479
9599b0e5 480 lock_map_release(&handle->h_lockdep_map);
470decc6 481 handle->h_buffer_credits = nblocks;
47def826 482 ret = start_this_handle(journal, handle, gfp_mask);
470decc6
DK
483 return ret;
484}
47def826 485EXPORT_SYMBOL(jbd2__journal_restart);
470decc6
DK
486
487
47def826
TT
488int jbd2_journal_restart(handle_t *handle, int nblocks)
489{
490 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
491}
492EXPORT_SYMBOL(jbd2_journal_restart);
493
470decc6 494/**
f7f4bccb 495 * void jbd2_journal_lock_updates () - establish a transaction barrier.
470decc6
DK
496 * @journal: Journal to establish a barrier on.
497 *
498 * This locks out any further updates from being started, and blocks
499 * until all existing updates have completed, returning only once the
500 * journal is in a quiescent state with no updates running.
501 *
502 * The journal lock should not be held on entry.
503 */
f7f4bccb 504void jbd2_journal_lock_updates(journal_t *journal)
470decc6
DK
505{
506 DEFINE_WAIT(wait);
507
a931da6a 508 write_lock(&journal->j_state_lock);
470decc6
DK
509 ++journal->j_barrier_count;
510
511 /* Wait until there are no running updates */
512 while (1) {
513 transaction_t *transaction = journal->j_running_transaction;
514
515 if (!transaction)
516 break;
517
518 spin_lock(&transaction->t_handle_lock);
a51dca9c 519 if (!atomic_read(&transaction->t_updates)) {
470decc6
DK
520 spin_unlock(&transaction->t_handle_lock);
521 break;
522 }
523 prepare_to_wait(&journal->j_wait_updates, &wait,
524 TASK_UNINTERRUPTIBLE);
525 spin_unlock(&transaction->t_handle_lock);
a931da6a 526 write_unlock(&journal->j_state_lock);
470decc6
DK
527 schedule();
528 finish_wait(&journal->j_wait_updates, &wait);
a931da6a 529 write_lock(&journal->j_state_lock);
470decc6 530 }
a931da6a 531 write_unlock(&journal->j_state_lock);
470decc6
DK
532
533 /*
534 * We have now established a barrier against other normal updates, but
f7f4bccb 535 * we also need to barrier against other jbd2_journal_lock_updates() calls
470decc6
DK
536 * to make sure that we serialise special journal-locked operations
537 * too.
538 */
539 mutex_lock(&journal->j_barrier);
540}
541
542/**
f7f4bccb 543 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
470decc6
DK
544 * @journal: Journal to release the barrier on.
545 *
f7f4bccb 546 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
470decc6
DK
547 *
548 * Should be called without the journal lock held.
549 */
f7f4bccb 550void jbd2_journal_unlock_updates (journal_t *journal)
470decc6
DK
551{
552 J_ASSERT(journal->j_barrier_count != 0);
553
554 mutex_unlock(&journal->j_barrier);
a931da6a 555 write_lock(&journal->j_state_lock);
470decc6 556 --journal->j_barrier_count;
a931da6a 557 write_unlock(&journal->j_state_lock);
470decc6
DK
558 wake_up(&journal->j_wait_transaction_locked);
559}
560
f91d1d04 561static void warn_dirty_buffer(struct buffer_head *bh)
470decc6 562{
f91d1d04 563 char b[BDEVNAME_SIZE];
470decc6 564
f91d1d04
JK
565 printk(KERN_WARNING
566 "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
567 "There's a risk of filesystem corruption in case of system "
568 "crash.\n",
569 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
470decc6
DK
570}
571
572/*
573 * If the buffer is already part of the current transaction, then there
574 * is nothing we need to do. If it is already part of a prior
575 * transaction which we are still committing to disk, then we need to
576 * make sure that we do not overwrite the old copy: we do copy-out to
577 * preserve the copy going to disk. We also account the buffer against
578 * the handle's metadata buffer credits (unless the buffer is already
579 * part of the transaction, that is).
580 *
581 */
582static int
583do_get_write_access(handle_t *handle, struct journal_head *jh,
584 int force_copy)
585{
586 struct buffer_head *bh;
587 transaction_t *transaction;
588 journal_t *journal;
589 int error;
590 char *frozen_buffer = NULL;
591 int need_copy = 0;
592
593 if (is_handle_aborted(handle))
594 return -EROFS;
595
596 transaction = handle->h_transaction;
597 journal = transaction->t_journal;
598
cfef2c6a 599 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
470decc6
DK
600
601 JBUFFER_TRACE(jh, "entry");
602repeat:
603 bh = jh2bh(jh);
604
605 /* @@@ Need to check for errors here at some point. */
606
607 lock_buffer(bh);
608 jbd_lock_bh_state(bh);
609
610 /* We now hold the buffer lock so it is safe to query the buffer
611 * state. Is the buffer dirty?
612 *
613 * If so, there are two possibilities. The buffer may be
614 * non-journaled, and undergoing a quite legitimate writeback.
615 * Otherwise, it is journaled, and we don't expect dirty buffers
616 * in that state (the buffers should be marked JBD_Dirty
617 * instead.) So either the IO is being done under our own
618 * control and this is a bug, or it's a third party IO such as
619 * dump(8) (which may leave the buffer scheduled for read ---
620 * ie. locked but not dirty) or tune2fs (which may actually have
621 * the buffer dirtied, ugh.) */
622
623 if (buffer_dirty(bh)) {
624 /*
625 * First question: is this buffer already part of the current
626 * transaction or the existing committing transaction?
627 */
628 if (jh->b_transaction) {
629 J_ASSERT_JH(jh,
630 jh->b_transaction == transaction ||
631 jh->b_transaction ==
632 journal->j_committing_transaction);
633 if (jh->b_next_transaction)
634 J_ASSERT_JH(jh, jh->b_next_transaction ==
635 transaction);
f91d1d04 636 warn_dirty_buffer(bh);
470decc6
DK
637 }
638 /*
639 * In any case we need to clean the dirty flag and we must
640 * do it under the buffer lock to be sure we don't race
641 * with running write-out.
642 */
f91d1d04
JK
643 JBUFFER_TRACE(jh, "Journalling dirty buffer");
644 clear_buffer_dirty(bh);
645 set_buffer_jbddirty(bh);
470decc6
DK
646 }
647
648 unlock_buffer(bh);
649
650 error = -EROFS;
651 if (is_handle_aborted(handle)) {
652 jbd_unlock_bh_state(bh);
653 goto out;
654 }
655 error = 0;
656
657 /*
658 * The buffer is already part of this transaction if b_transaction or
659 * b_next_transaction points to it
660 */
661 if (jh->b_transaction == transaction ||
662 jh->b_next_transaction == transaction)
663 goto done;
664
9fc7c63a
JB
665 /*
666 * this is the first time this transaction is touching this buffer,
667 * reset the modified flag
668 */
669 jh->b_modified = 0;
670
470decc6
DK
671 /*
672 * If there is already a copy-out version of this buffer, then we don't
673 * need to make another one
674 */
675 if (jh->b_frozen_data) {
676 JBUFFER_TRACE(jh, "has frozen data");
677 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
678 jh->b_next_transaction = transaction;
679 goto done;
680 }
681
682 /* Is there data here we need to preserve? */
683
684 if (jh->b_transaction && jh->b_transaction != transaction) {
685 JBUFFER_TRACE(jh, "owned by older transaction");
686 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
687 J_ASSERT_JH(jh, jh->b_transaction ==
688 journal->j_committing_transaction);
689
690 /* There is one case we have to be very careful about.
691 * If the committing transaction is currently writing
692 * this buffer out to disk and has NOT made a copy-out,
693 * then we cannot modify the buffer contents at all
694 * right now. The essence of copy-out is that it is the
695 * extra copy, not the primary copy, which gets
696 * journaled. If the primary copy is already going to
697 * disk then we cannot do copy-out here. */
698
699 if (jh->b_jlist == BJ_Shadow) {
700 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
701 wait_queue_head_t *wqh;
702
703 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
704
705 JBUFFER_TRACE(jh, "on shadow: sleep");
706 jbd_unlock_bh_state(bh);
707 /* commit wakes up all shadow buffers after IO */
708 for ( ; ; ) {
709 prepare_to_wait(wqh, &wait.wait,
710 TASK_UNINTERRUPTIBLE);
711 if (jh->b_jlist != BJ_Shadow)
712 break;
713 schedule();
714 }
715 finish_wait(wqh, &wait.wait);
716 goto repeat;
717 }
718
719 /* Only do the copy if the currently-owning transaction
720 * still needs it. If it is on the Forget list, the
721 * committing transaction is past that stage. The
722 * buffer had better remain locked during the kmalloc,
723 * but that should be true --- we hold the journal lock
724 * still and the buffer is already on the BUF_JOURNAL
725 * list so won't be flushed.
726 *
727 * Subtle point, though: if this is a get_undo_access,
728 * then we will be relying on the frozen_data to contain
729 * the new value of the committed_data record after the
730 * transaction, so we HAVE to force the frozen_data copy
731 * in that case. */
732
733 if (jh->b_jlist != BJ_Forget || force_copy) {
734 JBUFFER_TRACE(jh, "generate frozen data");
735 if (!frozen_buffer) {
736 JBUFFER_TRACE(jh, "allocate memory for buffer");
737 jbd_unlock_bh_state(bh);
738 frozen_buffer =
af1e76d6 739 jbd2_alloc(jh2bh(jh)->b_size,
470decc6
DK
740 GFP_NOFS);
741 if (!frozen_buffer) {
742 printk(KERN_EMERG
743 "%s: OOM for frozen_buffer\n",
329d291f 744 __func__);
470decc6
DK
745 JBUFFER_TRACE(jh, "oom!");
746 error = -ENOMEM;
747 jbd_lock_bh_state(bh);
748 goto done;
749 }
750 goto repeat;
751 }
752 jh->b_frozen_data = frozen_buffer;
753 frozen_buffer = NULL;
754 need_copy = 1;
755 }
756 jh->b_next_transaction = transaction;
757 }
758
759
760 /*
761 * Finally, if the buffer is not journaled right now, we need to make
762 * sure it doesn't get written to disk before the caller actually
763 * commits the new data
764 */
765 if (!jh->b_transaction) {
766 JBUFFER_TRACE(jh, "no transaction");
767 J_ASSERT_JH(jh, !jh->b_next_transaction);
470decc6
DK
768 JBUFFER_TRACE(jh, "file as BJ_Reserved");
769 spin_lock(&journal->j_list_lock);
f7f4bccb 770 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
470decc6
DK
771 spin_unlock(&journal->j_list_lock);
772 }
773
774done:
775 if (need_copy) {
776 struct page *page;
777 int offset;
778 char *source;
779
780 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
781 "Possible IO failure.\n");
782 page = jh2bh(jh)->b_page;
a1dd5331 783 offset = offset_in_page(jh2bh(jh)->b_data);
470decc6 784 source = kmap_atomic(page, KM_USER0);
13ceef09
JK
785 /* Fire data frozen trigger just before we copy the data */
786 jbd2_buffer_frozen_trigger(jh, source + offset,
787 jh->b_triggers);
470decc6
DK
788 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
789 kunmap_atomic(source, KM_USER0);
e06c8227
JB
790
791 /*
792 * Now that the frozen data is saved off, we need to store
793 * any matching triggers.
794 */
795 jh->b_frozen_triggers = jh->b_triggers;
470decc6
DK
796 }
797 jbd_unlock_bh_state(bh);
798
799 /*
800 * If we are about to journal a buffer, then any revoke pending on it is
801 * no longer valid
802 */
f7f4bccb 803 jbd2_journal_cancel_revoke(handle, jh);
470decc6
DK
804
805out:
806 if (unlikely(frozen_buffer)) /* It's usually NULL */
af1e76d6 807 jbd2_free(frozen_buffer, bh->b_size);
470decc6
DK
808
809 JBUFFER_TRACE(jh, "exit");
810 return error;
811}
812
813/**
f7f4bccb 814 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
470decc6
DK
815 * @handle: transaction to add buffer modifications to
816 * @bh: bh to be used for metadata writes
470decc6
DK
817 *
818 * Returns an error code or 0 on success.
819 *
820 * In full data journalling mode the buffer may be of type BJ_AsyncData,
821 * because we're write()ing a buffer which is also part of a shared mapping.
822 */
823
f7f4bccb 824int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
470decc6 825{
f7f4bccb 826 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
827 int rc;
828
829 /* We do not want to get caught playing with fields which the
830 * log thread also manipulates. Make sure that the buffer
831 * completes any outstanding IO before proceeding. */
832 rc = do_get_write_access(handle, jh, 0);
f7f4bccb 833 jbd2_journal_put_journal_head(jh);
470decc6
DK
834 return rc;
835}
836
837
838/*
839 * When the user wants to journal a newly created buffer_head
840 * (ie. getblk() returned a new buffer and we are going to populate it
841 * manually rather than reading off disk), then we need to keep the
842 * buffer_head locked until it has been completely filled with new
843 * data. In this case, we should be able to make the assertion that
844 * the bh is not already part of an existing transaction.
845 *
846 * The buffer should already be locked by the caller by this point.
847 * There is no lock ranking violation: it was a newly created,
848 * unlocked buffer beforehand. */
849
850/**
f7f4bccb 851 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
470decc6
DK
852 * @handle: transaction to new buffer to
853 * @bh: new buffer.
854 *
855 * Call this if you create a new bh.
856 */
f7f4bccb 857int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
858{
859 transaction_t *transaction = handle->h_transaction;
860 journal_t *journal = transaction->t_journal;
f7f4bccb 861 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
862 int err;
863
864 jbd_debug(5, "journal_head %p\n", jh);
865 err = -EROFS;
866 if (is_handle_aborted(handle))
867 goto out;
868 err = 0;
869
870 JBUFFER_TRACE(jh, "entry");
871 /*
872 * The buffer may already belong to this transaction due to pre-zeroing
873 * in the filesystem's new_block code. It may also be on the previous,
874 * committing transaction's lists, but it HAS to be in Forget state in
875 * that case: the transaction must have deleted the buffer for it to be
876 * reused here.
877 */
878 jbd_lock_bh_state(bh);
879 spin_lock(&journal->j_list_lock);
880 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
881 jh->b_transaction == NULL ||
882 (jh->b_transaction == journal->j_committing_transaction &&
883 jh->b_jlist == BJ_Forget)));
884
885 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
886 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
887
888 if (jh->b_transaction == NULL) {
f91d1d04
JK
889 /*
890 * Previous jbd2_journal_forget() could have left the buffer
891 * with jbddirty bit set because it was being committed. When
892 * the commit finished, we've filed the buffer for
893 * checkpointing and marked it dirty. Now we are reallocating
894 * the buffer so the transaction freeing it must have
895 * committed and so it's safe to clear the dirty bit.
896 */
897 clear_buffer_dirty(jh2bh(jh));
9fc7c63a
JB
898 /* first access by this transaction */
899 jh->b_modified = 0;
900
470decc6 901 JBUFFER_TRACE(jh, "file as BJ_Reserved");
f7f4bccb 902 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
470decc6 903 } else if (jh->b_transaction == journal->j_committing_transaction) {
9fc7c63a
JB
904 /* first access by this transaction */
905 jh->b_modified = 0;
906
470decc6
DK
907 JBUFFER_TRACE(jh, "set next transaction");
908 jh->b_next_transaction = transaction;
909 }
910 spin_unlock(&journal->j_list_lock);
911 jbd_unlock_bh_state(bh);
912
913 /*
914 * akpm: I added this. ext3_alloc_branch can pick up new indirect
915 * blocks which contain freed but then revoked metadata. We need
916 * to cancel the revoke in case we end up freeing it yet again
917 * and the reallocating as data - this would cause a second revoke,
918 * which hits an assertion error.
919 */
920 JBUFFER_TRACE(jh, "cancelling revoke");
f7f4bccb 921 jbd2_journal_cancel_revoke(handle, jh);
470decc6 922out:
3991b400 923 jbd2_journal_put_journal_head(jh);
470decc6
DK
924 return err;
925}
926
927/**
f7f4bccb 928 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
470decc6
DK
929 * non-rewindable consequences
930 * @handle: transaction
931 * @bh: buffer to undo
470decc6
DK
932 *
933 * Sometimes there is a need to distinguish between metadata which has
934 * been committed to disk and that which has not. The ext3fs code uses
935 * this for freeing and allocating space, we have to make sure that we
936 * do not reuse freed space until the deallocation has been committed,
937 * since if we overwrote that space we would make the delete
938 * un-rewindable in case of a crash.
939 *
f7f4bccb 940 * To deal with that, jbd2_journal_get_undo_access requests write access to a
470decc6
DK
941 * buffer for parts of non-rewindable operations such as delete
942 * operations on the bitmaps. The journaling code must keep a copy of
943 * the buffer's contents prior to the undo_access call until such time
944 * as we know that the buffer has definitely been committed to disk.
945 *
946 * We never need to know which transaction the committed data is part
947 * of, buffers touched here are guaranteed to be dirtied later and so
948 * will be committed to a new transaction in due course, at which point
949 * we can discard the old committed data pointer.
950 *
951 * Returns error number or 0 on success.
952 */
f7f4bccb 953int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
954{
955 int err;
f7f4bccb 956 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
957 char *committed_data = NULL;
958
959 JBUFFER_TRACE(jh, "entry");
960
961 /*
962 * Do this first --- it can drop the journal lock, so we want to
963 * make sure that obtaining the committed_data is done
964 * atomically wrt. completion of any outstanding commits.
965 */
966 err = do_get_write_access(handle, jh, 1);
967 if (err)
968 goto out;
969
970repeat:
971 if (!jh->b_committed_data) {
af1e76d6 972 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
470decc6
DK
973 if (!committed_data) {
974 printk(KERN_EMERG "%s: No memory for committed data\n",
329d291f 975 __func__);
470decc6
DK
976 err = -ENOMEM;
977 goto out;
978 }
979 }
980
981 jbd_lock_bh_state(bh);
982 if (!jh->b_committed_data) {
983 /* Copy out the current buffer contents into the
984 * preserved, committed copy. */
985 JBUFFER_TRACE(jh, "generate b_committed data");
986 if (!committed_data) {
987 jbd_unlock_bh_state(bh);
988 goto repeat;
989 }
990
991 jh->b_committed_data = committed_data;
992 committed_data = NULL;
993 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
994 }
995 jbd_unlock_bh_state(bh);
996out:
f7f4bccb 997 jbd2_journal_put_journal_head(jh);
470decc6 998 if (unlikely(committed_data))
af1e76d6 999 jbd2_free(committed_data, bh->b_size);
470decc6
DK
1000 return err;
1001}
1002
e06c8227
JB
1003/**
1004 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1005 * @bh: buffer to trigger on
1006 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1007 *
1008 * Set any triggers on this journal_head. This is always safe, because
1009 * triggers for a committing buffer will be saved off, and triggers for
1010 * a running transaction will match the buffer in that transaction.
1011 *
1012 * Call with NULL to clear the triggers.
1013 */
1014void jbd2_journal_set_triggers(struct buffer_head *bh,
1015 struct jbd2_buffer_trigger_type *type)
1016{
1017 struct journal_head *jh = bh2jh(bh);
1018
1019 jh->b_triggers = type;
1020}
1021
13ceef09 1022void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
e06c8227
JB
1023 struct jbd2_buffer_trigger_type *triggers)
1024{
1025 struct buffer_head *bh = jh2bh(jh);
1026
13ceef09 1027 if (!triggers || !triggers->t_frozen)
e06c8227
JB
1028 return;
1029
13ceef09 1030 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
e06c8227
JB
1031}
1032
1033void jbd2_buffer_abort_trigger(struct journal_head *jh,
1034 struct jbd2_buffer_trigger_type *triggers)
1035{
1036 if (!triggers || !triggers->t_abort)
1037 return;
1038
1039 triggers->t_abort(triggers, jh2bh(jh));
1040}
1041
1042
1043
470decc6 1044/**
f7f4bccb 1045 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
470decc6
DK
1046 * @handle: transaction to add buffer to.
1047 * @bh: buffer to mark
1048 *
1049 * mark dirty metadata which needs to be journaled as part of the current
1050 * transaction.
1051 *
9ea7a0df
TT
1052 * The buffer must have previously had jbd2_journal_get_write_access()
1053 * called so that it has a valid journal_head attached to the buffer
1054 * head.
1055 *
470decc6
DK
1056 * The buffer is placed on the transaction's metadata list and is marked
1057 * as belonging to the transaction.
1058 *
1059 * Returns error number or 0 on success.
1060 *
1061 * Special care needs to be taken if the buffer already belongs to the
1062 * current committing transaction (in which case we should have frozen
1063 * data present for that commit). In that case, we don't relink the
1064 * buffer: that only gets done when the old transaction finally
1065 * completes its commit.
1066 */
f7f4bccb 1067int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1068{
1069 transaction_t *transaction = handle->h_transaction;
1070 journal_t *journal = transaction->t_journal;
1071 struct journal_head *jh = bh2jh(bh);
9ea7a0df 1072 int ret = 0;
470decc6
DK
1073
1074 jbd_debug(5, "journal_head %p\n", jh);
1075 JBUFFER_TRACE(jh, "entry");
1076 if (is_handle_aborted(handle))
1077 goto out;
9ea7a0df
TT
1078 if (!buffer_jbd(bh)) {
1079 ret = -EUCLEAN;
1080 goto out;
1081 }
470decc6
DK
1082
1083 jbd_lock_bh_state(bh);
1084
1085 if (jh->b_modified == 0) {
1086 /*
1087 * This buffer's got modified and becoming part
1088 * of the transaction. This needs to be done
1089 * once a transaction -bzzz
1090 */
1091 jh->b_modified = 1;
1092 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1093 handle->h_buffer_credits--;
1094 }
1095
1096 /*
1097 * fastpath, to avoid expensive locking. If this buffer is already
1098 * on the running transaction's metadata list there is nothing to do.
1099 * Nobody can take it off again because there is a handle open.
1100 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1101 * result in this test being false, so we go in and take the locks.
1102 */
1103 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1104 JBUFFER_TRACE(jh, "fastpath");
9ea7a0df
TT
1105 if (unlikely(jh->b_transaction !=
1106 journal->j_running_transaction)) {
1107 printk(KERN_EMERG "JBD: %s: "
1108 "jh->b_transaction (%llu, %p, %u) != "
1109 "journal->j_running_transaction (%p, %u)",
1110 journal->j_devname,
1111 (unsigned long long) bh->b_blocknr,
1112 jh->b_transaction,
1113 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1114 journal->j_running_transaction,
1115 journal->j_running_transaction ?
1116 journal->j_running_transaction->t_tid : 0);
1117 ret = -EINVAL;
1118 }
470decc6
DK
1119 goto out_unlock_bh;
1120 }
1121
1122 set_buffer_jbddirty(bh);
1123
1124 /*
1125 * Metadata already on the current transaction list doesn't
1126 * need to be filed. Metadata on another transaction's list must
1127 * be committing, and will be refiled once the commit completes:
1128 * leave it alone for now.
1129 */
1130 if (jh->b_transaction != transaction) {
1131 JBUFFER_TRACE(jh, "already on other transaction");
9ea7a0df
TT
1132 if (unlikely(jh->b_transaction !=
1133 journal->j_committing_transaction)) {
1134 printk(KERN_EMERG "JBD: %s: "
1135 "jh->b_transaction (%llu, %p, %u) != "
1136 "journal->j_committing_transaction (%p, %u)",
1137 journal->j_devname,
1138 (unsigned long long) bh->b_blocknr,
1139 jh->b_transaction,
1140 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1141 journal->j_committing_transaction,
1142 journal->j_committing_transaction ?
1143 journal->j_committing_transaction->t_tid : 0);
1144 ret = -EINVAL;
1145 }
1146 if (unlikely(jh->b_next_transaction != transaction)) {
1147 printk(KERN_EMERG "JBD: %s: "
1148 "jh->b_next_transaction (%llu, %p, %u) != "
1149 "transaction (%p, %u)",
1150 journal->j_devname,
1151 (unsigned long long) bh->b_blocknr,
1152 jh->b_next_transaction,
1153 jh->b_next_transaction ?
1154 jh->b_next_transaction->t_tid : 0,
1155 transaction, transaction->t_tid);
1156 ret = -EINVAL;
1157 }
470decc6
DK
1158 /* And this case is illegal: we can't reuse another
1159 * transaction's data buffer, ever. */
1160 goto out_unlock_bh;
1161 }
1162
1163 /* That test should have eliminated the following case: */
4019191b 1164 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
470decc6
DK
1165
1166 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1167 spin_lock(&journal->j_list_lock);
f7f4bccb 1168 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
470decc6
DK
1169 spin_unlock(&journal->j_list_lock);
1170out_unlock_bh:
1171 jbd_unlock_bh_state(bh);
1172out:
1173 JBUFFER_TRACE(jh, "exit");
9ea7a0df
TT
1174 if (ret)
1175 __WARN(); /* All errors are bugs, so dump the stack */
1176 return ret;
470decc6
DK
1177}
1178
1179/*
f7f4bccb 1180 * jbd2_journal_release_buffer: undo a get_write_access without any buffer
470decc6
DK
1181 * updates, if the update decided in the end that it didn't need access.
1182 *
1183 */
1184void
f7f4bccb 1185jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1186{
1187 BUFFER_TRACE(bh, "entry");
1188}
1189
1190/**
f7f4bccb 1191 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
470decc6
DK
1192 * @handle: transaction handle
1193 * @bh: bh to 'forget'
1194 *
1195 * We can only do the bforget if there are no commits pending against the
1196 * buffer. If the buffer is dirty in the current running transaction we
1197 * can safely unlink it.
1198 *
1199 * bh may not be a journalled buffer at all - it may be a non-JBD
1200 * buffer which came off the hashtable. Check for this.
1201 *
1202 * Decrements bh->b_count by one.
1203 *
1204 * Allow this call even if the handle has aborted --- it may be part of
1205 * the caller's cleanup after an abort.
1206 */
f7f4bccb 1207int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
470decc6
DK
1208{
1209 transaction_t *transaction = handle->h_transaction;
1210 journal_t *journal = transaction->t_journal;
1211 struct journal_head *jh;
1212 int drop_reserve = 0;
1213 int err = 0;
1dfc3220 1214 int was_modified = 0;
470decc6
DK
1215
1216 BUFFER_TRACE(bh, "entry");
1217
1218 jbd_lock_bh_state(bh);
1219 spin_lock(&journal->j_list_lock);
1220
1221 if (!buffer_jbd(bh))
1222 goto not_jbd;
1223 jh = bh2jh(bh);
1224
1225 /* Critical error: attempting to delete a bitmap buffer, maybe?
1226 * Don't do any jbd operations, and return an error. */
1227 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1228 "inconsistent data on disk")) {
1229 err = -EIO;
1230 goto not_jbd;
1231 }
1232
1dfc3220
JB
1233 /* keep track of wether or not this transaction modified us */
1234 was_modified = jh->b_modified;
1235
470decc6
DK
1236 /*
1237 * The buffer's going from the transaction, we must drop
1238 * all references -bzzz
1239 */
1240 jh->b_modified = 0;
1241
1242 if (jh->b_transaction == handle->h_transaction) {
1243 J_ASSERT_JH(jh, !jh->b_frozen_data);
1244
1245 /* If we are forgetting a buffer which is already part
1246 * of this transaction, then we can just drop it from
1247 * the transaction immediately. */
1248 clear_buffer_dirty(bh);
1249 clear_buffer_jbddirty(bh);
1250
1251 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1252
1dfc3220
JB
1253 /*
1254 * we only want to drop a reference if this transaction
1255 * modified the buffer
1256 */
1257 if (was_modified)
1258 drop_reserve = 1;
470decc6
DK
1259
1260 /*
1261 * We are no longer going to journal this buffer.
1262 * However, the commit of this transaction is still
1263 * important to the buffer: the delete that we are now
1264 * processing might obsolete an old log entry, so by
1265 * committing, we can satisfy the buffer's checkpoint.
1266 *
1267 * So, if we have a checkpoint on the buffer, we should
1268 * now refile the buffer on our BJ_Forget list so that
1269 * we know to remove the checkpoint after we commit.
1270 */
1271
1272 if (jh->b_cp_transaction) {
f7f4bccb
MC
1273 __jbd2_journal_temp_unlink_buffer(jh);
1274 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6 1275 } else {
f7f4bccb 1276 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1277 if (!buffer_jbd(bh)) {
1278 spin_unlock(&journal->j_list_lock);
1279 jbd_unlock_bh_state(bh);
1280 __bforget(bh);
1281 goto drop;
1282 }
1283 }
1284 } else if (jh->b_transaction) {
1285 J_ASSERT_JH(jh, (jh->b_transaction ==
1286 journal->j_committing_transaction));
1287 /* However, if the buffer is still owned by a prior
1288 * (committing) transaction, we can't drop it yet... */
1289 JBUFFER_TRACE(jh, "belongs to older transaction");
1290 /* ... but we CAN drop it from the new transaction if we
1291 * have also modified it since the original commit. */
1292
1293 if (jh->b_next_transaction) {
1294 J_ASSERT(jh->b_next_transaction == transaction);
1295 jh->b_next_transaction = NULL;
1dfc3220
JB
1296
1297 /*
1298 * only drop a reference if this transaction modified
1299 * the buffer
1300 */
1301 if (was_modified)
1302 drop_reserve = 1;
470decc6
DK
1303 }
1304 }
1305
1306not_jbd:
1307 spin_unlock(&journal->j_list_lock);
1308 jbd_unlock_bh_state(bh);
1309 __brelse(bh);
1310drop:
1311 if (drop_reserve) {
1312 /* no need to reserve log space for this block -bzzz */
1313 handle->h_buffer_credits++;
1314 }
1315 return err;
1316}
1317
1318/**
f7f4bccb 1319 * int jbd2_journal_stop() - complete a transaction
470decc6
DK
1320 * @handle: tranaction to complete.
1321 *
1322 * All done for a particular handle.
1323 *
1324 * There is not much action needed here. We just return any remaining
1325 * buffer credits to the transaction and remove the handle. The only
1326 * complication is that we need to start a commit operation if the
1327 * filesystem is marked for synchronous update.
1328 *
f7f4bccb 1329 * jbd2_journal_stop itself will not usually return an error, but it may
470decc6 1330 * do so in unusual circumstances. In particular, expect it to
f7f4bccb 1331 * return -EIO if a jbd2_journal_abort has been executed since the
470decc6
DK
1332 * transaction began.
1333 */
f7f4bccb 1334int jbd2_journal_stop(handle_t *handle)
470decc6
DK
1335{
1336 transaction_t *transaction = handle->h_transaction;
1337 journal_t *journal = transaction->t_journal;
a51dca9c
TT
1338 int err, wait_for_commit = 0;
1339 tid_t tid;
470decc6
DK
1340 pid_t pid;
1341
470decc6
DK
1342 J_ASSERT(journal_current_handle() == handle);
1343
1344 if (is_handle_aborted(handle))
1345 err = -EIO;
3e2a532b 1346 else {
a51dca9c 1347 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6 1348 err = 0;
3e2a532b 1349 }
470decc6
DK
1350
1351 if (--handle->h_ref > 0) {
1352 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1353 handle->h_ref);
1354 return err;
1355 }
1356
1357 jbd_debug(4, "Handle %p going down\n", handle);
1358
1359 /*
1360 * Implement synchronous transaction batching. If the handle
1361 * was synchronous, don't force a commit immediately. Let's
e07f7183
JB
1362 * yield and let another thread piggyback onto this
1363 * transaction. Keep doing that while new threads continue to
1364 * arrive. It doesn't cost much - we're about to run a commit
1365 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1366 * operations by 30x or more...
1367 *
1368 * We try and optimize the sleep time against what the
1369 * underlying disk can do, instead of having a static sleep
1370 * time. This is useful for the case where our storage is so
1371 * fast that it is more optimal to go ahead and force a flush
1372 * and wait for the transaction to be committed than it is to
1373 * wait for an arbitrary amount of time for new writers to
1374 * join the transaction. We achieve this by measuring how
1375 * long it takes to commit a transaction, and compare it with
1376 * how long this transaction has been running, and if run time
1377 * < commit time then we sleep for the delta and commit. This
1378 * greatly helps super fast disks that would see slowdowns as
1379 * more threads started doing fsyncs.
470decc6 1380 *
e07f7183
JB
1381 * But don't do this if this process was the most recent one
1382 * to perform a synchronous write. We do this to detect the
1383 * case where a single process is doing a stream of sync
1384 * writes. No point in waiting for joiners in that case.
470decc6
DK
1385 */
1386 pid = current->pid;
1387 if (handle->h_sync && journal->j_last_sync_writer != pid) {
e07f7183
JB
1388 u64 commit_time, trans_time;
1389
470decc6 1390 journal->j_last_sync_writer = pid;
e07f7183 1391
a931da6a 1392 read_lock(&journal->j_state_lock);
e07f7183 1393 commit_time = journal->j_average_commit_time;
a931da6a 1394 read_unlock(&journal->j_state_lock);
e07f7183
JB
1395
1396 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1397 transaction->t_start_time));
1398
30773840
TT
1399 commit_time = max_t(u64, commit_time,
1400 1000*journal->j_min_batch_time);
e07f7183 1401 commit_time = min_t(u64, commit_time,
30773840 1402 1000*journal->j_max_batch_time);
e07f7183
JB
1403
1404 if (trans_time < commit_time) {
1405 ktime_t expires = ktime_add_ns(ktime_get(),
1406 commit_time);
1407 set_current_state(TASK_UNINTERRUPTIBLE);
1408 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1409 }
470decc6
DK
1410 }
1411
7058548c
TT
1412 if (handle->h_sync)
1413 transaction->t_synchronous_commit = 1;
470decc6 1414 current->journal_info = NULL;
a51dca9c
TT
1415 atomic_sub(handle->h_buffer_credits,
1416 &transaction->t_outstanding_credits);
470decc6
DK
1417
1418 /*
1419 * If the handle is marked SYNC, we need to set another commit
1420 * going! We also want to force a commit if the current
1421 * transaction is occupying too much of the log, or if the
1422 * transaction is too old now.
1423 */
1424 if (handle->h_sync ||
a51dca9c
TT
1425 (atomic_read(&transaction->t_outstanding_credits) >
1426 journal->j_max_transaction_buffers) ||
1427 time_after_eq(jiffies, transaction->t_expires)) {
470decc6
DK
1428 /* Do this even for aborted journals: an abort still
1429 * completes the commit thread, it just doesn't write
1430 * anything to disk. */
470decc6 1431
470decc6
DK
1432 jbd_debug(2, "transaction too old, requesting commit for "
1433 "handle %p\n", handle);
1434 /* This is non-blocking */
c35a56a0 1435 jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
1436
1437 /*
f7f4bccb 1438 * Special case: JBD2_SYNC synchronous updates require us
470decc6
DK
1439 * to wait for the commit to complete.
1440 */
1441 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
a51dca9c 1442 wait_for_commit = 1;
470decc6
DK
1443 }
1444
a51dca9c
TT
1445 /*
1446 * Once we drop t_updates, if it goes to zero the transaction
25985edc 1447 * could start committing on us and eventually disappear. So
a51dca9c
TT
1448 * once we do this, we must not dereference transaction
1449 * pointer again.
1450 */
1451 tid = transaction->t_tid;
1452 if (atomic_dec_and_test(&transaction->t_updates)) {
1453 wake_up(&journal->j_wait_updates);
1454 if (journal->j_barrier_count)
1455 wake_up(&journal->j_wait_transaction_locked);
1456 }
1457
1458 if (wait_for_commit)
1459 err = jbd2_log_wait_commit(journal, tid);
1460
3295f0ef 1461 lock_map_release(&handle->h_lockdep_map);
7b751066 1462
af1e76d6 1463 jbd2_free_handle(handle);
470decc6
DK
1464 return err;
1465}
1466
5648ba5b
RD
1467/**
1468 * int jbd2_journal_force_commit() - force any uncommitted transactions
470decc6
DK
1469 * @journal: journal to force
1470 *
1471 * For synchronous operations: force any uncommitted transactions
1472 * to disk. May seem kludgy, but it reuses all the handle batching
1473 * code in a very simple manner.
1474 */
f7f4bccb 1475int jbd2_journal_force_commit(journal_t *journal)
470decc6
DK
1476{
1477 handle_t *handle;
1478 int ret;
1479
f7f4bccb 1480 handle = jbd2_journal_start(journal, 1);
470decc6
DK
1481 if (IS_ERR(handle)) {
1482 ret = PTR_ERR(handle);
1483 } else {
1484 handle->h_sync = 1;
f7f4bccb 1485 ret = jbd2_journal_stop(handle);
470decc6
DK
1486 }
1487 return ret;
1488}
1489
1490/*
1491 *
1492 * List management code snippets: various functions for manipulating the
1493 * transaction buffer lists.
1494 *
1495 */
1496
1497/*
1498 * Append a buffer to a transaction list, given the transaction's list head
1499 * pointer.
1500 *
1501 * j_list_lock is held.
1502 *
1503 * jbd_lock_bh_state(jh2bh(jh)) is held.
1504 */
1505
1506static inline void
1507__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1508{
1509 if (!*list) {
1510 jh->b_tnext = jh->b_tprev = jh;
1511 *list = jh;
1512 } else {
1513 /* Insert at the tail of the list to preserve order */
1514 struct journal_head *first = *list, *last = first->b_tprev;
1515 jh->b_tprev = last;
1516 jh->b_tnext = first;
1517 last->b_tnext = first->b_tprev = jh;
1518 }
1519}
1520
1521/*
1522 * Remove a buffer from a transaction list, given the transaction's list
1523 * head pointer.
1524 *
1525 * Called with j_list_lock held, and the journal may not be locked.
1526 *
1527 * jbd_lock_bh_state(jh2bh(jh)) is held.
1528 */
1529
1530static inline void
1531__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1532{
1533 if (*list == jh) {
1534 *list = jh->b_tnext;
1535 if (*list == jh)
1536 *list = NULL;
1537 }
1538 jh->b_tprev->b_tnext = jh->b_tnext;
1539 jh->b_tnext->b_tprev = jh->b_tprev;
1540}
1541
1542/*
1543 * Remove a buffer from the appropriate transaction list.
1544 *
1545 * Note that this function can *change* the value of
87c89c23
JK
1546 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1547 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one
1548 * of these pointers, it could go bad. Generally the caller needs to re-read
1549 * the pointer from the transaction_t.
470decc6
DK
1550 *
1551 * Called under j_list_lock. The journal may not be locked.
1552 */
f7f4bccb 1553void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
470decc6
DK
1554{
1555 struct journal_head **list = NULL;
1556 transaction_t *transaction;
1557 struct buffer_head *bh = jh2bh(jh);
1558
1559 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1560 transaction = jh->b_transaction;
1561 if (transaction)
1562 assert_spin_locked(&transaction->t_journal->j_list_lock);
1563
1564 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1565 if (jh->b_jlist != BJ_None)
4019191b 1566 J_ASSERT_JH(jh, transaction != NULL);
470decc6
DK
1567
1568 switch (jh->b_jlist) {
1569 case BJ_None:
1570 return;
470decc6
DK
1571 case BJ_Metadata:
1572 transaction->t_nr_buffers--;
1573 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1574 list = &transaction->t_buffers;
1575 break;
1576 case BJ_Forget:
1577 list = &transaction->t_forget;
1578 break;
1579 case BJ_IO:
1580 list = &transaction->t_iobuf_list;
1581 break;
1582 case BJ_Shadow:
1583 list = &transaction->t_shadow_list;
1584 break;
1585 case BJ_LogCtl:
1586 list = &transaction->t_log_list;
1587 break;
1588 case BJ_Reserved:
1589 list = &transaction->t_reserved_list;
1590 break;
470decc6
DK
1591 }
1592
1593 __blist_del_buffer(list, jh);
1594 jh->b_jlist = BJ_None;
1595 if (test_clear_buffer_jbddirty(bh))
1596 mark_buffer_dirty(bh); /* Expose it to the VM */
1597}
1598
de1b7941
JK
1599/*
1600 * Remove buffer from all transactions.
1601 *
1602 * Called with bh_state lock and j_list_lock
1603 *
1604 * jh and bh may be already freed when this function returns.
1605 */
1606static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
470decc6 1607{
f7f4bccb 1608 __jbd2_journal_temp_unlink_buffer(jh);
470decc6 1609 jh->b_transaction = NULL;
de1b7941 1610 jbd2_journal_put_journal_head(jh);
470decc6
DK
1611}
1612
f7f4bccb 1613void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
470decc6 1614{
de1b7941
JK
1615 struct buffer_head *bh = jh2bh(jh);
1616
1617 /* Get reference so that buffer cannot be freed before we unlock it */
1618 get_bh(bh);
1619 jbd_lock_bh_state(bh);
470decc6 1620 spin_lock(&journal->j_list_lock);
f7f4bccb 1621 __jbd2_journal_unfile_buffer(jh);
470decc6 1622 spin_unlock(&journal->j_list_lock);
de1b7941
JK
1623 jbd_unlock_bh_state(bh);
1624 __brelse(bh);
470decc6
DK
1625}
1626
1627/*
f7f4bccb 1628 * Called from jbd2_journal_try_to_free_buffers().
470decc6
DK
1629 *
1630 * Called under jbd_lock_bh_state(bh)
1631 */
1632static void
1633__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1634{
1635 struct journal_head *jh;
1636
1637 jh = bh2jh(bh);
1638
1639 if (buffer_locked(bh) || buffer_dirty(bh))
1640 goto out;
1641
4019191b 1642 if (jh->b_next_transaction != NULL)
470decc6
DK
1643 goto out;
1644
1645 spin_lock(&journal->j_list_lock);
87c89c23 1646 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
470decc6
DK
1647 /* written-back checkpointed metadata buffer */
1648 if (jh->b_jlist == BJ_None) {
1649 JBUFFER_TRACE(jh, "remove from checkpoint list");
f7f4bccb 1650 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
1651 }
1652 }
1653 spin_unlock(&journal->j_list_lock);
1654out:
1655 return;
1656}
1657
470decc6 1658/**
f7f4bccb 1659 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
470decc6
DK
1660 * @journal: journal for operation
1661 * @page: to try and free
530576bb
MC
1662 * @gfp_mask: we use the mask to detect how hard should we try to release
1663 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1664 * release the buffers.
470decc6
DK
1665 *
1666 *
1667 * For all the buffers on this page,
1668 * if they are fully written out ordered data, move them onto BUF_CLEAN
1669 * so try_to_free_buffers() can reap them.
1670 *
1671 * This function returns non-zero if we wish try_to_free_buffers()
1672 * to be called. We do this if the page is releasable by try_to_free_buffers().
1673 * We also do it if the page has locked or dirty buffers and the caller wants
1674 * us to perform sync or async writeout.
1675 *
1676 * This complicates JBD locking somewhat. We aren't protected by the
1677 * BKL here. We wish to remove the buffer from its committing or
f7f4bccb 1678 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
470decc6
DK
1679 *
1680 * This may *change* the value of transaction_t->t_datalist, so anyone
1681 * who looks at t_datalist needs to lock against this function.
1682 *
f7f4bccb
MC
1683 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1684 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
470decc6
DK
1685 * will come out of the lock with the buffer dirty, which makes it
1686 * ineligible for release here.
1687 *
1688 * Who else is affected by this? hmm... Really the only contender
1689 * is do_get_write_access() - it could be looking at the buffer while
1690 * journal_try_to_free_buffer() is changing its state. But that
1691 * cannot happen because we never reallocate freed data as metadata
1692 * while the data is part of a transaction. Yes?
530576bb
MC
1693 *
1694 * Return 0 on failure, 1 on success
470decc6 1695 */
f7f4bccb 1696int jbd2_journal_try_to_free_buffers(journal_t *journal,
530576bb 1697 struct page *page, gfp_t gfp_mask)
470decc6
DK
1698{
1699 struct buffer_head *head;
1700 struct buffer_head *bh;
1701 int ret = 0;
1702
1703 J_ASSERT(PageLocked(page));
1704
1705 head = page_buffers(page);
1706 bh = head;
1707 do {
1708 struct journal_head *jh;
1709
1710 /*
1711 * We take our own ref against the journal_head here to avoid
1712 * having to add tons of locking around each instance of
530576bb 1713 * jbd2_journal_put_journal_head().
470decc6 1714 */
f7f4bccb 1715 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
1716 if (!jh)
1717 continue;
1718
1719 jbd_lock_bh_state(bh);
1720 __journal_try_to_free_buffer(journal, bh);
f7f4bccb 1721 jbd2_journal_put_journal_head(jh);
470decc6
DK
1722 jbd_unlock_bh_state(bh);
1723 if (buffer_jbd(bh))
1724 goto busy;
1725 } while ((bh = bh->b_this_page) != head);
530576bb 1726
470decc6 1727 ret = try_to_free_buffers(page);
530576bb 1728
470decc6
DK
1729busy:
1730 return ret;
1731}
1732
1733/*
1734 * This buffer is no longer needed. If it is on an older transaction's
1735 * checkpoint list we need to record it on this transaction's forget list
1736 * to pin this buffer (and hence its checkpointing transaction) down until
1737 * this transaction commits. If the buffer isn't on a checkpoint list, we
1738 * release it.
1739 * Returns non-zero if JBD no longer has an interest in the buffer.
1740 *
1741 * Called under j_list_lock.
1742 *
1743 * Called under jbd_lock_bh_state(bh).
1744 */
1745static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1746{
1747 int may_free = 1;
1748 struct buffer_head *bh = jh2bh(jh);
1749
470decc6
DK
1750 if (jh->b_cp_transaction) {
1751 JBUFFER_TRACE(jh, "on running+cp transaction");
de1b7941 1752 __jbd2_journal_temp_unlink_buffer(jh);
f91d1d04
JK
1753 /*
1754 * We don't want to write the buffer anymore, clear the
1755 * bit so that we don't confuse checks in
1756 * __journal_file_buffer
1757 */
1758 clear_buffer_dirty(bh);
f7f4bccb 1759 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6
DK
1760 may_free = 0;
1761 } else {
1762 JBUFFER_TRACE(jh, "on running transaction");
de1b7941 1763 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1764 }
1765 return may_free;
1766}
1767
1768/*
f7f4bccb 1769 * jbd2_journal_invalidatepage
470decc6
DK
1770 *
1771 * This code is tricky. It has a number of cases to deal with.
1772 *
1773 * There are two invariants which this code relies on:
1774 *
1775 * i_size must be updated on disk before we start calling invalidatepage on the
1776 * data.
1777 *
1778 * This is done in ext3 by defining an ext3_setattr method which
1779 * updates i_size before truncate gets going. By maintaining this
1780 * invariant, we can be sure that it is safe to throw away any buffers
1781 * attached to the current transaction: once the transaction commits,
1782 * we know that the data will not be needed.
1783 *
1784 * Note however that we can *not* throw away data belonging to the
1785 * previous, committing transaction!
1786 *
1787 * Any disk blocks which *are* part of the previous, committing
1788 * transaction (and which therefore cannot be discarded immediately) are
1789 * not going to be reused in the new running transaction
1790 *
1791 * The bitmap committed_data images guarantee this: any block which is
1792 * allocated in one transaction and removed in the next will be marked
1793 * as in-use in the committed_data bitmap, so cannot be reused until
1794 * the next transaction to delete the block commits. This means that
1795 * leaving committing buffers dirty is quite safe: the disk blocks
1796 * cannot be reallocated to a different file and so buffer aliasing is
1797 * not possible.
1798 *
1799 *
1800 * The above applies mainly to ordered data mode. In writeback mode we
1801 * don't make guarantees about the order in which data hits disk --- in
1802 * particular we don't guarantee that new dirty data is flushed before
1803 * transaction commit --- so it is always safe just to discard data
1804 * immediately in that mode. --sct
1805 */
1806
1807/*
1808 * The journal_unmap_buffer helper function returns zero if the buffer
1809 * concerned remains pinned as an anonymous buffer belonging to an older
1810 * transaction.
1811 *
1812 * We're outside-transaction here. Either or both of j_running_transaction
1813 * and j_committing_transaction may be NULL.
1814 */
1815static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1816{
1817 transaction_t *transaction;
1818 struct journal_head *jh;
1819 int may_free = 1;
1820 int ret;
1821
1822 BUFFER_TRACE(bh, "entry");
1823
1824 /*
1825 * It is safe to proceed here without the j_list_lock because the
1826 * buffers cannot be stolen by try_to_free_buffers as long as we are
1827 * holding the page lock. --sct
1828 */
1829
1830 if (!buffer_jbd(bh))
1831 goto zap_buffer_unlocked;
1832
87c89c23 1833 /* OK, we have data buffer in journaled mode */
a931da6a 1834 write_lock(&journal->j_state_lock);
470decc6
DK
1835 jbd_lock_bh_state(bh);
1836 spin_lock(&journal->j_list_lock);
1837
f7f4bccb 1838 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
1839 if (!jh)
1840 goto zap_buffer_no_jh;
1841
ba869023 1842 /*
1843 * We cannot remove the buffer from checkpoint lists until the
1844 * transaction adding inode to orphan list (let's call it T)
1845 * is committed. Otherwise if the transaction changing the
1846 * buffer would be cleaned from the journal before T is
1847 * committed, a crash will cause that the correct contents of
1848 * the buffer will be lost. On the other hand we have to
1849 * clear the buffer dirty bit at latest at the moment when the
1850 * transaction marking the buffer as freed in the filesystem
1851 * structures is committed because from that moment on the
1852 * buffer can be reallocated and used by a different page.
1853 * Since the block hasn't been freed yet but the inode has
1854 * already been added to orphan list, it is safe for us to add
1855 * the buffer to BJ_Forget list of the newest transaction.
1856 */
470decc6
DK
1857 transaction = jh->b_transaction;
1858 if (transaction == NULL) {
1859 /* First case: not on any transaction. If it
1860 * has no checkpoint link, then we can zap it:
1861 * it's a writeback-mode buffer so we don't care
1862 * if it hits disk safely. */
1863 if (!jh->b_cp_transaction) {
1864 JBUFFER_TRACE(jh, "not on any transaction: zap");
1865 goto zap_buffer;
1866 }
1867
1868 if (!buffer_dirty(bh)) {
1869 /* bdflush has written it. We can drop it now */
1870 goto zap_buffer;
1871 }
1872
1873 /* OK, it must be in the journal but still not
1874 * written fully to disk: it's metadata or
1875 * journaled data... */
1876
1877 if (journal->j_running_transaction) {
1878 /* ... and once the current transaction has
1879 * committed, the buffer won't be needed any
1880 * longer. */
1881 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1882 ret = __dispose_buffer(jh,
1883 journal->j_running_transaction);
f7f4bccb 1884 jbd2_journal_put_journal_head(jh);
470decc6
DK
1885 spin_unlock(&journal->j_list_lock);
1886 jbd_unlock_bh_state(bh);
a931da6a 1887 write_unlock(&journal->j_state_lock);
470decc6
DK
1888 return ret;
1889 } else {
1890 /* There is no currently-running transaction. So the
1891 * orphan record which we wrote for this file must have
1892 * passed into commit. We must attach this buffer to
1893 * the committing transaction, if it exists. */
1894 if (journal->j_committing_transaction) {
1895 JBUFFER_TRACE(jh, "give to committing trans");
1896 ret = __dispose_buffer(jh,
1897 journal->j_committing_transaction);
f7f4bccb 1898 jbd2_journal_put_journal_head(jh);
470decc6
DK
1899 spin_unlock(&journal->j_list_lock);
1900 jbd_unlock_bh_state(bh);
a931da6a 1901 write_unlock(&journal->j_state_lock);
470decc6
DK
1902 return ret;
1903 } else {
1904 /* The orphan record's transaction has
1905 * committed. We can cleanse this buffer */
1906 clear_buffer_jbddirty(bh);
1907 goto zap_buffer;
1908 }
1909 }
1910 } else if (transaction == journal->j_committing_transaction) {
9b57988d 1911 JBUFFER_TRACE(jh, "on committing transaction");
470decc6 1912 /*
ba869023 1913 * The buffer is committing, we simply cannot touch
1914 * it. So we just set j_next_transaction to the
1915 * running transaction (if there is one) and mark
1916 * buffer as freed so that commit code knows it should
1917 * clear dirty bits when it is done with the buffer.
1918 */
470decc6 1919 set_buffer_freed(bh);
ba869023 1920 if (journal->j_running_transaction && buffer_jbddirty(bh))
1921 jh->b_next_transaction = journal->j_running_transaction;
f7f4bccb 1922 jbd2_journal_put_journal_head(jh);
470decc6
DK
1923 spin_unlock(&journal->j_list_lock);
1924 jbd_unlock_bh_state(bh);
a931da6a 1925 write_unlock(&journal->j_state_lock);
470decc6
DK
1926 return 0;
1927 } else {
1928 /* Good, the buffer belongs to the running transaction.
1929 * We are writing our own transaction's data, not any
1930 * previous one's, so it is safe to throw it away
1931 * (remember that we expect the filesystem to have set
1932 * i_size already for this truncate so recovery will not
1933 * expose the disk blocks we are discarding here.) */
1934 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
9b57988d 1935 JBUFFER_TRACE(jh, "on running transaction");
470decc6
DK
1936 may_free = __dispose_buffer(jh, transaction);
1937 }
1938
1939zap_buffer:
f7f4bccb 1940 jbd2_journal_put_journal_head(jh);
470decc6
DK
1941zap_buffer_no_jh:
1942 spin_unlock(&journal->j_list_lock);
1943 jbd_unlock_bh_state(bh);
a931da6a 1944 write_unlock(&journal->j_state_lock);
470decc6
DK
1945zap_buffer_unlocked:
1946 clear_buffer_dirty(bh);
1947 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1948 clear_buffer_mapped(bh);
1949 clear_buffer_req(bh);
1950 clear_buffer_new(bh);
1951 bh->b_bdev = NULL;
1952 return may_free;
1953}
1954
1955/**
f7f4bccb 1956 * void jbd2_journal_invalidatepage()
470decc6
DK
1957 * @journal: journal to use for flush...
1958 * @page: page to flush
1959 * @offset: length of page to invalidate.
1960 *
1961 * Reap page buffers containing data after offset in page.
1962 *
1963 */
f7f4bccb 1964void jbd2_journal_invalidatepage(journal_t *journal,
470decc6
DK
1965 struct page *page,
1966 unsigned long offset)
1967{
1968 struct buffer_head *head, *bh, *next;
1969 unsigned int curr_off = 0;
1970 int may_free = 1;
1971
1972 if (!PageLocked(page))
1973 BUG();
1974 if (!page_has_buffers(page))
1975 return;
1976
1977 /* We will potentially be playing with lists other than just the
1978 * data lists (especially for journaled data mode), so be
1979 * cautious in our locking. */
1980
1981 head = bh = page_buffers(page);
1982 do {
1983 unsigned int next_off = curr_off + bh->b_size;
1984 next = bh->b_this_page;
1985
1986 if (offset <= curr_off) {
1987 /* This block is wholly outside the truncation point */
1988 lock_buffer(bh);
1989 may_free &= journal_unmap_buffer(journal, bh);
1990 unlock_buffer(bh);
1991 }
1992 curr_off = next_off;
1993 bh = next;
1994
1995 } while (bh != head);
1996
1997 if (!offset) {
1998 if (may_free && try_to_free_buffers(page))
1999 J_ASSERT(!page_has_buffers(page));
2000 }
2001}
2002
2003/*
2004 * File a buffer on the given transaction list.
2005 */
f7f4bccb 2006void __jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2007 transaction_t *transaction, int jlist)
2008{
2009 struct journal_head **list = NULL;
2010 int was_dirty = 0;
2011 struct buffer_head *bh = jh2bh(jh);
2012
2013 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2014 assert_spin_locked(&transaction->t_journal->j_list_lock);
2015
2016 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2017 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
4019191b 2018 jh->b_transaction == NULL);
470decc6
DK
2019
2020 if (jh->b_transaction && jh->b_jlist == jlist)
2021 return;
2022
470decc6
DK
2023 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2024 jlist == BJ_Shadow || jlist == BJ_Forget) {
f91d1d04
JK
2025 /*
2026 * For metadata buffers, we track dirty bit in buffer_jbddirty
2027 * instead of buffer_dirty. We should not see a dirty bit set
2028 * here because we clear it in do_get_write_access but e.g.
2029 * tune2fs can modify the sb and set the dirty bit at any time
2030 * so we try to gracefully handle that.
2031 */
2032 if (buffer_dirty(bh))
2033 warn_dirty_buffer(bh);
470decc6
DK
2034 if (test_clear_buffer_dirty(bh) ||
2035 test_clear_buffer_jbddirty(bh))
2036 was_dirty = 1;
2037 }
2038
2039 if (jh->b_transaction)
f7f4bccb 2040 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2041 else
2042 jbd2_journal_grab_journal_head(bh);
470decc6
DK
2043 jh->b_transaction = transaction;
2044
2045 switch (jlist) {
2046 case BJ_None:
2047 J_ASSERT_JH(jh, !jh->b_committed_data);
2048 J_ASSERT_JH(jh, !jh->b_frozen_data);
2049 return;
470decc6
DK
2050 case BJ_Metadata:
2051 transaction->t_nr_buffers++;
2052 list = &transaction->t_buffers;
2053 break;
2054 case BJ_Forget:
2055 list = &transaction->t_forget;
2056 break;
2057 case BJ_IO:
2058 list = &transaction->t_iobuf_list;
2059 break;
2060 case BJ_Shadow:
2061 list = &transaction->t_shadow_list;
2062 break;
2063 case BJ_LogCtl:
2064 list = &transaction->t_log_list;
2065 break;
2066 case BJ_Reserved:
2067 list = &transaction->t_reserved_list;
2068 break;
470decc6
DK
2069 }
2070
2071 __blist_add_buffer(list, jh);
2072 jh->b_jlist = jlist;
2073
2074 if (was_dirty)
2075 set_buffer_jbddirty(bh);
2076}
2077
f7f4bccb 2078void jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2079 transaction_t *transaction, int jlist)
2080{
2081 jbd_lock_bh_state(jh2bh(jh));
2082 spin_lock(&transaction->t_journal->j_list_lock);
f7f4bccb 2083 __jbd2_journal_file_buffer(jh, transaction, jlist);
470decc6
DK
2084 spin_unlock(&transaction->t_journal->j_list_lock);
2085 jbd_unlock_bh_state(jh2bh(jh));
2086}
2087
2088/*
2089 * Remove a buffer from its current buffer list in preparation for
2090 * dropping it from its current transaction entirely. If the buffer has
2091 * already started to be used by a subsequent transaction, refile the
2092 * buffer on that transaction's metadata list.
2093 *
de1b7941 2094 * Called under j_list_lock
470decc6 2095 * Called under jbd_lock_bh_state(jh2bh(jh))
de1b7941
JK
2096 *
2097 * jh and bh may be already free when this function returns
470decc6 2098 */
f7f4bccb 2099void __jbd2_journal_refile_buffer(struct journal_head *jh)
470decc6 2100{
ba869023 2101 int was_dirty, jlist;
470decc6
DK
2102 struct buffer_head *bh = jh2bh(jh);
2103
2104 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2105 if (jh->b_transaction)
2106 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2107
2108 /* If the buffer is now unused, just drop it. */
2109 if (jh->b_next_transaction == NULL) {
f7f4bccb 2110 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2111 return;
2112 }
2113
2114 /*
2115 * It has been modified by a later transaction: add it to the new
2116 * transaction's metadata list.
2117 */
2118
2119 was_dirty = test_clear_buffer_jbddirty(bh);
f7f4bccb 2120 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2121 /*
2122 * We set b_transaction here because b_next_transaction will inherit
2123 * our jh reference and thus __jbd2_journal_file_buffer() must not
2124 * take a new one.
2125 */
470decc6
DK
2126 jh->b_transaction = jh->b_next_transaction;
2127 jh->b_next_transaction = NULL;
ba869023 2128 if (buffer_freed(bh))
2129 jlist = BJ_Forget;
2130 else if (jh->b_modified)
2131 jlist = BJ_Metadata;
2132 else
2133 jlist = BJ_Reserved;
2134 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
470decc6
DK
2135 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2136
2137 if (was_dirty)
2138 set_buffer_jbddirty(bh);
2139}
2140
2141/*
de1b7941
JK
2142 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2143 * bh reference so that we can safely unlock bh.
2144 *
2145 * The jh and bh may be freed by this call.
470decc6 2146 */
f7f4bccb 2147void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
470decc6
DK
2148{
2149 struct buffer_head *bh = jh2bh(jh);
2150
de1b7941
JK
2151 /* Get reference so that buffer cannot be freed before we unlock it */
2152 get_bh(bh);
470decc6
DK
2153 jbd_lock_bh_state(bh);
2154 spin_lock(&journal->j_list_lock);
f7f4bccb 2155 __jbd2_journal_refile_buffer(jh);
470decc6 2156 jbd_unlock_bh_state(bh);
470decc6
DK
2157 spin_unlock(&journal->j_list_lock);
2158 __brelse(bh);
2159}
c851ed54
JK
2160
2161/*
2162 * File inode in the inode list of the handle's transaction
2163 */
2164int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2165{
2166 transaction_t *transaction = handle->h_transaction;
2167 journal_t *journal = transaction->t_journal;
2168
2169 if (is_handle_aborted(handle))
2170 return -EIO;
2171
2172 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2173 transaction->t_tid);
2174
2175 /*
2176 * First check whether inode isn't already on the transaction's
2177 * lists without taking the lock. Note that this check is safe
2178 * without the lock as we cannot race with somebody removing inode
2179 * from the transaction. The reason is that we remove inode from the
2180 * transaction only in journal_release_jbd_inode() and when we commit
2181 * the transaction. We are guarded from the first case by holding
2182 * a reference to the inode. We are safe against the second case
2183 * because if jinode->i_transaction == transaction, commit code
2184 * cannot touch the transaction because we hold reference to it,
2185 * and if jinode->i_next_transaction == transaction, commit code
2186 * will only file the inode where we want it.
2187 */
2188 if (jinode->i_transaction == transaction ||
2189 jinode->i_next_transaction == transaction)
2190 return 0;
2191
2192 spin_lock(&journal->j_list_lock);
2193
2194 if (jinode->i_transaction == transaction ||
2195 jinode->i_next_transaction == transaction)
2196 goto done;
2197
81be12c8
JK
2198 /*
2199 * We only ever set this variable to 1 so the test is safe. Since
2200 * t_need_data_flush is likely to be set, we do the test to save some
2201 * cacheline bouncing
2202 */
2203 if (!transaction->t_need_data_flush)
2204 transaction->t_need_data_flush = 1;
c851ed54
JK
2205 /* On some different transaction's list - should be
2206 * the committing one */
2207 if (jinode->i_transaction) {
2208 J_ASSERT(jinode->i_next_transaction == NULL);
2209 J_ASSERT(jinode->i_transaction ==
2210 journal->j_committing_transaction);
2211 jinode->i_next_transaction = transaction;
2212 goto done;
2213 }
2214 /* Not on any transaction list... */
2215 J_ASSERT(!jinode->i_next_transaction);
2216 jinode->i_transaction = transaction;
2217 list_add(&jinode->i_list, &transaction->t_inode_list);
2218done:
2219 spin_unlock(&journal->j_list_lock);
2220
2221 return 0;
2222}
2223
2224/*
7f5aa215
JK
2225 * File truncate and transaction commit interact with each other in a
2226 * non-trivial way. If a transaction writing data block A is
2227 * committing, we cannot discard the data by truncate until we have
2228 * written them. Otherwise if we crashed after the transaction with
2229 * write has committed but before the transaction with truncate has
2230 * committed, we could see stale data in block A. This function is a
2231 * helper to solve this problem. It starts writeout of the truncated
2232 * part in case it is in the committing transaction.
2233 *
2234 * Filesystem code must call this function when inode is journaled in
2235 * ordered mode before truncation happens and after the inode has been
2236 * placed on orphan list with the new inode size. The second condition
2237 * avoids the race that someone writes new data and we start
2238 * committing the transaction after this function has been called but
2239 * before a transaction for truncate is started (and furthermore it
2240 * allows us to optimize the case where the addition to orphan list
2241 * happens in the same transaction as write --- we don't have to write
2242 * any data in such case).
c851ed54 2243 */
7f5aa215
JK
2244int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2245 struct jbd2_inode *jinode,
c851ed54
JK
2246 loff_t new_size)
2247{
7f5aa215 2248 transaction_t *inode_trans, *commit_trans;
c851ed54
JK
2249 int ret = 0;
2250
7f5aa215
JK
2251 /* This is a quick check to avoid locking if not necessary */
2252 if (!jinode->i_transaction)
c851ed54 2253 goto out;
7f5aa215
JK
2254 /* Locks are here just to force reading of recent values, it is
2255 * enough that the transaction was not committing before we started
2256 * a transaction adding the inode to orphan list */
a931da6a 2257 read_lock(&journal->j_state_lock);
c851ed54 2258 commit_trans = journal->j_committing_transaction;
a931da6a 2259 read_unlock(&journal->j_state_lock);
7f5aa215
JK
2260 spin_lock(&journal->j_list_lock);
2261 inode_trans = jinode->i_transaction;
2262 spin_unlock(&journal->j_list_lock);
2263 if (inode_trans == commit_trans) {
2264 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
c851ed54
JK
2265 new_size, LLONG_MAX);
2266 if (ret)
2267 jbd2_journal_abort(journal, ret);
2268 }
2269out:
2270 return ret;
2271}