Merge tag 'v3.10.56' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
1da177e4
LT
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
5305cb83 44#include <trace/events/block.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
a3f3c29c 50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4 56
f0059afd
TH
57inline void touch_buffer(struct buffer_head *bh)
58{
5305cb83 59 trace_block_touch_buffer(bh);
f0059afd
TH
60 mark_page_accessed(bh->b_page);
61}
62EXPORT_SYMBOL(touch_buffer);
63
7eaceacc 64static int sleep_on_buffer(void *word)
1da177e4 65{
1da177e4
LT
66 io_schedule();
67 return 0;
68}
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
7eaceacc 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
1da177e4
LT
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
fc9b52cd 77void unlock_buffer(struct buffer_head *bh)
1da177e4 78{
51b07fc3 79 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82}
1fe72eaa 83EXPORT_SYMBOL(unlock_buffer);
1da177e4
LT
84
85/*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90void __wait_on_buffer(struct buffer_head * bh)
91{
7eaceacc 92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
1da177e4 93}
1fe72eaa 94EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
95
96static void
97__clear_page_buffers(struct page *page)
98{
99 ClearPagePrivate(page);
4c21e2f2 100 set_page_private(page, 0);
1da177e4
LT
101 page_cache_release(page);
102}
103
08bafc03
KM
104
105static int quiet_error(struct buffer_head *bh)
106{
107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 return 0;
109 return 1;
110}
111
112
1da177e4
LT
113static void buffer_io_error(struct buffer_head *bh)
114{
115 char b[BDEVNAME_SIZE];
1da177e4
LT
116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh->b_bdev, b),
118 (unsigned long long)bh->b_blocknr);
119}
120
121/*
68671f35
DM
122 * End-of-IO handler helper function which does not touch the bh after
123 * unlocking it.
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 * itself.
1da177e4 128 */
68671f35 129static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
130{
131 if (uptodate) {
132 set_buffer_uptodate(bh);
133 } else {
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh);
136 }
137 unlock_buffer(bh);
68671f35
DM
138}
139
140/*
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
143 */
144void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145{
146 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
147 put_bh(bh);
148}
1fe72eaa 149EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
150
151void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152{
153 char b[BDEVNAME_SIZE];
154
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
0edd55fa 158 if (!quiet_error(bh)) {
1da177e4
LT
159 buffer_io_error(bh);
160 printk(KERN_WARNING "lost page write due to "
161 "I/O error on %s\n",
162 bdevname(bh->b_bdev, b));
163 }
164 set_buffer_write_io_error(bh);
165 clear_buffer_uptodate(bh);
166 }
167 unlock_buffer(bh);
168 put_bh(bh);
169}
1fe72eaa 170EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 171
1da177e4
LT
172/*
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
176 * private_lock.
177 *
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
182 */
183static struct buffer_head *
385fd4c5 184__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
185{
186 struct inode *bd_inode = bdev->bd_inode;
187 struct address_space *bd_mapping = bd_inode->i_mapping;
188 struct buffer_head *ret = NULL;
189 pgoff_t index;
190 struct buffer_head *bh;
191 struct buffer_head *head;
192 struct page *page;
193 int all_mapped = 1;
194
195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 page = find_get_page(bd_mapping, index);
197 if (!page)
198 goto out;
199
200 spin_lock(&bd_mapping->private_lock);
201 if (!page_has_buffers(page))
202 goto out_unlock;
203 head = page_buffers(page);
204 bh = head;
205 do {
97f76d3d
NK
206 if (!buffer_mapped(bh))
207 all_mapped = 0;
208 else if (bh->b_blocknr == block) {
1da177e4
LT
209 ret = bh;
210 get_bh(bh);
211 goto out_unlock;
212 }
1da177e4
LT
213 bh = bh->b_this_page;
214 } while (bh != head);
215
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
220 */
221 if (all_mapped) {
72a2ebd8
TM
222 char b[BDEVNAME_SIZE];
223
1da177e4
LT
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
226 (unsigned long long)block,
227 (unsigned long long)bh->b_blocknr);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh->b_state, bh->b_size);
72a2ebd8
TM
230 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 1 << bd_inode->i_blkbits);
1da177e4
LT
232 }
233out_unlock:
234 spin_unlock(&bd_mapping->private_lock);
235 page_cache_release(page);
236out:
237 return ret;
238}
239
1da177e4 240/*
5b0830cb 241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
242 */
243static void free_more_memory(void)
244{
19770b32 245 struct zone *zone;
0e88460d 246 int nid;
1da177e4 247
0e175a18 248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
249 yield();
250
0e88460d 251 for_each_online_node(nid) {
19770b32
MG
252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 gfp_zone(GFP_NOFS), NULL,
254 &zone);
255 if (zone)
54a6eb5c 256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 257 GFP_NOFS, NULL);
1da177e4
LT
258 }
259}
260
261/*
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
264 */
265static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266{
1da177e4 267 unsigned long flags;
a3972203 268 struct buffer_head *first;
1da177e4
LT
269 struct buffer_head *tmp;
270 struct page *page;
271 int page_uptodate = 1;
272
273 BUG_ON(!buffer_async_read(bh));
274
275 page = bh->b_page;
276 if (uptodate) {
277 set_buffer_uptodate(bh);
278 } else {
279 clear_buffer_uptodate(bh);
08bafc03 280 if (!quiet_error(bh))
1da177e4
LT
281 buffer_io_error(bh);
282 SetPageError(page);
283 }
284
285 /*
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
289 */
a3972203
NP
290 first = page_buffers(page);
291 local_irq_save(flags);
292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
293 clear_buffer_async_read(bh);
294 unlock_buffer(bh);
295 tmp = bh;
296 do {
297 if (!buffer_uptodate(tmp))
298 page_uptodate = 0;
299 if (buffer_async_read(tmp)) {
300 BUG_ON(!buffer_locked(tmp));
301 goto still_busy;
302 }
303 tmp = tmp->b_this_page;
304 } while (tmp != bh);
a3972203
NP
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
1da177e4
LT
307
308 /*
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
311 */
312 if (page_uptodate && !PageError(page))
313 SetPageUptodate(page);
314 unlock_page(page);
315 return;
316
317still_busy:
a3972203
NP
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
1da177e4
LT
320 return;
321}
322
323/*
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
326 */
35c80d5f 327void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
328{
329 char b[BDEVNAME_SIZE];
1da177e4 330 unsigned long flags;
a3972203 331 struct buffer_head *first;
1da177e4
LT
332 struct buffer_head *tmp;
333 struct page *page;
334
335 BUG_ON(!buffer_async_write(bh));
336
337 page = bh->b_page;
338 if (uptodate) {
339 set_buffer_uptodate(bh);
340 } else {
08bafc03 341 if (!quiet_error(bh)) {
1da177e4
LT
342 buffer_io_error(bh);
343 printk(KERN_WARNING "lost page write due to "
344 "I/O error on %s\n",
345 bdevname(bh->b_bdev, b));
346 }
347 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 348 set_buffer_write_io_error(bh);
1da177e4
LT
349 clear_buffer_uptodate(bh);
350 SetPageError(page);
351 }
352
a3972203
NP
353 first = page_buffers(page);
354 local_irq_save(flags);
355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
1da177e4
LT
357 clear_buffer_async_write(bh);
358 unlock_buffer(bh);
359 tmp = bh->b_this_page;
360 while (tmp != bh) {
361 if (buffer_async_write(tmp)) {
362 BUG_ON(!buffer_locked(tmp));
363 goto still_busy;
364 }
365 tmp = tmp->b_this_page;
366 }
a3972203
NP
367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 local_irq_restore(flags);
1da177e4
LT
369 end_page_writeback(page);
370 return;
371
372still_busy:
a3972203
NP
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
1da177e4
LT
375 return;
376}
1fe72eaa 377EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
378
379/*
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
387 *
388 * The page comes unlocked when it has no locked buffer_async buffers
389 * left.
390 *
391 * PageLocked prevents anyone starting new async I/O reads any of
392 * the buffers.
393 *
394 * PageWriteback is used to prevent simultaneous writeout of the same
395 * page.
396 *
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
399 */
400static void mark_buffer_async_read(struct buffer_head *bh)
401{
402 bh->b_end_io = end_buffer_async_read;
403 set_buffer_async_read(bh);
404}
405
1fe72eaa
HS
406static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 bh_end_io_t *handler)
1da177e4 408{
35c80d5f 409 bh->b_end_io = handler;
1da177e4
LT
410 set_buffer_async_write(bh);
411}
35c80d5f
CM
412
413void mark_buffer_async_write(struct buffer_head *bh)
414{
415 mark_buffer_async_write_endio(bh, end_buffer_async_write);
416}
1da177e4
LT
417EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420/*
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
426 *
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
430 *
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
440 * ->private_lock.
441 *
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
444 *
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
449 *
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
453 *
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457 * queued up.
458 *
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
466 * b_inode back.
467 */
468
469/*
470 * The buffer's backing address_space's private_lock must be held
471 */
dbacefc9 472static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
473{
474 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
475 WARN_ON(!bh->b_assoc_map);
476 if (buffer_write_io_error(bh))
477 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 bh->b_assoc_map = NULL;
1da177e4
LT
479}
480
481int inode_has_buffers(struct inode *inode)
482{
483 return !list_empty(&inode->i_data.private_list);
484}
485
486/*
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
490 *
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
495 */
496static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497{
498 struct buffer_head *bh;
499 struct list_head *p;
500 int err = 0;
501
502 spin_lock(lock);
503repeat:
504 list_for_each_prev(p, list) {
505 bh = BH_ENTRY(p);
506 if (buffer_locked(bh)) {
507 get_bh(bh);
508 spin_unlock(lock);
509 wait_on_buffer(bh);
510 if (!buffer_uptodate(bh))
511 err = -EIO;
512 brelse(bh);
513 spin_lock(lock);
514 goto repeat;
515 }
516 }
517 spin_unlock(lock);
518 return err;
519}
520
01a05b33 521static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 522{
c2d75438 523 char b[BDEVNAME_SIZE];
01a05b33
AV
524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 printk(KERN_WARNING "Emergency Thaw on %s\n",
526 bdevname(sb->s_bdev, b));
527}
c2d75438 528
01a05b33
AV
529static void do_thaw_all(struct work_struct *work)
530{
531 iterate_supers(do_thaw_one, NULL);
053c525f 532 kfree(work);
c2d75438
ES
533 printk(KERN_WARNING "Emergency Thaw complete\n");
534}
535
536/**
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
538 *
539 * Used for emergency unfreeze of all filesystems via SysRq
540 */
541void emergency_thaw_all(void)
542{
053c525f
JA
543 struct work_struct *work;
544
545 work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 if (work) {
547 INIT_WORK(work, do_thaw_all);
548 schedule_work(work);
549 }
c2d75438
ES
550}
551
1da177e4 552/**
78a4a50a 553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 554 * @mapping: the mapping which wants those buffers written
1da177e4
LT
555 *
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
557 * that I/O.
558 *
67be2dd1
MW
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
1da177e4
LT
562 */
563int sync_mapping_buffers(struct address_space *mapping)
564{
252aa6f5 565 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
566
567 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 return 0;
569
570 return fsync_buffers_list(&buffer_mapping->private_lock,
571 &mapping->private_list);
572}
573EXPORT_SYMBOL(sync_mapping_buffers);
574
575/*
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
580 */
581void write_boundary_block(struct block_device *bdev,
582 sector_t bblock, unsigned blocksize)
583{
584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 if (bh) {
586 if (buffer_dirty(bh))
587 ll_rw_block(WRITE, 1, &bh);
588 put_bh(bh);
589 }
590}
591
592void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593{
594 struct address_space *mapping = inode->i_mapping;
595 struct address_space *buffer_mapping = bh->b_page->mapping;
596
597 mark_buffer_dirty(bh);
252aa6f5
RA
598 if (!mapping->private_data) {
599 mapping->private_data = buffer_mapping;
1da177e4 600 } else {
252aa6f5 601 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 602 }
535ee2fb 603 if (!bh->b_assoc_map) {
1da177e4
LT
604 spin_lock(&buffer_mapping->private_lock);
605 list_move_tail(&bh->b_assoc_buffers,
606 &mapping->private_list);
58ff407b 607 bh->b_assoc_map = mapping;
1da177e4
LT
608 spin_unlock(&buffer_mapping->private_lock);
609 }
610}
611EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
787d2214
NP
613/*
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615 * dirty.
616 *
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
619 */
a8e7d49a 620static void __set_page_dirty(struct page *page,
787d2214
NP
621 struct address_space *mapping, int warn)
622{
7e405afc
KM
623 unsigned long flags;
624
625 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
626 if (page->mapping) { /* Race with truncate? */
627 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 628 account_page_dirtied(page, mapping);
787d2214
NP
629 radix_tree_tag_set(&mapping->page_tree,
630 page_index(page), PAGECACHE_TAG_DIRTY);
631 }
7e405afc 632 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214 633 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
634}
635
1da177e4
LT
636/*
637 * Add a page to the dirty page list.
638 *
639 * It is a sad fact of life that this function is called from several places
640 * deeply under spinlocking. It may not sleep.
641 *
642 * If the page has buffers, the uptodate buffers are set dirty, to preserve
643 * dirty-state coherency between the page and the buffers. It the page does
644 * not have buffers then when they are later attached they will all be set
645 * dirty.
646 *
647 * The buffers are dirtied before the page is dirtied. There's a small race
648 * window in which a writepage caller may see the page cleanness but not the
649 * buffer dirtiness. That's fine. If this code were to set the page dirty
650 * before the buffers, a concurrent writepage caller could clear the page dirty
651 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
652 * page on the dirty page list.
653 *
654 * We use private_lock to lock against try_to_free_buffers while using the
655 * page's buffer list. Also use this to protect against clean buffers being
656 * added to the page after it was set dirty.
657 *
658 * FIXME: may need to call ->reservepage here as well. That's rather up to the
659 * address_space though.
660 */
661int __set_page_dirty_buffers(struct page *page)
662{
a8e7d49a 663 int newly_dirty;
787d2214 664 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
665
666 if (unlikely(!mapping))
667 return !TestSetPageDirty(page);
1da177e4
LT
668
669 spin_lock(&mapping->private_lock);
670 if (page_has_buffers(page)) {
671 struct buffer_head *head = page_buffers(page);
672 struct buffer_head *bh = head;
673
674 do {
675 set_buffer_dirty(bh);
676 bh = bh->b_this_page;
677 } while (bh != head);
678 }
a8e7d49a 679 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
680 spin_unlock(&mapping->private_lock);
681
a8e7d49a
LT
682 if (newly_dirty)
683 __set_page_dirty(page, mapping, 1);
684 return newly_dirty;
1da177e4
LT
685}
686EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688/*
689 * Write out and wait upon a list of buffers.
690 *
691 * We have conflicting pressures: we want to make sure that all
692 * initially dirty buffers get waited on, but that any subsequently
693 * dirtied buffers don't. After all, we don't want fsync to last
694 * forever if somebody is actively writing to the file.
695 *
696 * Do this in two main stages: first we copy dirty buffers to a
697 * temporary inode list, queueing the writes as we go. Then we clean
698 * up, waiting for those writes to complete.
699 *
700 * During this second stage, any subsequent updates to the file may end
701 * up refiling the buffer on the original inode's dirty list again, so
702 * there is a chance we will end up with a buffer queued for write but
703 * not yet completed on that list. So, as a final cleanup we go through
704 * the osync code to catch these locked, dirty buffers without requeuing
705 * any newly dirty buffers for write.
706 */
707static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708{
709 struct buffer_head *bh;
710 struct list_head tmp;
7eaceacc 711 struct address_space *mapping;
1da177e4 712 int err = 0, err2;
4ee2491e 713 struct blk_plug plug;
1da177e4
LT
714
715 INIT_LIST_HEAD(&tmp);
4ee2491e 716 blk_start_plug(&plug);
1da177e4
LT
717
718 spin_lock(lock);
719 while (!list_empty(list)) {
720 bh = BH_ENTRY(list->next);
535ee2fb 721 mapping = bh->b_assoc_map;
58ff407b 722 __remove_assoc_queue(bh);
535ee2fb
JK
723 /* Avoid race with mark_buffer_dirty_inode() which does
724 * a lockless check and we rely on seeing the dirty bit */
725 smp_mb();
1da177e4
LT
726 if (buffer_dirty(bh) || buffer_locked(bh)) {
727 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 728 bh->b_assoc_map = mapping;
1da177e4
LT
729 if (buffer_dirty(bh)) {
730 get_bh(bh);
731 spin_unlock(lock);
732 /*
733 * Ensure any pending I/O completes so that
9cb569d6
CH
734 * write_dirty_buffer() actually writes the
735 * current contents - it is a noop if I/O is
736 * still in flight on potentially older
737 * contents.
1da177e4 738 */
721a9602 739 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
740
741 /*
742 * Kick off IO for the previous mapping. Note
743 * that we will not run the very last mapping,
744 * wait_on_buffer() will do that for us
745 * through sync_buffer().
746 */
1da177e4
LT
747 brelse(bh);
748 spin_lock(lock);
749 }
750 }
751 }
752
4ee2491e
JA
753 spin_unlock(lock);
754 blk_finish_plug(&plug);
755 spin_lock(lock);
756
1da177e4
LT
757 while (!list_empty(&tmp)) {
758 bh = BH_ENTRY(tmp.prev);
1da177e4 759 get_bh(bh);
535ee2fb
JK
760 mapping = bh->b_assoc_map;
761 __remove_assoc_queue(bh);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
765 if (buffer_dirty(bh)) {
766 list_add(&bh->b_assoc_buffers,
e3892296 767 &mapping->private_list);
535ee2fb
JK
768 bh->b_assoc_map = mapping;
769 }
1da177e4
LT
770 spin_unlock(lock);
771 wait_on_buffer(bh);
772 if (!buffer_uptodate(bh))
773 err = -EIO;
774 brelse(bh);
775 spin_lock(lock);
776 }
777
778 spin_unlock(lock);
779 err2 = osync_buffers_list(lock, list);
780 if (err)
781 return err;
782 else
783 return err2;
784}
785
786/*
787 * Invalidate any and all dirty buffers on a given inode. We are
788 * probably unmounting the fs, but that doesn't mean we have already
789 * done a sync(). Just drop the buffers from the inode list.
790 *
791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
792 * assumes that all the buffers are against the blockdev. Not true
793 * for reiserfs.
794 */
795void invalidate_inode_buffers(struct inode *inode)
796{
797 if (inode_has_buffers(inode)) {
798 struct address_space *mapping = &inode->i_data;
799 struct list_head *list = &mapping->private_list;
252aa6f5 800 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
801
802 spin_lock(&buffer_mapping->private_lock);
803 while (!list_empty(list))
804 __remove_assoc_queue(BH_ENTRY(list->next));
805 spin_unlock(&buffer_mapping->private_lock);
806 }
807}
52b19ac9 808EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
809
810/*
811 * Remove any clean buffers from the inode's buffer list. This is called
812 * when we're trying to free the inode itself. Those buffers can pin it.
813 *
814 * Returns true if all buffers were removed.
815 */
816int remove_inode_buffers(struct inode *inode)
817{
818 int ret = 1;
819
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
252aa6f5 823 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
824
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list)) {
827 struct buffer_head *bh = BH_ENTRY(list->next);
828 if (buffer_dirty(bh)) {
829 ret = 0;
830 break;
831 }
832 __remove_assoc_queue(bh);
833 }
834 spin_unlock(&buffer_mapping->private_lock);
835 }
836 return ret;
837}
838
839/*
840 * Create the appropriate buffers when given a page for data area and
841 * the size of each buffer.. Use the bh->b_this_page linked list to
842 * follow the buffers created. Return NULL if unable to create more
843 * buffers.
844 *
845 * The retry flag is used to differentiate async IO (paging, swapping)
846 * which may not fail from ordinary buffer allocations.
847 */
848struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849 int retry)
850{
851 struct buffer_head *bh, *head;
852 long offset;
853
854try_again:
855 head = NULL;
856 offset = PAGE_SIZE;
857 while ((offset -= size) >= 0) {
858 bh = alloc_buffer_head(GFP_NOFS);
859 if (!bh)
860 goto no_grow;
861
1da177e4
LT
862 bh->b_this_page = head;
863 bh->b_blocknr = -1;
864 head = bh;
865
1da177e4
LT
866 bh->b_size = size;
867
868 /* Link the buffer to its page */
869 set_bh_page(bh, page, offset);
1da177e4
LT
870 }
871 return head;
872/*
873 * In case anything failed, we just free everything we got.
874 */
875no_grow:
876 if (head) {
877 do {
878 bh = head;
879 head = head->b_this_page;
880 free_buffer_head(bh);
881 } while (head);
882 }
883
884 /*
885 * Return failure for non-async IO requests. Async IO requests
886 * are not allowed to fail, so we have to wait until buffer heads
887 * become available. But we don't want tasks sleeping with
888 * partially complete buffers, so all were released above.
889 */
890 if (!retry)
891 return NULL;
892
893 /* We're _really_ low on memory. Now we just
894 * wait for old buffer heads to become free due to
895 * finishing IO. Since this is an async request and
896 * the reserve list is empty, we're sure there are
897 * async buffer heads in use.
898 */
899 free_more_memory();
900 goto try_again;
901}
902EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904static inline void
905link_dev_buffers(struct page *page, struct buffer_head *head)
906{
907 struct buffer_head *bh, *tail;
908
909 bh = head;
910 do {
911 tail = bh;
912 bh = bh->b_this_page;
913 } while (bh);
914 tail->b_this_page = head;
915 attach_page_buffers(page, head);
916}
917
bbec0270
LT
918static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919{
920 sector_t retval = ~((sector_t)0);
921 loff_t sz = i_size_read(bdev->bd_inode);
922
923 if (sz) {
924 unsigned int sizebits = blksize_bits(size);
925 retval = (sz >> sizebits);
926 }
927 return retval;
928}
929
1da177e4
LT
930/*
931 * Initialise the state of a blockdev page's buffers.
932 */
676ce6d5 933static sector_t
1da177e4
LT
934init_page_buffers(struct page *page, struct block_device *bdev,
935 sector_t block, int size)
936{
937 struct buffer_head *head = page_buffers(page);
938 struct buffer_head *bh = head;
939 int uptodate = PageUptodate(page);
bbec0270 940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
941
942 do {
943 if (!buffer_mapped(bh)) {
944 init_buffer(bh, NULL, NULL);
945 bh->b_bdev = bdev;
946 bh->b_blocknr = block;
947 if (uptodate)
948 set_buffer_uptodate(bh);
080399aa
JM
949 if (block < end_block)
950 set_buffer_mapped(bh);
1da177e4
LT
951 }
952 block++;
953 bh = bh->b_this_page;
954 } while (bh != head);
676ce6d5
HD
955
956 /*
957 * Caller needs to validate requested block against end of device.
958 */
959 return end_block;
1da177e4
LT
960}
961
962/*
963 * Create the page-cache page that contains the requested block.
964 *
676ce6d5 965 * This is used purely for blockdev mappings.
1da177e4 966 */
676ce6d5 967static int
1da177e4 968grow_dev_page(struct block_device *bdev, sector_t block,
676ce6d5 969 pgoff_t index, int size, int sizebits)
1da177e4
LT
970{
971 struct inode *inode = bdev->bd_inode;
972 struct page *page;
973 struct buffer_head *bh;
676ce6d5
HD
974 sector_t end_block;
975 int ret = 0; /* Will call free_more_memory() */
1da177e4 976
ea125892 977 page = find_or_create_page(inode->i_mapping, index,
769848c0 978 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4 979 if (!page)
676ce6d5 980 return ret;
1da177e4 981
e827f923 982 BUG_ON(!PageLocked(page));
1da177e4
LT
983
984 if (page_has_buffers(page)) {
985 bh = page_buffers(page);
986 if (bh->b_size == size) {
676ce6d5 987 end_block = init_page_buffers(page, bdev,
c2d33179
AA
988 (sector_t)index << sizebits,
989 size);
676ce6d5 990 goto done;
1da177e4
LT
991 }
992 if (!try_to_free_buffers(page))
993 goto failed;
994 }
995
996 /*
997 * Allocate some buffers for this page
998 */
999 bh = alloc_page_buffers(page, size, 0);
1000 if (!bh)
1001 goto failed;
1002
1003 /*
1004 * Link the page to the buffers and initialise them. Take the
1005 * lock to be atomic wrt __find_get_block(), which does not
1006 * run under the page lock.
1007 */
1008 spin_lock(&inode->i_mapping->private_lock);
1009 link_dev_buffers(page, bh);
c2d33179
AA
1010 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1011 size);
1da177e4 1012 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1013done:
1014 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1015failed:
1da177e4
LT
1016 unlock_page(page);
1017 page_cache_release(page);
676ce6d5 1018 return ret;
1da177e4
LT
1019}
1020
1021/*
1022 * Create buffers for the specified block device block's page. If
1023 * that page was dirty, the buffers are set dirty also.
1da177e4 1024 */
858119e1 1025static int
1da177e4
LT
1026grow_buffers(struct block_device *bdev, sector_t block, int size)
1027{
1da177e4
LT
1028 pgoff_t index;
1029 int sizebits;
1030
1031 sizebits = -1;
1032 do {
1033 sizebits++;
1034 } while ((size << sizebits) < PAGE_SIZE);
1035
1036 index = block >> sizebits;
1da177e4 1037
e5657933
AM
1038 /*
1039 * Check for a block which wants to lie outside our maximum possible
1040 * pagecache index. (this comparison is done using sector_t types).
1041 */
1042 if (unlikely(index != block >> sizebits)) {
1043 char b[BDEVNAME_SIZE];
1044
1045 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1046 "device %s\n",
8e24eea7 1047 __func__, (unsigned long long)block,
e5657933
AM
1048 bdevname(bdev, b));
1049 return -EIO;
1050 }
676ce6d5 1051
1da177e4 1052 /* Create a page with the proper size buffers.. */
676ce6d5 1053 return grow_dev_page(bdev, block, index, size, sizebits);
1da177e4
LT
1054}
1055
75c96f85 1056static struct buffer_head *
1da177e4
LT
1057__getblk_slow(struct block_device *bdev, sector_t block, int size)
1058{
1059 /* Size must be multiple of hard sectorsize */
e1defc4f 1060 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1061 (size < 512 || size > PAGE_SIZE))) {
1062 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063 size);
e1defc4f
MP
1064 printk(KERN_ERR "logical block size: %d\n",
1065 bdev_logical_block_size(bdev));
1da177e4
LT
1066
1067 dump_stack();
1068 return NULL;
1069 }
1070
676ce6d5
HD
1071 for (;;) {
1072 struct buffer_head *bh;
1073 int ret;
1da177e4
LT
1074
1075 bh = __find_get_block(bdev, block, size);
1076 if (bh)
1077 return bh;
676ce6d5
HD
1078
1079 ret = grow_buffers(bdev, block, size);
1080 if (ret < 0)
1081 return NULL;
1082 if (ret == 0)
1083 free_more_memory();
1da177e4
LT
1084 }
1085}
1086
1087/*
1088 * The relationship between dirty buffers and dirty pages:
1089 *
1090 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1091 * the page is tagged dirty in its radix tree.
1092 *
1093 * At all times, the dirtiness of the buffers represents the dirtiness of
1094 * subsections of the page. If the page has buffers, the page dirty bit is
1095 * merely a hint about the true dirty state.
1096 *
1097 * When a page is set dirty in its entirety, all its buffers are marked dirty
1098 * (if the page has buffers).
1099 *
1100 * When a buffer is marked dirty, its page is dirtied, but the page's other
1101 * buffers are not.
1102 *
1103 * Also. When blockdev buffers are explicitly read with bread(), they
1104 * individually become uptodate. But their backing page remains not
1105 * uptodate - even if all of its buffers are uptodate. A subsequent
1106 * block_read_full_page() against that page will discover all the uptodate
1107 * buffers, will set the page uptodate and will perform no I/O.
1108 */
1109
1110/**
1111 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1112 * @bh: the buffer_head to mark dirty
1da177e4
LT
1113 *
1114 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1115 * backing page dirty, then tag the page as dirty in its address_space's radix
1116 * tree and then attach the address_space's inode to its superblock's dirty
1117 * inode list.
1118 *
1119 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1120 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1121 */
fc9b52cd 1122void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1123{
787d2214 1124 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1125
5305cb83
TH
1126 trace_block_dirty_buffer(bh);
1127
1be62dc1
LT
1128 /*
1129 * Very *carefully* optimize the it-is-already-dirty case.
1130 *
1131 * Don't let the final "is it dirty" escape to before we
1132 * perhaps modified the buffer.
1133 */
1134 if (buffer_dirty(bh)) {
1135 smp_mb();
1136 if (buffer_dirty(bh))
1137 return;
1138 }
1139
a8e7d49a
LT
1140 if (!test_set_buffer_dirty(bh)) {
1141 struct page *page = bh->b_page;
8e9d78ed
LT
1142 if (!TestSetPageDirty(page)) {
1143 struct address_space *mapping = page_mapping(page);
1144 if (mapping)
1145 __set_page_dirty(page, mapping, 0);
1146 }
a8e7d49a 1147 }
1da177e4 1148}
1fe72eaa 1149EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1150
1151/*
1152 * Decrement a buffer_head's reference count. If all buffers against a page
1153 * have zero reference count, are clean and unlocked, and if the page is clean
1154 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1155 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1156 * a page but it ends up not being freed, and buffers may later be reattached).
1157 */
1158void __brelse(struct buffer_head * buf)
1159{
1160 if (atomic_read(&buf->b_count)) {
1161 put_bh(buf);
1162 return;
1163 }
5c752ad9 1164 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1165}
1fe72eaa 1166EXPORT_SYMBOL(__brelse);
1da177e4
LT
1167
1168/*
1169 * bforget() is like brelse(), except it discards any
1170 * potentially dirty data.
1171 */
1172void __bforget(struct buffer_head *bh)
1173{
1174 clear_buffer_dirty(bh);
535ee2fb 1175 if (bh->b_assoc_map) {
1da177e4
LT
1176 struct address_space *buffer_mapping = bh->b_page->mapping;
1177
1178 spin_lock(&buffer_mapping->private_lock);
1179 list_del_init(&bh->b_assoc_buffers);
58ff407b 1180 bh->b_assoc_map = NULL;
1da177e4
LT
1181 spin_unlock(&buffer_mapping->private_lock);
1182 }
1183 __brelse(bh);
1184}
1fe72eaa 1185EXPORT_SYMBOL(__bforget);
1da177e4
LT
1186
1187static struct buffer_head *__bread_slow(struct buffer_head *bh)
1188{
1189 lock_buffer(bh);
1190 if (buffer_uptodate(bh)) {
1191 unlock_buffer(bh);
6fa3eb70
S
1192#ifdef FEATURE_STORAGE_META_LOG
1193 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
1194 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, HIT_READ_CNT);
1195#endif
1da177e4
LT
1196 return bh;
1197 } else {
1198 get_bh(bh);
1199 bh->b_end_io = end_buffer_read_sync;
6fa3eb70
S
1200#ifdef FEATURE_STORAGE_META_LOG
1201 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
1202 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
1203#endif
1da177e4
LT
1204 submit_bh(READ, bh);
1205 wait_on_buffer(bh);
1206 if (buffer_uptodate(bh))
1207 return bh;
1208 }
1209 brelse(bh);
1210 return NULL;
1211}
1212
1213/*
1214 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1215 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1216 * refcount elevated by one when they're in an LRU. A buffer can only appear
1217 * once in a particular CPU's LRU. A single buffer can be present in multiple
1218 * CPU's LRUs at the same time.
1219 *
1220 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1221 * sb_find_get_block().
1222 *
1223 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1224 * a local interrupt disable for that.
1225 */
1226
1227#define BH_LRU_SIZE 8
1228
1229struct bh_lru {
1230 struct buffer_head *bhs[BH_LRU_SIZE];
1231};
1232
1233static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1234
1235#ifdef CONFIG_SMP
1236#define bh_lru_lock() local_irq_disable()
1237#define bh_lru_unlock() local_irq_enable()
1238#else
1239#define bh_lru_lock() preempt_disable()
1240#define bh_lru_unlock() preempt_enable()
1241#endif
1242
1243static inline void check_irqs_on(void)
1244{
1245#ifdef irqs_disabled
1246 BUG_ON(irqs_disabled());
1247#endif
1248}
1249
1250/*
1251 * The LRU management algorithm is dopey-but-simple. Sorry.
1252 */
1253static void bh_lru_install(struct buffer_head *bh)
1254{
1255 struct buffer_head *evictee = NULL;
1da177e4
LT
1256
1257 check_irqs_on();
1258 bh_lru_lock();
c7b92516 1259 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1260 struct buffer_head *bhs[BH_LRU_SIZE];
1261 int in;
1262 int out = 0;
1263
1264 get_bh(bh);
1265 bhs[out++] = bh;
1266 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1267 struct buffer_head *bh2 =
1268 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1269
1270 if (bh2 == bh) {
1271 __brelse(bh2);
1272 } else {
1273 if (out >= BH_LRU_SIZE) {
1274 BUG_ON(evictee != NULL);
1275 evictee = bh2;
1276 } else {
1277 bhs[out++] = bh2;
1278 }
1279 }
1280 }
1281 while (out < BH_LRU_SIZE)
1282 bhs[out++] = NULL;
c7b92516 1283 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1284 }
1285 bh_lru_unlock();
1286
1287 if (evictee)
1288 __brelse(evictee);
1289}
1290
1291/*
1292 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1293 */
858119e1 1294static struct buffer_head *
3991d3bd 1295lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1296{
1297 struct buffer_head *ret = NULL;
3991d3bd 1298 unsigned int i;
1da177e4
LT
1299
1300 check_irqs_on();
1301 bh_lru_lock();
1da177e4 1302 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1303 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4
LT
1304
1305 if (bh && bh->b_bdev == bdev &&
1306 bh->b_blocknr == block && bh->b_size == size) {
1307 if (i) {
1308 while (i) {
c7b92516
CL
1309 __this_cpu_write(bh_lrus.bhs[i],
1310 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1311 i--;
1312 }
c7b92516 1313 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1314 }
1315 get_bh(bh);
1316 ret = bh;
1317 break;
1318 }
1319 }
1320 bh_lru_unlock();
1321 return ret;
1322}
1323
1324/*
1325 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1326 * it in the LRU and mark it as accessed. If it is not present then return
1327 * NULL
1328 */
1329struct buffer_head *
3991d3bd 1330__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1331{
1332 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1333
1334 if (bh == NULL) {
385fd4c5 1335 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1336 if (bh)
1337 bh_lru_install(bh);
1338 }
1339 if (bh)
1340 touch_buffer(bh);
1341 return bh;
1342}
1343EXPORT_SYMBOL(__find_get_block);
1344
1345/*
1346 * __getblk will locate (and, if necessary, create) the buffer_head
1347 * which corresponds to the passed block_device, block and size. The
1348 * returned buffer has its reference count incremented.
1349 *
1da177e4
LT
1350 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1351 * attempt is failing. FIXME, perhaps?
1352 */
1353struct buffer_head *
3991d3bd 1354__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1355{
1356 struct buffer_head *bh = __find_get_block(bdev, block, size);
1357
1358 might_sleep();
1359 if (bh == NULL)
1360 bh = __getblk_slow(bdev, block, size);
1361 return bh;
1362}
1363EXPORT_SYMBOL(__getblk);
1364
1365/*
1366 * Do async read-ahead on a buffer..
1367 */
3991d3bd 1368void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1369{
1370 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1371 if (likely(bh)) {
1372 ll_rw_block(READA, 1, &bh);
1373 brelse(bh);
1374 }
1da177e4
LT
1375}
1376EXPORT_SYMBOL(__breadahead);
1377
1378/**
1379 * __bread() - reads a specified block and returns the bh
67be2dd1 1380 * @bdev: the block_device to read from
1da177e4
LT
1381 * @block: number of block
1382 * @size: size (in bytes) to read
1383 *
1384 * Reads a specified block, and returns buffer head that contains it.
1385 * It returns NULL if the block was unreadable.
1386 */
1387struct buffer_head *
3991d3bd 1388__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1389{
1390 struct buffer_head *bh = __getblk(bdev, block, size);
1391
a3e713b5 1392 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1393 bh = __bread_slow(bh);
1394 return bh;
1395}
1396EXPORT_SYMBOL(__bread);
1397
1398/*
1399 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1400 * This doesn't race because it runs in each cpu either in irq
1401 * or with preempt disabled.
1402 */
1403static void invalidate_bh_lru(void *arg)
1404{
1405 struct bh_lru *b = &get_cpu_var(bh_lrus);
1406 int i;
1407
1408 for (i = 0; i < BH_LRU_SIZE; i++) {
1409 brelse(b->bhs[i]);
1410 b->bhs[i] = NULL;
1411 }
1412 put_cpu_var(bh_lrus);
1413}
42be35d0
GBY
1414
1415static bool has_bh_in_lru(int cpu, void *dummy)
1416{
1417 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1418 int i;
1da177e4 1419
42be35d0
GBY
1420 for (i = 0; i < BH_LRU_SIZE; i++) {
1421 if (b->bhs[i])
1422 return 1;
1423 }
1424
1425 return 0;
1426}
1427
f9a14399 1428void invalidate_bh_lrus(void)
1da177e4 1429{
42be35d0 1430 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1431}
9db5579b 1432EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1433
1434void set_bh_page(struct buffer_head *bh,
1435 struct page *page, unsigned long offset)
1436{
1437 bh->b_page = page;
e827f923 1438 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1439 if (PageHighMem(page))
1440 /*
1441 * This catches illegal uses and preserves the offset:
1442 */
1443 bh->b_data = (char *)(0 + offset);
1444 else
1445 bh->b_data = page_address(page) + offset;
1446}
1447EXPORT_SYMBOL(set_bh_page);
1448
1449/*
1450 * Called when truncating a buffer on a page completely.
1451 */
858119e1 1452static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1453{
1454 lock_buffer(bh);
1455 clear_buffer_dirty(bh);
1456 bh->b_bdev = NULL;
1457 clear_buffer_mapped(bh);
1458 clear_buffer_req(bh);
1459 clear_buffer_new(bh);
1460 clear_buffer_delay(bh);
33a266dd 1461 clear_buffer_unwritten(bh);
1da177e4
LT
1462 unlock_buffer(bh);
1463}
1464
1da177e4 1465/**
814e1d25 1466 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1467 *
1468 * @page: the page which is affected
1469 * @offset: the index of the truncation point
1470 *
1471 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1472 * invalidated by a truncate operation.
1da177e4
LT
1473 *
1474 * block_invalidatepage() does not have to release all buffers, but it must
1475 * ensure that no dirty buffer is left outside @offset and that no I/O
1476 * is underway against any of the blocks which are outside the truncation
1477 * point. Because the caller is about to free (and possibly reuse) those
1478 * blocks on-disk.
1479 */
2ff28e22 1480void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1481{
1482 struct buffer_head *head, *bh, *next;
1483 unsigned int curr_off = 0;
1da177e4
LT
1484
1485 BUG_ON(!PageLocked(page));
1486 if (!page_has_buffers(page))
1487 goto out;
1488
1489 head = page_buffers(page);
1490 bh = head;
1491 do {
1492 unsigned int next_off = curr_off + bh->b_size;
1493 next = bh->b_this_page;
1494
1495 /*
1496 * is this block fully invalidated?
1497 */
1498 if (offset <= curr_off)
1499 discard_buffer(bh);
1500 curr_off = next_off;
1501 bh = next;
1502 } while (bh != head);
1503
1504 /*
1505 * We release buffers only if the entire page is being invalidated.
1506 * The get_block cached value has been unconditionally invalidated,
1507 * so real IO is not possible anymore.
1508 */
1509 if (offset == 0)
2ff28e22 1510 try_to_release_page(page, 0);
1da177e4 1511out:
2ff28e22 1512 return;
1da177e4
LT
1513}
1514EXPORT_SYMBOL(block_invalidatepage);
1515
1516/*
1517 * We attach and possibly dirty the buffers atomically wrt
1518 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1519 * is already excluded via the page lock.
1520 */
1521void create_empty_buffers(struct page *page,
1522 unsigned long blocksize, unsigned long b_state)
1523{
1524 struct buffer_head *bh, *head, *tail;
1525
1526 head = alloc_page_buffers(page, blocksize, 1);
1527 bh = head;
1528 do {
1529 bh->b_state |= b_state;
1530 tail = bh;
1531 bh = bh->b_this_page;
1532 } while (bh);
1533 tail->b_this_page = head;
1534
1535 spin_lock(&page->mapping->private_lock);
1536 if (PageUptodate(page) || PageDirty(page)) {
1537 bh = head;
1538 do {
1539 if (PageDirty(page))
1540 set_buffer_dirty(bh);
1541 if (PageUptodate(page))
1542 set_buffer_uptodate(bh);
1543 bh = bh->b_this_page;
1544 } while (bh != head);
1545 }
1546 attach_page_buffers(page, head);
1547 spin_unlock(&page->mapping->private_lock);
1548}
1549EXPORT_SYMBOL(create_empty_buffers);
1550
1551/*
1552 * We are taking a block for data and we don't want any output from any
1553 * buffer-cache aliases starting from return from that function and
1554 * until the moment when something will explicitly mark the buffer
1555 * dirty (hopefully that will not happen until we will free that block ;-)
1556 * We don't even need to mark it not-uptodate - nobody can expect
1557 * anything from a newly allocated buffer anyway. We used to used
1558 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1559 * don't want to mark the alias unmapped, for example - it would confuse
1560 * anyone who might pick it with bread() afterwards...
1561 *
1562 * Also.. Note that bforget() doesn't lock the buffer. So there can
1563 * be writeout I/O going on against recently-freed buffers. We don't
1564 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1565 * only if we really need to. That happens here.
1566 */
1567void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1568{
1569 struct buffer_head *old_bh;
1570
1571 might_sleep();
1572
385fd4c5 1573 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1574 if (old_bh) {
1575 clear_buffer_dirty(old_bh);
1576 wait_on_buffer(old_bh);
1577 clear_buffer_req(old_bh);
1578 __brelse(old_bh);
1579 }
1580}
1581EXPORT_SYMBOL(unmap_underlying_metadata);
1582
45bce8f3
LT
1583/*
1584 * Size is a power-of-two in the range 512..PAGE_SIZE,
1585 * and the case we care about most is PAGE_SIZE.
1586 *
1587 * So this *could* possibly be written with those
1588 * constraints in mind (relevant mostly if some
1589 * architecture has a slow bit-scan instruction)
1590 */
1591static inline int block_size_bits(unsigned int blocksize)
1592{
1593 return ilog2(blocksize);
1594}
1595
1596static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1597{
1598 BUG_ON(!PageLocked(page));
1599
1600 if (!page_has_buffers(page))
1601 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1602 return page_buffers(page);
1603}
1604
1da177e4
LT
1605/*
1606 * NOTE! All mapped/uptodate combinations are valid:
1607 *
1608 * Mapped Uptodate Meaning
1609 *
1610 * No No "unknown" - must do get_block()
1611 * No Yes "hole" - zero-filled
1612 * Yes No "allocated" - allocated on disk, not read in
1613 * Yes Yes "valid" - allocated and up-to-date in memory.
1614 *
1615 * "Dirty" is valid only with the last case (mapped+uptodate).
1616 */
1617
1618/*
1619 * While block_write_full_page is writing back the dirty buffers under
1620 * the page lock, whoever dirtied the buffers may decide to clean them
1621 * again at any time. We handle that by only looking at the buffer
1622 * state inside lock_buffer().
1623 *
1624 * If block_write_full_page() is called for regular writeback
1625 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1626 * locked buffer. This only can happen if someone has written the buffer
1627 * directly, with submit_bh(). At the address_space level PageWriteback
1628 * prevents this contention from occurring.
6e34eedd
TT
1629 *
1630 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1631 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1632 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1633 */
1634static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1635 get_block_t *get_block, struct writeback_control *wbc,
1636 bh_end_io_t *handler)
1da177e4
LT
1637{
1638 int err;
1639 sector_t block;
1640 sector_t last_block;
f0fbd5fc 1641 struct buffer_head *bh, *head;
45bce8f3 1642 unsigned int blocksize, bbits;
1da177e4 1643 int nr_underway = 0;
6e34eedd 1644 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
721a9602 1645 WRITE_SYNC : WRITE);
1da177e4 1646
45bce8f3 1647 head = create_page_buffers(page, inode,
1da177e4 1648 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1649
1650 /*
1651 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1652 * here, and the (potentially unmapped) buffers may become dirty at
1653 * any time. If a buffer becomes dirty here after we've inspected it
1654 * then we just miss that fact, and the page stays dirty.
1655 *
1656 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 * handle that here by just cleaning them.
1658 */
1659
1da177e4 1660 bh = head;
45bce8f3
LT
1661 blocksize = bh->b_size;
1662 bbits = block_size_bits(blocksize);
1663
1664 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1665 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1666
1667 /*
1668 * Get all the dirty buffers mapped to disk addresses and
1669 * handle any aliases from the underlying blockdev's mapping.
1670 */
1671 do {
1672 if (block > last_block) {
1673 /*
1674 * mapped buffers outside i_size will occur, because
1675 * this page can be outside i_size when there is a
1676 * truncate in progress.
1677 */
1678 /*
1679 * The buffer was zeroed by block_write_full_page()
1680 */
1681 clear_buffer_dirty(bh);
1682 set_buffer_uptodate(bh);
29a814d2
AT
1683 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1684 buffer_dirty(bh)) {
b0cf2321 1685 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1686 err = get_block(inode, block, bh, 1);
1687 if (err)
1688 goto recover;
29a814d2 1689 clear_buffer_delay(bh);
1da177e4
LT
1690 if (buffer_new(bh)) {
1691 /* blockdev mappings never come here */
1692 clear_buffer_new(bh);
1693 unmap_underlying_metadata(bh->b_bdev,
1694 bh->b_blocknr);
1695 }
1696 }
1697 bh = bh->b_this_page;
1698 block++;
1699 } while (bh != head);
1700
1701 do {
1da177e4
LT
1702 if (!buffer_mapped(bh))
1703 continue;
1704 /*
1705 * If it's a fully non-blocking write attempt and we cannot
1706 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1707 * potentially cause a busy-wait loop from writeback threads
1708 * and kswapd activity, but those code paths have their own
1709 * higher-level throttling.
1da177e4 1710 */
1b430bee 1711 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1712 lock_buffer(bh);
ca5de404 1713 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1714 redirty_page_for_writepage(wbc, page);
1715 continue;
1716 }
1717 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1718 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1719 } else {
1720 unlock_buffer(bh);
1721 }
1722 } while ((bh = bh->b_this_page) != head);
1723
1724 /*
1725 * The page and its buffers are protected by PageWriteback(), so we can
1726 * drop the bh refcounts early.
1727 */
1728 BUG_ON(PageWriteback(page));
1729 set_page_writeback(page);
1da177e4
LT
1730
1731 do {
1732 struct buffer_head *next = bh->b_this_page;
1733 if (buffer_async_write(bh)) {
a64c8610 1734 submit_bh(write_op, bh);
1da177e4
LT
1735 nr_underway++;
1736 }
1da177e4
LT
1737 bh = next;
1738 } while (bh != head);
05937baa 1739 unlock_page(page);
1da177e4
LT
1740
1741 err = 0;
1742done:
1743 if (nr_underway == 0) {
1744 /*
1745 * The page was marked dirty, but the buffers were
1746 * clean. Someone wrote them back by hand with
1747 * ll_rw_block/submit_bh. A rare case.
1748 */
1da177e4 1749 end_page_writeback(page);
3d67f2d7 1750
1da177e4
LT
1751 /*
1752 * The page and buffer_heads can be released at any time from
1753 * here on.
1754 */
1da177e4
LT
1755 }
1756 return err;
1757
1758recover:
1759 /*
1760 * ENOSPC, or some other error. We may already have added some
1761 * blocks to the file, so we need to write these out to avoid
1762 * exposing stale data.
1763 * The page is currently locked and not marked for writeback
1764 */
1765 bh = head;
1766 /* Recovery: lock and submit the mapped buffers */
1767 do {
29a814d2
AT
1768 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1769 !buffer_delay(bh)) {
1da177e4 1770 lock_buffer(bh);
35c80d5f 1771 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1772 } else {
1773 /*
1774 * The buffer may have been set dirty during
1775 * attachment to a dirty page.
1776 */
1777 clear_buffer_dirty(bh);
1778 }
1779 } while ((bh = bh->b_this_page) != head);
1780 SetPageError(page);
1781 BUG_ON(PageWriteback(page));
7e4c3690 1782 mapping_set_error(page->mapping, err);
1da177e4 1783 set_page_writeback(page);
1da177e4
LT
1784 do {
1785 struct buffer_head *next = bh->b_this_page;
1786 if (buffer_async_write(bh)) {
1787 clear_buffer_dirty(bh);
a64c8610 1788 submit_bh(write_op, bh);
1da177e4
LT
1789 nr_underway++;
1790 }
1da177e4
LT
1791 bh = next;
1792 } while (bh != head);
ffda9d30 1793 unlock_page(page);
1da177e4
LT
1794 goto done;
1795}
1796
afddba49
NP
1797/*
1798 * If a page has any new buffers, zero them out here, and mark them uptodate
1799 * and dirty so they'll be written out (in order to prevent uninitialised
1800 * block data from leaking). And clear the new bit.
1801 */
1802void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1803{
1804 unsigned int block_start, block_end;
1805 struct buffer_head *head, *bh;
1806
1807 BUG_ON(!PageLocked(page));
1808 if (!page_has_buffers(page))
1809 return;
1810
1811 bh = head = page_buffers(page);
1812 block_start = 0;
1813 do {
1814 block_end = block_start + bh->b_size;
1815
1816 if (buffer_new(bh)) {
1817 if (block_end > from && block_start < to) {
1818 if (!PageUptodate(page)) {
1819 unsigned start, size;
1820
1821 start = max(from, block_start);
1822 size = min(to, block_end) - start;
1823
eebd2aa3 1824 zero_user(page, start, size);
afddba49
NP
1825 set_buffer_uptodate(bh);
1826 }
1827
1828 clear_buffer_new(bh);
1829 mark_buffer_dirty(bh);
1830 }
1831 }
1832
1833 block_start = block_end;
1834 bh = bh->b_this_page;
1835 } while (bh != head);
1836}
1837EXPORT_SYMBOL(page_zero_new_buffers);
1838
ebdec241 1839int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1840 get_block_t *get_block)
1da177e4 1841{
ebdec241
CH
1842 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1843 unsigned to = from + len;
6e1db88d 1844 struct inode *inode = page->mapping->host;
1da177e4
LT
1845 unsigned block_start, block_end;
1846 sector_t block;
1847 int err = 0;
1848 unsigned blocksize, bbits;
1849 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1850
1851 BUG_ON(!PageLocked(page));
1852 BUG_ON(from > PAGE_CACHE_SIZE);
1853 BUG_ON(to > PAGE_CACHE_SIZE);
1854 BUG_ON(from > to);
1855
45bce8f3
LT
1856 head = create_page_buffers(page, inode, 0);
1857 blocksize = head->b_size;
1858 bbits = block_size_bits(blocksize);
1da177e4 1859
1da177e4
LT
1860 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1861
1862 for(bh = head, block_start = 0; bh != head || !block_start;
1863 block++, block_start=block_end, bh = bh->b_this_page) {
1864 block_end = block_start + blocksize;
1865 if (block_end <= from || block_start >= to) {
1866 if (PageUptodate(page)) {
1867 if (!buffer_uptodate(bh))
1868 set_buffer_uptodate(bh);
1869 }
1870 continue;
1871 }
1872 if (buffer_new(bh))
1873 clear_buffer_new(bh);
1874 if (!buffer_mapped(bh)) {
b0cf2321 1875 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1876 err = get_block(inode, block, bh, 1);
1877 if (err)
f3ddbdc6 1878 break;
1da177e4 1879 if (buffer_new(bh)) {
1da177e4
LT
1880 unmap_underlying_metadata(bh->b_bdev,
1881 bh->b_blocknr);
1882 if (PageUptodate(page)) {
637aff46 1883 clear_buffer_new(bh);
1da177e4 1884 set_buffer_uptodate(bh);
637aff46 1885 mark_buffer_dirty(bh);
1da177e4
LT
1886 continue;
1887 }
eebd2aa3
CL
1888 if (block_end > to || block_start < from)
1889 zero_user_segments(page,
1890 to, block_end,
1891 block_start, from);
1da177e4
LT
1892 continue;
1893 }
1894 }
1895 if (PageUptodate(page)) {
1896 if (!buffer_uptodate(bh))
1897 set_buffer_uptodate(bh);
1898 continue;
1899 }
1900 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1901 !buffer_unwritten(bh) &&
1da177e4
LT
1902 (block_start < from || block_end > to)) {
1903 ll_rw_block(READ, 1, &bh);
1904 *wait_bh++=bh;
1905 }
1906 }
1907 /*
1908 * If we issued read requests - let them complete.
1909 */
1910 while(wait_bh > wait) {
1911 wait_on_buffer(*--wait_bh);
1912 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1913 err = -EIO;
1da177e4 1914 }
f9f07b6c 1915 if (unlikely(err))
afddba49 1916 page_zero_new_buffers(page, from, to);
1da177e4
LT
1917 return err;
1918}
ebdec241 1919EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1920
1921static int __block_commit_write(struct inode *inode, struct page *page,
1922 unsigned from, unsigned to)
1923{
1924 unsigned block_start, block_end;
1925 int partial = 0;
1926 unsigned blocksize;
1927 struct buffer_head *bh, *head;
1928
45bce8f3
LT
1929 bh = head = page_buffers(page);
1930 blocksize = bh->b_size;
1da177e4 1931
45bce8f3
LT
1932 block_start = 0;
1933 do {
1da177e4
LT
1934 block_end = block_start + blocksize;
1935 if (block_end <= from || block_start >= to) {
1936 if (!buffer_uptodate(bh))
1937 partial = 1;
1938 } else {
1939 set_buffer_uptodate(bh);
1940 mark_buffer_dirty(bh);
1941 }
afddba49 1942 clear_buffer_new(bh);
45bce8f3
LT
1943
1944 block_start = block_end;
1945 bh = bh->b_this_page;
1946 } while (bh != head);
1da177e4
LT
1947
1948 /*
1949 * If this is a partial write which happened to make all buffers
1950 * uptodate then we can optimize away a bogus readpage() for
1951 * the next read(). Here we 'discover' whether the page went
1952 * uptodate as a result of this (potentially partial) write.
1953 */
1954 if (!partial)
1955 SetPageUptodate(page);
1956 return 0;
1957}
1958
afddba49 1959/*
155130a4
CH
1960 * block_write_begin takes care of the basic task of block allocation and
1961 * bringing partial write blocks uptodate first.
1962 *
7bb46a67 1963 * The filesystem needs to handle block truncation upon failure.
afddba49 1964 */
155130a4
CH
1965int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1966 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 1967{
6e1db88d 1968 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 1969 struct page *page;
6e1db88d 1970 int status;
afddba49 1971
6e1db88d
CH
1972 page = grab_cache_page_write_begin(mapping, index, flags);
1973 if (!page)
1974 return -ENOMEM;
afddba49 1975
6e1db88d 1976 status = __block_write_begin(page, pos, len, get_block);
afddba49 1977 if (unlikely(status)) {
6e1db88d
CH
1978 unlock_page(page);
1979 page_cache_release(page);
1980 page = NULL;
afddba49
NP
1981 }
1982
6e1db88d 1983 *pagep = page;
afddba49
NP
1984 return status;
1985}
1986EXPORT_SYMBOL(block_write_begin);
1987
1988int block_write_end(struct file *file, struct address_space *mapping,
1989 loff_t pos, unsigned len, unsigned copied,
1990 struct page *page, void *fsdata)
1991{
1992 struct inode *inode = mapping->host;
1993 unsigned start;
1994
1995 start = pos & (PAGE_CACHE_SIZE - 1);
1996
1997 if (unlikely(copied < len)) {
1998 /*
1999 * The buffers that were written will now be uptodate, so we
2000 * don't have to worry about a readpage reading them and
2001 * overwriting a partial write. However if we have encountered
2002 * a short write and only partially written into a buffer, it
2003 * will not be marked uptodate, so a readpage might come in and
2004 * destroy our partial write.
2005 *
2006 * Do the simplest thing, and just treat any short write to a
2007 * non uptodate page as a zero-length write, and force the
2008 * caller to redo the whole thing.
2009 */
2010 if (!PageUptodate(page))
2011 copied = 0;
2012
2013 page_zero_new_buffers(page, start+copied, start+len);
2014 }
2015 flush_dcache_page(page);
2016
2017 /* This could be a short (even 0-length) commit */
2018 __block_commit_write(inode, page, start, start+copied);
2019
2020 return copied;
2021}
2022EXPORT_SYMBOL(block_write_end);
2023
2024int generic_write_end(struct file *file, struct address_space *mapping,
2025 loff_t pos, unsigned len, unsigned copied,
2026 struct page *page, void *fsdata)
2027{
2028 struct inode *inode = mapping->host;
c7d206b3 2029 int i_size_changed = 0;
afddba49
NP
2030
2031 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2032
2033 /*
2034 * No need to use i_size_read() here, the i_size
2035 * cannot change under us because we hold i_mutex.
2036 *
2037 * But it's important to update i_size while still holding page lock:
2038 * page writeout could otherwise come in and zero beyond i_size.
2039 */
2040 if (pos+copied > inode->i_size) {
2041 i_size_write(inode, pos+copied);
c7d206b3 2042 i_size_changed = 1;
afddba49
NP
2043 }
2044
2045 unlock_page(page);
2046 page_cache_release(page);
2047
c7d206b3
JK
2048 /*
2049 * Don't mark the inode dirty under page lock. First, it unnecessarily
2050 * makes the holding time of page lock longer. Second, it forces lock
2051 * ordering of page lock and transaction start for journaling
2052 * filesystems.
2053 */
2054 if (i_size_changed)
2055 mark_inode_dirty(inode);
2056
afddba49
NP
2057 return copied;
2058}
2059EXPORT_SYMBOL(generic_write_end);
2060
8ab22b9a
HH
2061/*
2062 * block_is_partially_uptodate checks whether buffers within a page are
2063 * uptodate or not.
2064 *
2065 * Returns true if all buffers which correspond to a file portion
2066 * we want to read are uptodate.
2067 */
2068int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2069 unsigned long from)
2070{
8ab22b9a
HH
2071 unsigned block_start, block_end, blocksize;
2072 unsigned to;
2073 struct buffer_head *bh, *head;
2074 int ret = 1;
2075
2076 if (!page_has_buffers(page))
2077 return 0;
2078
45bce8f3
LT
2079 head = page_buffers(page);
2080 blocksize = head->b_size;
8ab22b9a
HH
2081 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2082 to = from + to;
2083 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2084 return 0;
2085
8ab22b9a
HH
2086 bh = head;
2087 block_start = 0;
2088 do {
2089 block_end = block_start + blocksize;
2090 if (block_end > from && block_start < to) {
2091 if (!buffer_uptodate(bh)) {
2092 ret = 0;
2093 break;
2094 }
2095 if (block_end >= to)
2096 break;
2097 }
2098 block_start = block_end;
2099 bh = bh->b_this_page;
2100 } while (bh != head);
2101
2102 return ret;
2103}
2104EXPORT_SYMBOL(block_is_partially_uptodate);
2105
1da177e4
LT
2106/*
2107 * Generic "read page" function for block devices that have the normal
2108 * get_block functionality. This is most of the block device filesystems.
2109 * Reads the page asynchronously --- the unlock_buffer() and
2110 * set/clear_buffer_uptodate() functions propagate buffer state into the
2111 * page struct once IO has completed.
2112 */
2113int block_read_full_page(struct page *page, get_block_t *get_block)
2114{
2115 struct inode *inode = page->mapping->host;
2116 sector_t iblock, lblock;
2117 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2118 unsigned int blocksize, bbits;
1da177e4
LT
2119 int nr, i;
2120 int fully_mapped = 1;
2121
45bce8f3
LT
2122 head = create_page_buffers(page, inode, 0);
2123 blocksize = head->b_size;
2124 bbits = block_size_bits(blocksize);
1da177e4 2125
45bce8f3
LT
2126 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2127 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2128 bh = head;
2129 nr = 0;
2130 i = 0;
2131
2132 do {
2133 if (buffer_uptodate(bh))
2134 continue;
2135
2136 if (!buffer_mapped(bh)) {
c64610ba
AM
2137 int err = 0;
2138
1da177e4
LT
2139 fully_mapped = 0;
2140 if (iblock < lblock) {
b0cf2321 2141 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2142 err = get_block(inode, iblock, bh, 0);
2143 if (err)
1da177e4
LT
2144 SetPageError(page);
2145 }
2146 if (!buffer_mapped(bh)) {
eebd2aa3 2147 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2148 if (!err)
2149 set_buffer_uptodate(bh);
1da177e4
LT
2150 continue;
2151 }
2152 /*
2153 * get_block() might have updated the buffer
2154 * synchronously
2155 */
2156 if (buffer_uptodate(bh))
2157 continue;
2158 }
2159 arr[nr++] = bh;
2160 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2161
2162 if (fully_mapped)
2163 SetPageMappedToDisk(page);
2164
2165 if (!nr) {
2166 /*
2167 * All buffers are uptodate - we can set the page uptodate
2168 * as well. But not if get_block() returned an error.
2169 */
2170 if (!PageError(page))
2171 SetPageUptodate(page);
2172 unlock_page(page);
2173 return 0;
2174 }
2175
2176 /* Stage two: lock the buffers */
2177 for (i = 0; i < nr; i++) {
2178 bh = arr[i];
2179 lock_buffer(bh);
2180 mark_buffer_async_read(bh);
2181 }
2182
2183 /*
2184 * Stage 3: start the IO. Check for uptodateness
2185 * inside the buffer lock in case another process reading
2186 * the underlying blockdev brought it uptodate (the sct fix).
2187 */
2188 for (i = 0; i < nr; i++) {
2189 bh = arr[i];
2190 if (buffer_uptodate(bh))
2191 end_buffer_async_read(bh, 1);
2192 else
2193 submit_bh(READ, bh);
2194 }
2195 return 0;
2196}
1fe72eaa 2197EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2198
2199/* utility function for filesystems that need to do work on expanding
89e10787 2200 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2201 * deal with the hole.
2202 */
89e10787 2203int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2204{
2205 struct address_space *mapping = inode->i_mapping;
2206 struct page *page;
89e10787 2207 void *fsdata;
1da177e4
LT
2208 int err;
2209
c08d3b0e 2210 err = inode_newsize_ok(inode, size);
2211 if (err)
1da177e4
LT
2212 goto out;
2213
89e10787
NP
2214 err = pagecache_write_begin(NULL, mapping, size, 0,
2215 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2216 &page, &fsdata);
2217 if (err)
05eb0b51 2218 goto out;
05eb0b51 2219
89e10787
NP
2220 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2221 BUG_ON(err > 0);
05eb0b51 2222
1da177e4
LT
2223out:
2224 return err;
2225}
1fe72eaa 2226EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2227
f1e3af72
AB
2228static int cont_expand_zero(struct file *file, struct address_space *mapping,
2229 loff_t pos, loff_t *bytes)
1da177e4 2230{
1da177e4 2231 struct inode *inode = mapping->host;
1da177e4 2232 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2233 struct page *page;
2234 void *fsdata;
2235 pgoff_t index, curidx;
2236 loff_t curpos;
2237 unsigned zerofrom, offset, len;
2238 int err = 0;
1da177e4 2239
89e10787
NP
2240 index = pos >> PAGE_CACHE_SHIFT;
2241 offset = pos & ~PAGE_CACHE_MASK;
2242
2243 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2244 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2245 if (zerofrom & (blocksize-1)) {
2246 *bytes |= (blocksize-1);
2247 (*bytes)++;
2248 }
89e10787 2249 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2250
89e10787
NP
2251 err = pagecache_write_begin(file, mapping, curpos, len,
2252 AOP_FLAG_UNINTERRUPTIBLE,
2253 &page, &fsdata);
2254 if (err)
2255 goto out;
eebd2aa3 2256 zero_user(page, zerofrom, len);
89e10787
NP
2257 err = pagecache_write_end(file, mapping, curpos, len, len,
2258 page, fsdata);
2259 if (err < 0)
2260 goto out;
2261 BUG_ON(err != len);
2262 err = 0;
061e9746
OH
2263
2264 balance_dirty_pages_ratelimited(mapping);
89e10787 2265 }
1da177e4 2266
89e10787
NP
2267 /* page covers the boundary, find the boundary offset */
2268 if (index == curidx) {
2269 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2270 /* if we will expand the thing last block will be filled */
89e10787
NP
2271 if (offset <= zerofrom) {
2272 goto out;
2273 }
2274 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2275 *bytes |= (blocksize-1);
2276 (*bytes)++;
2277 }
89e10787 2278 len = offset - zerofrom;
1da177e4 2279
89e10787
NP
2280 err = pagecache_write_begin(file, mapping, curpos, len,
2281 AOP_FLAG_UNINTERRUPTIBLE,
2282 &page, &fsdata);
2283 if (err)
2284 goto out;
eebd2aa3 2285 zero_user(page, zerofrom, len);
89e10787
NP
2286 err = pagecache_write_end(file, mapping, curpos, len, len,
2287 page, fsdata);
2288 if (err < 0)
2289 goto out;
2290 BUG_ON(err != len);
2291 err = 0;
1da177e4 2292 }
89e10787
NP
2293out:
2294 return err;
2295}
2296
2297/*
2298 * For moronic filesystems that do not allow holes in file.
2299 * We may have to extend the file.
2300 */
282dc178 2301int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2302 loff_t pos, unsigned len, unsigned flags,
2303 struct page **pagep, void **fsdata,
2304 get_block_t *get_block, loff_t *bytes)
2305{
2306 struct inode *inode = mapping->host;
2307 unsigned blocksize = 1 << inode->i_blkbits;
2308 unsigned zerofrom;
2309 int err;
2310
2311 err = cont_expand_zero(file, mapping, pos, bytes);
2312 if (err)
155130a4 2313 return err;
89e10787
NP
2314
2315 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2316 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2317 *bytes |= (blocksize-1);
2318 (*bytes)++;
1da177e4 2319 }
1da177e4 2320
155130a4 2321 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2322}
1fe72eaa 2323EXPORT_SYMBOL(cont_write_begin);
1da177e4 2324
1da177e4
LT
2325int block_commit_write(struct page *page, unsigned from, unsigned to)
2326{
2327 struct inode *inode = page->mapping->host;
2328 __block_commit_write(inode,page,from,to);
2329 return 0;
2330}
1fe72eaa 2331EXPORT_SYMBOL(block_commit_write);
1da177e4 2332
54171690
DC
2333/*
2334 * block_page_mkwrite() is not allowed to change the file size as it gets
2335 * called from a page fault handler when a page is first dirtied. Hence we must
2336 * be careful to check for EOF conditions here. We set the page up correctly
2337 * for a written page which means we get ENOSPC checking when writing into
2338 * holes and correct delalloc and unwritten extent mapping on filesystems that
2339 * support these features.
2340 *
2341 * We are not allowed to take the i_mutex here so we have to play games to
2342 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2343 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2344 * page lock we can determine safely if the page is beyond EOF. If it is not
2345 * beyond EOF, then the page is guaranteed safe against truncation until we
2346 * unlock the page.
ea13a864 2347 *
14da9200
JK
2348 * Direct callers of this function should protect against filesystem freezing
2349 * using sb_start_write() - sb_end_write() functions.
54171690 2350 */
24da4fab
JK
2351int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2352 get_block_t get_block)
54171690 2353{
c2ec175c 2354 struct page *page = vmf->page;
496ad9aa 2355 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2356 unsigned long end;
2357 loff_t size;
24da4fab 2358 int ret;
54171690
DC
2359
2360 lock_page(page);
2361 size = i_size_read(inode);
2362 if ((page->mapping != inode->i_mapping) ||
18336338 2363 (page_offset(page) > size)) {
24da4fab
JK
2364 /* We overload EFAULT to mean page got truncated */
2365 ret = -EFAULT;
2366 goto out_unlock;
54171690
DC
2367 }
2368
2369 /* page is wholly or partially inside EOF */
2370 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2371 end = size & ~PAGE_CACHE_MASK;
2372 else
2373 end = PAGE_CACHE_SIZE;
2374
ebdec241 2375 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2376 if (!ret)
2377 ret = block_commit_write(page, 0, end);
2378
24da4fab
JK
2379 if (unlikely(ret < 0))
2380 goto out_unlock;
ea13a864 2381 set_page_dirty(page);
1d1d1a76 2382 wait_for_stable_page(page);
24da4fab
JK
2383 return 0;
2384out_unlock:
2385 unlock_page(page);
54171690 2386 return ret;
24da4fab
JK
2387}
2388EXPORT_SYMBOL(__block_page_mkwrite);
2389
2390int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2391 get_block_t get_block)
2392{
ea13a864 2393 int ret;
496ad9aa 2394 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
24da4fab 2395
14da9200 2396 sb_start_pagefault(sb);
041bbb6d
TT
2397
2398 /*
2399 * Update file times before taking page lock. We may end up failing the
2400 * fault so this update may be superfluous but who really cares...
2401 */
2402 file_update_time(vma->vm_file);
2403
ea13a864 2404 ret = __block_page_mkwrite(vma, vmf, get_block);
14da9200 2405 sb_end_pagefault(sb);
24da4fab 2406 return block_page_mkwrite_return(ret);
54171690 2407}
1fe72eaa 2408EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2409
2410/*
03158cd7 2411 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2412 * immediately, while under the page lock. So it needs a special end_io
2413 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2414 */
2415static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2416{
68671f35 2417 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2418}
2419
03158cd7
NP
2420/*
2421 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2422 * the page (converting it to circular linked list and taking care of page
2423 * dirty races).
2424 */
2425static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2426{
2427 struct buffer_head *bh;
2428
2429 BUG_ON(!PageLocked(page));
2430
2431 spin_lock(&page->mapping->private_lock);
2432 bh = head;
2433 do {
2434 if (PageDirty(page))
2435 set_buffer_dirty(bh);
2436 if (!bh->b_this_page)
2437 bh->b_this_page = head;
2438 bh = bh->b_this_page;
2439 } while (bh != head);
2440 attach_page_buffers(page, head);
2441 spin_unlock(&page->mapping->private_lock);
2442}
2443
1da177e4 2444/*
ea0f04e5
CH
2445 * On entry, the page is fully not uptodate.
2446 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2447 * The filesystem needs to handle block truncation upon failure.
1da177e4 2448 */
ea0f04e5 2449int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2450 loff_t pos, unsigned len, unsigned flags,
2451 struct page **pagep, void **fsdata,
1da177e4
LT
2452 get_block_t *get_block)
2453{
03158cd7 2454 struct inode *inode = mapping->host;
1da177e4
LT
2455 const unsigned blkbits = inode->i_blkbits;
2456 const unsigned blocksize = 1 << blkbits;
a4b0672d 2457 struct buffer_head *head, *bh;
03158cd7
NP
2458 struct page *page;
2459 pgoff_t index;
2460 unsigned from, to;
1da177e4 2461 unsigned block_in_page;
a4b0672d 2462 unsigned block_start, block_end;
1da177e4 2463 sector_t block_in_file;
1da177e4 2464 int nr_reads = 0;
1da177e4
LT
2465 int ret = 0;
2466 int is_mapped_to_disk = 1;
1da177e4 2467
03158cd7
NP
2468 index = pos >> PAGE_CACHE_SHIFT;
2469 from = pos & (PAGE_CACHE_SIZE - 1);
2470 to = from + len;
2471
54566b2c 2472 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2473 if (!page)
2474 return -ENOMEM;
2475 *pagep = page;
2476 *fsdata = NULL;
2477
2478 if (page_has_buffers(page)) {
309f77ad
NK
2479 ret = __block_write_begin(page, pos, len, get_block);
2480 if (unlikely(ret))
2481 goto out_release;
2482 return ret;
03158cd7 2483 }
a4b0672d 2484
1da177e4
LT
2485 if (PageMappedToDisk(page))
2486 return 0;
2487
a4b0672d
NP
2488 /*
2489 * Allocate buffers so that we can keep track of state, and potentially
2490 * attach them to the page if an error occurs. In the common case of
2491 * no error, they will just be freed again without ever being attached
2492 * to the page (which is all OK, because we're under the page lock).
2493 *
2494 * Be careful: the buffer linked list is a NULL terminated one, rather
2495 * than the circular one we're used to.
2496 */
2497 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2498 if (!head) {
2499 ret = -ENOMEM;
2500 goto out_release;
2501 }
a4b0672d 2502
1da177e4 2503 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2504
2505 /*
2506 * We loop across all blocks in the page, whether or not they are
2507 * part of the affected region. This is so we can discover if the
2508 * page is fully mapped-to-disk.
2509 */
a4b0672d 2510 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2511 block_start < PAGE_CACHE_SIZE;
a4b0672d 2512 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2513 int create;
2514
a4b0672d
NP
2515 block_end = block_start + blocksize;
2516 bh->b_state = 0;
1da177e4
LT
2517 create = 1;
2518 if (block_start >= to)
2519 create = 0;
2520 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2521 bh, create);
1da177e4
LT
2522 if (ret)
2523 goto failed;
a4b0672d 2524 if (!buffer_mapped(bh))
1da177e4 2525 is_mapped_to_disk = 0;
a4b0672d
NP
2526 if (buffer_new(bh))
2527 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2528 if (PageUptodate(page)) {
2529 set_buffer_uptodate(bh);
1da177e4 2530 continue;
a4b0672d
NP
2531 }
2532 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2533 zero_user_segments(page, block_start, from,
2534 to, block_end);
1da177e4
LT
2535 continue;
2536 }
a4b0672d 2537 if (buffer_uptodate(bh))
1da177e4
LT
2538 continue; /* reiserfs does this */
2539 if (block_start < from || block_end > to) {
a4b0672d
NP
2540 lock_buffer(bh);
2541 bh->b_end_io = end_buffer_read_nobh;
2542 submit_bh(READ, bh);
2543 nr_reads++;
1da177e4
LT
2544 }
2545 }
2546
2547 if (nr_reads) {
1da177e4
LT
2548 /*
2549 * The page is locked, so these buffers are protected from
2550 * any VM or truncate activity. Hence we don't need to care
2551 * for the buffer_head refcounts.
2552 */
a4b0672d 2553 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2554 wait_on_buffer(bh);
2555 if (!buffer_uptodate(bh))
2556 ret = -EIO;
1da177e4
LT
2557 }
2558 if (ret)
2559 goto failed;
2560 }
2561
2562 if (is_mapped_to_disk)
2563 SetPageMappedToDisk(page);
1da177e4 2564
03158cd7 2565 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2566
1da177e4
LT
2567 return 0;
2568
2569failed:
03158cd7 2570 BUG_ON(!ret);
1da177e4 2571 /*
a4b0672d
NP
2572 * Error recovery is a bit difficult. We need to zero out blocks that
2573 * were newly allocated, and dirty them to ensure they get written out.
2574 * Buffers need to be attached to the page at this point, otherwise
2575 * the handling of potential IO errors during writeout would be hard
2576 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2577 */
03158cd7
NP
2578 attach_nobh_buffers(page, head);
2579 page_zero_new_buffers(page, from, to);
a4b0672d 2580
03158cd7
NP
2581out_release:
2582 unlock_page(page);
2583 page_cache_release(page);
2584 *pagep = NULL;
a4b0672d 2585
7bb46a67 2586 return ret;
2587}
03158cd7 2588EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2589
03158cd7
NP
2590int nobh_write_end(struct file *file, struct address_space *mapping,
2591 loff_t pos, unsigned len, unsigned copied,
2592 struct page *page, void *fsdata)
1da177e4
LT
2593{
2594 struct inode *inode = page->mapping->host;
efdc3131 2595 struct buffer_head *head = fsdata;
03158cd7 2596 struct buffer_head *bh;
5b41e74a 2597 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2598
d4cf109f 2599 if (unlikely(copied < len) && head)
5b41e74a
DM
2600 attach_nobh_buffers(page, head);
2601 if (page_has_buffers(page))
2602 return generic_write_end(file, mapping, pos, len,
2603 copied, page, fsdata);
a4b0672d 2604
22c8ca78 2605 SetPageUptodate(page);
1da177e4 2606 set_page_dirty(page);
03158cd7
NP
2607 if (pos+copied > inode->i_size) {
2608 i_size_write(inode, pos+copied);
1da177e4
LT
2609 mark_inode_dirty(inode);
2610 }
03158cd7
NP
2611
2612 unlock_page(page);
2613 page_cache_release(page);
2614
03158cd7
NP
2615 while (head) {
2616 bh = head;
2617 head = head->b_this_page;
2618 free_buffer_head(bh);
2619 }
2620
2621 return copied;
1da177e4 2622}
03158cd7 2623EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2624
2625/*
2626 * nobh_writepage() - based on block_full_write_page() except
2627 * that it tries to operate without attaching bufferheads to
2628 * the page.
2629 */
2630int nobh_writepage(struct page *page, get_block_t *get_block,
2631 struct writeback_control *wbc)
2632{
2633 struct inode * const inode = page->mapping->host;
2634 loff_t i_size = i_size_read(inode);
2635 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2636 unsigned offset;
1da177e4
LT
2637 int ret;
2638
2639 /* Is the page fully inside i_size? */
2640 if (page->index < end_index)
2641 goto out;
2642
2643 /* Is the page fully outside i_size? (truncate in progress) */
2644 offset = i_size & (PAGE_CACHE_SIZE-1);
2645 if (page->index >= end_index+1 || !offset) {
2646 /*
2647 * The page may have dirty, unmapped buffers. For example,
2648 * they may have been added in ext3_writepage(). Make them
2649 * freeable here, so the page does not leak.
2650 */
2651#if 0
2652 /* Not really sure about this - do we need this ? */
2653 if (page->mapping->a_ops->invalidatepage)
2654 page->mapping->a_ops->invalidatepage(page, offset);
2655#endif
2656 unlock_page(page);
2657 return 0; /* don't care */
2658 }
2659
2660 /*
2661 * The page straddles i_size. It must be zeroed out on each and every
2662 * writepage invocation because it may be mmapped. "A file is mapped
2663 * in multiples of the page size. For a file that is not a multiple of
2664 * the page size, the remaining memory is zeroed when mapped, and
2665 * writes to that region are not written out to the file."
2666 */
eebd2aa3 2667 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2668out:
2669 ret = mpage_writepage(page, get_block, wbc);
2670 if (ret == -EAGAIN)
35c80d5f
CM
2671 ret = __block_write_full_page(inode, page, get_block, wbc,
2672 end_buffer_async_write);
1da177e4
LT
2673 return ret;
2674}
2675EXPORT_SYMBOL(nobh_writepage);
2676
03158cd7
NP
2677int nobh_truncate_page(struct address_space *mapping,
2678 loff_t from, get_block_t *get_block)
1da177e4 2679{
1da177e4
LT
2680 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2681 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2682 unsigned blocksize;
2683 sector_t iblock;
2684 unsigned length, pos;
2685 struct inode *inode = mapping->host;
1da177e4 2686 struct page *page;
03158cd7
NP
2687 struct buffer_head map_bh;
2688 int err;
1da177e4 2689
03158cd7
NP
2690 blocksize = 1 << inode->i_blkbits;
2691 length = offset & (blocksize - 1);
2692
2693 /* Block boundary? Nothing to do */
2694 if (!length)
2695 return 0;
2696
2697 length = blocksize - length;
2698 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2699
1da177e4 2700 page = grab_cache_page(mapping, index);
03158cd7 2701 err = -ENOMEM;
1da177e4
LT
2702 if (!page)
2703 goto out;
2704
03158cd7
NP
2705 if (page_has_buffers(page)) {
2706has_buffers:
2707 unlock_page(page);
2708 page_cache_release(page);
2709 return block_truncate_page(mapping, from, get_block);
2710 }
2711
2712 /* Find the buffer that contains "offset" */
2713 pos = blocksize;
2714 while (offset >= pos) {
2715 iblock++;
2716 pos += blocksize;
2717 }
2718
460bcf57
TT
2719 map_bh.b_size = blocksize;
2720 map_bh.b_state = 0;
03158cd7
NP
2721 err = get_block(inode, iblock, &map_bh, 0);
2722 if (err)
2723 goto unlock;
2724 /* unmapped? It's a hole - nothing to do */
2725 if (!buffer_mapped(&map_bh))
2726 goto unlock;
2727
2728 /* Ok, it's mapped. Make sure it's up-to-date */
2729 if (!PageUptodate(page)) {
2730 err = mapping->a_ops->readpage(NULL, page);
2731 if (err) {
2732 page_cache_release(page);
2733 goto out;
2734 }
2735 lock_page(page);
2736 if (!PageUptodate(page)) {
2737 err = -EIO;
2738 goto unlock;
2739 }
2740 if (page_has_buffers(page))
2741 goto has_buffers;
1da177e4 2742 }
eebd2aa3 2743 zero_user(page, offset, length);
03158cd7
NP
2744 set_page_dirty(page);
2745 err = 0;
2746
2747unlock:
1da177e4
LT
2748 unlock_page(page);
2749 page_cache_release(page);
2750out:
03158cd7 2751 return err;
1da177e4
LT
2752}
2753EXPORT_SYMBOL(nobh_truncate_page);
2754
2755int block_truncate_page(struct address_space *mapping,
2756 loff_t from, get_block_t *get_block)
2757{
2758 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2759 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2760 unsigned blocksize;
54b21a79 2761 sector_t iblock;
1da177e4
LT
2762 unsigned length, pos;
2763 struct inode *inode = mapping->host;
2764 struct page *page;
2765 struct buffer_head *bh;
1da177e4
LT
2766 int err;
2767
2768 blocksize = 1 << inode->i_blkbits;
2769 length = offset & (blocksize - 1);
2770
2771 /* Block boundary? Nothing to do */
2772 if (!length)
2773 return 0;
2774
2775 length = blocksize - length;
54b21a79 2776 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2777
2778 page = grab_cache_page(mapping, index);
2779 err = -ENOMEM;
2780 if (!page)
2781 goto out;
2782
2783 if (!page_has_buffers(page))
2784 create_empty_buffers(page, blocksize, 0);
2785
2786 /* Find the buffer that contains "offset" */
2787 bh = page_buffers(page);
2788 pos = blocksize;
2789 while (offset >= pos) {
2790 bh = bh->b_this_page;
2791 iblock++;
2792 pos += blocksize;
2793 }
2794
2795 err = 0;
2796 if (!buffer_mapped(bh)) {
b0cf2321 2797 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2798 err = get_block(inode, iblock, bh, 0);
2799 if (err)
2800 goto unlock;
2801 /* unmapped? It's a hole - nothing to do */
2802 if (!buffer_mapped(bh))
2803 goto unlock;
2804 }
2805
2806 /* Ok, it's mapped. Make sure it's up-to-date */
2807 if (PageUptodate(page))
2808 set_buffer_uptodate(bh);
2809
33a266dd 2810 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2811 err = -EIO;
2812 ll_rw_block(READ, 1, &bh);
2813 wait_on_buffer(bh);
2814 /* Uhhuh. Read error. Complain and punt. */
2815 if (!buffer_uptodate(bh))
2816 goto unlock;
2817 }
2818
eebd2aa3 2819 zero_user(page, offset, length);
1da177e4
LT
2820 mark_buffer_dirty(bh);
2821 err = 0;
2822
2823unlock:
2824 unlock_page(page);
2825 page_cache_release(page);
2826out:
2827 return err;
2828}
1fe72eaa 2829EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2830
2831/*
2832 * The generic ->writepage function for buffer-backed address_spaces
35c80d5f 2833 * this form passes in the end_io handler used to finish the IO.
1da177e4 2834 */
35c80d5f
CM
2835int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2836 struct writeback_control *wbc, bh_end_io_t *handler)
1da177e4
LT
2837{
2838 struct inode * const inode = page->mapping->host;
2839 loff_t i_size = i_size_read(inode);
2840 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2841 unsigned offset;
1da177e4
LT
2842
2843 /* Is the page fully inside i_size? */
2844 if (page->index < end_index)
35c80d5f
CM
2845 return __block_write_full_page(inode, page, get_block, wbc,
2846 handler);
1da177e4
LT
2847
2848 /* Is the page fully outside i_size? (truncate in progress) */
2849 offset = i_size & (PAGE_CACHE_SIZE-1);
2850 if (page->index >= end_index+1 || !offset) {
2851 /*
2852 * The page may have dirty, unmapped buffers. For example,
2853 * they may have been added in ext3_writepage(). Make them
2854 * freeable here, so the page does not leak.
2855 */
aaa4059b 2856 do_invalidatepage(page, 0);
1da177e4
LT
2857 unlock_page(page);
2858 return 0; /* don't care */
2859 }
2860
2861 /*
2862 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2863 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2864 * in multiples of the page size. For a file that is not a multiple of
2865 * the page size, the remaining memory is zeroed when mapped, and
2866 * writes to that region are not written out to the file."
2867 */
eebd2aa3 2868 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
35c80d5f 2869 return __block_write_full_page(inode, page, get_block, wbc, handler);
1da177e4 2870}
1fe72eaa 2871EXPORT_SYMBOL(block_write_full_page_endio);
1da177e4 2872
35c80d5f
CM
2873/*
2874 * The generic ->writepage function for buffer-backed address_spaces
2875 */
2876int block_write_full_page(struct page *page, get_block_t *get_block,
2877 struct writeback_control *wbc)
2878{
2879 return block_write_full_page_endio(page, get_block, wbc,
2880 end_buffer_async_write);
2881}
1fe72eaa 2882EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2883
1da177e4
LT
2884sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2885 get_block_t *get_block)
2886{
2887 struct buffer_head tmp;
2888 struct inode *inode = mapping->host;
2889 tmp.b_state = 0;
2890 tmp.b_blocknr = 0;
b0cf2321 2891 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2892 get_block(inode, block, &tmp, 0);
2893 return tmp.b_blocknr;
2894}
1fe72eaa 2895EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2896
6712ecf8 2897static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2898{
2899 struct buffer_head *bh = bio->bi_private;
2900
1da177e4
LT
2901 if (err == -EOPNOTSUPP) {
2902 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2903 }
2904
08bafc03
KM
2905 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2906 set_bit(BH_Quiet, &bh->b_state);
2907
1da177e4
LT
2908 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2909 bio_put(bio);
1da177e4
LT
2910}
2911
57302e0d
LT
2912/*
2913 * This allows us to do IO even on the odd last sectors
2914 * of a device, even if the bh block size is some multiple
2915 * of the physical sector size.
2916 *
2917 * We'll just truncate the bio to the size of the device,
2918 * and clear the end of the buffer head manually.
2919 *
2920 * Truly out-of-range accesses will turn into actual IO
2921 * errors, this only handles the "we need to be able to
2922 * do IO at the final sector" case.
2923 */
2924static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2925{
2926 sector_t maxsector;
2927 unsigned bytes;
2928
2929 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2930 if (!maxsector)
2931 return;
2932
2933 /*
2934 * If the *whole* IO is past the end of the device,
2935 * let it through, and the IO layer will turn it into
2936 * an EIO.
2937 */
2938 if (unlikely(bio->bi_sector >= maxsector))
2939 return;
2940
2941 maxsector -= bio->bi_sector;
2942 bytes = bio->bi_size;
2943 if (likely((bytes >> 9) <= maxsector))
2944 return;
2945
2946 /* Uhhuh. We've got a bh that straddles the device size! */
2947 bytes = maxsector << 9;
2948
2949 /* Truncate the bio.. */
2950 bio->bi_size = bytes;
2951 bio->bi_io_vec[0].bv_len = bytes;
2952
2953 /* ..and clear the end of the buffer for reads */
27d7c2a0 2954 if ((rw & RW_MASK) == READ) {
57302e0d
LT
2955 void *kaddr = kmap_atomic(bh->b_page);
2956 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2957 kunmap_atomic(kaddr);
6d283dba 2958 flush_dcache_page(bh->b_page);
57302e0d
LT
2959 }
2960}
2961
71368511 2962int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
1da177e4
LT
2963{
2964 struct bio *bio;
2965 int ret = 0;
2966
2967 BUG_ON(!buffer_locked(bh));
2968 BUG_ON(!buffer_mapped(bh));
2969 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2970 BUG_ON(buffer_delay(bh));
2971 BUG_ON(buffer_unwritten(bh));
1da177e4 2972
1da177e4 2973 /*
48fd4f93 2974 * Only clear out a write error when rewriting
1da177e4 2975 */
48fd4f93 2976 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2977 clear_buffer_write_io_error(bh);
2978
2979 /*
2980 * from here on down, it's all bio -- do the initial mapping,
2981 * submit_bio -> generic_make_request may further map this bio around
2982 */
2983 bio = bio_alloc(GFP_NOIO, 1);
2984
2985 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2986 bio->bi_bdev = bh->b_bdev;
2987 bio->bi_io_vec[0].bv_page = bh->b_page;
2988 bio->bi_io_vec[0].bv_len = bh->b_size;
2989 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2990
2991 bio->bi_vcnt = 1;
1da177e4
LT
2992 bio->bi_size = bh->b_size;
2993
2994 bio->bi_end_io = end_bio_bh_io_sync;
2995 bio->bi_private = bh;
71368511 2996 bio->bi_flags |= bio_flags;
1da177e4 2997
57302e0d
LT
2998 /* Take care of bh's that straddle the end of the device */
2999 guard_bh_eod(rw, bio, bh);
3000
877f962c
TT
3001 if (buffer_meta(bh))
3002 rw |= REQ_META;
3003 if (buffer_prio(bh))
3004 rw |= REQ_PRIO;
3005
1da177e4
LT
3006 bio_get(bio);
3007 submit_bio(rw, bio);
3008
3009 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3010 ret = -EOPNOTSUPP;
3011
3012 bio_put(bio);
3013 return ret;
3014}
71368511
DW
3015EXPORT_SYMBOL_GPL(_submit_bh);
3016
3017int submit_bh(int rw, struct buffer_head *bh)
3018{
3019 return _submit_bh(rw, bh, 0);
3020}
1fe72eaa 3021EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3022
3023/**
3024 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 3025 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
3026 * @nr: number of &struct buffer_heads in the array
3027 * @bhs: array of pointers to &struct buffer_head
3028 *
a7662236
JK
3029 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3030 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
3031 * %READA option is described in the documentation for generic_make_request()
3032 * which ll_rw_block() calls.
1da177e4
LT
3033 *
3034 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3035 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3036 * request, and any buffer that appears to be up-to-date when doing read
3037 * request. Further it marks as clean buffers that are processed for
3038 * writing (the buffer cache won't assume that they are actually clean
3039 * until the buffer gets unlocked).
1da177e4
LT
3040 *
3041 * ll_rw_block sets b_end_io to simple completion handler that marks
3042 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3043 * any waiters.
3044 *
3045 * All of the buffers must be for the same device, and must also be a
3046 * multiple of the current approved size for the device.
3047 */
3048void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3049{
3050 int i;
3051
3052 for (i = 0; i < nr; i++) {
3053 struct buffer_head *bh = bhs[i];
3054
9cb569d6 3055 if (!trylock_buffer(bh))
1da177e4 3056 continue;
9cb569d6 3057 if (rw == WRITE) {
1da177e4 3058 if (test_clear_buffer_dirty(bh)) {
76c3073a 3059 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3060 get_bh(bh);
9cb569d6 3061 submit_bh(WRITE, bh);
1da177e4
LT
3062 continue;
3063 }
3064 } else {
1da177e4 3065 if (!buffer_uptodate(bh)) {
76c3073a 3066 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3067 get_bh(bh);
1da177e4
LT
3068 submit_bh(rw, bh);
3069 continue;
3070 }
3071 }
3072 unlock_buffer(bh);
1da177e4
LT
3073 }
3074}
1fe72eaa 3075EXPORT_SYMBOL(ll_rw_block);
1da177e4 3076
9cb569d6
CH
3077void write_dirty_buffer(struct buffer_head *bh, int rw)
3078{
3079 lock_buffer(bh);
3080 if (!test_clear_buffer_dirty(bh)) {
3081 unlock_buffer(bh);
3082 return;
3083 }
3084 bh->b_end_io = end_buffer_write_sync;
3085 get_bh(bh);
3086 submit_bh(rw, bh);
3087}
3088EXPORT_SYMBOL(write_dirty_buffer);
3089
1da177e4
LT
3090/*
3091 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3092 * and then start new I/O and then wait upon it. The caller must have a ref on
3093 * the buffer_head.
3094 */
87e99511 3095int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3096{
3097 int ret = 0;
3098
3099 WARN_ON(atomic_read(&bh->b_count) < 1);
3100 lock_buffer(bh);
3101 if (test_clear_buffer_dirty(bh)) {
3102 get_bh(bh);
3103 bh->b_end_io = end_buffer_write_sync;
6fa3eb70
S
3104#ifdef FEATURE_STORAGE_META_LOG
3105 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
3106 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_WRITE_CNT);
3107#endif
87e99511 3108 ret = submit_bh(rw, bh);
1da177e4 3109 wait_on_buffer(bh);
1da177e4
LT
3110 if (!ret && !buffer_uptodate(bh))
3111 ret = -EIO;
3112 } else {
3113 unlock_buffer(bh);
3114 }
3115 return ret;
3116}
87e99511
CH
3117EXPORT_SYMBOL(__sync_dirty_buffer);
3118
3119int sync_dirty_buffer(struct buffer_head *bh)
3120{
3121 return __sync_dirty_buffer(bh, WRITE_SYNC);
3122}
1fe72eaa 3123EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3124
3125/*
3126 * try_to_free_buffers() checks if all the buffers on this particular page
3127 * are unused, and releases them if so.
3128 *
3129 * Exclusion against try_to_free_buffers may be obtained by either
3130 * locking the page or by holding its mapping's private_lock.
3131 *
3132 * If the page is dirty but all the buffers are clean then we need to
3133 * be sure to mark the page clean as well. This is because the page
3134 * may be against a block device, and a later reattachment of buffers
3135 * to a dirty page will set *all* buffers dirty. Which would corrupt
3136 * filesystem data on the same device.
3137 *
3138 * The same applies to regular filesystem pages: if all the buffers are
3139 * clean then we set the page clean and proceed. To do that, we require
3140 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3141 * private_lock.
3142 *
3143 * try_to_free_buffers() is non-blocking.
3144 */
3145static inline int buffer_busy(struct buffer_head *bh)
3146{
3147 return atomic_read(&bh->b_count) |
3148 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3149}
3150
3151static int
3152drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3153{
3154 struct buffer_head *head = page_buffers(page);
3155 struct buffer_head *bh;
3156
3157 bh = head;
3158 do {
de7d5a3b 3159 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3160 set_bit(AS_EIO, &page->mapping->flags);
3161 if (buffer_busy(bh))
3162 goto failed;
3163 bh = bh->b_this_page;
3164 } while (bh != head);
3165
3166 do {
3167 struct buffer_head *next = bh->b_this_page;
3168
535ee2fb 3169 if (bh->b_assoc_map)
1da177e4
LT
3170 __remove_assoc_queue(bh);
3171 bh = next;
3172 } while (bh != head);
3173 *buffers_to_free = head;
3174 __clear_page_buffers(page);
3175 return 1;
3176failed:
3177 return 0;
3178}
3179
3180int try_to_free_buffers(struct page *page)
3181{
3182 struct address_space * const mapping = page->mapping;
3183 struct buffer_head *buffers_to_free = NULL;
3184 int ret = 0;
3185
3186 BUG_ON(!PageLocked(page));
ecdfc978 3187 if (PageWriteback(page))
1da177e4
LT
3188 return 0;
3189
3190 if (mapping == NULL) { /* can this still happen? */
3191 ret = drop_buffers(page, &buffers_to_free);
3192 goto out;
3193 }
3194
3195 spin_lock(&mapping->private_lock);
3196 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3197
3198 /*
3199 * If the filesystem writes its buffers by hand (eg ext3)
3200 * then we can have clean buffers against a dirty page. We
3201 * clean the page here; otherwise the VM will never notice
3202 * that the filesystem did any IO at all.
3203 *
3204 * Also, during truncate, discard_buffer will have marked all
3205 * the page's buffers clean. We discover that here and clean
3206 * the page also.
87df7241
NP
3207 *
3208 * private_lock must be held over this entire operation in order
3209 * to synchronise against __set_page_dirty_buffers and prevent the
3210 * dirty bit from being lost.
ecdfc978
LT
3211 */
3212 if (ret)
3213 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3214 spin_unlock(&mapping->private_lock);
1da177e4
LT
3215out:
3216 if (buffers_to_free) {
3217 struct buffer_head *bh = buffers_to_free;
3218
3219 do {
3220 struct buffer_head *next = bh->b_this_page;
3221 free_buffer_head(bh);
3222 bh = next;
3223 } while (bh != buffers_to_free);
3224 }
3225 return ret;
3226}
3227EXPORT_SYMBOL(try_to_free_buffers);
3228
1da177e4
LT
3229/*
3230 * There are no bdflush tunables left. But distributions are
3231 * still running obsolete flush daemons, so we terminate them here.
3232 *
3233 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3234 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3235 */
bdc480e3 3236SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3237{
3238 static int msg_count;
3239
3240 if (!capable(CAP_SYS_ADMIN))
3241 return -EPERM;
3242
3243 if (msg_count < 5) {
3244 msg_count++;
3245 printk(KERN_INFO
3246 "warning: process `%s' used the obsolete bdflush"
3247 " system call\n", current->comm);
3248 printk(KERN_INFO "Fix your initscripts?\n");
3249 }
3250
3251 if (func == 1)
3252 do_exit(0);
3253 return 0;
3254}
3255
3256/*
3257 * Buffer-head allocation
3258 */
a0a9b043 3259static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3260
3261/*
3262 * Once the number of bh's in the machine exceeds this level, we start
3263 * stripping them in writeback.
3264 */
43be594a 3265static unsigned long max_buffer_heads;
1da177e4
LT
3266
3267int buffer_heads_over_limit;
3268
3269struct bh_accounting {
3270 int nr; /* Number of live bh's */
3271 int ratelimit; /* Limit cacheline bouncing */
3272};
3273
3274static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3275
3276static void recalc_bh_state(void)
3277{
3278 int i;
3279 int tot = 0;
3280
ee1be862 3281 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3282 return;
c7b92516 3283 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3284 for_each_online_cpu(i)
1da177e4
LT
3285 tot += per_cpu(bh_accounting, i).nr;
3286 buffer_heads_over_limit = (tot > max_buffer_heads);
3287}
c7b92516 3288
dd0fc66f 3289struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3290{
019b4d12 3291 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3292 if (ret) {
a35afb83 3293 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3294 preempt_disable();
3295 __this_cpu_inc(bh_accounting.nr);
1da177e4 3296 recalc_bh_state();
c7b92516 3297 preempt_enable();
1da177e4
LT
3298 }
3299 return ret;
3300}
3301EXPORT_SYMBOL(alloc_buffer_head);
3302
3303void free_buffer_head(struct buffer_head *bh)
3304{
3305 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3306 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3307 preempt_disable();
3308 __this_cpu_dec(bh_accounting.nr);
1da177e4 3309 recalc_bh_state();
c7b92516 3310 preempt_enable();
1da177e4
LT
3311}
3312EXPORT_SYMBOL(free_buffer_head);
3313
1da177e4
LT
3314static void buffer_exit_cpu(int cpu)
3315{
3316 int i;
3317 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3318
3319 for (i = 0; i < BH_LRU_SIZE; i++) {
3320 brelse(b->bhs[i]);
3321 b->bhs[i] = NULL;
3322 }
c7b92516 3323 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3324 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3325}
3326
3327static int buffer_cpu_notify(struct notifier_block *self,
3328 unsigned long action, void *hcpu)
3329{
8bb78442 3330 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3331 buffer_exit_cpu((unsigned long)hcpu);
3332 return NOTIFY_OK;
3333}
1da177e4 3334
389d1b08 3335/**
a6b91919 3336 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3337 * @bh: struct buffer_head
3338 *
3339 * Return true if the buffer is up-to-date and false,
3340 * with the buffer locked, if not.
3341 */
3342int bh_uptodate_or_lock(struct buffer_head *bh)
3343{
3344 if (!buffer_uptodate(bh)) {
3345 lock_buffer(bh);
3346 if (!buffer_uptodate(bh))
3347 return 0;
3348 unlock_buffer(bh);
3349 }
3350 return 1;
3351}
3352EXPORT_SYMBOL(bh_uptodate_or_lock);
3353
3354/**
a6b91919 3355 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3356 * @bh: struct buffer_head
3357 *
3358 * Returns zero on success and -EIO on error.
3359 */
3360int bh_submit_read(struct buffer_head *bh)
3361{
3362 BUG_ON(!buffer_locked(bh));
3363
3364 if (buffer_uptodate(bh)) {
3365 unlock_buffer(bh);
3366 return 0;
3367 }
3368
3369 get_bh(bh);
3370 bh->b_end_io = end_buffer_read_sync;
6fa3eb70
S
3371#ifdef FEATURE_STORAGE_META_LOG
3372 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
3373 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
3374#endif
389d1b08
AK
3375 submit_bh(READ, bh);
3376 wait_on_buffer(bh);
3377 if (buffer_uptodate(bh))
3378 return 0;
3379 return -EIO;
3380}
3381EXPORT_SYMBOL(bh_submit_read);
3382
1da177e4
LT
3383void __init buffer_init(void)
3384{
43be594a 3385 unsigned long nrpages;
1da177e4 3386
b98938c3
CL
3387 bh_cachep = kmem_cache_create("buffer_head",
3388 sizeof(struct buffer_head), 0,
3389 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3390 SLAB_MEM_SPREAD),
019b4d12 3391 NULL);
1da177e4
LT
3392
3393 /*
3394 * Limit the bh occupancy to 10% of ZONE_NORMAL
3395 */
3396 nrpages = (nr_free_buffer_pages() * 10) / 100;
3397 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3398 hotcpu_notifier(buffer_cpu_notify, 0);
3399}