Btrfs: wait on caching if we're loading the free space cache
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
6ab60601 23#include <linux/ratelimit.h>
0f9dd46c 24#include "ctree.h"
fa9c0d79
CM
25#include "free-space-cache.h"
26#include "transaction.h"
0af3d00b 27#include "disk-io.h"
43be2146 28#include "extent_io.h"
581bb050 29#include "inode-map.h"
fa9c0d79 30
96303081
JB
31#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
0f9dd46c 33
34d52cb6 34static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99
JB
35 struct btrfs_free_space *info);
36
0414efae
LZ
37static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
38 struct btrfs_path *path,
39 u64 offset)
0af3d00b
JB
40{
41 struct btrfs_key key;
42 struct btrfs_key location;
43 struct btrfs_disk_key disk_key;
44 struct btrfs_free_space_header *header;
45 struct extent_buffer *leaf;
46 struct inode *inode = NULL;
47 int ret;
48
0af3d00b 49 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 50 key.offset = offset;
0af3d00b
JB
51 key.type = 0;
52
53 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
54 if (ret < 0)
55 return ERR_PTR(ret);
56 if (ret > 0) {
b3b4aa74 57 btrfs_release_path(path);
0af3d00b
JB
58 return ERR_PTR(-ENOENT);
59 }
60
61 leaf = path->nodes[0];
62 header = btrfs_item_ptr(leaf, path->slots[0],
63 struct btrfs_free_space_header);
64 btrfs_free_space_key(leaf, header, &disk_key);
65 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 66 btrfs_release_path(path);
0af3d00b
JB
67
68 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
69 if (!inode)
70 return ERR_PTR(-ENOENT);
71 if (IS_ERR(inode))
72 return inode;
73 if (is_bad_inode(inode)) {
74 iput(inode);
75 return ERR_PTR(-ENOENT);
76 }
77
adae52b9
MX
78 inode->i_mapping->flags &= ~__GFP_FS;
79
0414efae
LZ
80 return inode;
81}
82
83struct inode *lookup_free_space_inode(struct btrfs_root *root,
84 struct btrfs_block_group_cache
85 *block_group, struct btrfs_path *path)
86{
87 struct inode *inode = NULL;
5b0e95bf 88 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
89
90 spin_lock(&block_group->lock);
91 if (block_group->inode)
92 inode = igrab(block_group->inode);
93 spin_unlock(&block_group->lock);
94 if (inode)
95 return inode;
96
97 inode = __lookup_free_space_inode(root, path,
98 block_group->key.objectid);
99 if (IS_ERR(inode))
100 return inode;
101
0af3d00b 102 spin_lock(&block_group->lock);
5b0e95bf 103 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
2f356126 104 printk(KERN_INFO "Old style space inode found, converting.\n");
5b0e95bf
JB
105 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
106 BTRFS_INODE_NODATACOW;
2f356126
JB
107 block_group->disk_cache_state = BTRFS_DC_CLEAR;
108 }
109
300e4f8a 110 if (!block_group->iref) {
0af3d00b
JB
111 block_group->inode = igrab(inode);
112 block_group->iref = 1;
113 }
114 spin_unlock(&block_group->lock);
115
116 return inode;
117}
118
0414efae
LZ
119int __create_free_space_inode(struct btrfs_root *root,
120 struct btrfs_trans_handle *trans,
121 struct btrfs_path *path, u64 ino, u64 offset)
0af3d00b
JB
122{
123 struct btrfs_key key;
124 struct btrfs_disk_key disk_key;
125 struct btrfs_free_space_header *header;
126 struct btrfs_inode_item *inode_item;
127 struct extent_buffer *leaf;
5b0e95bf 128 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
129 int ret;
130
0414efae 131 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
132 if (ret)
133 return ret;
134
5b0e95bf
JB
135 /* We inline crc's for the free disk space cache */
136 if (ino != BTRFS_FREE_INO_OBJECTID)
137 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
0af3d00b
JB
139 leaf = path->nodes[0];
140 inode_item = btrfs_item_ptr(leaf, path->slots[0],
141 struct btrfs_inode_item);
142 btrfs_item_key(leaf, &disk_key, path->slots[0]);
143 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
144 sizeof(*inode_item));
145 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
146 btrfs_set_inode_size(leaf, inode_item, 0);
147 btrfs_set_inode_nbytes(leaf, inode_item, 0);
148 btrfs_set_inode_uid(leaf, inode_item, 0);
149 btrfs_set_inode_gid(leaf, inode_item, 0);
150 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 151 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
152 btrfs_set_inode_nlink(leaf, inode_item, 1);
153 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 154 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 155 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 156 btrfs_release_path(path);
0af3d00b
JB
157
158 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 159 key.offset = offset;
0af3d00b
JB
160 key.type = 0;
161
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 sizeof(struct btrfs_free_space_header));
164 if (ret < 0) {
b3b4aa74 165 btrfs_release_path(path);
0af3d00b
JB
166 return ret;
167 }
168 leaf = path->nodes[0];
169 header = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_free_space_header);
171 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
172 btrfs_set_free_space_key(leaf, header, &disk_key);
173 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 174 btrfs_release_path(path);
0af3d00b
JB
175
176 return 0;
177}
178
0414efae
LZ
179int create_free_space_inode(struct btrfs_root *root,
180 struct btrfs_trans_handle *trans,
181 struct btrfs_block_group_cache *block_group,
182 struct btrfs_path *path)
183{
184 int ret;
185 u64 ino;
186
187 ret = btrfs_find_free_objectid(root, &ino);
188 if (ret < 0)
189 return ret;
190
191 return __create_free_space_inode(root, trans, path, ino,
192 block_group->key.objectid);
193}
194
0af3d00b
JB
195int btrfs_truncate_free_space_cache(struct btrfs_root *root,
196 struct btrfs_trans_handle *trans,
197 struct btrfs_path *path,
198 struct inode *inode)
199{
65450aa6 200 struct btrfs_block_rsv *rsv;
c8174313 201 u64 needed_bytes;
0af3d00b
JB
202 loff_t oldsize;
203 int ret = 0;
204
65450aa6 205 rsv = trans->block_rsv;
c8174313
JB
206 trans->block_rsv = &root->fs_info->global_block_rsv;
207
208 /* 1 for slack space, 1 for updating the inode */
209 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
210 btrfs_calc_trans_metadata_size(root, 1);
211
212 spin_lock(&trans->block_rsv->lock);
213 if (trans->block_rsv->reserved < needed_bytes) {
214 spin_unlock(&trans->block_rsv->lock);
215 trans->block_rsv = rsv;
216 return -ENOSPC;
217 }
218 spin_unlock(&trans->block_rsv->lock);
0af3d00b
JB
219
220 oldsize = i_size_read(inode);
221 btrfs_i_size_write(inode, 0);
222 truncate_pagecache(inode, oldsize, 0);
223
224 /*
225 * We don't need an orphan item because truncating the free space cache
226 * will never be split across transactions.
227 */
228 ret = btrfs_truncate_inode_items(trans, root, inode,
229 0, BTRFS_EXTENT_DATA_KEY);
65450aa6 230
0af3d00b 231 if (ret) {
c8174313 232 trans->block_rsv = rsv;
0af3d00b
JB
233 WARN_ON(1);
234 return ret;
235 }
236
82d5902d 237 ret = btrfs_update_inode(trans, root, inode);
c8174313
JB
238 trans->block_rsv = rsv;
239
82d5902d 240 return ret;
0af3d00b
JB
241}
242
9d66e233
JB
243static int readahead_cache(struct inode *inode)
244{
245 struct file_ra_state *ra;
246 unsigned long last_index;
247
248 ra = kzalloc(sizeof(*ra), GFP_NOFS);
249 if (!ra)
250 return -ENOMEM;
251
252 file_ra_state_init(ra, inode->i_mapping);
253 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
254
255 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
256
257 kfree(ra);
258
259 return 0;
260}
261
a67509c3
JB
262struct io_ctl {
263 void *cur, *orig;
264 struct page *page;
265 struct page **pages;
266 struct btrfs_root *root;
267 unsigned long size;
268 int index;
269 int num_pages;
5b0e95bf 270 unsigned check_crcs:1;
a67509c3
JB
271};
272
273static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
274 struct btrfs_root *root)
275{
276 memset(io_ctl, 0, sizeof(struct io_ctl));
277 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
278 PAGE_CACHE_SHIFT;
279 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
280 GFP_NOFS);
281 if (!io_ctl->pages)
282 return -ENOMEM;
283 io_ctl->root = root;
5b0e95bf
JB
284 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
285 io_ctl->check_crcs = 1;
a67509c3
JB
286 return 0;
287}
288
289static void io_ctl_free(struct io_ctl *io_ctl)
290{
291 kfree(io_ctl->pages);
292}
293
294static void io_ctl_unmap_page(struct io_ctl *io_ctl)
295{
296 if (io_ctl->cur) {
297 kunmap(io_ctl->page);
298 io_ctl->cur = NULL;
299 io_ctl->orig = NULL;
300 }
301}
302
303static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
304{
305 WARN_ON(io_ctl->cur);
306 BUG_ON(io_ctl->index >= io_ctl->num_pages);
307 io_ctl->page = io_ctl->pages[io_ctl->index++];
308 io_ctl->cur = kmap(io_ctl->page);
309 io_ctl->orig = io_ctl->cur;
310 io_ctl->size = PAGE_CACHE_SIZE;
311 if (clear)
312 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
313}
314
315static void io_ctl_drop_pages(struct io_ctl *io_ctl)
316{
317 int i;
318
319 io_ctl_unmap_page(io_ctl);
320
321 for (i = 0; i < io_ctl->num_pages; i++) {
322 ClearPageChecked(io_ctl->pages[i]);
323 unlock_page(io_ctl->pages[i]);
324 page_cache_release(io_ctl->pages[i]);
325 }
326}
327
328static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
329 int uptodate)
330{
331 struct page *page;
332 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
333 int i;
334
335 for (i = 0; i < io_ctl->num_pages; i++) {
336 page = find_or_create_page(inode->i_mapping, i, mask);
337 if (!page) {
338 io_ctl_drop_pages(io_ctl);
339 return -ENOMEM;
340 }
341 io_ctl->pages[i] = page;
342 if (uptodate && !PageUptodate(page)) {
343 btrfs_readpage(NULL, page);
344 lock_page(page);
345 if (!PageUptodate(page)) {
346 printk(KERN_ERR "btrfs: error reading free "
347 "space cache\n");
348 io_ctl_drop_pages(io_ctl);
349 return -EIO;
350 }
351 }
352 }
353
354 return 0;
355}
356
357static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
358{
359 u64 *val;
360
361 io_ctl_map_page(io_ctl, 1);
362
363 /*
5b0e95bf
JB
364 * Skip the csum areas. If we don't check crcs then we just have a
365 * 64bit chunk at the front of the first page.
a67509c3 366 */
5b0e95bf
JB
367 if (io_ctl->check_crcs) {
368 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
369 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
370 } else {
371 io_ctl->cur += sizeof(u64);
372 io_ctl->size -= sizeof(u64) * 2;
373 }
a67509c3
JB
374
375 val = io_ctl->cur;
376 *val = cpu_to_le64(generation);
377 io_ctl->cur += sizeof(u64);
a67509c3
JB
378}
379
380static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
381{
382 u64 *gen;
383
5b0e95bf
JB
384 /*
385 * Skip the crc area. If we don't check crcs then we just have a 64bit
386 * chunk at the front of the first page.
387 */
388 if (io_ctl->check_crcs) {
389 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
390 io_ctl->size -= sizeof(u64) +
391 (sizeof(u32) * io_ctl->num_pages);
392 } else {
393 io_ctl->cur += sizeof(u64);
394 io_ctl->size -= sizeof(u64) * 2;
395 }
a67509c3 396
a67509c3
JB
397 gen = io_ctl->cur;
398 if (le64_to_cpu(*gen) != generation) {
399 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
400 "(%Lu) does not match inode (%Lu)\n", *gen,
401 generation);
402 io_ctl_unmap_page(io_ctl);
403 return -EIO;
404 }
405 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
406 return 0;
407}
408
409static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
410{
411 u32 *tmp;
412 u32 crc = ~(u32)0;
413 unsigned offset = 0;
414
415 if (!io_ctl->check_crcs) {
416 io_ctl_unmap_page(io_ctl);
417 return;
418 }
419
420 if (index == 0)
421 offset = sizeof(u32) * io_ctl->num_pages;;
422
423 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
424 PAGE_CACHE_SIZE - offset);
425 btrfs_csum_final(crc, (char *)&crc);
426 io_ctl_unmap_page(io_ctl);
427 tmp = kmap(io_ctl->pages[0]);
428 tmp += index;
429 *tmp = crc;
430 kunmap(io_ctl->pages[0]);
431}
432
433static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
434{
435 u32 *tmp, val;
436 u32 crc = ~(u32)0;
437 unsigned offset = 0;
438
439 if (!io_ctl->check_crcs) {
440 io_ctl_map_page(io_ctl, 0);
441 return 0;
442 }
443
444 if (index == 0)
445 offset = sizeof(u32) * io_ctl->num_pages;
446
447 tmp = kmap(io_ctl->pages[0]);
448 tmp += index;
449 val = *tmp;
450 kunmap(io_ctl->pages[0]);
451
452 io_ctl_map_page(io_ctl, 0);
453 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
454 PAGE_CACHE_SIZE - offset);
455 btrfs_csum_final(crc, (char *)&crc);
456 if (val != crc) {
457 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
458 "space cache\n");
459 io_ctl_unmap_page(io_ctl);
460 return -EIO;
461 }
462
a67509c3
JB
463 return 0;
464}
465
466static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
467 void *bitmap)
468{
469 struct btrfs_free_space_entry *entry;
470
471 if (!io_ctl->cur)
472 return -ENOSPC;
473
474 entry = io_ctl->cur;
475 entry->offset = cpu_to_le64(offset);
476 entry->bytes = cpu_to_le64(bytes);
477 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
478 BTRFS_FREE_SPACE_EXTENT;
479 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
480 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
481
482 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
483 return 0;
484
5b0e95bf 485 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
486
487 /* No more pages to map */
488 if (io_ctl->index >= io_ctl->num_pages)
489 return 0;
490
491 /* map the next page */
492 io_ctl_map_page(io_ctl, 1);
493 return 0;
494}
495
496static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
497{
498 if (!io_ctl->cur)
499 return -ENOSPC;
500
501 /*
502 * If we aren't at the start of the current page, unmap this one and
503 * map the next one if there is any left.
504 */
505 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 506 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
507 if (io_ctl->index >= io_ctl->num_pages)
508 return -ENOSPC;
509 io_ctl_map_page(io_ctl, 0);
510 }
511
512 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
5b0e95bf 513 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
514 if (io_ctl->index < io_ctl->num_pages)
515 io_ctl_map_page(io_ctl, 0);
516 return 0;
517}
518
519static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
520{
5b0e95bf
JB
521 /*
522 * If we're not on the boundary we know we've modified the page and we
523 * need to crc the page.
524 */
525 if (io_ctl->cur != io_ctl->orig)
526 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
527 else
528 io_ctl_unmap_page(io_ctl);
a67509c3
JB
529
530 while (io_ctl->index < io_ctl->num_pages) {
531 io_ctl_map_page(io_ctl, 1);
5b0e95bf 532 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
533 }
534}
535
5b0e95bf
JB
536static int io_ctl_read_entry(struct io_ctl *io_ctl,
537 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
538{
539 struct btrfs_free_space_entry *e;
2f120c05
JB
540 int ret;
541
542 if (!io_ctl->cur) {
543 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
544 if (ret)
545 return ret;
546 }
a67509c3
JB
547
548 e = io_ctl->cur;
549 entry->offset = le64_to_cpu(e->offset);
550 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 551 *type = e->type;
a67509c3
JB
552 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
553 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
554
555 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 556 return 0;
a67509c3
JB
557
558 io_ctl_unmap_page(io_ctl);
559
2f120c05 560 return 0;
a67509c3
JB
561}
562
5b0e95bf
JB
563static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
564 struct btrfs_free_space *entry)
a67509c3 565{
5b0e95bf
JB
566 int ret;
567
5b0e95bf
JB
568 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
569 if (ret)
570 return ret;
571
a67509c3
JB
572 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
573 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
574
575 return 0;
a67509c3
JB
576}
577
0414efae
LZ
578int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
579 struct btrfs_free_space_ctl *ctl,
580 struct btrfs_path *path, u64 offset)
9d66e233 581{
9d66e233
JB
582 struct btrfs_free_space_header *header;
583 struct extent_buffer *leaf;
a67509c3 584 struct io_ctl io_ctl;
9d66e233 585 struct btrfs_key key;
a67509c3 586 struct btrfs_free_space *e, *n;
9d66e233
JB
587 struct list_head bitmaps;
588 u64 num_entries;
589 u64 num_bitmaps;
590 u64 generation;
a67509c3 591 u8 type;
f6a39829 592 int ret = 0;
9d66e233
JB
593
594 INIT_LIST_HEAD(&bitmaps);
595
9d66e233 596 /* Nothing in the space cache, goodbye */
0414efae 597 if (!i_size_read(inode))
a67509c3 598 return 0;
9d66e233
JB
599
600 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 601 key.offset = offset;
9d66e233
JB
602 key.type = 0;
603
604 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 605 if (ret < 0)
a67509c3 606 return 0;
0414efae 607 else if (ret > 0) {
945d8962 608 btrfs_release_path(path);
a67509c3 609 return 0;
9d66e233
JB
610 }
611
0414efae
LZ
612 ret = -1;
613
9d66e233
JB
614 leaf = path->nodes[0];
615 header = btrfs_item_ptr(leaf, path->slots[0],
616 struct btrfs_free_space_header);
617 num_entries = btrfs_free_space_entries(leaf, header);
618 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
619 generation = btrfs_free_space_generation(leaf, header);
945d8962 620 btrfs_release_path(path);
9d66e233
JB
621
622 if (BTRFS_I(inode)->generation != generation) {
623 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
0414efae 624 " not match free space cache generation (%llu)\n",
9d66e233 625 (unsigned long long)BTRFS_I(inode)->generation,
0414efae 626 (unsigned long long)generation);
a67509c3 627 return 0;
9d66e233
JB
628 }
629
630 if (!num_entries)
a67509c3 631 return 0;
9d66e233 632
a67509c3 633 io_ctl_init(&io_ctl, inode, root);
9d66e233 634 ret = readahead_cache(inode);
0414efae 635 if (ret)
9d66e233 636 goto out;
9d66e233 637
a67509c3
JB
638 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
639 if (ret)
640 goto out;
9d66e233 641
5b0e95bf
JB
642 ret = io_ctl_check_crc(&io_ctl, 0);
643 if (ret)
644 goto free_cache;
645
a67509c3
JB
646 ret = io_ctl_check_generation(&io_ctl, generation);
647 if (ret)
648 goto free_cache;
9d66e233 649
a67509c3
JB
650 while (num_entries) {
651 e = kmem_cache_zalloc(btrfs_free_space_cachep,
652 GFP_NOFS);
653 if (!e)
9d66e233 654 goto free_cache;
9d66e233 655
5b0e95bf
JB
656 ret = io_ctl_read_entry(&io_ctl, e, &type);
657 if (ret) {
658 kmem_cache_free(btrfs_free_space_cachep, e);
659 goto free_cache;
660 }
661
a67509c3
JB
662 if (!e->bytes) {
663 kmem_cache_free(btrfs_free_space_cachep, e);
664 goto free_cache;
9d66e233 665 }
a67509c3
JB
666
667 if (type == BTRFS_FREE_SPACE_EXTENT) {
668 spin_lock(&ctl->tree_lock);
669 ret = link_free_space(ctl, e);
670 spin_unlock(&ctl->tree_lock);
671 if (ret) {
672 printk(KERN_ERR "Duplicate entries in "
673 "free space cache, dumping\n");
674 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
675 goto free_cache;
676 }
a67509c3
JB
677 } else {
678 BUG_ON(!num_bitmaps);
679 num_bitmaps--;
680 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
681 if (!e->bitmap) {
682 kmem_cache_free(
683 btrfs_free_space_cachep, e);
9d66e233
JB
684 goto free_cache;
685 }
a67509c3
JB
686 spin_lock(&ctl->tree_lock);
687 ret = link_free_space(ctl, e);
688 ctl->total_bitmaps++;
689 ctl->op->recalc_thresholds(ctl);
690 spin_unlock(&ctl->tree_lock);
691 if (ret) {
692 printk(KERN_ERR "Duplicate entries in "
693 "free space cache, dumping\n");
dc89e982 694 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
695 goto free_cache;
696 }
a67509c3 697 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
698 }
699
a67509c3
JB
700 num_entries--;
701 }
9d66e233 702
2f120c05
JB
703 io_ctl_unmap_page(&io_ctl);
704
a67509c3
JB
705 /*
706 * We add the bitmaps at the end of the entries in order that
707 * the bitmap entries are added to the cache.
708 */
709 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 710 list_del_init(&e->list);
5b0e95bf
JB
711 ret = io_ctl_read_bitmap(&io_ctl, e);
712 if (ret)
713 goto free_cache;
9d66e233
JB
714 }
715
a67509c3 716 io_ctl_drop_pages(&io_ctl);
9d66e233
JB
717 ret = 1;
718out:
a67509c3 719 io_ctl_free(&io_ctl);
9d66e233 720 return ret;
9d66e233 721free_cache:
a67509c3 722 io_ctl_drop_pages(&io_ctl);
0414efae 723 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
724 goto out;
725}
726
0414efae
LZ
727int load_free_space_cache(struct btrfs_fs_info *fs_info,
728 struct btrfs_block_group_cache *block_group)
0cb59c99 729{
34d52cb6 730 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
731 struct btrfs_root *root = fs_info->tree_root;
732 struct inode *inode;
733 struct btrfs_path *path;
5b0e95bf 734 int ret = 0;
0414efae
LZ
735 bool matched;
736 u64 used = btrfs_block_group_used(&block_group->item);
737
738 /*
739 * If we're unmounting then just return, since this does a search on the
740 * normal root and not the commit root and we could deadlock.
741 */
7841cb28 742 if (btrfs_fs_closing(fs_info))
0414efae
LZ
743 return 0;
744
745 /*
746 * If this block group has been marked to be cleared for one reason or
747 * another then we can't trust the on disk cache, so just return.
748 */
9d66e233 749 spin_lock(&block_group->lock);
0414efae
LZ
750 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
751 spin_unlock(&block_group->lock);
752 return 0;
753 }
9d66e233 754 spin_unlock(&block_group->lock);
0414efae
LZ
755
756 path = btrfs_alloc_path();
757 if (!path)
758 return 0;
759
760 inode = lookup_free_space_inode(root, block_group, path);
761 if (IS_ERR(inode)) {
762 btrfs_free_path(path);
763 return 0;
764 }
765
5b0e95bf
JB
766 /* We may have converted the inode and made the cache invalid. */
767 spin_lock(&block_group->lock);
768 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
769 spin_unlock(&block_group->lock);
770 goto out;
771 }
772 spin_unlock(&block_group->lock);
773
0414efae
LZ
774 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
775 path, block_group->key.objectid);
776 btrfs_free_path(path);
777 if (ret <= 0)
778 goto out;
779
780 spin_lock(&ctl->tree_lock);
781 matched = (ctl->free_space == (block_group->key.offset - used -
782 block_group->bytes_super));
783 spin_unlock(&ctl->tree_lock);
784
785 if (!matched) {
786 __btrfs_remove_free_space_cache(ctl);
787 printk(KERN_ERR "block group %llu has an wrong amount of free "
788 "space\n", block_group->key.objectid);
789 ret = -1;
790 }
791out:
792 if (ret < 0) {
793 /* This cache is bogus, make sure it gets cleared */
794 spin_lock(&block_group->lock);
795 block_group->disk_cache_state = BTRFS_DC_CLEAR;
796 spin_unlock(&block_group->lock);
82d5902d 797 ret = 0;
0414efae
LZ
798
799 printk(KERN_ERR "btrfs: failed to load free space cache "
800 "for block group %llu\n", block_group->key.objectid);
801 }
802
803 iput(inode);
804 return ret;
9d66e233
JB
805}
806
c09544e0
JB
807/**
808 * __btrfs_write_out_cache - write out cached info to an inode
809 * @root - the root the inode belongs to
810 * @ctl - the free space cache we are going to write out
811 * @block_group - the block_group for this cache if it belongs to a block_group
812 * @trans - the trans handle
813 * @path - the path to use
814 * @offset - the offset for the key we'll insert
815 *
816 * This function writes out a free space cache struct to disk for quick recovery
817 * on mount. This will return 0 if it was successfull in writing the cache out,
818 * and -1 if it was not.
819 */
0414efae
LZ
820int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
821 struct btrfs_free_space_ctl *ctl,
822 struct btrfs_block_group_cache *block_group,
823 struct btrfs_trans_handle *trans,
824 struct btrfs_path *path, u64 offset)
0cb59c99
JB
825{
826 struct btrfs_free_space_header *header;
827 struct extent_buffer *leaf;
0cb59c99
JB
828 struct rb_node *node;
829 struct list_head *pos, *n;
0cb59c99 830 struct extent_state *cached_state = NULL;
43be2146
JB
831 struct btrfs_free_cluster *cluster = NULL;
832 struct extent_io_tree *unpin = NULL;
a67509c3 833 struct io_ctl io_ctl;
0cb59c99
JB
834 struct list_head bitmap_list;
835 struct btrfs_key key;
43be2146 836 u64 start, end, len;
0cb59c99
JB
837 int entries = 0;
838 int bitmaps = 0;
c09544e0
JB
839 int ret;
840 int err = -1;
0cb59c99 841
0cb59c99
JB
842 INIT_LIST_HEAD(&bitmap_list);
843
0414efae
LZ
844 if (!i_size_read(inode))
845 return -1;
2b20982e 846
a67509c3 847 io_ctl_init(&io_ctl, inode, root);
be1a12a0 848
43be2146 849 /* Get the cluster for this block_group if it exists */
0414efae 850 if (block_group && !list_empty(&block_group->cluster_list))
43be2146
JB
851 cluster = list_entry(block_group->cluster_list.next,
852 struct btrfs_free_cluster,
853 block_group_list);
854
855 /*
856 * We shouldn't have switched the pinned extents yet so this is the
857 * right one
858 */
859 unpin = root->fs_info->pinned_extents;
860
a67509c3
JB
861 /* Lock all pages first so we can lock the extent safely. */
862 io_ctl_prepare_pages(&io_ctl, inode, 0);
0cb59c99 863
0cb59c99
JB
864 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
865 0, &cached_state, GFP_NOFS);
866
43be2146
JB
867 /*
868 * When searching for pinned extents, we need to start at our start
869 * offset.
870 */
0414efae
LZ
871 if (block_group)
872 start = block_group->key.objectid;
43be2146 873
f75b130e
JB
874 node = rb_first(&ctl->free_space_offset);
875 if (!node && cluster) {
876 node = rb_first(&cluster->root);
877 cluster = NULL;
878 }
879
5b0e95bf
JB
880 /* Make sure we can fit our crcs into the first page */
881 if (io_ctl.check_crcs &&
882 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
883 WARN_ON(1);
884 goto out_nospc;
885 }
886
a67509c3 887 io_ctl_set_generation(&io_ctl, trans->transid);
43be2146 888
a67509c3
JB
889 /* Write out the extent entries */
890 while (node) {
891 struct btrfs_free_space *e;
0cb59c99 892
a67509c3
JB
893 e = rb_entry(node, struct btrfs_free_space, offset_index);
894 entries++;
0cb59c99 895
a67509c3
JB
896 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
897 e->bitmap);
898 if (ret)
899 goto out_nospc;
2f356126 900
a67509c3
JB
901 if (e->bitmap) {
902 list_add_tail(&e->list, &bitmap_list);
903 bitmaps++;
2f356126 904 }
a67509c3
JB
905 node = rb_next(node);
906 if (!node && cluster) {
907 node = rb_first(&cluster->root);
908 cluster = NULL;
43be2146 909 }
a67509c3 910 }
43be2146 911
a67509c3
JB
912 /*
913 * We want to add any pinned extents to our free space cache
914 * so we don't leak the space
915 */
916 while (block_group && (start < block_group->key.objectid +
917 block_group->key.offset)) {
918 ret = find_first_extent_bit(unpin, start, &start, &end,
919 EXTENT_DIRTY);
920 if (ret) {
921 ret = 0;
922 break;
0cb59c99 923 }
0cb59c99 924
a67509c3
JB
925 /* This pinned extent is out of our range */
926 if (start >= block_group->key.objectid +
927 block_group->key.offset)
928 break;
2f356126 929
a67509c3
JB
930 len = block_group->key.objectid +
931 block_group->key.offset - start;
932 len = min(len, end + 1 - start);
0cb59c99 933
a67509c3
JB
934 entries++;
935 ret = io_ctl_add_entry(&io_ctl, start, len, NULL);
936 if (ret)
937 goto out_nospc;
0cb59c99 938
a67509c3
JB
939 start = end + 1;
940 }
0cb59c99
JB
941
942 /* Write out the bitmaps */
943 list_for_each_safe(pos, n, &bitmap_list) {
0cb59c99
JB
944 struct btrfs_free_space *entry =
945 list_entry(pos, struct btrfs_free_space, list);
946
a67509c3
JB
947 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
948 if (ret)
949 goto out_nospc;
0cb59c99 950 list_del_init(&entry->list);
be1a12a0
JB
951 }
952
0cb59c99 953 /* Zero out the rest of the pages just to make sure */
a67509c3 954 io_ctl_zero_remaining_pages(&io_ctl);
0cb59c99 955
a67509c3
JB
956 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
957 0, i_size_read(inode), &cached_state);
958 io_ctl_drop_pages(&io_ctl);
0cb59c99
JB
959 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
960 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
961
c09544e0 962 if (ret)
2f356126 963 goto out;
be1a12a0 964
be1a12a0 965
549b4fdb
JB
966 ret = filemap_write_and_wait(inode->i_mapping);
967 if (ret)
968 goto out;
0cb59c99
JB
969
970 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 971 key.offset = offset;
0cb59c99
JB
972 key.type = 0;
973
a9b5fcdd 974 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
0cb59c99 975 if (ret < 0) {
a67509c3 976 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
5b0e95bf
JB
977 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
978 GFP_NOFS);
2f356126 979 goto out;
0cb59c99
JB
980 }
981 leaf = path->nodes[0];
982 if (ret > 0) {
983 struct btrfs_key found_key;
984 BUG_ON(!path->slots[0]);
985 path->slots[0]--;
986 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
987 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
0414efae 988 found_key.offset != offset) {
a67509c3
JB
989 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
990 inode->i_size - 1,
5b0e95bf
JB
991 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
992 NULL, GFP_NOFS);
b3b4aa74 993 btrfs_release_path(path);
2f356126 994 goto out;
0cb59c99
JB
995 }
996 }
549b4fdb
JB
997
998 BTRFS_I(inode)->generation = trans->transid;
0cb59c99
JB
999 header = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_free_space_header);
1001 btrfs_set_free_space_entries(leaf, header, entries);
1002 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1003 btrfs_set_free_space_generation(leaf, header, trans->transid);
1004 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 1005 btrfs_release_path(path);
0cb59c99 1006
c09544e0 1007 err = 0;
2f356126 1008out:
a67509c3 1009 io_ctl_free(&io_ctl);
c09544e0 1010 if (err) {
a67509c3 1011 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1012 BTRFS_I(inode)->generation = 0;
1013 }
0cb59c99 1014 btrfs_update_inode(trans, root, inode);
c09544e0 1015 return err;
a67509c3
JB
1016
1017out_nospc:
1018 list_for_each_safe(pos, n, &bitmap_list) {
1019 struct btrfs_free_space *entry =
1020 list_entry(pos, struct btrfs_free_space, list);
1021 list_del_init(&entry->list);
1022 }
1023 io_ctl_drop_pages(&io_ctl);
1024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1025 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1026 goto out;
0414efae
LZ
1027}
1028
1029int btrfs_write_out_cache(struct btrfs_root *root,
1030 struct btrfs_trans_handle *trans,
1031 struct btrfs_block_group_cache *block_group,
1032 struct btrfs_path *path)
1033{
1034 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1035 struct inode *inode;
1036 int ret = 0;
1037
1038 root = root->fs_info->tree_root;
1039
1040 spin_lock(&block_group->lock);
1041 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1042 spin_unlock(&block_group->lock);
1043 return 0;
1044 }
1045 spin_unlock(&block_group->lock);
1046
1047 inode = lookup_free_space_inode(root, block_group, path);
1048 if (IS_ERR(inode))
1049 return 0;
1050
1051 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1052 path, block_group->key.objectid);
c09544e0 1053 if (ret) {
0414efae
LZ
1054 spin_lock(&block_group->lock);
1055 block_group->disk_cache_state = BTRFS_DC_ERROR;
1056 spin_unlock(&block_group->lock);
82d5902d 1057 ret = 0;
c09544e0 1058#ifdef DEBUG
0414efae
LZ
1059 printk(KERN_ERR "btrfs: failed to write free space cace "
1060 "for block group %llu\n", block_group->key.objectid);
c09544e0 1061#endif
0414efae
LZ
1062 }
1063
0cb59c99
JB
1064 iput(inode);
1065 return ret;
1066}
1067
34d52cb6 1068static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1069 u64 offset)
0f9dd46c 1070{
96303081
JB
1071 BUG_ON(offset < bitmap_start);
1072 offset -= bitmap_start;
34d52cb6 1073 return (unsigned long)(div_u64(offset, unit));
96303081 1074}
0f9dd46c 1075
34d52cb6 1076static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1077{
34d52cb6 1078 return (unsigned long)(div_u64(bytes, unit));
96303081 1079}
0f9dd46c 1080
34d52cb6 1081static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1082 u64 offset)
1083{
1084 u64 bitmap_start;
1085 u64 bytes_per_bitmap;
0f9dd46c 1086
34d52cb6
LZ
1087 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1088 bitmap_start = offset - ctl->start;
96303081
JB
1089 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1090 bitmap_start *= bytes_per_bitmap;
34d52cb6 1091 bitmap_start += ctl->start;
0f9dd46c 1092
96303081 1093 return bitmap_start;
0f9dd46c
JB
1094}
1095
96303081
JB
1096static int tree_insert_offset(struct rb_root *root, u64 offset,
1097 struct rb_node *node, int bitmap)
0f9dd46c
JB
1098{
1099 struct rb_node **p = &root->rb_node;
1100 struct rb_node *parent = NULL;
1101 struct btrfs_free_space *info;
1102
1103 while (*p) {
1104 parent = *p;
96303081 1105 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1106
96303081 1107 if (offset < info->offset) {
0f9dd46c 1108 p = &(*p)->rb_left;
96303081 1109 } else if (offset > info->offset) {
0f9dd46c 1110 p = &(*p)->rb_right;
96303081
JB
1111 } else {
1112 /*
1113 * we could have a bitmap entry and an extent entry
1114 * share the same offset. If this is the case, we want
1115 * the extent entry to always be found first if we do a
1116 * linear search through the tree, since we want to have
1117 * the quickest allocation time, and allocating from an
1118 * extent is faster than allocating from a bitmap. So
1119 * if we're inserting a bitmap and we find an entry at
1120 * this offset, we want to go right, or after this entry
1121 * logically. If we are inserting an extent and we've
1122 * found a bitmap, we want to go left, or before
1123 * logically.
1124 */
1125 if (bitmap) {
207dde82
JB
1126 if (info->bitmap) {
1127 WARN_ON_ONCE(1);
1128 return -EEXIST;
1129 }
96303081
JB
1130 p = &(*p)->rb_right;
1131 } else {
207dde82
JB
1132 if (!info->bitmap) {
1133 WARN_ON_ONCE(1);
1134 return -EEXIST;
1135 }
96303081
JB
1136 p = &(*p)->rb_left;
1137 }
1138 }
0f9dd46c
JB
1139 }
1140
1141 rb_link_node(node, parent, p);
1142 rb_insert_color(node, root);
1143
1144 return 0;
1145}
1146
1147/*
70cb0743
JB
1148 * searches the tree for the given offset.
1149 *
96303081
JB
1150 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1151 * want a section that has at least bytes size and comes at or after the given
1152 * offset.
0f9dd46c 1153 */
96303081 1154static struct btrfs_free_space *
34d52cb6 1155tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1156 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1157{
34d52cb6 1158 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1159 struct btrfs_free_space *entry, *prev = NULL;
1160
1161 /* find entry that is closest to the 'offset' */
1162 while (1) {
1163 if (!n) {
1164 entry = NULL;
1165 break;
1166 }
0f9dd46c 1167
0f9dd46c 1168 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1169 prev = entry;
0f9dd46c 1170
96303081 1171 if (offset < entry->offset)
0f9dd46c 1172 n = n->rb_left;
96303081 1173 else if (offset > entry->offset)
0f9dd46c 1174 n = n->rb_right;
96303081 1175 else
0f9dd46c 1176 break;
0f9dd46c
JB
1177 }
1178
96303081
JB
1179 if (bitmap_only) {
1180 if (!entry)
1181 return NULL;
1182 if (entry->bitmap)
1183 return entry;
0f9dd46c 1184
96303081
JB
1185 /*
1186 * bitmap entry and extent entry may share same offset,
1187 * in that case, bitmap entry comes after extent entry.
1188 */
1189 n = rb_next(n);
1190 if (!n)
1191 return NULL;
1192 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1193 if (entry->offset != offset)
1194 return NULL;
0f9dd46c 1195
96303081
JB
1196 WARN_ON(!entry->bitmap);
1197 return entry;
1198 } else if (entry) {
1199 if (entry->bitmap) {
0f9dd46c 1200 /*
96303081
JB
1201 * if previous extent entry covers the offset,
1202 * we should return it instead of the bitmap entry
0f9dd46c 1203 */
96303081
JB
1204 n = &entry->offset_index;
1205 while (1) {
1206 n = rb_prev(n);
1207 if (!n)
1208 break;
1209 prev = rb_entry(n, struct btrfs_free_space,
1210 offset_index);
1211 if (!prev->bitmap) {
1212 if (prev->offset + prev->bytes > offset)
1213 entry = prev;
1214 break;
1215 }
0f9dd46c 1216 }
96303081
JB
1217 }
1218 return entry;
1219 }
1220
1221 if (!prev)
1222 return NULL;
1223
1224 /* find last entry before the 'offset' */
1225 entry = prev;
1226 if (entry->offset > offset) {
1227 n = rb_prev(&entry->offset_index);
1228 if (n) {
1229 entry = rb_entry(n, struct btrfs_free_space,
1230 offset_index);
1231 BUG_ON(entry->offset > offset);
0f9dd46c 1232 } else {
96303081
JB
1233 if (fuzzy)
1234 return entry;
1235 else
1236 return NULL;
0f9dd46c
JB
1237 }
1238 }
1239
96303081
JB
1240 if (entry->bitmap) {
1241 n = &entry->offset_index;
1242 while (1) {
1243 n = rb_prev(n);
1244 if (!n)
1245 break;
1246 prev = rb_entry(n, struct btrfs_free_space,
1247 offset_index);
1248 if (!prev->bitmap) {
1249 if (prev->offset + prev->bytes > offset)
1250 return prev;
1251 break;
1252 }
1253 }
34d52cb6 1254 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1255 return entry;
1256 } else if (entry->offset + entry->bytes > offset)
1257 return entry;
1258
1259 if (!fuzzy)
1260 return NULL;
1261
1262 while (1) {
1263 if (entry->bitmap) {
1264 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1265 ctl->unit > offset)
96303081
JB
1266 break;
1267 } else {
1268 if (entry->offset + entry->bytes > offset)
1269 break;
1270 }
1271
1272 n = rb_next(&entry->offset_index);
1273 if (!n)
1274 return NULL;
1275 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1276 }
1277 return entry;
0f9dd46c
JB
1278}
1279
f333adb5 1280static inline void
34d52cb6 1281__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1282 struct btrfs_free_space *info)
0f9dd46c 1283{
34d52cb6
LZ
1284 rb_erase(&info->offset_index, &ctl->free_space_offset);
1285 ctl->free_extents--;
f333adb5
LZ
1286}
1287
34d52cb6 1288static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1289 struct btrfs_free_space *info)
1290{
34d52cb6
LZ
1291 __unlink_free_space(ctl, info);
1292 ctl->free_space -= info->bytes;
0f9dd46c
JB
1293}
1294
34d52cb6 1295static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1296 struct btrfs_free_space *info)
1297{
1298 int ret = 0;
1299
96303081 1300 BUG_ON(!info->bitmap && !info->bytes);
34d52cb6 1301 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1302 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1303 if (ret)
1304 return ret;
1305
34d52cb6
LZ
1306 ctl->free_space += info->bytes;
1307 ctl->free_extents++;
96303081
JB
1308 return ret;
1309}
1310
34d52cb6 1311static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1312{
34d52cb6 1313 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1314 u64 max_bytes;
1315 u64 bitmap_bytes;
1316 u64 extent_bytes;
8eb2d829 1317 u64 size = block_group->key.offset;
34d52cb6
LZ
1318 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1319 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1320
1321 BUG_ON(ctl->total_bitmaps > max_bitmaps);
96303081
JB
1322
1323 /*
1324 * The goal is to keep the total amount of memory used per 1gb of space
1325 * at or below 32k, so we need to adjust how much memory we allow to be
1326 * used by extent based free space tracking
1327 */
8eb2d829
LZ
1328 if (size < 1024 * 1024 * 1024)
1329 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1330 else
1331 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1332 div64_u64(size, 1024 * 1024 * 1024);
96303081 1333
25891f79
JB
1334 /*
1335 * we want to account for 1 more bitmap than what we have so we can make
1336 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1337 * we add more bitmaps.
1338 */
34d52cb6 1339 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
96303081 1340
25891f79 1341 if (bitmap_bytes >= max_bytes) {
34d52cb6 1342 ctl->extents_thresh = 0;
25891f79
JB
1343 return;
1344 }
96303081 1345
25891f79
JB
1346 /*
1347 * we want the extent entry threshold to always be at most 1/2 the maxw
1348 * bytes we can have, or whatever is less than that.
1349 */
1350 extent_bytes = max_bytes - bitmap_bytes;
1351 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
96303081 1352
34d52cb6 1353 ctl->extents_thresh =
25891f79 1354 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
96303081
JB
1355}
1356
bb3ac5a4
MX
1357static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1358 struct btrfs_free_space *info,
1359 u64 offset, u64 bytes)
96303081 1360{
f38b6e75 1361 unsigned long start, count;
96303081 1362
34d52cb6
LZ
1363 start = offset_to_bit(info->offset, ctl->unit, offset);
1364 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1365 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1366
f38b6e75 1367 bitmap_clear(info->bitmap, start, count);
96303081
JB
1368
1369 info->bytes -= bytes;
bb3ac5a4
MX
1370}
1371
1372static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1373 struct btrfs_free_space *info, u64 offset,
1374 u64 bytes)
1375{
1376 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1377 ctl->free_space -= bytes;
96303081
JB
1378}
1379
34d52cb6 1380static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1381 struct btrfs_free_space *info, u64 offset,
1382 u64 bytes)
96303081 1383{
f38b6e75 1384 unsigned long start, count;
96303081 1385
34d52cb6
LZ
1386 start = offset_to_bit(info->offset, ctl->unit, offset);
1387 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1388 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1389
f38b6e75 1390 bitmap_set(info->bitmap, start, count);
96303081
JB
1391
1392 info->bytes += bytes;
34d52cb6 1393 ctl->free_space += bytes;
96303081
JB
1394}
1395
34d52cb6 1396static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1397 struct btrfs_free_space *bitmap_info, u64 *offset,
1398 u64 *bytes)
1399{
1400 unsigned long found_bits = 0;
1401 unsigned long bits, i;
1402 unsigned long next_zero;
1403
34d52cb6 1404 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1405 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1406 bits = bytes_to_bits(*bytes, ctl->unit);
96303081
JB
1407
1408 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1409 i < BITS_PER_BITMAP;
1410 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1411 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1412 BITS_PER_BITMAP, i);
1413 if ((next_zero - i) >= bits) {
1414 found_bits = next_zero - i;
1415 break;
1416 }
1417 i = next_zero;
1418 }
1419
1420 if (found_bits) {
34d52cb6
LZ
1421 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1422 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1423 return 0;
1424 }
1425
1426 return -1;
1427}
1428
34d52cb6
LZ
1429static struct btrfs_free_space *
1430find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
96303081
JB
1431{
1432 struct btrfs_free_space *entry;
1433 struct rb_node *node;
1434 int ret;
1435
34d52cb6 1436 if (!ctl->free_space_offset.rb_node)
96303081
JB
1437 return NULL;
1438
34d52cb6 1439 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081
JB
1440 if (!entry)
1441 return NULL;
1442
1443 for (node = &entry->offset_index; node; node = rb_next(node)) {
1444 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1445 if (entry->bytes < *bytes)
1446 continue;
1447
1448 if (entry->bitmap) {
34d52cb6 1449 ret = search_bitmap(ctl, entry, offset, bytes);
96303081
JB
1450 if (!ret)
1451 return entry;
1452 continue;
1453 }
1454
1455 *offset = entry->offset;
1456 *bytes = entry->bytes;
1457 return entry;
1458 }
1459
1460 return NULL;
1461}
1462
34d52cb6 1463static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1464 struct btrfs_free_space *info, u64 offset)
1465{
34d52cb6 1466 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1467 info->bytes = 0;
34d52cb6
LZ
1468 link_free_space(ctl, info);
1469 ctl->total_bitmaps++;
96303081 1470
34d52cb6 1471 ctl->op->recalc_thresholds(ctl);
96303081
JB
1472}
1473
34d52cb6 1474static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1475 struct btrfs_free_space *bitmap_info)
1476{
34d52cb6 1477 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1478 kfree(bitmap_info->bitmap);
dc89e982 1479 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1480 ctl->total_bitmaps--;
1481 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1482}
1483
34d52cb6 1484static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1485 struct btrfs_free_space *bitmap_info,
1486 u64 *offset, u64 *bytes)
1487{
1488 u64 end;
6606bb97
JB
1489 u64 search_start, search_bytes;
1490 int ret;
96303081
JB
1491
1492again:
34d52cb6 1493 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1494
6606bb97
JB
1495 /*
1496 * XXX - this can go away after a few releases.
1497 *
1498 * since the only user of btrfs_remove_free_space is the tree logging
1499 * stuff, and the only way to test that is under crash conditions, we
1500 * want to have this debug stuff here just in case somethings not
1501 * working. Search the bitmap for the space we are trying to use to
1502 * make sure its actually there. If its not there then we need to stop
1503 * because something has gone wrong.
1504 */
1505 search_start = *offset;
1506 search_bytes = *bytes;
13dbc089 1507 search_bytes = min(search_bytes, end - search_start + 1);
34d52cb6 1508 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
6606bb97
JB
1509 BUG_ON(ret < 0 || search_start != *offset);
1510
96303081 1511 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
34d52cb6 1512 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
96303081
JB
1513 *bytes -= end - *offset + 1;
1514 *offset = end + 1;
1515 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
34d52cb6 1516 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
96303081
JB
1517 *bytes = 0;
1518 }
1519
1520 if (*bytes) {
6606bb97 1521 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1522 if (!bitmap_info->bytes)
34d52cb6 1523 free_bitmap(ctl, bitmap_info);
96303081 1524
6606bb97
JB
1525 /*
1526 * no entry after this bitmap, but we still have bytes to
1527 * remove, so something has gone wrong.
1528 */
1529 if (!next)
96303081
JB
1530 return -EINVAL;
1531
6606bb97
JB
1532 bitmap_info = rb_entry(next, struct btrfs_free_space,
1533 offset_index);
1534
1535 /*
1536 * if the next entry isn't a bitmap we need to return to let the
1537 * extent stuff do its work.
1538 */
96303081
JB
1539 if (!bitmap_info->bitmap)
1540 return -EAGAIN;
1541
6606bb97
JB
1542 /*
1543 * Ok the next item is a bitmap, but it may not actually hold
1544 * the information for the rest of this free space stuff, so
1545 * look for it, and if we don't find it return so we can try
1546 * everything over again.
1547 */
1548 search_start = *offset;
1549 search_bytes = *bytes;
34d52cb6 1550 ret = search_bitmap(ctl, bitmap_info, &search_start,
6606bb97
JB
1551 &search_bytes);
1552 if (ret < 0 || search_start != *offset)
1553 return -EAGAIN;
1554
96303081 1555 goto again;
edf6e2d1 1556 } else if (!bitmap_info->bytes)
34d52cb6 1557 free_bitmap(ctl, bitmap_info);
96303081
JB
1558
1559 return 0;
1560}
1561
2cdc342c
JB
1562static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1563 struct btrfs_free_space *info, u64 offset,
1564 u64 bytes)
1565{
1566 u64 bytes_to_set = 0;
1567 u64 end;
1568
1569 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1570
1571 bytes_to_set = min(end - offset, bytes);
1572
1573 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1574
1575 return bytes_to_set;
1576
1577}
1578
34d52cb6
LZ
1579static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1580 struct btrfs_free_space *info)
96303081 1581{
34d52cb6 1582 struct btrfs_block_group_cache *block_group = ctl->private;
96303081
JB
1583
1584 /*
1585 * If we are below the extents threshold then we can add this as an
1586 * extent, and don't have to deal with the bitmap
1587 */
34d52cb6 1588 if (ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1589 /*
1590 * If this block group has some small extents we don't want to
1591 * use up all of our free slots in the cache with them, we want
1592 * to reserve them to larger extents, however if we have plent
1593 * of cache left then go ahead an dadd them, no sense in adding
1594 * the overhead of a bitmap if we don't have to.
1595 */
1596 if (info->bytes <= block_group->sectorsize * 4) {
34d52cb6
LZ
1597 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1598 return false;
32cb0840 1599 } else {
34d52cb6 1600 return false;
32cb0840
JB
1601 }
1602 }
96303081
JB
1603
1604 /*
1605 * some block groups are so tiny they can't be enveloped by a bitmap, so
1606 * don't even bother to create a bitmap for this
1607 */
1608 if (BITS_PER_BITMAP * block_group->sectorsize >
1609 block_group->key.offset)
34d52cb6
LZ
1610 return false;
1611
1612 return true;
1613}
1614
2cdc342c
JB
1615static struct btrfs_free_space_op free_space_op = {
1616 .recalc_thresholds = recalculate_thresholds,
1617 .use_bitmap = use_bitmap,
1618};
1619
34d52cb6
LZ
1620static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1621 struct btrfs_free_space *info)
1622{
1623 struct btrfs_free_space *bitmap_info;
2cdc342c 1624 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 1625 int added = 0;
2cdc342c 1626 u64 bytes, offset, bytes_added;
34d52cb6 1627 int ret;
96303081
JB
1628
1629 bytes = info->bytes;
1630 offset = info->offset;
1631
34d52cb6
LZ
1632 if (!ctl->op->use_bitmap(ctl, info))
1633 return 0;
1634
2cdc342c
JB
1635 if (ctl->op == &free_space_op)
1636 block_group = ctl->private;
38e87880 1637again:
2cdc342c
JB
1638 /*
1639 * Since we link bitmaps right into the cluster we need to see if we
1640 * have a cluster here, and if so and it has our bitmap we need to add
1641 * the free space to that bitmap.
1642 */
1643 if (block_group && !list_empty(&block_group->cluster_list)) {
1644 struct btrfs_free_cluster *cluster;
1645 struct rb_node *node;
1646 struct btrfs_free_space *entry;
1647
1648 cluster = list_entry(block_group->cluster_list.next,
1649 struct btrfs_free_cluster,
1650 block_group_list);
1651 spin_lock(&cluster->lock);
1652 node = rb_first(&cluster->root);
1653 if (!node) {
1654 spin_unlock(&cluster->lock);
38e87880 1655 goto no_cluster_bitmap;
2cdc342c
JB
1656 }
1657
1658 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1659 if (!entry->bitmap) {
1660 spin_unlock(&cluster->lock);
38e87880 1661 goto no_cluster_bitmap;
2cdc342c
JB
1662 }
1663
1664 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1665 bytes_added = add_bytes_to_bitmap(ctl, entry,
1666 offset, bytes);
1667 bytes -= bytes_added;
1668 offset += bytes_added;
1669 }
1670 spin_unlock(&cluster->lock);
1671 if (!bytes) {
1672 ret = 1;
1673 goto out;
1674 }
1675 }
38e87880
CM
1676
1677no_cluster_bitmap:
34d52cb6 1678 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
1679 1, 0);
1680 if (!bitmap_info) {
1681 BUG_ON(added);
1682 goto new_bitmap;
1683 }
1684
2cdc342c
JB
1685 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1686 bytes -= bytes_added;
1687 offset += bytes_added;
1688 added = 0;
96303081
JB
1689
1690 if (!bytes) {
1691 ret = 1;
1692 goto out;
1693 } else
1694 goto again;
1695
1696new_bitmap:
1697 if (info && info->bitmap) {
34d52cb6 1698 add_new_bitmap(ctl, info, offset);
96303081
JB
1699 added = 1;
1700 info = NULL;
1701 goto again;
1702 } else {
34d52cb6 1703 spin_unlock(&ctl->tree_lock);
96303081
JB
1704
1705 /* no pre-allocated info, allocate a new one */
1706 if (!info) {
dc89e982
JB
1707 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1708 GFP_NOFS);
96303081 1709 if (!info) {
34d52cb6 1710 spin_lock(&ctl->tree_lock);
96303081
JB
1711 ret = -ENOMEM;
1712 goto out;
1713 }
1714 }
1715
1716 /* allocate the bitmap */
1717 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
34d52cb6 1718 spin_lock(&ctl->tree_lock);
96303081
JB
1719 if (!info->bitmap) {
1720 ret = -ENOMEM;
1721 goto out;
1722 }
1723 goto again;
1724 }
1725
1726out:
1727 if (info) {
1728 if (info->bitmap)
1729 kfree(info->bitmap);
dc89e982 1730 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1731 }
0f9dd46c
JB
1732
1733 return ret;
1734}
1735
945d8962 1736static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1737 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 1738{
120d66ee
LZ
1739 struct btrfs_free_space *left_info;
1740 struct btrfs_free_space *right_info;
1741 bool merged = false;
1742 u64 offset = info->offset;
1743 u64 bytes = info->bytes;
6226cb0a 1744
0f9dd46c
JB
1745 /*
1746 * first we want to see if there is free space adjacent to the range we
1747 * are adding, if there is remove that struct and add a new one to
1748 * cover the entire range
1749 */
34d52cb6 1750 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
1751 if (right_info && rb_prev(&right_info->offset_index))
1752 left_info = rb_entry(rb_prev(&right_info->offset_index),
1753 struct btrfs_free_space, offset_index);
1754 else
34d52cb6 1755 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 1756
96303081 1757 if (right_info && !right_info->bitmap) {
f333adb5 1758 if (update_stat)
34d52cb6 1759 unlink_free_space(ctl, right_info);
f333adb5 1760 else
34d52cb6 1761 __unlink_free_space(ctl, right_info);
6226cb0a 1762 info->bytes += right_info->bytes;
dc89e982 1763 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 1764 merged = true;
0f9dd46c
JB
1765 }
1766
96303081
JB
1767 if (left_info && !left_info->bitmap &&
1768 left_info->offset + left_info->bytes == offset) {
f333adb5 1769 if (update_stat)
34d52cb6 1770 unlink_free_space(ctl, left_info);
f333adb5 1771 else
34d52cb6 1772 __unlink_free_space(ctl, left_info);
6226cb0a
JB
1773 info->offset = left_info->offset;
1774 info->bytes += left_info->bytes;
dc89e982 1775 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 1776 merged = true;
0f9dd46c
JB
1777 }
1778
120d66ee
LZ
1779 return merged;
1780}
1781
581bb050
LZ
1782int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1783 u64 offset, u64 bytes)
120d66ee
LZ
1784{
1785 struct btrfs_free_space *info;
1786 int ret = 0;
1787
dc89e982 1788 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
1789 if (!info)
1790 return -ENOMEM;
1791
1792 info->offset = offset;
1793 info->bytes = bytes;
1794
34d52cb6 1795 spin_lock(&ctl->tree_lock);
120d66ee 1796
34d52cb6 1797 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
1798 goto link;
1799
1800 /*
1801 * There was no extent directly to the left or right of this new
1802 * extent then we know we're going to have to allocate a new extent, so
1803 * before we do that see if we need to drop this into a bitmap
1804 */
34d52cb6 1805 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
1806 if (ret < 0) {
1807 goto out;
1808 } else if (ret) {
1809 ret = 0;
1810 goto out;
1811 }
1812link:
34d52cb6 1813 ret = link_free_space(ctl, info);
0f9dd46c 1814 if (ret)
dc89e982 1815 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1816out:
34d52cb6 1817 spin_unlock(&ctl->tree_lock);
6226cb0a 1818
0f9dd46c 1819 if (ret) {
96303081 1820 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
c293498b 1821 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
1822 }
1823
0f9dd46c
JB
1824 return ret;
1825}
1826
6226cb0a
JB
1827int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1828 u64 offset, u64 bytes)
0f9dd46c 1829{
34d52cb6 1830 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1831 struct btrfs_free_space *info;
96303081 1832 struct btrfs_free_space *next_info = NULL;
0f9dd46c
JB
1833 int ret = 0;
1834
34d52cb6 1835 spin_lock(&ctl->tree_lock);
6226cb0a 1836
96303081 1837again:
34d52cb6 1838 info = tree_search_offset(ctl, offset, 0, 0);
96303081 1839 if (!info) {
6606bb97
JB
1840 /*
1841 * oops didn't find an extent that matched the space we wanted
1842 * to remove, look for a bitmap instead
1843 */
34d52cb6 1844 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
1845 1, 0);
1846 if (!info) {
1847 WARN_ON(1);
1848 goto out_lock;
1849 }
96303081
JB
1850 }
1851
1852 if (info->bytes < bytes && rb_next(&info->offset_index)) {
1853 u64 end;
1854 next_info = rb_entry(rb_next(&info->offset_index),
1855 struct btrfs_free_space,
1856 offset_index);
1857
1858 if (next_info->bitmap)
34d52cb6
LZ
1859 end = next_info->offset +
1860 BITS_PER_BITMAP * ctl->unit - 1;
96303081
JB
1861 else
1862 end = next_info->offset + next_info->bytes;
1863
1864 if (next_info->bytes < bytes ||
1865 next_info->offset > offset || offset > end) {
1866 printk(KERN_CRIT "Found free space at %llu, size %llu,"
1867 " trying to use %llu\n",
1868 (unsigned long long)info->offset,
1869 (unsigned long long)info->bytes,
1870 (unsigned long long)bytes);
0f9dd46c
JB
1871 WARN_ON(1);
1872 ret = -EINVAL;
96303081 1873 goto out_lock;
0f9dd46c 1874 }
0f9dd46c 1875
96303081
JB
1876 info = next_info;
1877 }
1878
1879 if (info->bytes == bytes) {
34d52cb6 1880 unlink_free_space(ctl, info);
96303081
JB
1881 if (info->bitmap) {
1882 kfree(info->bitmap);
34d52cb6 1883 ctl->total_bitmaps--;
0f9dd46c 1884 }
dc89e982 1885 kmem_cache_free(btrfs_free_space_cachep, info);
1eae31e9 1886 ret = 0;
96303081
JB
1887 goto out_lock;
1888 }
0f9dd46c 1889
96303081 1890 if (!info->bitmap && info->offset == offset) {
34d52cb6 1891 unlink_free_space(ctl, info);
0f9dd46c
JB
1892 info->offset += bytes;
1893 info->bytes -= bytes;
1eae31e9
CM
1894 ret = link_free_space(ctl, info);
1895 WARN_ON(ret);
96303081
JB
1896 goto out_lock;
1897 }
0f9dd46c 1898
96303081
JB
1899 if (!info->bitmap && info->offset <= offset &&
1900 info->offset + info->bytes >= offset + bytes) {
9b49c9b9
CM
1901 u64 old_start = info->offset;
1902 /*
1903 * we're freeing space in the middle of the info,
1904 * this can happen during tree log replay
1905 *
1906 * first unlink the old info and then
1907 * insert it again after the hole we're creating
1908 */
34d52cb6 1909 unlink_free_space(ctl, info);
9b49c9b9
CM
1910 if (offset + bytes < info->offset + info->bytes) {
1911 u64 old_end = info->offset + info->bytes;
1912
1913 info->offset = offset + bytes;
1914 info->bytes = old_end - info->offset;
34d52cb6 1915 ret = link_free_space(ctl, info);
96303081
JB
1916 WARN_ON(ret);
1917 if (ret)
1918 goto out_lock;
9b49c9b9
CM
1919 } else {
1920 /* the hole we're creating ends at the end
1921 * of the info struct, just free the info
1922 */
dc89e982 1923 kmem_cache_free(btrfs_free_space_cachep, info);
9b49c9b9 1924 }
34d52cb6 1925 spin_unlock(&ctl->tree_lock);
96303081
JB
1926
1927 /* step two, insert a new info struct to cover
1928 * anything before the hole
9b49c9b9 1929 */
6226cb0a
JB
1930 ret = btrfs_add_free_space(block_group, old_start,
1931 offset - old_start);
96303081
JB
1932 WARN_ON(ret);
1933 goto out;
0f9dd46c 1934 }
96303081 1935
34d52cb6 1936 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
96303081
JB
1937 if (ret == -EAGAIN)
1938 goto again;
1939 BUG_ON(ret);
1940out_lock:
34d52cb6 1941 spin_unlock(&ctl->tree_lock);
0f9dd46c 1942out:
25179201
JB
1943 return ret;
1944}
1945
0f9dd46c
JB
1946void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1947 u64 bytes)
1948{
34d52cb6 1949 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1950 struct btrfs_free_space *info;
1951 struct rb_node *n;
1952 int count = 0;
1953
34d52cb6 1954 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c
JB
1955 info = rb_entry(n, struct btrfs_free_space, offset_index);
1956 if (info->bytes >= bytes)
1957 count++;
96303081 1958 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
21380931 1959 (unsigned long long)info->offset,
96303081
JB
1960 (unsigned long long)info->bytes,
1961 (info->bitmap) ? "yes" : "no");
0f9dd46c 1962 }
96303081
JB
1963 printk(KERN_INFO "block group has cluster?: %s\n",
1964 list_empty(&block_group->cluster_list) ? "no" : "yes");
0f9dd46c
JB
1965 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1966 "\n", count);
1967}
1968
34d52cb6 1969void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 1970{
34d52cb6 1971 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1972
34d52cb6
LZ
1973 spin_lock_init(&ctl->tree_lock);
1974 ctl->unit = block_group->sectorsize;
1975 ctl->start = block_group->key.objectid;
1976 ctl->private = block_group;
1977 ctl->op = &free_space_op;
0f9dd46c 1978
34d52cb6
LZ
1979 /*
1980 * we only want to have 32k of ram per block group for keeping
1981 * track of free space, and if we pass 1/2 of that we want to
1982 * start converting things over to using bitmaps
1983 */
1984 ctl->extents_thresh = ((1024 * 32) / 2) /
1985 sizeof(struct btrfs_free_space);
0f9dd46c
JB
1986}
1987
fa9c0d79
CM
1988/*
1989 * for a given cluster, put all of its extents back into the free
1990 * space cache. If the block group passed doesn't match the block group
1991 * pointed to by the cluster, someone else raced in and freed the
1992 * cluster already. In that case, we just return without changing anything
1993 */
1994static int
1995__btrfs_return_cluster_to_free_space(
1996 struct btrfs_block_group_cache *block_group,
1997 struct btrfs_free_cluster *cluster)
1998{
34d52cb6 1999 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2000 struct btrfs_free_space *entry;
2001 struct rb_node *node;
2002
2003 spin_lock(&cluster->lock);
2004 if (cluster->block_group != block_group)
2005 goto out;
2006
96303081 2007 cluster->block_group = NULL;
fa9c0d79 2008 cluster->window_start = 0;
96303081 2009 list_del_init(&cluster->block_group_list);
96303081 2010
fa9c0d79 2011 node = rb_first(&cluster->root);
96303081 2012 while (node) {
4e69b598
JB
2013 bool bitmap;
2014
fa9c0d79
CM
2015 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2016 node = rb_next(&entry->offset_index);
2017 rb_erase(&entry->offset_index, &cluster->root);
4e69b598
JB
2018
2019 bitmap = (entry->bitmap != NULL);
2020 if (!bitmap)
34d52cb6
LZ
2021 try_merge_free_space(ctl, entry, false);
2022 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2023 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2024 }
6bef4d31 2025 cluster->root = RB_ROOT;
96303081 2026
fa9c0d79
CM
2027out:
2028 spin_unlock(&cluster->lock);
96303081 2029 btrfs_put_block_group(block_group);
fa9c0d79
CM
2030 return 0;
2031}
2032
09655373 2033void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2034{
2035 struct btrfs_free_space *info;
2036 struct rb_node *node;
581bb050 2037
581bb050
LZ
2038 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2039 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2040 if (!info->bitmap) {
2041 unlink_free_space(ctl, info);
2042 kmem_cache_free(btrfs_free_space_cachep, info);
2043 } else {
2044 free_bitmap(ctl, info);
2045 }
581bb050
LZ
2046 if (need_resched()) {
2047 spin_unlock(&ctl->tree_lock);
2048 cond_resched();
2049 spin_lock(&ctl->tree_lock);
2050 }
2051 }
09655373
CM
2052}
2053
2054void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2055{
2056 spin_lock(&ctl->tree_lock);
2057 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2058 spin_unlock(&ctl->tree_lock);
2059}
2060
2061void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2062{
2063 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2064 struct btrfs_free_cluster *cluster;
96303081 2065 struct list_head *head;
0f9dd46c 2066
34d52cb6 2067 spin_lock(&ctl->tree_lock);
96303081
JB
2068 while ((head = block_group->cluster_list.next) !=
2069 &block_group->cluster_list) {
2070 cluster = list_entry(head, struct btrfs_free_cluster,
2071 block_group_list);
fa9c0d79
CM
2072
2073 WARN_ON(cluster->block_group != block_group);
2074 __btrfs_return_cluster_to_free_space(block_group, cluster);
96303081 2075 if (need_resched()) {
34d52cb6 2076 spin_unlock(&ctl->tree_lock);
96303081 2077 cond_resched();
34d52cb6 2078 spin_lock(&ctl->tree_lock);
96303081 2079 }
fa9c0d79 2080 }
09655373 2081 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2082 spin_unlock(&ctl->tree_lock);
fa9c0d79 2083
0f9dd46c
JB
2084}
2085
6226cb0a
JB
2086u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2087 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 2088{
34d52cb6 2089 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2090 struct btrfs_free_space *entry = NULL;
96303081 2091 u64 bytes_search = bytes + empty_size;
6226cb0a 2092 u64 ret = 0;
0f9dd46c 2093
34d52cb6
LZ
2094 spin_lock(&ctl->tree_lock);
2095 entry = find_free_space(ctl, &offset, &bytes_search);
6226cb0a 2096 if (!entry)
96303081
JB
2097 goto out;
2098
2099 ret = offset;
2100 if (entry->bitmap) {
34d52cb6 2101 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2102 if (!entry->bytes)
34d52cb6 2103 free_bitmap(ctl, entry);
96303081 2104 } else {
34d52cb6 2105 unlink_free_space(ctl, entry);
6226cb0a
JB
2106 entry->offset += bytes;
2107 entry->bytes -= bytes;
6226cb0a 2108 if (!entry->bytes)
dc89e982 2109 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2110 else
34d52cb6 2111 link_free_space(ctl, entry);
6226cb0a 2112 }
0f9dd46c 2113
96303081 2114out:
34d52cb6 2115 spin_unlock(&ctl->tree_lock);
817d52f8 2116
0f9dd46c
JB
2117 return ret;
2118}
fa9c0d79
CM
2119
2120/*
2121 * given a cluster, put all of its extents back into the free space
2122 * cache. If a block group is passed, this function will only free
2123 * a cluster that belongs to the passed block group.
2124 *
2125 * Otherwise, it'll get a reference on the block group pointed to by the
2126 * cluster and remove the cluster from it.
2127 */
2128int btrfs_return_cluster_to_free_space(
2129 struct btrfs_block_group_cache *block_group,
2130 struct btrfs_free_cluster *cluster)
2131{
34d52cb6 2132 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2133 int ret;
2134
2135 /* first, get a safe pointer to the block group */
2136 spin_lock(&cluster->lock);
2137 if (!block_group) {
2138 block_group = cluster->block_group;
2139 if (!block_group) {
2140 spin_unlock(&cluster->lock);
2141 return 0;
2142 }
2143 } else if (cluster->block_group != block_group) {
2144 /* someone else has already freed it don't redo their work */
2145 spin_unlock(&cluster->lock);
2146 return 0;
2147 }
2148 atomic_inc(&block_group->count);
2149 spin_unlock(&cluster->lock);
2150
34d52cb6
LZ
2151 ctl = block_group->free_space_ctl;
2152
fa9c0d79 2153 /* now return any extents the cluster had on it */
34d52cb6 2154 spin_lock(&ctl->tree_lock);
fa9c0d79 2155 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2156 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2157
2158 /* finally drop our ref */
2159 btrfs_put_block_group(block_group);
2160 return ret;
2161}
2162
96303081
JB
2163static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2164 struct btrfs_free_cluster *cluster,
4e69b598 2165 struct btrfs_free_space *entry,
96303081
JB
2166 u64 bytes, u64 min_start)
2167{
34d52cb6 2168 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2169 int err;
2170 u64 search_start = cluster->window_start;
2171 u64 search_bytes = bytes;
2172 u64 ret = 0;
2173
96303081
JB
2174 search_start = min_start;
2175 search_bytes = bytes;
2176
34d52cb6 2177 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
96303081 2178 if (err)
4e69b598 2179 return 0;
96303081
JB
2180
2181 ret = search_start;
bb3ac5a4 2182 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2183
2184 return ret;
2185}
2186
fa9c0d79
CM
2187/*
2188 * given a cluster, try to allocate 'bytes' from it, returns 0
2189 * if it couldn't find anything suitably large, or a logical disk offset
2190 * if things worked out
2191 */
2192u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2193 struct btrfs_free_cluster *cluster, u64 bytes,
2194 u64 min_start)
2195{
34d52cb6 2196 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2197 struct btrfs_free_space *entry = NULL;
2198 struct rb_node *node;
2199 u64 ret = 0;
2200
2201 spin_lock(&cluster->lock);
2202 if (bytes > cluster->max_size)
2203 goto out;
2204
2205 if (cluster->block_group != block_group)
2206 goto out;
2207
2208 node = rb_first(&cluster->root);
2209 if (!node)
2210 goto out;
2211
2212 entry = rb_entry(node, struct btrfs_free_space, offset_index);
fa9c0d79 2213 while(1) {
4e69b598
JB
2214 if (entry->bytes < bytes ||
2215 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2216 node = rb_next(&entry->offset_index);
2217 if (!node)
2218 break;
2219 entry = rb_entry(node, struct btrfs_free_space,
2220 offset_index);
2221 continue;
2222 }
fa9c0d79 2223
4e69b598
JB
2224 if (entry->bitmap) {
2225 ret = btrfs_alloc_from_bitmap(block_group,
2226 cluster, entry, bytes,
2227 min_start);
2228 if (ret == 0) {
4e69b598
JB
2229 node = rb_next(&entry->offset_index);
2230 if (!node)
2231 break;
2232 entry = rb_entry(node, struct btrfs_free_space,
2233 offset_index);
2234 continue;
2235 }
2236 } else {
4e69b598
JB
2237 ret = entry->offset;
2238
2239 entry->offset += bytes;
2240 entry->bytes -= bytes;
2241 }
fa9c0d79 2242
5e71b5d5 2243 if (entry->bytes == 0)
fa9c0d79 2244 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2245 break;
2246 }
2247out:
2248 spin_unlock(&cluster->lock);
96303081 2249
5e71b5d5
LZ
2250 if (!ret)
2251 return 0;
2252
34d52cb6 2253 spin_lock(&ctl->tree_lock);
5e71b5d5 2254
34d52cb6 2255 ctl->free_space -= bytes;
5e71b5d5 2256 if (entry->bytes == 0) {
34d52cb6 2257 ctl->free_extents--;
4e69b598
JB
2258 if (entry->bitmap) {
2259 kfree(entry->bitmap);
34d52cb6
LZ
2260 ctl->total_bitmaps--;
2261 ctl->op->recalc_thresholds(ctl);
4e69b598 2262 }
dc89e982 2263 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2264 }
2265
34d52cb6 2266 spin_unlock(&ctl->tree_lock);
5e71b5d5 2267
fa9c0d79
CM
2268 return ret;
2269}
2270
96303081
JB
2271static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2272 struct btrfs_free_space *entry,
2273 struct btrfs_free_cluster *cluster,
2274 u64 offset, u64 bytes, u64 min_bytes)
2275{
34d52cb6 2276 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2277 unsigned long next_zero;
2278 unsigned long i;
2279 unsigned long search_bits;
2280 unsigned long total_bits;
2281 unsigned long found_bits;
2282 unsigned long start = 0;
2283 unsigned long total_found = 0;
4e69b598 2284 int ret;
96303081
JB
2285 bool found = false;
2286
2287 i = offset_to_bit(entry->offset, block_group->sectorsize,
2288 max_t(u64, offset, entry->offset));
d0a365e8
JB
2289 search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2290 total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
96303081
JB
2291
2292again:
2293 found_bits = 0;
2294 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2295 i < BITS_PER_BITMAP;
2296 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2297 next_zero = find_next_zero_bit(entry->bitmap,
2298 BITS_PER_BITMAP, i);
2299 if (next_zero - i >= search_bits) {
2300 found_bits = next_zero - i;
2301 break;
2302 }
2303 i = next_zero;
2304 }
2305
2306 if (!found_bits)
4e69b598 2307 return -ENOSPC;
96303081
JB
2308
2309 if (!found) {
2310 start = i;
2311 found = true;
2312 }
2313
2314 total_found += found_bits;
2315
2316 if (cluster->max_size < found_bits * block_group->sectorsize)
2317 cluster->max_size = found_bits * block_group->sectorsize;
2318
2319 if (total_found < total_bits) {
2320 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2321 if (i - start > total_bits * 2) {
2322 total_found = 0;
2323 cluster->max_size = 0;
2324 found = false;
2325 }
2326 goto again;
2327 }
2328
2329 cluster->window_start = start * block_group->sectorsize +
2330 entry->offset;
34d52cb6 2331 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2332 ret = tree_insert_offset(&cluster->root, entry->offset,
2333 &entry->offset_index, 1);
2334 BUG_ON(ret);
96303081
JB
2335
2336 return 0;
2337}
2338
4e69b598
JB
2339/*
2340 * This searches the block group for just extents to fill the cluster with.
2341 */
3de85bb9
JB
2342static noinline int
2343setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2344 struct btrfs_free_cluster *cluster,
2345 struct list_head *bitmaps, u64 offset, u64 bytes,
2346 u64 min_bytes)
4e69b598 2347{
34d52cb6 2348 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2349 struct btrfs_free_space *first = NULL;
2350 struct btrfs_free_space *entry = NULL;
2351 struct btrfs_free_space *prev = NULL;
2352 struct btrfs_free_space *last;
2353 struct rb_node *node;
2354 u64 window_start;
2355 u64 window_free;
2356 u64 max_extent;
2357 u64 max_gap = 128 * 1024;
2358
34d52cb6 2359 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2360 if (!entry)
2361 return -ENOSPC;
2362
2363 /*
2364 * We don't want bitmaps, so just move along until we find a normal
2365 * extent entry.
2366 */
2367 while (entry->bitmap) {
86d4a77b
JB
2368 if (list_empty(&entry->list))
2369 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2370 node = rb_next(&entry->offset_index);
2371 if (!node)
2372 return -ENOSPC;
2373 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2374 }
2375
2376 window_start = entry->offset;
2377 window_free = entry->bytes;
2378 max_extent = entry->bytes;
2379 first = entry;
2380 last = entry;
2381 prev = entry;
2382
2383 while (window_free <= min_bytes) {
2384 node = rb_next(&entry->offset_index);
2385 if (!node)
2386 return -ENOSPC;
2387 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2388
86d4a77b
JB
2389 if (entry->bitmap) {
2390 if (list_empty(&entry->list))
2391 list_add_tail(&entry->list, bitmaps);
4e69b598 2392 continue;
86d4a77b
JB
2393 }
2394
4e69b598
JB
2395 /*
2396 * we haven't filled the empty size and the window is
2397 * very large. reset and try again
2398 */
2399 if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2400 entry->offset - window_start > (min_bytes * 2)) {
2401 first = entry;
2402 window_start = entry->offset;
2403 window_free = entry->bytes;
2404 last = entry;
2405 max_extent = entry->bytes;
2406 } else {
2407 last = entry;
2408 window_free += entry->bytes;
2409 if (entry->bytes > max_extent)
2410 max_extent = entry->bytes;
2411 }
2412 prev = entry;
2413 }
2414
2415 cluster->window_start = first->offset;
2416
2417 node = &first->offset_index;
2418
2419 /*
2420 * now we've found our entries, pull them out of the free space
2421 * cache and put them into the cluster rbtree
2422 */
2423 do {
2424 int ret;
2425
2426 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2427 node = rb_next(&entry->offset_index);
2428 if (entry->bitmap)
2429 continue;
2430
34d52cb6 2431 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2432 ret = tree_insert_offset(&cluster->root, entry->offset,
2433 &entry->offset_index, 0);
2434 BUG_ON(ret);
2435 } while (node && entry != last);
2436
2437 cluster->max_size = max_extent;
2438
2439 return 0;
2440}
2441
2442/*
2443 * This specifically looks for bitmaps that may work in the cluster, we assume
2444 * that we have already failed to find extents that will work.
2445 */
3de85bb9
JB
2446static noinline int
2447setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2448 struct btrfs_free_cluster *cluster,
2449 struct list_head *bitmaps, u64 offset, u64 bytes,
2450 u64 min_bytes)
4e69b598 2451{
34d52cb6 2452 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598 2453 struct btrfs_free_space *entry;
4e69b598 2454 int ret = -ENOSPC;
0f0fbf1d 2455 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 2456
34d52cb6 2457 if (ctl->total_bitmaps == 0)
4e69b598
JB
2458 return -ENOSPC;
2459
0f0fbf1d
LZ
2460 /*
2461 * The bitmap that covers offset won't be in the list unless offset
2462 * is just its start offset.
2463 */
2464 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2465 if (entry->offset != bitmap_offset) {
2466 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2467 if (entry && list_empty(&entry->list))
2468 list_add(&entry->list, bitmaps);
2469 }
2470
86d4a77b
JB
2471 list_for_each_entry(entry, bitmaps, list) {
2472 if (entry->bytes < min_bytes)
2473 continue;
2474 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2475 bytes, min_bytes);
2476 if (!ret)
2477 return 0;
2478 }
2479
2480 /*
52621cb6
LZ
2481 * The bitmaps list has all the bitmaps that record free space
2482 * starting after offset, so no more search is required.
86d4a77b 2483 */
52621cb6 2484 return -ENOSPC;
4e69b598
JB
2485}
2486
fa9c0d79
CM
2487/*
2488 * here we try to find a cluster of blocks in a block group. The goal
2489 * is to find at least bytes free and up to empty_size + bytes free.
2490 * We might not find them all in one contiguous area.
2491 *
2492 * returns zero and sets up cluster if things worked out, otherwise
2493 * it returns -enospc
2494 */
2495int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
451d7585 2496 struct btrfs_root *root,
fa9c0d79
CM
2497 struct btrfs_block_group_cache *block_group,
2498 struct btrfs_free_cluster *cluster,
2499 u64 offset, u64 bytes, u64 empty_size)
2500{
34d52cb6 2501 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 2502 struct btrfs_free_space *entry, *tmp;
52621cb6 2503 LIST_HEAD(bitmaps);
fa9c0d79 2504 u64 min_bytes;
fa9c0d79
CM
2505 int ret;
2506
2507 /* for metadata, allow allocates with more holes */
451d7585
CM
2508 if (btrfs_test_opt(root, SSD_SPREAD)) {
2509 min_bytes = bytes + empty_size;
2510 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
fa9c0d79
CM
2511 /*
2512 * we want to do larger allocations when we are
2513 * flushing out the delayed refs, it helps prevent
2514 * making more work as we go along.
2515 */
2516 if (trans->transaction->delayed_refs.flushing)
2517 min_bytes = max(bytes, (bytes + empty_size) >> 1);
2518 else
2519 min_bytes = max(bytes, (bytes + empty_size) >> 4);
2520 } else
2521 min_bytes = max(bytes, (bytes + empty_size) >> 2);
2522
34d52cb6 2523 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
2524
2525 /*
2526 * If we know we don't have enough space to make a cluster don't even
2527 * bother doing all the work to try and find one.
2528 */
34d52cb6
LZ
2529 if (ctl->free_space < min_bytes) {
2530 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
2531 return -ENOSPC;
2532 }
2533
fa9c0d79
CM
2534 spin_lock(&cluster->lock);
2535
2536 /* someone already found a cluster, hooray */
2537 if (cluster->block_group) {
2538 ret = 0;
2539 goto out;
2540 }
fa9c0d79 2541
86d4a77b
JB
2542 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2543 bytes, min_bytes);
4e69b598 2544 if (ret)
86d4a77b
JB
2545 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2546 offset, bytes, min_bytes);
2547
2548 /* Clear our temporary list */
2549 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2550 list_del_init(&entry->list);
fa9c0d79 2551
4e69b598
JB
2552 if (!ret) {
2553 atomic_inc(&block_group->count);
2554 list_add_tail(&cluster->block_group_list,
2555 &block_group->cluster_list);
2556 cluster->block_group = block_group;
fa9c0d79 2557 }
fa9c0d79
CM
2558out:
2559 spin_unlock(&cluster->lock);
34d52cb6 2560 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2561
2562 return ret;
2563}
2564
2565/*
2566 * simple code to zero out a cluster
2567 */
2568void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2569{
2570 spin_lock_init(&cluster->lock);
2571 spin_lock_init(&cluster->refill_lock);
6bef4d31 2572 cluster->root = RB_ROOT;
fa9c0d79
CM
2573 cluster->max_size = 0;
2574 INIT_LIST_HEAD(&cluster->block_group_list);
2575 cluster->block_group = NULL;
2576}
2577
f7039b1d
LD
2578int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2579 u64 *trimmed, u64 start, u64 end, u64 minlen)
2580{
34d52cb6 2581 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
f7039b1d
LD
2582 struct btrfs_free_space *entry = NULL;
2583 struct btrfs_fs_info *fs_info = block_group->fs_info;
2584 u64 bytes = 0;
2585 u64 actually_trimmed;
2586 int ret = 0;
2587
2588 *trimmed = 0;
2589
2590 while (start < end) {
34d52cb6 2591 spin_lock(&ctl->tree_lock);
f7039b1d 2592
34d52cb6
LZ
2593 if (ctl->free_space < minlen) {
2594 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2595 break;
2596 }
2597
34d52cb6 2598 entry = tree_search_offset(ctl, start, 0, 1);
f7039b1d 2599 if (!entry)
34d52cb6
LZ
2600 entry = tree_search_offset(ctl,
2601 offset_to_bitmap(ctl, start),
f7039b1d
LD
2602 1, 1);
2603
2604 if (!entry || entry->offset >= end) {
34d52cb6 2605 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2606 break;
2607 }
2608
2609 if (entry->bitmap) {
34d52cb6 2610 ret = search_bitmap(ctl, entry, &start, &bytes);
f7039b1d
LD
2611 if (!ret) {
2612 if (start >= end) {
34d52cb6 2613 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2614 break;
2615 }
2616 bytes = min(bytes, end - start);
34d52cb6 2617 bitmap_clear_bits(ctl, entry, start, bytes);
f7039b1d 2618 if (entry->bytes == 0)
34d52cb6 2619 free_bitmap(ctl, entry);
f7039b1d
LD
2620 } else {
2621 start = entry->offset + BITS_PER_BITMAP *
2622 block_group->sectorsize;
34d52cb6 2623 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2624 ret = 0;
2625 continue;
2626 }
2627 } else {
2628 start = entry->offset;
2629 bytes = min(entry->bytes, end - start);
34d52cb6 2630 unlink_free_space(ctl, entry);
f789b684 2631 kmem_cache_free(btrfs_free_space_cachep, entry);
f7039b1d
LD
2632 }
2633
34d52cb6 2634 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2635
2636 if (bytes >= minlen) {
fb25e914
JB
2637 struct btrfs_space_info *space_info;
2638 int update = 0;
2639
2640 space_info = block_group->space_info;
2641 spin_lock(&space_info->lock);
2642 spin_lock(&block_group->lock);
2643 if (!block_group->ro) {
2644 block_group->reserved += bytes;
2645 space_info->bytes_reserved += bytes;
2646 update = 1;
2647 }
2648 spin_unlock(&block_group->lock);
2649 spin_unlock(&space_info->lock);
f7039b1d
LD
2650
2651 ret = btrfs_error_discard_extent(fs_info->extent_root,
2652 start,
2653 bytes,
2654 &actually_trimmed);
2655
34d52cb6 2656 btrfs_add_free_space(block_group, start, bytes);
fb25e914
JB
2657 if (update) {
2658 spin_lock(&space_info->lock);
2659 spin_lock(&block_group->lock);
2660 if (block_group->ro)
2661 space_info->bytes_readonly += bytes;
2662 block_group->reserved -= bytes;
2663 space_info->bytes_reserved -= bytes;
2664 spin_unlock(&space_info->lock);
2665 spin_unlock(&block_group->lock);
2666 }
f7039b1d
LD
2667
2668 if (ret)
2669 break;
2670 *trimmed += actually_trimmed;
2671 }
2672 start += bytes;
2673 bytes = 0;
2674
2675 if (fatal_signal_pending(current)) {
2676 ret = -ERESTARTSYS;
2677 break;
2678 }
2679
2680 cond_resched();
2681 }
2682
2683 return ret;
2684}
581bb050
LZ
2685
2686/*
2687 * Find the left-most item in the cache tree, and then return the
2688 * smallest inode number in the item.
2689 *
2690 * Note: the returned inode number may not be the smallest one in
2691 * the tree, if the left-most item is a bitmap.
2692 */
2693u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2694{
2695 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2696 struct btrfs_free_space *entry = NULL;
2697 u64 ino = 0;
2698
2699 spin_lock(&ctl->tree_lock);
2700
2701 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2702 goto out;
2703
2704 entry = rb_entry(rb_first(&ctl->free_space_offset),
2705 struct btrfs_free_space, offset_index);
2706
2707 if (!entry->bitmap) {
2708 ino = entry->offset;
2709
2710 unlink_free_space(ctl, entry);
2711 entry->offset++;
2712 entry->bytes--;
2713 if (!entry->bytes)
2714 kmem_cache_free(btrfs_free_space_cachep, entry);
2715 else
2716 link_free_space(ctl, entry);
2717 } else {
2718 u64 offset = 0;
2719 u64 count = 1;
2720 int ret;
2721
2722 ret = search_bitmap(ctl, entry, &offset, &count);
2723 BUG_ON(ret);
2724
2725 ino = offset;
2726 bitmap_clear_bits(ctl, entry, offset, 1);
2727 if (entry->bytes == 0)
2728 free_bitmap(ctl, entry);
2729 }
2730out:
2731 spin_unlock(&ctl->tree_lock);
2732
2733 return ino;
2734}
82d5902d
LZ
2735
2736struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2737 struct btrfs_path *path)
2738{
2739 struct inode *inode = NULL;
2740
2741 spin_lock(&root->cache_lock);
2742 if (root->cache_inode)
2743 inode = igrab(root->cache_inode);
2744 spin_unlock(&root->cache_lock);
2745 if (inode)
2746 return inode;
2747
2748 inode = __lookup_free_space_inode(root, path, 0);
2749 if (IS_ERR(inode))
2750 return inode;
2751
2752 spin_lock(&root->cache_lock);
7841cb28 2753 if (!btrfs_fs_closing(root->fs_info))
82d5902d
LZ
2754 root->cache_inode = igrab(inode);
2755 spin_unlock(&root->cache_lock);
2756
2757 return inode;
2758}
2759
2760int create_free_ino_inode(struct btrfs_root *root,
2761 struct btrfs_trans_handle *trans,
2762 struct btrfs_path *path)
2763{
2764 return __create_free_space_inode(root, trans, path,
2765 BTRFS_FREE_INO_OBJECTID, 0);
2766}
2767
2768int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2769{
2770 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2771 struct btrfs_path *path;
2772 struct inode *inode;
2773 int ret = 0;
2774 u64 root_gen = btrfs_root_generation(&root->root_item);
2775
4b9465cb
CM
2776 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2777 return 0;
2778
82d5902d
LZ
2779 /*
2780 * If we're unmounting then just return, since this does a search on the
2781 * normal root and not the commit root and we could deadlock.
2782 */
7841cb28 2783 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
2784 return 0;
2785
2786 path = btrfs_alloc_path();
2787 if (!path)
2788 return 0;
2789
2790 inode = lookup_free_ino_inode(root, path);
2791 if (IS_ERR(inode))
2792 goto out;
2793
2794 if (root_gen != BTRFS_I(inode)->generation)
2795 goto out_put;
2796
2797 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2798
2799 if (ret < 0)
2800 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2801 "root %llu\n", root->root_key.objectid);
2802out_put:
2803 iput(inode);
2804out:
2805 btrfs_free_path(path);
2806 return ret;
2807}
2808
2809int btrfs_write_out_ino_cache(struct btrfs_root *root,
2810 struct btrfs_trans_handle *trans,
2811 struct btrfs_path *path)
2812{
2813 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2814 struct inode *inode;
2815 int ret;
2816
4b9465cb
CM
2817 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2818 return 0;
2819
82d5902d
LZ
2820 inode = lookup_free_ino_inode(root, path);
2821 if (IS_ERR(inode))
2822 return 0;
2823
2824 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
c09544e0
JB
2825 if (ret) {
2826 btrfs_delalloc_release_metadata(inode, inode->i_size);
2827#ifdef DEBUG
82d5902d
LZ
2828 printk(KERN_ERR "btrfs: failed to write free ino cache "
2829 "for root %llu\n", root->root_key.objectid);
c09544e0
JB
2830#endif
2831 }
82d5902d
LZ
2832
2833 iput(inode);
2834 return ret;
2835}