Merge branches 'audit', 'delay', 'fixes', 'misc' and 'sta2x11' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
143bede5 40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
41 struct btrfs_path *path, int level, int slot,
42 int tree_mod_log);
f230475e
JS
43static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
47 u64 time_seq);
48struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
50 u64 time_seq);
d97e63b6 51
df24a2b9 52struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 53{
df24a2b9 54 struct btrfs_path *path;
e00f7308 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 56 return path;
2c90e5d6
CM
57}
58
b4ce94de
CM
59/*
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
62 */
63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64{
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
74 }
75}
76
77/*
78 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
79 *
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
83 * for held
b4ce94de 84 */
4008c04a 85noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 86 struct extent_buffer *held, int held_rw)
b4ce94de
CM
87{
88 int i;
4008c04a
CM
89
90#ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
95 * the path blocking.
96 */
bd681513
CM
97 if (held) {
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
103 }
4008c04a
CM
104 btrfs_set_path_blocking(p);
105#endif
106
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
114 }
b4ce94de 115 }
4008c04a
CM
116
117#ifdef CONFIG_DEBUG_LOCK_ALLOC
118 if (held)
bd681513 119 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 120#endif
b4ce94de
CM
121}
122
d352ac68 123/* this also releases the path */
df24a2b9 124void btrfs_free_path(struct btrfs_path *p)
be0e5c09 125{
ff175d57
JJ
126 if (!p)
127 return;
b3b4aa74 128 btrfs_release_path(p);
df24a2b9 129 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
130}
131
d352ac68
CM
132/*
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
135 *
136 * It is safe to call this on paths that no locks or extent buffers held.
137 */
b3b4aa74 138noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
139{
140 int i;
a2135011 141
234b63a0 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 143 p->slots[i] = 0;
eb60ceac 144 if (!p->nodes[i])
925baedd
CM
145 continue;
146 if (p->locks[i]) {
bd681513 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
148 p->locks[i] = 0;
149 }
5f39d397 150 free_extent_buffer(p->nodes[i]);
3f157a2f 151 p->nodes[i] = NULL;
eb60ceac
CM
152 }
153}
154
d352ac68
CM
155/*
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
159 * looping required.
160 *
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
164 */
925baedd
CM
165struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166{
167 struct extent_buffer *eb;
240f62c8 168
3083ee2e
JB
169 while (1) {
170 rcu_read_lock();
171 eb = rcu_dereference(root->node);
172
173 /*
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
178 */
179 if (atomic_inc_not_zero(&eb->refs)) {
180 rcu_read_unlock();
181 break;
182 }
183 rcu_read_unlock();
184 synchronize_rcu();
185 }
925baedd
CM
186 return eb;
187}
188
d352ac68
CM
189/* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
192 */
925baedd
CM
193struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194{
195 struct extent_buffer *eb;
196
d397712b 197 while (1) {
925baedd
CM
198 eb = btrfs_root_node(root);
199 btrfs_tree_lock(eb);
240f62c8 200 if (eb == root->node)
925baedd 201 break;
925baedd
CM
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
204 }
205 return eb;
206}
207
bd681513
CM
208/* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
211 */
212struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213{
214 struct extent_buffer *eb;
215
216 while (1) {
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
220 break;
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
223 }
224 return eb;
225}
226
d352ac68
CM
227/* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
230 */
0b86a832
CM
231static void add_root_to_dirty_list(struct btrfs_root *root)
232{
e5846fc6 233 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
237 }
e5846fc6 238 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
239}
240
d352ac68
CM
241/*
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
245 */
be20aa9d
CM
246int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
250{
251 struct extent_buffer *cow;
be20aa9d
CM
252 int ret = 0;
253 int level;
5d4f98a2 254 struct btrfs_disk_key disk_key;
be20aa9d
CM
255
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260 level = btrfs_header_level(buf);
5d4f98a2
YZ
261 if (level == 0)
262 btrfs_item_key(buf, &disk_key, 0);
263 else
264 btrfs_node_key(buf, &disk_key, 0);
31840ae1 265
5d4f98a2
YZ
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
5581a51a 268 buf->start, 0);
5d4f98a2 269 if (IS_ERR(cow))
be20aa9d
CM
270 return PTR_ERR(cow);
271
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 else
281 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 282
2b82032c
YZ
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
285 BTRFS_FSID_SIZE);
286
be20aa9d 287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 290 else
66d7e7f0 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 292
be20aa9d
CM
293 if (ret)
294 return ret;
295
296 btrfs_mark_buffer_dirty(cow);
297 *cow_ret = cow;
298 return 0;
299}
300
bd989ba3
JS
301enum mod_log_op {
302 MOD_LOG_KEY_REPLACE,
303 MOD_LOG_KEY_ADD,
304 MOD_LOG_KEY_REMOVE,
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 MOD_LOG_MOVE_KEYS,
308 MOD_LOG_ROOT_REPLACE,
309};
310
311struct tree_mod_move {
312 int dst_slot;
313 int nr_items;
314};
315
316struct tree_mod_root {
317 u64 logical;
318 u8 level;
319};
320
321struct tree_mod_elem {
322 struct rb_node node;
323 u64 index; /* shifted logical */
324 struct seq_list elem;
325 enum mod_log_op op;
326
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 int slot;
329
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 u64 generation;
332
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
335 u64 blockptr;
336
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
339
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
342};
343
344static inline void
345__get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346{
347 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349}
350
351void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
353{
354 elem->flags = 1;
355 spin_lock(&fs_info->tree_mod_seq_lock);
356 __get_tree_mod_seq(fs_info, elem);
357 spin_unlock(&fs_info->tree_mod_seq_lock);
358}
359
360void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361 struct seq_list *elem)
362{
363 struct rb_root *tm_root;
364 struct rb_node *node;
365 struct rb_node *next;
366 struct seq_list *cur_elem;
367 struct tree_mod_elem *tm;
368 u64 min_seq = (u64)-1;
369 u64 seq_putting = elem->seq;
370
371 if (!seq_putting)
372 return;
373
374 BUG_ON(!(elem->flags & 1));
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 list_del(&elem->list);
377
378 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380 if (seq_putting > cur_elem->seq) {
381 /*
382 * blocker with lower sequence number exists, we
383 * cannot remove anything from the log
384 */
385 goto out;
386 }
387 min_seq = cur_elem->seq;
388 }
389 }
390
391 /*
392 * anything that's lower than the lowest existing (read: blocked)
393 * sequence number can be removed from the tree.
394 */
395 write_lock(&fs_info->tree_mod_log_lock);
396 tm_root = &fs_info->tree_mod_log;
397 for (node = rb_first(tm_root); node; node = next) {
398 next = rb_next(node);
399 tm = container_of(node, struct tree_mod_elem, node);
400 if (tm->elem.seq > min_seq)
401 continue;
402 rb_erase(node, tm_root);
403 list_del(&tm->elem.list);
404 kfree(tm);
405 }
406 write_unlock(&fs_info->tree_mod_log_lock);
407out:
408 spin_unlock(&fs_info->tree_mod_seq_lock);
409}
410
411/*
412 * key order of the log:
413 * index -> sequence
414 *
415 * the index is the shifted logical of the *new* root node for root replace
416 * operations, or the shifted logical of the affected block for all other
417 * operations.
418 */
419static noinline int
420__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421{
422 struct rb_root *tm_root;
423 struct rb_node **new;
424 struct rb_node *parent = NULL;
425 struct tree_mod_elem *cur;
426 int ret = 0;
427
428 BUG_ON(!tm || !tm->elem.seq);
429
430 write_lock(&fs_info->tree_mod_log_lock);
431 tm_root = &fs_info->tree_mod_log;
432 new = &tm_root->rb_node;
433 while (*new) {
434 cur = container_of(*new, struct tree_mod_elem, node);
435 parent = *new;
436 if (cur->index < tm->index)
437 new = &((*new)->rb_left);
438 else if (cur->index > tm->index)
439 new = &((*new)->rb_right);
440 else if (cur->elem.seq < tm->elem.seq)
441 new = &((*new)->rb_left);
442 else if (cur->elem.seq > tm->elem.seq)
443 new = &((*new)->rb_right);
444 else {
445 kfree(tm);
446 ret = -EEXIST;
447 goto unlock;
448 }
449 }
450
451 rb_link_node(&tm->node, parent, new);
452 rb_insert_color(&tm->node, tm_root);
453unlock:
454 write_unlock(&fs_info->tree_mod_log_lock);
455 return ret;
456}
457
e9b7fd4d
JS
458static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459 struct extent_buffer *eb) {
460 smp_mb();
461 if (list_empty(&(fs_info)->tree_mod_seq_list))
462 return 1;
463 if (!eb)
464 return 0;
465 if (btrfs_header_level(eb) == 0)
466 return 1;
467 return 0;
468}
469
3310c36e
JS
470/*
471 * This allocates memory and gets a tree modification sequence number when
472 * needed.
473 *
474 * Returns 0 when no sequence number is needed, < 0 on error.
475 * Returns 1 when a sequence number was added. In this case,
476 * fs_info->tree_mod_seq_lock was acquired and must be released by the caller
477 * after inserting into the rb tree.
478 */
926dd8a6
JS
479static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
480 struct tree_mod_elem **tm_ret)
bd989ba3
JS
481{
482 struct tree_mod_elem *tm;
926dd8a6 483 int seq;
bd989ba3 484
e9b7fd4d 485 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
486 return 0;
487
488 tm = *tm_ret = kzalloc(sizeof(*tm), flags);
489 if (!tm)
490 return -ENOMEM;
491
bd989ba3 492 tm->elem.flags = 0;
926dd8a6
JS
493 spin_lock(&fs_info->tree_mod_seq_lock);
494 if (list_empty(&fs_info->tree_mod_seq_list)) {
495 /*
496 * someone emptied the list while we were waiting for the lock.
497 * we must not add to the list, because no blocker exists. items
498 * are removed from the list only when the existing blocker is
499 * removed from the list.
500 */
501 kfree(tm);
502 seq = 0;
3310c36e 503 spin_unlock(&fs_info->tree_mod_seq_lock);
926dd8a6
JS
504 } else {
505 __get_tree_mod_seq(fs_info, &tm->elem);
506 seq = tm->elem.seq;
507 }
bd989ba3
JS
508
509 return seq;
510}
511
512static noinline int
513tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
514 struct extent_buffer *eb, int slot,
515 enum mod_log_op op, gfp_t flags)
516{
517 struct tree_mod_elem *tm;
518 int ret;
519
520 ret = tree_mod_alloc(fs_info, flags, &tm);
521 if (ret <= 0)
522 return ret;
523
524 tm->index = eb->start >> PAGE_CACHE_SHIFT;
525 if (op != MOD_LOG_KEY_ADD) {
526 btrfs_node_key(eb, &tm->key, slot);
527 tm->blockptr = btrfs_node_blockptr(eb, slot);
528 }
529 tm->op = op;
530 tm->slot = slot;
531 tm->generation = btrfs_node_ptr_generation(eb, slot);
532
3310c36e
JS
533 ret = __tree_mod_log_insert(fs_info, tm);
534 spin_unlock(&fs_info->tree_mod_seq_lock);
535 return ret;
bd989ba3
JS
536}
537
538static noinline int
539tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
540 int slot, enum mod_log_op op)
541{
542 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
543}
544
545static noinline int
546tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
547 struct extent_buffer *eb, int dst_slot, int src_slot,
548 int nr_items, gfp_t flags)
549{
550 struct tree_mod_elem *tm;
551 int ret;
552 int i;
553
f395694c
JS
554 if (tree_mod_dont_log(fs_info, eb))
555 return 0;
bd989ba3
JS
556
557 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
558 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
559 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
560 BUG_ON(ret < 0);
561 }
562
f395694c
JS
563 ret = tree_mod_alloc(fs_info, flags, &tm);
564 if (ret <= 0)
565 return ret;
566
bd989ba3
JS
567 tm->index = eb->start >> PAGE_CACHE_SHIFT;
568 tm->slot = src_slot;
569 tm->move.dst_slot = dst_slot;
570 tm->move.nr_items = nr_items;
571 tm->op = MOD_LOG_MOVE_KEYS;
572
3310c36e
JS
573 ret = __tree_mod_log_insert(fs_info, tm);
574 spin_unlock(&fs_info->tree_mod_seq_lock);
575 return ret;
bd989ba3
JS
576}
577
578static noinline int
579tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *old_root,
581 struct extent_buffer *new_root, gfp_t flags)
582{
583 struct tree_mod_elem *tm;
584 int ret;
585
586 ret = tree_mod_alloc(fs_info, flags, &tm);
587 if (ret <= 0)
588 return ret;
589
590 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
591 tm->old_root.logical = old_root->start;
592 tm->old_root.level = btrfs_header_level(old_root);
593 tm->generation = btrfs_header_generation(old_root);
594 tm->op = MOD_LOG_ROOT_REPLACE;
595
3310c36e
JS
596 ret = __tree_mod_log_insert(fs_info, tm);
597 spin_unlock(&fs_info->tree_mod_seq_lock);
598 return ret;
bd989ba3
JS
599}
600
601static struct tree_mod_elem *
602__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
603 int smallest)
604{
605 struct rb_root *tm_root;
606 struct rb_node *node;
607 struct tree_mod_elem *cur = NULL;
608 struct tree_mod_elem *found = NULL;
609 u64 index = start >> PAGE_CACHE_SHIFT;
610
611 read_lock(&fs_info->tree_mod_log_lock);
612 tm_root = &fs_info->tree_mod_log;
613 node = tm_root->rb_node;
614 while (node) {
615 cur = container_of(node, struct tree_mod_elem, node);
616 if (cur->index < index) {
617 node = node->rb_left;
618 } else if (cur->index > index) {
619 node = node->rb_right;
620 } else if (cur->elem.seq < min_seq) {
621 node = node->rb_left;
622 } else if (!smallest) {
623 /* we want the node with the highest seq */
624 if (found)
625 BUG_ON(found->elem.seq > cur->elem.seq);
626 found = cur;
627 node = node->rb_left;
628 } else if (cur->elem.seq > min_seq) {
629 /* we want the node with the smallest seq */
630 if (found)
631 BUG_ON(found->elem.seq < cur->elem.seq);
632 found = cur;
633 node = node->rb_right;
634 } else {
635 found = cur;
636 break;
637 }
638 }
639 read_unlock(&fs_info->tree_mod_log_lock);
640
641 return found;
642}
643
644/*
645 * this returns the element from the log with the smallest time sequence
646 * value that's in the log (the oldest log item). any element with a time
647 * sequence lower than min_seq will be ignored.
648 */
649static struct tree_mod_elem *
650tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
651 u64 min_seq)
652{
653 return __tree_mod_log_search(fs_info, start, min_seq, 1);
654}
655
656/*
657 * this returns the element from the log with the largest time sequence
658 * value that's in the log (the most recent log item). any element with
659 * a time sequence lower than min_seq will be ignored.
660 */
661static struct tree_mod_elem *
662tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
663{
664 return __tree_mod_log_search(fs_info, start, min_seq, 0);
665}
666
667static inline void
668tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
669 struct extent_buffer *src, unsigned long dst_offset,
670 unsigned long src_offset, int nr_items)
671{
672 int ret;
673 int i;
674
e9b7fd4d 675 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
676 return;
677
678 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
679 return;
680
681 /* speed this up by single seq for all operations? */
682 for (i = 0; i < nr_items; i++) {
683 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
684 MOD_LOG_KEY_REMOVE);
685 BUG_ON(ret < 0);
686 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
687 MOD_LOG_KEY_ADD);
688 BUG_ON(ret < 0);
689 }
690}
691
692static inline void
693tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
694 int dst_offset, int src_offset, int nr_items)
695{
696 int ret;
697 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
698 nr_items, GFP_NOFS);
699 BUG_ON(ret < 0);
700}
701
702static inline void
703tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
704 struct extent_buffer *eb,
705 struct btrfs_disk_key *disk_key, int slot, int atomic)
706{
707 int ret;
708
709 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
710 MOD_LOG_KEY_REPLACE,
711 atomic ? GFP_ATOMIC : GFP_NOFS);
712 BUG_ON(ret < 0);
713}
714
715static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
716 struct extent_buffer *eb)
717{
718 int i;
719 int ret;
720 u32 nritems;
721
e9b7fd4d 722 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
723 return;
724
725 nritems = btrfs_header_nritems(eb);
726 for (i = nritems - 1; i >= 0; i--) {
727 ret = tree_mod_log_insert_key(fs_info, eb, i,
728 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
729 BUG_ON(ret < 0);
730 }
731}
732
733static inline void
734tree_mod_log_set_root_pointer(struct btrfs_root *root,
735 struct extent_buffer *new_root_node)
736{
737 int ret;
738 tree_mod_log_free_eb(root->fs_info, root->node);
739 ret = tree_mod_log_insert_root(root->fs_info, root->node,
740 new_root_node, GFP_NOFS);
741 BUG_ON(ret < 0);
742}
743
5d4f98a2
YZ
744/*
745 * check if the tree block can be shared by multiple trees
746 */
747int btrfs_block_can_be_shared(struct btrfs_root *root,
748 struct extent_buffer *buf)
749{
750 /*
751 * Tree blocks not in refernece counted trees and tree roots
752 * are never shared. If a block was allocated after the last
753 * snapshot and the block was not allocated by tree relocation,
754 * we know the block is not shared.
755 */
756 if (root->ref_cows &&
757 buf != root->node && buf != root->commit_root &&
758 (btrfs_header_generation(buf) <=
759 btrfs_root_last_snapshot(&root->root_item) ||
760 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
761 return 1;
762#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
763 if (root->ref_cows &&
764 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
765 return 1;
766#endif
767 return 0;
768}
769
770static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
771 struct btrfs_root *root,
772 struct extent_buffer *buf,
f0486c68
YZ
773 struct extent_buffer *cow,
774 int *last_ref)
5d4f98a2
YZ
775{
776 u64 refs;
777 u64 owner;
778 u64 flags;
779 u64 new_flags = 0;
780 int ret;
781
782 /*
783 * Backrefs update rules:
784 *
785 * Always use full backrefs for extent pointers in tree block
786 * allocated by tree relocation.
787 *
788 * If a shared tree block is no longer referenced by its owner
789 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
790 * use full backrefs for extent pointers in tree block.
791 *
792 * If a tree block is been relocating
793 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
794 * use full backrefs for extent pointers in tree block.
795 * The reason for this is some operations (such as drop tree)
796 * are only allowed for blocks use full backrefs.
797 */
798
799 if (btrfs_block_can_be_shared(root, buf)) {
800 ret = btrfs_lookup_extent_info(trans, root, buf->start,
801 buf->len, &refs, &flags);
be1a5564
MF
802 if (ret)
803 return ret;
e5df9573
MF
804 if (refs == 0) {
805 ret = -EROFS;
806 btrfs_std_error(root->fs_info, ret);
807 return ret;
808 }
5d4f98a2
YZ
809 } else {
810 refs = 1;
811 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
812 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
813 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
814 else
815 flags = 0;
816 }
817
818 owner = btrfs_header_owner(buf);
819 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
820 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
821
822 if (refs > 1) {
823 if ((owner == root->root_key.objectid ||
824 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
825 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 826 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 827 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
828
829 if (root->root_key.objectid ==
830 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 831 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 832 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 833 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 834 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
835 }
836 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
837 } else {
838
839 if (root->root_key.objectid ==
840 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 841 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 842 else
66d7e7f0 843 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 844 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
845 }
846 if (new_flags != 0) {
847 ret = btrfs_set_disk_extent_flags(trans, root,
848 buf->start,
849 buf->len,
850 new_flags, 0);
be1a5564
MF
851 if (ret)
852 return ret;
5d4f98a2
YZ
853 }
854 } else {
855 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
856 if (root->root_key.objectid ==
857 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 858 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 859 else
66d7e7f0 860 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 861 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 862 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 863 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 864 }
f230475e
JS
865 /*
866 * don't log freeing in case we're freeing the root node, this
867 * is done by tree_mod_log_set_root_pointer later
868 */
869 if (buf != root->node && btrfs_header_level(buf) != 0)
870 tree_mod_log_free_eb(root->fs_info, buf);
5d4f98a2 871 clean_tree_block(trans, root, buf);
f0486c68 872 *last_ref = 1;
5d4f98a2
YZ
873 }
874 return 0;
875}
876
d352ac68 877/*
d397712b
CM
878 * does the dirty work in cow of a single block. The parent block (if
879 * supplied) is updated to point to the new cow copy. The new buffer is marked
880 * dirty and returned locked. If you modify the block it needs to be marked
881 * dirty again.
d352ac68
CM
882 *
883 * search_start -- an allocation hint for the new block
884 *
d397712b
CM
885 * empty_size -- a hint that you plan on doing more cow. This is the size in
886 * bytes the allocator should try to find free next to the block it returns.
887 * This is just a hint and may be ignored by the allocator.
d352ac68 888 */
d397712b 889static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
890 struct btrfs_root *root,
891 struct extent_buffer *buf,
892 struct extent_buffer *parent, int parent_slot,
893 struct extent_buffer **cow_ret,
9fa8cfe7 894 u64 search_start, u64 empty_size)
02217ed2 895{
5d4f98a2 896 struct btrfs_disk_key disk_key;
5f39d397 897 struct extent_buffer *cow;
be1a5564 898 int level, ret;
f0486c68 899 int last_ref = 0;
925baedd 900 int unlock_orig = 0;
5d4f98a2 901 u64 parent_start;
7bb86316 902
925baedd
CM
903 if (*cow_ret == buf)
904 unlock_orig = 1;
905
b9447ef8 906 btrfs_assert_tree_locked(buf);
925baedd 907
7bb86316
CM
908 WARN_ON(root->ref_cows && trans->transid !=
909 root->fs_info->running_transaction->transid);
6702ed49 910 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 911
7bb86316 912 level = btrfs_header_level(buf);
31840ae1 913
5d4f98a2
YZ
914 if (level == 0)
915 btrfs_item_key(buf, &disk_key, 0);
916 else
917 btrfs_node_key(buf, &disk_key, 0);
918
919 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
920 if (parent)
921 parent_start = parent->start;
922 else
923 parent_start = 0;
924 } else
925 parent_start = 0;
926
927 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
928 root->root_key.objectid, &disk_key,
5581a51a 929 level, search_start, empty_size);
54aa1f4d
CM
930 if (IS_ERR(cow))
931 return PTR_ERR(cow);
6702ed49 932
b4ce94de
CM
933 /* cow is set to blocking by btrfs_init_new_buffer */
934
5f39d397 935 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 936 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 937 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
938 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
939 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
940 BTRFS_HEADER_FLAG_RELOC);
941 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
942 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
943 else
944 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 945
2b82032c
YZ
946 write_extent_buffer(cow, root->fs_info->fsid,
947 (unsigned long)btrfs_header_fsid(cow),
948 BTRFS_FSID_SIZE);
949
be1a5564 950 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 951 if (ret) {
79787eaa 952 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
953 return ret;
954 }
1a40e23b 955
3fd0a558
YZ
956 if (root->ref_cows)
957 btrfs_reloc_cow_block(trans, root, buf, cow);
958
02217ed2 959 if (buf == root->node) {
925baedd 960 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
961 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
962 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
963 parent_start = buf->start;
964 else
965 parent_start = 0;
925baedd 966
5f39d397 967 extent_buffer_get(cow);
f230475e 968 tree_mod_log_set_root_pointer(root, cow);
240f62c8 969 rcu_assign_pointer(root->node, cow);
925baedd 970
f0486c68 971 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 972 last_ref);
5f39d397 973 free_extent_buffer(buf);
0b86a832 974 add_root_to_dirty_list(root);
02217ed2 975 } else {
5d4f98a2
YZ
976 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
977 parent_start = parent->start;
978 else
979 parent_start = 0;
980
981 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
982 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
983 MOD_LOG_KEY_REPLACE);
5f39d397 984 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 985 cow->start);
74493f7a
CM
986 btrfs_set_node_ptr_generation(parent, parent_slot,
987 trans->transid);
d6025579 988 btrfs_mark_buffer_dirty(parent);
f0486c68 989 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 990 last_ref);
02217ed2 991 }
925baedd
CM
992 if (unlock_orig)
993 btrfs_tree_unlock(buf);
3083ee2e 994 free_extent_buffer_stale(buf);
ccd467d6 995 btrfs_mark_buffer_dirty(cow);
2c90e5d6 996 *cow_ret = cow;
02217ed2
CM
997 return 0;
998}
999
5d9e75c4
JS
1000/*
1001 * returns the logical address of the oldest predecessor of the given root.
1002 * entries older than time_seq are ignored.
1003 */
1004static struct tree_mod_elem *
1005__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1006 struct btrfs_root *root, u64 time_seq)
1007{
1008 struct tree_mod_elem *tm;
1009 struct tree_mod_elem *found = NULL;
1010 u64 root_logical = root->node->start;
1011 int looped = 0;
1012
1013 if (!time_seq)
1014 return 0;
1015
1016 /*
1017 * the very last operation that's logged for a root is the replacement
1018 * operation (if it is replaced at all). this has the index of the *new*
1019 * root, making it the very first operation that's logged for this root.
1020 */
1021 while (1) {
1022 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1023 time_seq);
1024 if (!looped && !tm)
1025 return 0;
1026 /*
28da9fb4
JS
1027 * if there are no tree operation for the oldest root, we simply
1028 * return it. this should only happen if that (old) root is at
1029 * level 0.
5d9e75c4 1030 */
28da9fb4
JS
1031 if (!tm)
1032 break;
5d9e75c4 1033
28da9fb4
JS
1034 /*
1035 * if there's an operation that's not a root replacement, we
1036 * found the oldest version of our root. normally, we'll find a
1037 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1038 */
5d9e75c4
JS
1039 if (tm->op != MOD_LOG_ROOT_REPLACE)
1040 break;
1041
1042 found = tm;
1043 root_logical = tm->old_root.logical;
1044 BUG_ON(root_logical == root->node->start);
1045 looped = 1;
1046 }
1047
a95236d9
JS
1048 /* if there's no old root to return, return what we found instead */
1049 if (!found)
1050 found = tm;
1051
5d9e75c4
JS
1052 return found;
1053}
1054
1055/*
1056 * tm is a pointer to the first operation to rewind within eb. then, all
1057 * previous operations will be rewinded (until we reach something older than
1058 * time_seq).
1059 */
1060static void
1061__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1062 struct tree_mod_elem *first_tm)
1063{
1064 u32 n;
1065 struct rb_node *next;
1066 struct tree_mod_elem *tm = first_tm;
1067 unsigned long o_dst;
1068 unsigned long o_src;
1069 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1070
1071 n = btrfs_header_nritems(eb);
1072 while (tm && tm->elem.seq >= time_seq) {
1073 /*
1074 * all the operations are recorded with the operator used for
1075 * the modification. as we're going backwards, we do the
1076 * opposite of each operation here.
1077 */
1078 switch (tm->op) {
1079 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1080 BUG_ON(tm->slot < n);
1081 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1082 case MOD_LOG_KEY_REMOVE:
1083 btrfs_set_node_key(eb, &tm->key, tm->slot);
1084 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1085 btrfs_set_node_ptr_generation(eb, tm->slot,
1086 tm->generation);
1087 n++;
1088 break;
1089 case MOD_LOG_KEY_REPLACE:
1090 BUG_ON(tm->slot >= n);
1091 btrfs_set_node_key(eb, &tm->key, tm->slot);
1092 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1093 btrfs_set_node_ptr_generation(eb, tm->slot,
1094 tm->generation);
1095 break;
1096 case MOD_LOG_KEY_ADD:
19956c7e 1097 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1098 n--;
1099 break;
1100 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1101 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1102 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1103 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1104 tm->move.nr_items * p_size);
1105 break;
1106 case MOD_LOG_ROOT_REPLACE:
1107 /*
1108 * this operation is special. for roots, this must be
1109 * handled explicitly before rewinding.
1110 * for non-roots, this operation may exist if the node
1111 * was a root: root A -> child B; then A gets empty and
1112 * B is promoted to the new root. in the mod log, we'll
1113 * have a root-replace operation for B, a tree block
1114 * that is no root. we simply ignore that operation.
1115 */
1116 break;
1117 }
1118 next = rb_next(&tm->node);
1119 if (!next)
1120 break;
1121 tm = container_of(next, struct tree_mod_elem, node);
1122 if (tm->index != first_tm->index)
1123 break;
1124 }
1125 btrfs_set_header_nritems(eb, n);
1126}
1127
1128static struct extent_buffer *
1129tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1130 u64 time_seq)
1131{
1132 struct extent_buffer *eb_rewin;
1133 struct tree_mod_elem *tm;
1134
1135 if (!time_seq)
1136 return eb;
1137
1138 if (btrfs_header_level(eb) == 0)
1139 return eb;
1140
1141 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1142 if (!tm)
1143 return eb;
1144
1145 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1146 BUG_ON(tm->slot != 0);
1147 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1148 fs_info->tree_root->nodesize);
1149 BUG_ON(!eb_rewin);
1150 btrfs_set_header_bytenr(eb_rewin, eb->start);
1151 btrfs_set_header_backref_rev(eb_rewin,
1152 btrfs_header_backref_rev(eb));
1153 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1154 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1155 } else {
1156 eb_rewin = btrfs_clone_extent_buffer(eb);
1157 BUG_ON(!eb_rewin);
1158 }
1159
1160 extent_buffer_get(eb_rewin);
1161 free_extent_buffer(eb);
1162
1163 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1164
1165 return eb_rewin;
1166}
1167
8ba97a15
JS
1168/*
1169 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1170 * value. If there are no changes, the current root->root_node is returned. If
1171 * anything changed in between, there's a fresh buffer allocated on which the
1172 * rewind operations are done. In any case, the returned buffer is read locked.
1173 * Returns NULL on error (with no locks held).
1174 */
5d9e75c4
JS
1175static inline struct extent_buffer *
1176get_old_root(struct btrfs_root *root, u64 time_seq)
1177{
1178 struct tree_mod_elem *tm;
1179 struct extent_buffer *eb;
a95236d9 1180 struct tree_mod_root *old_root = NULL;
4325edd0 1181 u64 old_generation = 0;
a95236d9 1182 u64 logical;
5d9e75c4 1183
8ba97a15 1184 eb = btrfs_read_lock_root_node(root);
5d9e75c4
JS
1185 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1186 if (!tm)
1187 return root->node;
1188
a95236d9
JS
1189 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1190 old_root = &tm->old_root;
1191 old_generation = tm->generation;
1192 logical = old_root->logical;
1193 } else {
1194 logical = root->node->start;
1195 }
5d9e75c4 1196
a95236d9 1197 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
a95236d9 1198 if (old_root)
28da9fb4 1199 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
a95236d9
JS
1200 else
1201 eb = btrfs_clone_extent_buffer(root->node);
8ba97a15
JS
1202 btrfs_tree_read_unlock(root->node);
1203 free_extent_buffer(root->node);
1204 if (!eb)
1205 return NULL;
1206 btrfs_tree_read_lock(eb);
a95236d9 1207 if (old_root) {
5d9e75c4
JS
1208 btrfs_set_header_bytenr(eb, eb->start);
1209 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1210 btrfs_set_header_owner(eb, root->root_key.objectid);
a95236d9
JS
1211 btrfs_set_header_level(eb, old_root->level);
1212 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1213 }
28da9fb4
JS
1214 if (tm)
1215 __tree_mod_log_rewind(eb, time_seq, tm);
1216 else
1217 WARN_ON(btrfs_header_level(eb) != 0);
8ba97a15 1218 extent_buffer_get(eb);
5d9e75c4
JS
1219
1220 return eb;
1221}
1222
5d4f98a2
YZ
1223static inline int should_cow_block(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root,
1225 struct extent_buffer *buf)
1226{
f1ebcc74
LB
1227 /* ensure we can see the force_cow */
1228 smp_rmb();
1229
1230 /*
1231 * We do not need to cow a block if
1232 * 1) this block is not created or changed in this transaction;
1233 * 2) this block does not belong to TREE_RELOC tree;
1234 * 3) the root is not forced COW.
1235 *
1236 * What is forced COW:
1237 * when we create snapshot during commiting the transaction,
1238 * after we've finished coping src root, we must COW the shared
1239 * block to ensure the metadata consistency.
1240 */
5d4f98a2
YZ
1241 if (btrfs_header_generation(buf) == trans->transid &&
1242 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1243 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1244 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1245 !root->force_cow)
5d4f98a2
YZ
1246 return 0;
1247 return 1;
1248}
1249
d352ac68
CM
1250/*
1251 * cows a single block, see __btrfs_cow_block for the real work.
1252 * This version of it has extra checks so that a block isn't cow'd more than
1253 * once per transaction, as long as it hasn't been written yet
1254 */
d397712b 1255noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1256 struct btrfs_root *root, struct extent_buffer *buf,
1257 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1258 struct extent_buffer **cow_ret)
6702ed49
CM
1259{
1260 u64 search_start;
f510cfec 1261 int ret;
dc17ff8f 1262
6702ed49 1263 if (trans->transaction != root->fs_info->running_transaction) {
d397712b
CM
1264 printk(KERN_CRIT "trans %llu running %llu\n",
1265 (unsigned long long)trans->transid,
1266 (unsigned long long)
6702ed49
CM
1267 root->fs_info->running_transaction->transid);
1268 WARN_ON(1);
1269 }
1270 if (trans->transid != root->fs_info->generation) {
d397712b
CM
1271 printk(KERN_CRIT "trans %llu running %llu\n",
1272 (unsigned long long)trans->transid,
1273 (unsigned long long)root->fs_info->generation);
6702ed49
CM
1274 WARN_ON(1);
1275 }
dc17ff8f 1276
5d4f98a2 1277 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1278 *cow_ret = buf;
1279 return 0;
1280 }
c487685d 1281
0b86a832 1282 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1283
1284 if (parent)
1285 btrfs_set_lock_blocking(parent);
1286 btrfs_set_lock_blocking(buf);
1287
f510cfec 1288 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1289 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1290
1291 trace_btrfs_cow_block(root, buf, *cow_ret);
1292
f510cfec 1293 return ret;
6702ed49
CM
1294}
1295
d352ac68
CM
1296/*
1297 * helper function for defrag to decide if two blocks pointed to by a
1298 * node are actually close by
1299 */
6b80053d 1300static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1301{
6b80053d 1302 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1303 return 1;
6b80053d 1304 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1305 return 1;
1306 return 0;
1307}
1308
081e9573
CM
1309/*
1310 * compare two keys in a memcmp fashion
1311 */
1312static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1313{
1314 struct btrfs_key k1;
1315
1316 btrfs_disk_key_to_cpu(&k1, disk);
1317
20736aba 1318 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1319}
1320
f3465ca4
JB
1321/*
1322 * same as comp_keys only with two btrfs_key's
1323 */
5d4f98a2 1324int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1325{
1326 if (k1->objectid > k2->objectid)
1327 return 1;
1328 if (k1->objectid < k2->objectid)
1329 return -1;
1330 if (k1->type > k2->type)
1331 return 1;
1332 if (k1->type < k2->type)
1333 return -1;
1334 if (k1->offset > k2->offset)
1335 return 1;
1336 if (k1->offset < k2->offset)
1337 return -1;
1338 return 0;
1339}
081e9573 1340
d352ac68
CM
1341/*
1342 * this is used by the defrag code to go through all the
1343 * leaves pointed to by a node and reallocate them so that
1344 * disk order is close to key order
1345 */
6702ed49 1346int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1347 struct btrfs_root *root, struct extent_buffer *parent,
a6b6e75e
CM
1348 int start_slot, int cache_only, u64 *last_ret,
1349 struct btrfs_key *progress)
6702ed49 1350{
6b80053d 1351 struct extent_buffer *cur;
6702ed49 1352 u64 blocknr;
ca7a79ad 1353 u64 gen;
e9d0b13b
CM
1354 u64 search_start = *last_ret;
1355 u64 last_block = 0;
6702ed49
CM
1356 u64 other;
1357 u32 parent_nritems;
6702ed49
CM
1358 int end_slot;
1359 int i;
1360 int err = 0;
f2183bde 1361 int parent_level;
6b80053d
CM
1362 int uptodate;
1363 u32 blocksize;
081e9573
CM
1364 int progress_passed = 0;
1365 struct btrfs_disk_key disk_key;
6702ed49 1366
5708b959
CM
1367 parent_level = btrfs_header_level(parent);
1368 if (cache_only && parent_level != 1)
1369 return 0;
1370
d397712b 1371 if (trans->transaction != root->fs_info->running_transaction)
6702ed49 1372 WARN_ON(1);
d397712b 1373 if (trans->transid != root->fs_info->generation)
6702ed49 1374 WARN_ON(1);
86479a04 1375
6b80053d 1376 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1377 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1378 end_slot = parent_nritems;
1379
1380 if (parent_nritems == 1)
1381 return 0;
1382
b4ce94de
CM
1383 btrfs_set_lock_blocking(parent);
1384
6702ed49
CM
1385 for (i = start_slot; i < end_slot; i++) {
1386 int close = 1;
a6b6e75e 1387
081e9573
CM
1388 btrfs_node_key(parent, &disk_key, i);
1389 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1390 continue;
1391
1392 progress_passed = 1;
6b80053d 1393 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1394 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1395 if (last_block == 0)
1396 last_block = blocknr;
5708b959 1397
6702ed49 1398 if (i > 0) {
6b80053d
CM
1399 other = btrfs_node_blockptr(parent, i - 1);
1400 close = close_blocks(blocknr, other, blocksize);
6702ed49 1401 }
0ef3e66b 1402 if (!close && i < end_slot - 2) {
6b80053d
CM
1403 other = btrfs_node_blockptr(parent, i + 1);
1404 close = close_blocks(blocknr, other, blocksize);
6702ed49 1405 }
e9d0b13b
CM
1406 if (close) {
1407 last_block = blocknr;
6702ed49 1408 continue;
e9d0b13b 1409 }
6702ed49 1410
6b80053d
CM
1411 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1412 if (cur)
b9fab919 1413 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1414 else
1415 uptodate = 0;
5708b959 1416 if (!cur || !uptodate) {
6702ed49 1417 if (cache_only) {
6b80053d 1418 free_extent_buffer(cur);
6702ed49
CM
1419 continue;
1420 }
6b80053d
CM
1421 if (!cur) {
1422 cur = read_tree_block(root, blocknr,
ca7a79ad 1423 blocksize, gen);
97d9a8a4
TI
1424 if (!cur)
1425 return -EIO;
6b80053d 1426 } else if (!uptodate) {
018642a1
TI
1427 err = btrfs_read_buffer(cur, gen);
1428 if (err) {
1429 free_extent_buffer(cur);
1430 return err;
1431 }
f2183bde 1432 }
6702ed49 1433 }
e9d0b13b 1434 if (search_start == 0)
6b80053d 1435 search_start = last_block;
e9d0b13b 1436
e7a84565 1437 btrfs_tree_lock(cur);
b4ce94de 1438 btrfs_set_lock_blocking(cur);
6b80053d 1439 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1440 &cur, search_start,
6b80053d 1441 min(16 * blocksize,
9fa8cfe7 1442 (end_slot - i) * blocksize));
252c38f0 1443 if (err) {
e7a84565 1444 btrfs_tree_unlock(cur);
6b80053d 1445 free_extent_buffer(cur);
6702ed49 1446 break;
252c38f0 1447 }
e7a84565
CM
1448 search_start = cur->start;
1449 last_block = cur->start;
f2183bde 1450 *last_ret = search_start;
e7a84565
CM
1451 btrfs_tree_unlock(cur);
1452 free_extent_buffer(cur);
6702ed49
CM
1453 }
1454 return err;
1455}
1456
74123bd7
CM
1457/*
1458 * The leaf data grows from end-to-front in the node.
1459 * this returns the address of the start of the last item,
1460 * which is the stop of the leaf data stack
1461 */
123abc88 1462static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1463 struct extent_buffer *leaf)
be0e5c09 1464{
5f39d397 1465 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1466 if (nr == 0)
123abc88 1467 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1468 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1469}
1470
aa5d6bed 1471
74123bd7 1472/*
5f39d397
CM
1473 * search for key in the extent_buffer. The items start at offset p,
1474 * and they are item_size apart. There are 'max' items in p.
1475 *
74123bd7
CM
1476 * the slot in the array is returned via slot, and it points to
1477 * the place where you would insert key if it is not found in
1478 * the array.
1479 *
1480 * slot may point to max if the key is bigger than all of the keys
1481 */
e02119d5
CM
1482static noinline int generic_bin_search(struct extent_buffer *eb,
1483 unsigned long p,
1484 int item_size, struct btrfs_key *key,
1485 int max, int *slot)
be0e5c09
CM
1486{
1487 int low = 0;
1488 int high = max;
1489 int mid;
1490 int ret;
479965d6 1491 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1492 struct btrfs_disk_key unaligned;
1493 unsigned long offset;
5f39d397
CM
1494 char *kaddr = NULL;
1495 unsigned long map_start = 0;
1496 unsigned long map_len = 0;
479965d6 1497 int err;
be0e5c09 1498
d397712b 1499 while (low < high) {
be0e5c09 1500 mid = (low + high) / 2;
5f39d397
CM
1501 offset = p + mid * item_size;
1502
a6591715 1503 if (!kaddr || offset < map_start ||
5f39d397
CM
1504 (offset + sizeof(struct btrfs_disk_key)) >
1505 map_start + map_len) {
934d375b
CM
1506
1507 err = map_private_extent_buffer(eb, offset,
479965d6 1508 sizeof(struct btrfs_disk_key),
a6591715 1509 &kaddr, &map_start, &map_len);
479965d6
CM
1510
1511 if (!err) {
1512 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1513 map_start);
1514 } else {
1515 read_extent_buffer(eb, &unaligned,
1516 offset, sizeof(unaligned));
1517 tmp = &unaligned;
1518 }
5f39d397 1519
5f39d397
CM
1520 } else {
1521 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1522 map_start);
1523 }
be0e5c09
CM
1524 ret = comp_keys(tmp, key);
1525
1526 if (ret < 0)
1527 low = mid + 1;
1528 else if (ret > 0)
1529 high = mid;
1530 else {
1531 *slot = mid;
1532 return 0;
1533 }
1534 }
1535 *slot = low;
1536 return 1;
1537}
1538
97571fd0
CM
1539/*
1540 * simple bin_search frontend that does the right thing for
1541 * leaves vs nodes
1542 */
5f39d397
CM
1543static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1544 int level, int *slot)
be0e5c09 1545{
f775738f 1546 if (level == 0)
5f39d397
CM
1547 return generic_bin_search(eb,
1548 offsetof(struct btrfs_leaf, items),
0783fcfc 1549 sizeof(struct btrfs_item),
5f39d397 1550 key, btrfs_header_nritems(eb),
7518a238 1551 slot);
f775738f 1552 else
5f39d397
CM
1553 return generic_bin_search(eb,
1554 offsetof(struct btrfs_node, ptrs),
123abc88 1555 sizeof(struct btrfs_key_ptr),
5f39d397 1556 key, btrfs_header_nritems(eb),
7518a238 1557 slot);
be0e5c09
CM
1558}
1559
5d4f98a2
YZ
1560int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1561 int level, int *slot)
1562{
1563 return bin_search(eb, key, level, slot);
1564}
1565
f0486c68
YZ
1566static void root_add_used(struct btrfs_root *root, u32 size)
1567{
1568 spin_lock(&root->accounting_lock);
1569 btrfs_set_root_used(&root->root_item,
1570 btrfs_root_used(&root->root_item) + size);
1571 spin_unlock(&root->accounting_lock);
1572}
1573
1574static void root_sub_used(struct btrfs_root *root, u32 size)
1575{
1576 spin_lock(&root->accounting_lock);
1577 btrfs_set_root_used(&root->root_item,
1578 btrfs_root_used(&root->root_item) - size);
1579 spin_unlock(&root->accounting_lock);
1580}
1581
d352ac68
CM
1582/* given a node and slot number, this reads the blocks it points to. The
1583 * extent buffer is returned with a reference taken (but unlocked).
1584 * NULL is returned on error.
1585 */
e02119d5 1586static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1587 struct extent_buffer *parent, int slot)
bb803951 1588{
ca7a79ad 1589 int level = btrfs_header_level(parent);
bb803951
CM
1590 if (slot < 0)
1591 return NULL;
5f39d397 1592 if (slot >= btrfs_header_nritems(parent))
bb803951 1593 return NULL;
ca7a79ad
CM
1594
1595 BUG_ON(level == 0);
1596
db94535d 1597 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
ca7a79ad
CM
1598 btrfs_level_size(root, level - 1),
1599 btrfs_node_ptr_generation(parent, slot));
bb803951
CM
1600}
1601
d352ac68
CM
1602/*
1603 * node level balancing, used to make sure nodes are in proper order for
1604 * item deletion. We balance from the top down, so we have to make sure
1605 * that a deletion won't leave an node completely empty later on.
1606 */
e02119d5 1607static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1608 struct btrfs_root *root,
1609 struct btrfs_path *path, int level)
bb803951 1610{
5f39d397
CM
1611 struct extent_buffer *right = NULL;
1612 struct extent_buffer *mid;
1613 struct extent_buffer *left = NULL;
1614 struct extent_buffer *parent = NULL;
bb803951
CM
1615 int ret = 0;
1616 int wret;
1617 int pslot;
bb803951 1618 int orig_slot = path->slots[level];
79f95c82 1619 u64 orig_ptr;
bb803951
CM
1620
1621 if (level == 0)
1622 return 0;
1623
5f39d397 1624 mid = path->nodes[level];
b4ce94de 1625
bd681513
CM
1626 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1627 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1628 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1629
1d4f8a0c 1630 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1631
a05a9bb1 1632 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1633 parent = path->nodes[level + 1];
a05a9bb1
LZ
1634 pslot = path->slots[level + 1];
1635 }
bb803951 1636
40689478
CM
1637 /*
1638 * deal with the case where there is only one pointer in the root
1639 * by promoting the node below to a root
1640 */
5f39d397
CM
1641 if (!parent) {
1642 struct extent_buffer *child;
bb803951 1643
5f39d397 1644 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1645 return 0;
1646
1647 /* promote the child to a root */
5f39d397 1648 child = read_node_slot(root, mid, 0);
305a26af
MF
1649 if (!child) {
1650 ret = -EROFS;
1651 btrfs_std_error(root->fs_info, ret);
1652 goto enospc;
1653 }
1654
925baedd 1655 btrfs_tree_lock(child);
b4ce94de 1656 btrfs_set_lock_blocking(child);
9fa8cfe7 1657 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1658 if (ret) {
1659 btrfs_tree_unlock(child);
1660 free_extent_buffer(child);
1661 goto enospc;
1662 }
2f375ab9 1663
f230475e 1664 tree_mod_log_set_root_pointer(root, child);
240f62c8 1665 rcu_assign_pointer(root->node, child);
925baedd 1666
0b86a832 1667 add_root_to_dirty_list(root);
925baedd 1668 btrfs_tree_unlock(child);
b4ce94de 1669
925baedd 1670 path->locks[level] = 0;
bb803951 1671 path->nodes[level] = NULL;
5f39d397 1672 clean_tree_block(trans, root, mid);
925baedd 1673 btrfs_tree_unlock(mid);
bb803951 1674 /* once for the path */
5f39d397 1675 free_extent_buffer(mid);
f0486c68
YZ
1676
1677 root_sub_used(root, mid->len);
5581a51a 1678 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1679 /* once for the root ptr */
3083ee2e 1680 free_extent_buffer_stale(mid);
f0486c68 1681 return 0;
bb803951 1682 }
5f39d397 1683 if (btrfs_header_nritems(mid) >
123abc88 1684 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1685 return 0;
1686
5f39d397
CM
1687 left = read_node_slot(root, parent, pslot - 1);
1688 if (left) {
925baedd 1689 btrfs_tree_lock(left);
b4ce94de 1690 btrfs_set_lock_blocking(left);
5f39d397 1691 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1692 parent, pslot - 1, &left);
54aa1f4d
CM
1693 if (wret) {
1694 ret = wret;
1695 goto enospc;
1696 }
2cc58cf2 1697 }
5f39d397
CM
1698 right = read_node_slot(root, parent, pslot + 1);
1699 if (right) {
925baedd 1700 btrfs_tree_lock(right);
b4ce94de 1701 btrfs_set_lock_blocking(right);
5f39d397 1702 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1703 parent, pslot + 1, &right);
2cc58cf2
CM
1704 if (wret) {
1705 ret = wret;
1706 goto enospc;
1707 }
1708 }
1709
1710 /* first, try to make some room in the middle buffer */
5f39d397
CM
1711 if (left) {
1712 orig_slot += btrfs_header_nritems(left);
bce4eae9 1713 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1714 if (wret < 0)
1715 ret = wret;
bb803951 1716 }
79f95c82
CM
1717
1718 /*
1719 * then try to empty the right most buffer into the middle
1720 */
5f39d397 1721 if (right) {
971a1f66 1722 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1723 if (wret < 0 && wret != -ENOSPC)
79f95c82 1724 ret = wret;
5f39d397 1725 if (btrfs_header_nritems(right) == 0) {
5f39d397 1726 clean_tree_block(trans, root, right);
925baedd 1727 btrfs_tree_unlock(right);
f3ea38da 1728 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
f0486c68 1729 root_sub_used(root, right->len);
5581a51a 1730 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1731 free_extent_buffer_stale(right);
f0486c68 1732 right = NULL;
bb803951 1733 } else {
5f39d397
CM
1734 struct btrfs_disk_key right_key;
1735 btrfs_node_key(right, &right_key, 0);
f230475e
JS
1736 tree_mod_log_set_node_key(root->fs_info, parent,
1737 &right_key, pslot + 1, 0);
5f39d397
CM
1738 btrfs_set_node_key(parent, &right_key, pslot + 1);
1739 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1740 }
1741 }
5f39d397 1742 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1743 /*
1744 * we're not allowed to leave a node with one item in the
1745 * tree during a delete. A deletion from lower in the tree
1746 * could try to delete the only pointer in this node.
1747 * So, pull some keys from the left.
1748 * There has to be a left pointer at this point because
1749 * otherwise we would have pulled some pointers from the
1750 * right
1751 */
305a26af
MF
1752 if (!left) {
1753 ret = -EROFS;
1754 btrfs_std_error(root->fs_info, ret);
1755 goto enospc;
1756 }
5f39d397 1757 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1758 if (wret < 0) {
79f95c82 1759 ret = wret;
54aa1f4d
CM
1760 goto enospc;
1761 }
bce4eae9
CM
1762 if (wret == 1) {
1763 wret = push_node_left(trans, root, left, mid, 1);
1764 if (wret < 0)
1765 ret = wret;
1766 }
79f95c82
CM
1767 BUG_ON(wret == 1);
1768 }
5f39d397 1769 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1770 clean_tree_block(trans, root, mid);
925baedd 1771 btrfs_tree_unlock(mid);
f3ea38da 1772 del_ptr(trans, root, path, level + 1, pslot, 1);
f0486c68 1773 root_sub_used(root, mid->len);
5581a51a 1774 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1775 free_extent_buffer_stale(mid);
f0486c68 1776 mid = NULL;
79f95c82
CM
1777 } else {
1778 /* update the parent key to reflect our changes */
5f39d397
CM
1779 struct btrfs_disk_key mid_key;
1780 btrfs_node_key(mid, &mid_key, 0);
f230475e
JS
1781 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1782 pslot, 0);
5f39d397
CM
1783 btrfs_set_node_key(parent, &mid_key, pslot);
1784 btrfs_mark_buffer_dirty(parent);
79f95c82 1785 }
bb803951 1786
79f95c82 1787 /* update the path */
5f39d397
CM
1788 if (left) {
1789 if (btrfs_header_nritems(left) > orig_slot) {
1790 extent_buffer_get(left);
925baedd 1791 /* left was locked after cow */
5f39d397 1792 path->nodes[level] = left;
bb803951
CM
1793 path->slots[level + 1] -= 1;
1794 path->slots[level] = orig_slot;
925baedd
CM
1795 if (mid) {
1796 btrfs_tree_unlock(mid);
5f39d397 1797 free_extent_buffer(mid);
925baedd 1798 }
bb803951 1799 } else {
5f39d397 1800 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1801 path->slots[level] = orig_slot;
1802 }
1803 }
79f95c82 1804 /* double check we haven't messed things up */
e20d96d6 1805 if (orig_ptr !=
5f39d397 1806 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1807 BUG();
54aa1f4d 1808enospc:
925baedd
CM
1809 if (right) {
1810 btrfs_tree_unlock(right);
5f39d397 1811 free_extent_buffer(right);
925baedd
CM
1812 }
1813 if (left) {
1814 if (path->nodes[level] != left)
1815 btrfs_tree_unlock(left);
5f39d397 1816 free_extent_buffer(left);
925baedd 1817 }
bb803951
CM
1818 return ret;
1819}
1820
d352ac68
CM
1821/* Node balancing for insertion. Here we only split or push nodes around
1822 * when they are completely full. This is also done top down, so we
1823 * have to be pessimistic.
1824 */
d397712b 1825static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1826 struct btrfs_root *root,
1827 struct btrfs_path *path, int level)
e66f709b 1828{
5f39d397
CM
1829 struct extent_buffer *right = NULL;
1830 struct extent_buffer *mid;
1831 struct extent_buffer *left = NULL;
1832 struct extent_buffer *parent = NULL;
e66f709b
CM
1833 int ret = 0;
1834 int wret;
1835 int pslot;
1836 int orig_slot = path->slots[level];
e66f709b
CM
1837
1838 if (level == 0)
1839 return 1;
1840
5f39d397 1841 mid = path->nodes[level];
7bb86316 1842 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1843
a05a9bb1 1844 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1845 parent = path->nodes[level + 1];
a05a9bb1
LZ
1846 pslot = path->slots[level + 1];
1847 }
e66f709b 1848
5f39d397 1849 if (!parent)
e66f709b 1850 return 1;
e66f709b 1851
5f39d397 1852 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1853
1854 /* first, try to make some room in the middle buffer */
5f39d397 1855 if (left) {
e66f709b 1856 u32 left_nr;
925baedd
CM
1857
1858 btrfs_tree_lock(left);
b4ce94de
CM
1859 btrfs_set_lock_blocking(left);
1860
5f39d397 1861 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1862 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1863 wret = 1;
1864 } else {
5f39d397 1865 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1866 pslot - 1, &left);
54aa1f4d
CM
1867 if (ret)
1868 wret = 1;
1869 else {
54aa1f4d 1870 wret = push_node_left(trans, root,
971a1f66 1871 left, mid, 0);
54aa1f4d 1872 }
33ade1f8 1873 }
e66f709b
CM
1874 if (wret < 0)
1875 ret = wret;
1876 if (wret == 0) {
5f39d397 1877 struct btrfs_disk_key disk_key;
e66f709b 1878 orig_slot += left_nr;
5f39d397 1879 btrfs_node_key(mid, &disk_key, 0);
f230475e
JS
1880 tree_mod_log_set_node_key(root->fs_info, parent,
1881 &disk_key, pslot, 0);
5f39d397
CM
1882 btrfs_set_node_key(parent, &disk_key, pslot);
1883 btrfs_mark_buffer_dirty(parent);
1884 if (btrfs_header_nritems(left) > orig_slot) {
1885 path->nodes[level] = left;
e66f709b
CM
1886 path->slots[level + 1] -= 1;
1887 path->slots[level] = orig_slot;
925baedd 1888 btrfs_tree_unlock(mid);
5f39d397 1889 free_extent_buffer(mid);
e66f709b
CM
1890 } else {
1891 orig_slot -=
5f39d397 1892 btrfs_header_nritems(left);
e66f709b 1893 path->slots[level] = orig_slot;
925baedd 1894 btrfs_tree_unlock(left);
5f39d397 1895 free_extent_buffer(left);
e66f709b 1896 }
e66f709b
CM
1897 return 0;
1898 }
925baedd 1899 btrfs_tree_unlock(left);
5f39d397 1900 free_extent_buffer(left);
e66f709b 1901 }
925baedd 1902 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
1903
1904 /*
1905 * then try to empty the right most buffer into the middle
1906 */
5f39d397 1907 if (right) {
33ade1f8 1908 u32 right_nr;
b4ce94de 1909
925baedd 1910 btrfs_tree_lock(right);
b4ce94de
CM
1911 btrfs_set_lock_blocking(right);
1912
5f39d397 1913 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
1914 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1915 wret = 1;
1916 } else {
5f39d397
CM
1917 ret = btrfs_cow_block(trans, root, right,
1918 parent, pslot + 1,
9fa8cfe7 1919 &right);
54aa1f4d
CM
1920 if (ret)
1921 wret = 1;
1922 else {
54aa1f4d 1923 wret = balance_node_right(trans, root,
5f39d397 1924 right, mid);
54aa1f4d 1925 }
33ade1f8 1926 }
e66f709b
CM
1927 if (wret < 0)
1928 ret = wret;
1929 if (wret == 0) {
5f39d397
CM
1930 struct btrfs_disk_key disk_key;
1931
1932 btrfs_node_key(right, &disk_key, 0);
f230475e
JS
1933 tree_mod_log_set_node_key(root->fs_info, parent,
1934 &disk_key, pslot + 1, 0);
5f39d397
CM
1935 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1936 btrfs_mark_buffer_dirty(parent);
1937
1938 if (btrfs_header_nritems(mid) <= orig_slot) {
1939 path->nodes[level] = right;
e66f709b
CM
1940 path->slots[level + 1] += 1;
1941 path->slots[level] = orig_slot -
5f39d397 1942 btrfs_header_nritems(mid);
925baedd 1943 btrfs_tree_unlock(mid);
5f39d397 1944 free_extent_buffer(mid);
e66f709b 1945 } else {
925baedd 1946 btrfs_tree_unlock(right);
5f39d397 1947 free_extent_buffer(right);
e66f709b 1948 }
e66f709b
CM
1949 return 0;
1950 }
925baedd 1951 btrfs_tree_unlock(right);
5f39d397 1952 free_extent_buffer(right);
e66f709b 1953 }
e66f709b
CM
1954 return 1;
1955}
1956
3c69faec 1957/*
d352ac68
CM
1958 * readahead one full node of leaves, finding things that are close
1959 * to the block in 'slot', and triggering ra on them.
3c69faec 1960 */
c8c42864
CM
1961static void reada_for_search(struct btrfs_root *root,
1962 struct btrfs_path *path,
1963 int level, int slot, u64 objectid)
3c69faec 1964{
5f39d397 1965 struct extent_buffer *node;
01f46658 1966 struct btrfs_disk_key disk_key;
3c69faec 1967 u32 nritems;
3c69faec 1968 u64 search;
a7175319 1969 u64 target;
6b80053d 1970 u64 nread = 0;
cb25c2ea 1971 u64 gen;
3c69faec 1972 int direction = path->reada;
5f39d397 1973 struct extent_buffer *eb;
6b80053d
CM
1974 u32 nr;
1975 u32 blocksize;
1976 u32 nscan = 0;
db94535d 1977
a6b6e75e 1978 if (level != 1)
6702ed49
CM
1979 return;
1980
1981 if (!path->nodes[level])
3c69faec
CM
1982 return;
1983
5f39d397 1984 node = path->nodes[level];
925baedd 1985
3c69faec 1986 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
1987 blocksize = btrfs_level_size(root, level - 1);
1988 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
1989 if (eb) {
1990 free_extent_buffer(eb);
3c69faec
CM
1991 return;
1992 }
1993
a7175319 1994 target = search;
6b80053d 1995
5f39d397 1996 nritems = btrfs_header_nritems(node);
6b80053d 1997 nr = slot;
25b8b936 1998
d397712b 1999 while (1) {
6b80053d
CM
2000 if (direction < 0) {
2001 if (nr == 0)
2002 break;
2003 nr--;
2004 } else if (direction > 0) {
2005 nr++;
2006 if (nr >= nritems)
2007 break;
3c69faec 2008 }
01f46658
CM
2009 if (path->reada < 0 && objectid) {
2010 btrfs_node_key(node, &disk_key, nr);
2011 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2012 break;
2013 }
6b80053d 2014 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2015 if ((search <= target && target - search <= 65536) ||
2016 (search > target && search - target <= 65536)) {
cb25c2ea 2017 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2018 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2019 nread += blocksize;
2020 }
2021 nscan++;
a7175319 2022 if ((nread > 65536 || nscan > 32))
6b80053d 2023 break;
3c69faec
CM
2024 }
2025}
925baedd 2026
b4ce94de
CM
2027/*
2028 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2029 * cache
2030 */
2031static noinline int reada_for_balance(struct btrfs_root *root,
2032 struct btrfs_path *path, int level)
2033{
2034 int slot;
2035 int nritems;
2036 struct extent_buffer *parent;
2037 struct extent_buffer *eb;
2038 u64 gen;
2039 u64 block1 = 0;
2040 u64 block2 = 0;
2041 int ret = 0;
2042 int blocksize;
2043
8c594ea8 2044 parent = path->nodes[level + 1];
b4ce94de
CM
2045 if (!parent)
2046 return 0;
2047
2048 nritems = btrfs_header_nritems(parent);
8c594ea8 2049 slot = path->slots[level + 1];
b4ce94de
CM
2050 blocksize = btrfs_level_size(root, level);
2051
2052 if (slot > 0) {
2053 block1 = btrfs_node_blockptr(parent, slot - 1);
2054 gen = btrfs_node_ptr_generation(parent, slot - 1);
2055 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2056 /*
2057 * if we get -eagain from btrfs_buffer_uptodate, we
2058 * don't want to return eagain here. That will loop
2059 * forever
2060 */
2061 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2062 block1 = 0;
2063 free_extent_buffer(eb);
2064 }
8c594ea8 2065 if (slot + 1 < nritems) {
b4ce94de
CM
2066 block2 = btrfs_node_blockptr(parent, slot + 1);
2067 gen = btrfs_node_ptr_generation(parent, slot + 1);
2068 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2069 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2070 block2 = 0;
2071 free_extent_buffer(eb);
2072 }
2073 if (block1 || block2) {
2074 ret = -EAGAIN;
8c594ea8
CM
2075
2076 /* release the whole path */
b3b4aa74 2077 btrfs_release_path(path);
8c594ea8
CM
2078
2079 /* read the blocks */
b4ce94de
CM
2080 if (block1)
2081 readahead_tree_block(root, block1, blocksize, 0);
2082 if (block2)
2083 readahead_tree_block(root, block2, blocksize, 0);
2084
2085 if (block1) {
2086 eb = read_tree_block(root, block1, blocksize, 0);
2087 free_extent_buffer(eb);
2088 }
8c594ea8 2089 if (block2) {
b4ce94de
CM
2090 eb = read_tree_block(root, block2, blocksize, 0);
2091 free_extent_buffer(eb);
2092 }
2093 }
2094 return ret;
2095}
2096
2097
d352ac68 2098/*
d397712b
CM
2099 * when we walk down the tree, it is usually safe to unlock the higher layers
2100 * in the tree. The exceptions are when our path goes through slot 0, because
2101 * operations on the tree might require changing key pointers higher up in the
2102 * tree.
d352ac68 2103 *
d397712b
CM
2104 * callers might also have set path->keep_locks, which tells this code to keep
2105 * the lock if the path points to the last slot in the block. This is part of
2106 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2107 *
d397712b
CM
2108 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2109 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2110 */
e02119d5 2111static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2112 int lowest_unlock, int min_write_lock_level,
2113 int *write_lock_level)
925baedd
CM
2114{
2115 int i;
2116 int skip_level = level;
051e1b9f 2117 int no_skips = 0;
925baedd
CM
2118 struct extent_buffer *t;
2119
2120 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2121 if (!path->nodes[i])
2122 break;
2123 if (!path->locks[i])
2124 break;
051e1b9f 2125 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2126 skip_level = i + 1;
2127 continue;
2128 }
051e1b9f 2129 if (!no_skips && path->keep_locks) {
925baedd
CM
2130 u32 nritems;
2131 t = path->nodes[i];
2132 nritems = btrfs_header_nritems(t);
051e1b9f 2133 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2134 skip_level = i + 1;
2135 continue;
2136 }
2137 }
051e1b9f
CM
2138 if (skip_level < i && i >= lowest_unlock)
2139 no_skips = 1;
2140
925baedd
CM
2141 t = path->nodes[i];
2142 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2143 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2144 path->locks[i] = 0;
f7c79f30
CM
2145 if (write_lock_level &&
2146 i > min_write_lock_level &&
2147 i <= *write_lock_level) {
2148 *write_lock_level = i - 1;
2149 }
925baedd
CM
2150 }
2151 }
2152}
2153
b4ce94de
CM
2154/*
2155 * This releases any locks held in the path starting at level and
2156 * going all the way up to the root.
2157 *
2158 * btrfs_search_slot will keep the lock held on higher nodes in a few
2159 * corner cases, such as COW of the block at slot zero in the node. This
2160 * ignores those rules, and it should only be called when there are no
2161 * more updates to be done higher up in the tree.
2162 */
2163noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2164{
2165 int i;
2166
5d4f98a2 2167 if (path->keep_locks)
b4ce94de
CM
2168 return;
2169
2170 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2171 if (!path->nodes[i])
12f4dacc 2172 continue;
b4ce94de 2173 if (!path->locks[i])
12f4dacc 2174 continue;
bd681513 2175 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2176 path->locks[i] = 0;
2177 }
2178}
2179
c8c42864
CM
2180/*
2181 * helper function for btrfs_search_slot. The goal is to find a block
2182 * in cache without setting the path to blocking. If we find the block
2183 * we return zero and the path is unchanged.
2184 *
2185 * If we can't find the block, we set the path blocking and do some
2186 * reada. -EAGAIN is returned and the search must be repeated.
2187 */
2188static int
2189read_block_for_search(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root, struct btrfs_path *p,
2191 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2192 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2193{
2194 u64 blocknr;
2195 u64 gen;
2196 u32 blocksize;
2197 struct extent_buffer *b = *eb_ret;
2198 struct extent_buffer *tmp;
76a05b35 2199 int ret;
c8c42864
CM
2200
2201 blocknr = btrfs_node_blockptr(b, slot);
2202 gen = btrfs_node_ptr_generation(b, slot);
2203 blocksize = btrfs_level_size(root, level - 1);
2204
2205 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2206 if (tmp) {
b9fab919
CM
2207 /* first we do an atomic uptodate check */
2208 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2209 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2210 /*
2211 * we found an up to date block without
2212 * sleeping, return
2213 * right away
2214 */
2215 *eb_ret = tmp;
2216 return 0;
2217 }
2218 /* the pages were up to date, but we failed
2219 * the generation number check. Do a full
2220 * read for the generation number that is correct.
2221 * We must do this without dropping locks so
2222 * we can trust our generation number
2223 */
2224 free_extent_buffer(tmp);
bd681513
CM
2225 btrfs_set_path_blocking(p);
2226
b9fab919 2227 /* now we're allowed to do a blocking uptodate check */
cb44921a 2228 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2229 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2230 *eb_ret = tmp;
2231 return 0;
2232 }
2233 free_extent_buffer(tmp);
b3b4aa74 2234 btrfs_release_path(p);
cb44921a
CM
2235 return -EIO;
2236 }
c8c42864
CM
2237 }
2238
2239 /*
2240 * reduce lock contention at high levels
2241 * of the btree by dropping locks before
76a05b35
CM
2242 * we read. Don't release the lock on the current
2243 * level because we need to walk this node to figure
2244 * out which blocks to read.
c8c42864 2245 */
8c594ea8
CM
2246 btrfs_unlock_up_safe(p, level + 1);
2247 btrfs_set_path_blocking(p);
2248
cb44921a 2249 free_extent_buffer(tmp);
c8c42864
CM
2250 if (p->reada)
2251 reada_for_search(root, p, level, slot, key->objectid);
2252
b3b4aa74 2253 btrfs_release_path(p);
76a05b35
CM
2254
2255 ret = -EAGAIN;
5bdd3536 2256 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2257 if (tmp) {
2258 /*
2259 * If the read above didn't mark this buffer up to date,
2260 * it will never end up being up to date. Set ret to EIO now
2261 * and give up so that our caller doesn't loop forever
2262 * on our EAGAINs.
2263 */
b9fab919 2264 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2265 ret = -EIO;
c8c42864 2266 free_extent_buffer(tmp);
76a05b35
CM
2267 }
2268 return ret;
c8c42864
CM
2269}
2270
2271/*
2272 * helper function for btrfs_search_slot. This does all of the checks
2273 * for node-level blocks and does any balancing required based on
2274 * the ins_len.
2275 *
2276 * If no extra work was required, zero is returned. If we had to
2277 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2278 * start over
2279 */
2280static int
2281setup_nodes_for_search(struct btrfs_trans_handle *trans,
2282 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2283 struct extent_buffer *b, int level, int ins_len,
2284 int *write_lock_level)
c8c42864
CM
2285{
2286 int ret;
2287 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2288 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2289 int sret;
2290
bd681513
CM
2291 if (*write_lock_level < level + 1) {
2292 *write_lock_level = level + 1;
2293 btrfs_release_path(p);
2294 goto again;
2295 }
2296
c8c42864
CM
2297 sret = reada_for_balance(root, p, level);
2298 if (sret)
2299 goto again;
2300
2301 btrfs_set_path_blocking(p);
2302 sret = split_node(trans, root, p, level);
bd681513 2303 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2304
2305 BUG_ON(sret > 0);
2306 if (sret) {
2307 ret = sret;
2308 goto done;
2309 }
2310 b = p->nodes[level];
2311 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2312 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2313 int sret;
2314
bd681513
CM
2315 if (*write_lock_level < level + 1) {
2316 *write_lock_level = level + 1;
2317 btrfs_release_path(p);
2318 goto again;
2319 }
2320
c8c42864
CM
2321 sret = reada_for_balance(root, p, level);
2322 if (sret)
2323 goto again;
2324
2325 btrfs_set_path_blocking(p);
2326 sret = balance_level(trans, root, p, level);
bd681513 2327 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2328
2329 if (sret) {
2330 ret = sret;
2331 goto done;
2332 }
2333 b = p->nodes[level];
2334 if (!b) {
b3b4aa74 2335 btrfs_release_path(p);
c8c42864
CM
2336 goto again;
2337 }
2338 BUG_ON(btrfs_header_nritems(b) == 1);
2339 }
2340 return 0;
2341
2342again:
2343 ret = -EAGAIN;
2344done:
2345 return ret;
2346}
2347
74123bd7
CM
2348/*
2349 * look for key in the tree. path is filled in with nodes along the way
2350 * if key is found, we return zero and you can find the item in the leaf
2351 * level of the path (level 0)
2352 *
2353 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2354 * be inserted, and 1 is returned. If there are other errors during the
2355 * search a negative error number is returned.
97571fd0
CM
2356 *
2357 * if ins_len > 0, nodes and leaves will be split as we walk down the
2358 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2359 * possible)
74123bd7 2360 */
e089f05c
CM
2361int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2362 *root, struct btrfs_key *key, struct btrfs_path *p, int
2363 ins_len, int cow)
be0e5c09 2364{
5f39d397 2365 struct extent_buffer *b;
be0e5c09
CM
2366 int slot;
2367 int ret;
33c66f43 2368 int err;
be0e5c09 2369 int level;
925baedd 2370 int lowest_unlock = 1;
bd681513
CM
2371 int root_lock;
2372 /* everything at write_lock_level or lower must be write locked */
2373 int write_lock_level = 0;
9f3a7427 2374 u8 lowest_level = 0;
f7c79f30 2375 int min_write_lock_level;
9f3a7427 2376
6702ed49 2377 lowest_level = p->lowest_level;
323ac95b 2378 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2379 WARN_ON(p->nodes[0] != NULL);
25179201 2380
bd681513 2381 if (ins_len < 0) {
925baedd 2382 lowest_unlock = 2;
65b51a00 2383
bd681513
CM
2384 /* when we are removing items, we might have to go up to level
2385 * two as we update tree pointers Make sure we keep write
2386 * for those levels as well
2387 */
2388 write_lock_level = 2;
2389 } else if (ins_len > 0) {
2390 /*
2391 * for inserting items, make sure we have a write lock on
2392 * level 1 so we can update keys
2393 */
2394 write_lock_level = 1;
2395 }
2396
2397 if (!cow)
2398 write_lock_level = -1;
2399
2400 if (cow && (p->keep_locks || p->lowest_level))
2401 write_lock_level = BTRFS_MAX_LEVEL;
2402
f7c79f30
CM
2403 min_write_lock_level = write_lock_level;
2404
bb803951 2405again:
bd681513
CM
2406 /*
2407 * we try very hard to do read locks on the root
2408 */
2409 root_lock = BTRFS_READ_LOCK;
2410 level = 0;
5d4f98a2 2411 if (p->search_commit_root) {
bd681513
CM
2412 /*
2413 * the commit roots are read only
2414 * so we always do read locks
2415 */
5d4f98a2
YZ
2416 b = root->commit_root;
2417 extent_buffer_get(b);
bd681513 2418 level = btrfs_header_level(b);
5d4f98a2 2419 if (!p->skip_locking)
bd681513 2420 btrfs_tree_read_lock(b);
5d4f98a2 2421 } else {
bd681513 2422 if (p->skip_locking) {
5d4f98a2 2423 b = btrfs_root_node(root);
bd681513
CM
2424 level = btrfs_header_level(b);
2425 } else {
2426 /* we don't know the level of the root node
2427 * until we actually have it read locked
2428 */
2429 b = btrfs_read_lock_root_node(root);
2430 level = btrfs_header_level(b);
2431 if (level <= write_lock_level) {
2432 /* whoops, must trade for write lock */
2433 btrfs_tree_read_unlock(b);
2434 free_extent_buffer(b);
2435 b = btrfs_lock_root_node(root);
2436 root_lock = BTRFS_WRITE_LOCK;
2437
2438 /* the level might have changed, check again */
2439 level = btrfs_header_level(b);
2440 }
2441 }
5d4f98a2 2442 }
bd681513
CM
2443 p->nodes[level] = b;
2444 if (!p->skip_locking)
2445 p->locks[level] = root_lock;
925baedd 2446
eb60ceac 2447 while (b) {
5f39d397 2448 level = btrfs_header_level(b);
65b51a00
CM
2449
2450 /*
2451 * setup the path here so we can release it under lock
2452 * contention with the cow code
2453 */
02217ed2 2454 if (cow) {
c8c42864
CM
2455 /*
2456 * if we don't really need to cow this block
2457 * then we don't want to set the path blocking,
2458 * so we test it here
2459 */
5d4f98a2 2460 if (!should_cow_block(trans, root, b))
65b51a00 2461 goto cow_done;
5d4f98a2 2462
b4ce94de
CM
2463 btrfs_set_path_blocking(p);
2464
bd681513
CM
2465 /*
2466 * must have write locks on this node and the
2467 * parent
2468 */
2469 if (level + 1 > write_lock_level) {
2470 write_lock_level = level + 1;
2471 btrfs_release_path(p);
2472 goto again;
2473 }
2474
33c66f43
YZ
2475 err = btrfs_cow_block(trans, root, b,
2476 p->nodes[level + 1],
2477 p->slots[level + 1], &b);
2478 if (err) {
33c66f43 2479 ret = err;
65b51a00 2480 goto done;
54aa1f4d 2481 }
02217ed2 2482 }
65b51a00 2483cow_done:
02217ed2 2484 BUG_ON(!cow && ins_len);
65b51a00 2485
eb60ceac 2486 p->nodes[level] = b;
bd681513 2487 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2488
2489 /*
2490 * we have a lock on b and as long as we aren't changing
2491 * the tree, there is no way to for the items in b to change.
2492 * It is safe to drop the lock on our parent before we
2493 * go through the expensive btree search on b.
2494 *
2495 * If cow is true, then we might be changing slot zero,
2496 * which may require changing the parent. So, we can't
2497 * drop the lock until after we know which slot we're
2498 * operating on.
2499 */
2500 if (!cow)
2501 btrfs_unlock_up_safe(p, level + 1);
2502
5f39d397 2503 ret = bin_search(b, key, level, &slot);
b4ce94de 2504
5f39d397 2505 if (level != 0) {
33c66f43
YZ
2506 int dec = 0;
2507 if (ret && slot > 0) {
2508 dec = 1;
be0e5c09 2509 slot -= 1;
33c66f43 2510 }
be0e5c09 2511 p->slots[level] = slot;
33c66f43 2512 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2513 ins_len, &write_lock_level);
33c66f43 2514 if (err == -EAGAIN)
c8c42864 2515 goto again;
33c66f43
YZ
2516 if (err) {
2517 ret = err;
c8c42864 2518 goto done;
33c66f43 2519 }
c8c42864
CM
2520 b = p->nodes[level];
2521 slot = p->slots[level];
b4ce94de 2522
bd681513
CM
2523 /*
2524 * slot 0 is special, if we change the key
2525 * we have to update the parent pointer
2526 * which means we must have a write lock
2527 * on the parent
2528 */
2529 if (slot == 0 && cow &&
2530 write_lock_level < level + 1) {
2531 write_lock_level = level + 1;
2532 btrfs_release_path(p);
2533 goto again;
2534 }
2535
f7c79f30
CM
2536 unlock_up(p, level, lowest_unlock,
2537 min_write_lock_level, &write_lock_level);
f9efa9c7 2538
925baedd 2539 if (level == lowest_level) {
33c66f43
YZ
2540 if (dec)
2541 p->slots[level]++;
5b21f2ed 2542 goto done;
925baedd 2543 }
ca7a79ad 2544
33c66f43 2545 err = read_block_for_search(trans, root, p,
5d9e75c4 2546 &b, level, slot, key, 0);
33c66f43 2547 if (err == -EAGAIN)
c8c42864 2548 goto again;
33c66f43
YZ
2549 if (err) {
2550 ret = err;
76a05b35 2551 goto done;
33c66f43 2552 }
76a05b35 2553
b4ce94de 2554 if (!p->skip_locking) {
bd681513
CM
2555 level = btrfs_header_level(b);
2556 if (level <= write_lock_level) {
2557 err = btrfs_try_tree_write_lock(b);
2558 if (!err) {
2559 btrfs_set_path_blocking(p);
2560 btrfs_tree_lock(b);
2561 btrfs_clear_path_blocking(p, b,
2562 BTRFS_WRITE_LOCK);
2563 }
2564 p->locks[level] = BTRFS_WRITE_LOCK;
2565 } else {
2566 err = btrfs_try_tree_read_lock(b);
2567 if (!err) {
2568 btrfs_set_path_blocking(p);
2569 btrfs_tree_read_lock(b);
2570 btrfs_clear_path_blocking(p, b,
2571 BTRFS_READ_LOCK);
2572 }
2573 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2574 }
bd681513 2575 p->nodes[level] = b;
b4ce94de 2576 }
be0e5c09
CM
2577 } else {
2578 p->slots[level] = slot;
87b29b20
YZ
2579 if (ins_len > 0 &&
2580 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2581 if (write_lock_level < 1) {
2582 write_lock_level = 1;
2583 btrfs_release_path(p);
2584 goto again;
2585 }
2586
b4ce94de 2587 btrfs_set_path_blocking(p);
33c66f43
YZ
2588 err = split_leaf(trans, root, key,
2589 p, ins_len, ret == 0);
bd681513 2590 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2591
33c66f43
YZ
2592 BUG_ON(err > 0);
2593 if (err) {
2594 ret = err;
65b51a00
CM
2595 goto done;
2596 }
5c680ed6 2597 }
459931ec 2598 if (!p->search_for_split)
f7c79f30
CM
2599 unlock_up(p, level, lowest_unlock,
2600 min_write_lock_level, &write_lock_level);
65b51a00 2601 goto done;
be0e5c09
CM
2602 }
2603 }
65b51a00
CM
2604 ret = 1;
2605done:
b4ce94de
CM
2606 /*
2607 * we don't really know what they plan on doing with the path
2608 * from here on, so for now just mark it as blocking
2609 */
b9473439
CM
2610 if (!p->leave_spinning)
2611 btrfs_set_path_blocking(p);
76a05b35 2612 if (ret < 0)
b3b4aa74 2613 btrfs_release_path(p);
65b51a00 2614 return ret;
be0e5c09
CM
2615}
2616
5d9e75c4
JS
2617/*
2618 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2619 * current state of the tree together with the operations recorded in the tree
2620 * modification log to search for the key in a previous version of this tree, as
2621 * denoted by the time_seq parameter.
2622 *
2623 * Naturally, there is no support for insert, delete or cow operations.
2624 *
2625 * The resulting path and return value will be set up as if we called
2626 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2627 */
2628int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2629 struct btrfs_path *p, u64 time_seq)
2630{
2631 struct extent_buffer *b;
2632 int slot;
2633 int ret;
2634 int err;
2635 int level;
2636 int lowest_unlock = 1;
2637 u8 lowest_level = 0;
2638
2639 lowest_level = p->lowest_level;
2640 WARN_ON(p->nodes[0] != NULL);
2641
2642 if (p->search_commit_root) {
2643 BUG_ON(time_seq);
2644 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2645 }
2646
2647again:
5d9e75c4 2648 b = get_old_root(root, time_seq);
5d9e75c4 2649 level = btrfs_header_level(b);
5d9e75c4
JS
2650 p->locks[level] = BTRFS_READ_LOCK;
2651
2652 while (b) {
2653 level = btrfs_header_level(b);
2654 p->nodes[level] = b;
2655 btrfs_clear_path_blocking(p, NULL, 0);
2656
2657 /*
2658 * we have a lock on b and as long as we aren't changing
2659 * the tree, there is no way to for the items in b to change.
2660 * It is safe to drop the lock on our parent before we
2661 * go through the expensive btree search on b.
2662 */
2663 btrfs_unlock_up_safe(p, level + 1);
2664
2665 ret = bin_search(b, key, level, &slot);
2666
2667 if (level != 0) {
2668 int dec = 0;
2669 if (ret && slot > 0) {
2670 dec = 1;
2671 slot -= 1;
2672 }
2673 p->slots[level] = slot;
2674 unlock_up(p, level, lowest_unlock, 0, NULL);
2675
2676 if (level == lowest_level) {
2677 if (dec)
2678 p->slots[level]++;
2679 goto done;
2680 }
2681
2682 err = read_block_for_search(NULL, root, p, &b, level,
2683 slot, key, time_seq);
2684 if (err == -EAGAIN)
2685 goto again;
2686 if (err) {
2687 ret = err;
2688 goto done;
2689 }
2690
2691 level = btrfs_header_level(b);
2692 err = btrfs_try_tree_read_lock(b);
2693 if (!err) {
2694 btrfs_set_path_blocking(p);
2695 btrfs_tree_read_lock(b);
2696 btrfs_clear_path_blocking(p, b,
2697 BTRFS_READ_LOCK);
2698 }
2699 p->locks[level] = BTRFS_READ_LOCK;
2700 p->nodes[level] = b;
2701 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2702 if (b != p->nodes[level]) {
2703 btrfs_tree_unlock_rw(p->nodes[level],
2704 p->locks[level]);
2705 p->locks[level] = 0;
2706 p->nodes[level] = b;
2707 }
2708 } else {
2709 p->slots[level] = slot;
2710 unlock_up(p, level, lowest_unlock, 0, NULL);
2711 goto done;
2712 }
2713 }
2714 ret = 1;
2715done:
2716 if (!p->leave_spinning)
2717 btrfs_set_path_blocking(p);
2718 if (ret < 0)
2719 btrfs_release_path(p);
2720
2721 return ret;
2722}
2723
74123bd7
CM
2724/*
2725 * adjust the pointers going up the tree, starting at level
2726 * making sure the right key of each node is points to 'key'.
2727 * This is used after shifting pointers to the left, so it stops
2728 * fixing up pointers when a given leaf/node is not in slot 0 of the
2729 * higher levels
aa5d6bed 2730 *
74123bd7 2731 */
143bede5
JM
2732static void fixup_low_keys(struct btrfs_trans_handle *trans,
2733 struct btrfs_root *root, struct btrfs_path *path,
2734 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2735{
2736 int i;
5f39d397
CM
2737 struct extent_buffer *t;
2738
234b63a0 2739 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2740 int tslot = path->slots[i];
eb60ceac 2741 if (!path->nodes[i])
be0e5c09 2742 break;
5f39d397 2743 t = path->nodes[i];
f230475e 2744 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
5f39d397 2745 btrfs_set_node_key(t, key, tslot);
d6025579 2746 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2747 if (tslot != 0)
2748 break;
2749 }
2750}
2751
31840ae1
ZY
2752/*
2753 * update item key.
2754 *
2755 * This function isn't completely safe. It's the caller's responsibility
2756 * that the new key won't break the order
2757 */
143bede5
JM
2758void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *root, struct btrfs_path *path,
2760 struct btrfs_key *new_key)
31840ae1
ZY
2761{
2762 struct btrfs_disk_key disk_key;
2763 struct extent_buffer *eb;
2764 int slot;
2765
2766 eb = path->nodes[0];
2767 slot = path->slots[0];
2768 if (slot > 0) {
2769 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2770 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2771 }
2772 if (slot < btrfs_header_nritems(eb) - 1) {
2773 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2774 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2775 }
2776
2777 btrfs_cpu_key_to_disk(&disk_key, new_key);
2778 btrfs_set_item_key(eb, &disk_key, slot);
2779 btrfs_mark_buffer_dirty(eb);
2780 if (slot == 0)
2781 fixup_low_keys(trans, root, path, &disk_key, 1);
31840ae1
ZY
2782}
2783
74123bd7
CM
2784/*
2785 * try to push data from one node into the next node left in the
79f95c82 2786 * tree.
aa5d6bed
CM
2787 *
2788 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2789 * error, and > 0 if there was no room in the left hand block.
74123bd7 2790 */
98ed5174
CM
2791static int push_node_left(struct btrfs_trans_handle *trans,
2792 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2793 struct extent_buffer *src, int empty)
be0e5c09 2794{
be0e5c09 2795 int push_items = 0;
bb803951
CM
2796 int src_nritems;
2797 int dst_nritems;
aa5d6bed 2798 int ret = 0;
be0e5c09 2799
5f39d397
CM
2800 src_nritems = btrfs_header_nritems(src);
2801 dst_nritems = btrfs_header_nritems(dst);
123abc88 2802 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2803 WARN_ON(btrfs_header_generation(src) != trans->transid);
2804 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2805
bce4eae9 2806 if (!empty && src_nritems <= 8)
971a1f66
CM
2807 return 1;
2808
d397712b 2809 if (push_items <= 0)
be0e5c09
CM
2810 return 1;
2811
bce4eae9 2812 if (empty) {
971a1f66 2813 push_items = min(src_nritems, push_items);
bce4eae9
CM
2814 if (push_items < src_nritems) {
2815 /* leave at least 8 pointers in the node if
2816 * we aren't going to empty it
2817 */
2818 if (src_nritems - push_items < 8) {
2819 if (push_items <= 8)
2820 return 1;
2821 push_items -= 8;
2822 }
2823 }
2824 } else
2825 push_items = min(src_nritems - 8, push_items);
79f95c82 2826
f230475e
JS
2827 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2828 push_items);
5f39d397
CM
2829 copy_extent_buffer(dst, src,
2830 btrfs_node_key_ptr_offset(dst_nritems),
2831 btrfs_node_key_ptr_offset(0),
d397712b 2832 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 2833
bb803951 2834 if (push_items < src_nritems) {
f230475e
JS
2835 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2836 src_nritems - push_items);
5f39d397
CM
2837 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2838 btrfs_node_key_ptr_offset(push_items),
2839 (src_nritems - push_items) *
2840 sizeof(struct btrfs_key_ptr));
2841 }
2842 btrfs_set_header_nritems(src, src_nritems - push_items);
2843 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2844 btrfs_mark_buffer_dirty(src);
2845 btrfs_mark_buffer_dirty(dst);
31840ae1 2846
79f95c82
CM
2847 return ret;
2848}
2849
2850/*
2851 * try to push data from one node into the next node right in the
2852 * tree.
2853 *
2854 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2855 * error, and > 0 if there was no room in the right hand block.
2856 *
2857 * this will only push up to 1/2 the contents of the left node over
2858 */
5f39d397
CM
2859static int balance_node_right(struct btrfs_trans_handle *trans,
2860 struct btrfs_root *root,
2861 struct extent_buffer *dst,
2862 struct extent_buffer *src)
79f95c82 2863{
79f95c82
CM
2864 int push_items = 0;
2865 int max_push;
2866 int src_nritems;
2867 int dst_nritems;
2868 int ret = 0;
79f95c82 2869
7bb86316
CM
2870 WARN_ON(btrfs_header_generation(src) != trans->transid);
2871 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2872
5f39d397
CM
2873 src_nritems = btrfs_header_nritems(src);
2874 dst_nritems = btrfs_header_nritems(dst);
123abc88 2875 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 2876 if (push_items <= 0)
79f95c82 2877 return 1;
bce4eae9 2878
d397712b 2879 if (src_nritems < 4)
bce4eae9 2880 return 1;
79f95c82
CM
2881
2882 max_push = src_nritems / 2 + 1;
2883 /* don't try to empty the node */
d397712b 2884 if (max_push >= src_nritems)
79f95c82 2885 return 1;
252c38f0 2886
79f95c82
CM
2887 if (max_push < push_items)
2888 push_items = max_push;
2889
f230475e 2890 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
2891 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2892 btrfs_node_key_ptr_offset(0),
2893 (dst_nritems) *
2894 sizeof(struct btrfs_key_ptr));
d6025579 2895
f230475e
JS
2896 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2897 src_nritems - push_items, push_items);
5f39d397
CM
2898 copy_extent_buffer(dst, src,
2899 btrfs_node_key_ptr_offset(0),
2900 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 2901 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 2902
5f39d397
CM
2903 btrfs_set_header_nritems(src, src_nritems - push_items);
2904 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 2905
5f39d397
CM
2906 btrfs_mark_buffer_dirty(src);
2907 btrfs_mark_buffer_dirty(dst);
31840ae1 2908
aa5d6bed 2909 return ret;
be0e5c09
CM
2910}
2911
97571fd0
CM
2912/*
2913 * helper function to insert a new root level in the tree.
2914 * A new node is allocated, and a single item is inserted to
2915 * point to the existing root
aa5d6bed
CM
2916 *
2917 * returns zero on success or < 0 on failure.
97571fd0 2918 */
d397712b 2919static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397
CM
2920 struct btrfs_root *root,
2921 struct btrfs_path *path, int level)
5c680ed6 2922{
7bb86316 2923 u64 lower_gen;
5f39d397
CM
2924 struct extent_buffer *lower;
2925 struct extent_buffer *c;
925baedd 2926 struct extent_buffer *old;
5f39d397 2927 struct btrfs_disk_key lower_key;
5c680ed6
CM
2928
2929 BUG_ON(path->nodes[level]);
2930 BUG_ON(path->nodes[level-1] != root->node);
2931
7bb86316
CM
2932 lower = path->nodes[level-1];
2933 if (level == 1)
2934 btrfs_item_key(lower, &lower_key, 0);
2935 else
2936 btrfs_node_key(lower, &lower_key, 0);
2937
31840ae1 2938 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 2939 root->root_key.objectid, &lower_key,
5581a51a 2940 level, root->node->start, 0);
5f39d397
CM
2941 if (IS_ERR(c))
2942 return PTR_ERR(c);
925baedd 2943
f0486c68
YZ
2944 root_add_used(root, root->nodesize);
2945
5d4f98a2 2946 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
2947 btrfs_set_header_nritems(c, 1);
2948 btrfs_set_header_level(c, level);
db94535d 2949 btrfs_set_header_bytenr(c, c->start);
5f39d397 2950 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 2951 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 2952 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
2953
2954 write_extent_buffer(c, root->fs_info->fsid,
2955 (unsigned long)btrfs_header_fsid(c),
2956 BTRFS_FSID_SIZE);
e17cade2
CM
2957
2958 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2959 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2960 BTRFS_UUID_SIZE);
2961
5f39d397 2962 btrfs_set_node_key(c, &lower_key, 0);
db94535d 2963 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 2964 lower_gen = btrfs_header_generation(lower);
31840ae1 2965 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
2966
2967 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 2968
5f39d397 2969 btrfs_mark_buffer_dirty(c);
d5719762 2970
925baedd 2971 old = root->node;
f230475e 2972 tree_mod_log_set_root_pointer(root, c);
240f62c8 2973 rcu_assign_pointer(root->node, c);
925baedd
CM
2974
2975 /* the super has an extra ref to root->node */
2976 free_extent_buffer(old);
2977
0b86a832 2978 add_root_to_dirty_list(root);
5f39d397
CM
2979 extent_buffer_get(c);
2980 path->nodes[level] = c;
bd681513 2981 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
2982 path->slots[level] = 0;
2983 return 0;
2984}
2985
74123bd7
CM
2986/*
2987 * worker function to insert a single pointer in a node.
2988 * the node should have enough room for the pointer already
97571fd0 2989 *
74123bd7
CM
2990 * slot and level indicate where you want the key to go, and
2991 * blocknr is the block the key points to.
2992 */
143bede5
JM
2993static void insert_ptr(struct btrfs_trans_handle *trans,
2994 struct btrfs_root *root, struct btrfs_path *path,
2995 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 2996 int slot, int level)
74123bd7 2997{
5f39d397 2998 struct extent_buffer *lower;
74123bd7 2999 int nritems;
f3ea38da 3000 int ret;
5c680ed6
CM
3001
3002 BUG_ON(!path->nodes[level]);
f0486c68 3003 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3004 lower = path->nodes[level];
3005 nritems = btrfs_header_nritems(lower);
c293498b 3006 BUG_ON(slot > nritems);
143bede5 3007 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3008 if (slot != nritems) {
c3e06965 3009 if (level)
f3ea38da
JS
3010 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3011 slot, nritems - slot);
5f39d397
CM
3012 memmove_extent_buffer(lower,
3013 btrfs_node_key_ptr_offset(slot + 1),
3014 btrfs_node_key_ptr_offset(slot),
d6025579 3015 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3016 }
c3e06965 3017 if (level) {
f3ea38da
JS
3018 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3019 MOD_LOG_KEY_ADD);
3020 BUG_ON(ret < 0);
3021 }
5f39d397 3022 btrfs_set_node_key(lower, key, slot);
db94535d 3023 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3024 WARN_ON(trans->transid == 0);
3025 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3026 btrfs_set_header_nritems(lower, nritems + 1);
3027 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3028}
3029
97571fd0
CM
3030/*
3031 * split the node at the specified level in path in two.
3032 * The path is corrected to point to the appropriate node after the split
3033 *
3034 * Before splitting this tries to make some room in the node by pushing
3035 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3036 *
3037 * returns 0 on success and < 0 on failure
97571fd0 3038 */
e02119d5
CM
3039static noinline int split_node(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path, int level)
be0e5c09 3042{
5f39d397
CM
3043 struct extent_buffer *c;
3044 struct extent_buffer *split;
3045 struct btrfs_disk_key disk_key;
be0e5c09 3046 int mid;
5c680ed6 3047 int ret;
7518a238 3048 u32 c_nritems;
eb60ceac 3049
5f39d397 3050 c = path->nodes[level];
7bb86316 3051 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3052 if (c == root->node) {
5c680ed6 3053 /* trying to split the root, lets make a new one */
e089f05c 3054 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3055 if (ret)
3056 return ret;
b3612421 3057 } else {
e66f709b 3058 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3059 c = path->nodes[level];
3060 if (!ret && btrfs_header_nritems(c) <
c448acf0 3061 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3062 return 0;
54aa1f4d
CM
3063 if (ret < 0)
3064 return ret;
be0e5c09 3065 }
e66f709b 3066
5f39d397 3067 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3068 mid = (c_nritems + 1) / 2;
3069 btrfs_node_key(c, &disk_key, mid);
7bb86316 3070
5d4f98a2 3071 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3072 root->root_key.objectid,
5581a51a 3073 &disk_key, level, c->start, 0);
5f39d397
CM
3074 if (IS_ERR(split))
3075 return PTR_ERR(split);
3076
f0486c68
YZ
3077 root_add_used(root, root->nodesize);
3078
5d4f98a2 3079 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3080 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3081 btrfs_set_header_bytenr(split, split->start);
5f39d397 3082 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3083 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3084 btrfs_set_header_owner(split, root->root_key.objectid);
3085 write_extent_buffer(split, root->fs_info->fsid,
3086 (unsigned long)btrfs_header_fsid(split),
3087 BTRFS_FSID_SIZE);
e17cade2
CM
3088 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3089 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3090 BTRFS_UUID_SIZE);
54aa1f4d 3091
f230475e 3092 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3093 copy_extent_buffer(split, c,
3094 btrfs_node_key_ptr_offset(0),
3095 btrfs_node_key_ptr_offset(mid),
3096 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3097 btrfs_set_header_nritems(split, c_nritems - mid);
3098 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3099 ret = 0;
3100
5f39d397
CM
3101 btrfs_mark_buffer_dirty(c);
3102 btrfs_mark_buffer_dirty(split);
3103
143bede5 3104 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3105 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3106
5de08d7d 3107 if (path->slots[level] >= mid) {
5c680ed6 3108 path->slots[level] -= mid;
925baedd 3109 btrfs_tree_unlock(c);
5f39d397
CM
3110 free_extent_buffer(c);
3111 path->nodes[level] = split;
5c680ed6
CM
3112 path->slots[level + 1] += 1;
3113 } else {
925baedd 3114 btrfs_tree_unlock(split);
5f39d397 3115 free_extent_buffer(split);
be0e5c09 3116 }
aa5d6bed 3117 return ret;
be0e5c09
CM
3118}
3119
74123bd7
CM
3120/*
3121 * how many bytes are required to store the items in a leaf. start
3122 * and nr indicate which items in the leaf to check. This totals up the
3123 * space used both by the item structs and the item data
3124 */
5f39d397 3125static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09
CM
3126{
3127 int data_len;
5f39d397 3128 int nritems = btrfs_header_nritems(l);
d4dbff95 3129 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3130
3131 if (!nr)
3132 return 0;
5f39d397
CM
3133 data_len = btrfs_item_end_nr(l, start);
3134 data_len = data_len - btrfs_item_offset_nr(l, end);
0783fcfc 3135 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3136 WARN_ON(data_len < 0);
be0e5c09
CM
3137 return data_len;
3138}
3139
d4dbff95
CM
3140/*
3141 * The space between the end of the leaf items and
3142 * the start of the leaf data. IOW, how much room
3143 * the leaf has left for both items and data
3144 */
d397712b 3145noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3146 struct extent_buffer *leaf)
d4dbff95 3147{
5f39d397
CM
3148 int nritems = btrfs_header_nritems(leaf);
3149 int ret;
3150 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3151 if (ret < 0) {
d397712b
CM
3152 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3153 "used %d nritems %d\n",
ae2f5411 3154 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3155 leaf_space_used(leaf, 0, nritems), nritems);
3156 }
3157 return ret;
d4dbff95
CM
3158}
3159
99d8f83c
CM
3160/*
3161 * min slot controls the lowest index we're willing to push to the
3162 * right. We'll push up to and including min_slot, but no lower
3163 */
44871b1b
CM
3164static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3165 struct btrfs_root *root,
3166 struct btrfs_path *path,
3167 int data_size, int empty,
3168 struct extent_buffer *right,
99d8f83c
CM
3169 int free_space, u32 left_nritems,
3170 u32 min_slot)
00ec4c51 3171{
5f39d397 3172 struct extent_buffer *left = path->nodes[0];
44871b1b 3173 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3174 struct btrfs_map_token token;
5f39d397 3175 struct btrfs_disk_key disk_key;
00ec4c51 3176 int slot;
34a38218 3177 u32 i;
00ec4c51
CM
3178 int push_space = 0;
3179 int push_items = 0;
0783fcfc 3180 struct btrfs_item *item;
34a38218 3181 u32 nr;
7518a238 3182 u32 right_nritems;
5f39d397 3183 u32 data_end;
db94535d 3184 u32 this_item_size;
00ec4c51 3185
cfed81a0
CM
3186 btrfs_init_map_token(&token);
3187
34a38218
CM
3188 if (empty)
3189 nr = 0;
3190 else
99d8f83c 3191 nr = max_t(u32, 1, min_slot);
34a38218 3192
31840ae1 3193 if (path->slots[0] >= left_nritems)
87b29b20 3194 push_space += data_size;
31840ae1 3195
44871b1b 3196 slot = path->slots[1];
34a38218
CM
3197 i = left_nritems - 1;
3198 while (i >= nr) {
5f39d397 3199 item = btrfs_item_nr(left, i);
db94535d 3200
31840ae1
ZY
3201 if (!empty && push_items > 0) {
3202 if (path->slots[0] > i)
3203 break;
3204 if (path->slots[0] == i) {
3205 int space = btrfs_leaf_free_space(root, left);
3206 if (space + push_space * 2 > free_space)
3207 break;
3208 }
3209 }
3210
00ec4c51 3211 if (path->slots[0] == i)
87b29b20 3212 push_space += data_size;
db94535d 3213
db94535d
CM
3214 this_item_size = btrfs_item_size(left, item);
3215 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3216 break;
31840ae1 3217
00ec4c51 3218 push_items++;
db94535d 3219 push_space += this_item_size + sizeof(*item);
34a38218
CM
3220 if (i == 0)
3221 break;
3222 i--;
db94535d 3223 }
5f39d397 3224
925baedd
CM
3225 if (push_items == 0)
3226 goto out_unlock;
5f39d397 3227
34a38218 3228 if (!empty && push_items == left_nritems)
a429e513 3229 WARN_ON(1);
5f39d397 3230
00ec4c51 3231 /* push left to right */
5f39d397 3232 right_nritems = btrfs_header_nritems(right);
34a38218 3233
5f39d397 3234 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3235 push_space -= leaf_data_end(root, left);
5f39d397 3236
00ec4c51 3237 /* make room in the right data area */
5f39d397
CM
3238 data_end = leaf_data_end(root, right);
3239 memmove_extent_buffer(right,
3240 btrfs_leaf_data(right) + data_end - push_space,
3241 btrfs_leaf_data(right) + data_end,
3242 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3243
00ec4c51 3244 /* copy from the left data area */
5f39d397 3245 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3246 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3247 btrfs_leaf_data(left) + leaf_data_end(root, left),
3248 push_space);
5f39d397
CM
3249
3250 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3251 btrfs_item_nr_offset(0),
3252 right_nritems * sizeof(struct btrfs_item));
3253
00ec4c51 3254 /* copy the items from left to right */
5f39d397
CM
3255 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3256 btrfs_item_nr_offset(left_nritems - push_items),
3257 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3258
3259 /* update the item pointers */
7518a238 3260 right_nritems += push_items;
5f39d397 3261 btrfs_set_header_nritems(right, right_nritems);
123abc88 3262 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3263 for (i = 0; i < right_nritems; i++) {
5f39d397 3264 item = btrfs_item_nr(right, i);
cfed81a0
CM
3265 push_space -= btrfs_token_item_size(right, item, &token);
3266 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3267 }
3268
7518a238 3269 left_nritems -= push_items;
5f39d397 3270 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3271
34a38218
CM
3272 if (left_nritems)
3273 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3274 else
3275 clean_tree_block(trans, root, left);
3276
5f39d397 3277 btrfs_mark_buffer_dirty(right);
a429e513 3278
5f39d397
CM
3279 btrfs_item_key(right, &disk_key, 0);
3280 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3281 btrfs_mark_buffer_dirty(upper);
02217ed2 3282
00ec4c51 3283 /* then fixup the leaf pointer in the path */
7518a238
CM
3284 if (path->slots[0] >= left_nritems) {
3285 path->slots[0] -= left_nritems;
925baedd
CM
3286 if (btrfs_header_nritems(path->nodes[0]) == 0)
3287 clean_tree_block(trans, root, path->nodes[0]);
3288 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3289 free_extent_buffer(path->nodes[0]);
3290 path->nodes[0] = right;
00ec4c51
CM
3291 path->slots[1] += 1;
3292 } else {
925baedd 3293 btrfs_tree_unlock(right);
5f39d397 3294 free_extent_buffer(right);
00ec4c51
CM
3295 }
3296 return 0;
925baedd
CM
3297
3298out_unlock:
3299 btrfs_tree_unlock(right);
3300 free_extent_buffer(right);
3301 return 1;
00ec4c51 3302}
925baedd 3303
44871b1b
CM
3304/*
3305 * push some data in the path leaf to the right, trying to free up at
3306 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3307 *
3308 * returns 1 if the push failed because the other node didn't have enough
3309 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3310 *
3311 * this will push starting from min_slot to the end of the leaf. It won't
3312 * push any slot lower than min_slot
44871b1b
CM
3313 */
3314static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3315 *root, struct btrfs_path *path,
3316 int min_data_size, int data_size,
3317 int empty, u32 min_slot)
44871b1b
CM
3318{
3319 struct extent_buffer *left = path->nodes[0];
3320 struct extent_buffer *right;
3321 struct extent_buffer *upper;
3322 int slot;
3323 int free_space;
3324 u32 left_nritems;
3325 int ret;
3326
3327 if (!path->nodes[1])
3328 return 1;
3329
3330 slot = path->slots[1];
3331 upper = path->nodes[1];
3332 if (slot >= btrfs_header_nritems(upper) - 1)
3333 return 1;
3334
3335 btrfs_assert_tree_locked(path->nodes[1]);
3336
3337 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3338 if (right == NULL)
3339 return 1;
3340
44871b1b
CM
3341 btrfs_tree_lock(right);
3342 btrfs_set_lock_blocking(right);
3343
3344 free_space = btrfs_leaf_free_space(root, right);
3345 if (free_space < data_size)
3346 goto out_unlock;
3347
3348 /* cow and double check */
3349 ret = btrfs_cow_block(trans, root, right, upper,
3350 slot + 1, &right);
3351 if (ret)
3352 goto out_unlock;
3353
3354 free_space = btrfs_leaf_free_space(root, right);
3355 if (free_space < data_size)
3356 goto out_unlock;
3357
3358 left_nritems = btrfs_header_nritems(left);
3359 if (left_nritems == 0)
3360 goto out_unlock;
3361
99d8f83c
CM
3362 return __push_leaf_right(trans, root, path, min_data_size, empty,
3363 right, free_space, left_nritems, min_slot);
44871b1b
CM
3364out_unlock:
3365 btrfs_tree_unlock(right);
3366 free_extent_buffer(right);
3367 return 1;
3368}
3369
74123bd7
CM
3370/*
3371 * push some data in the path leaf to the left, trying to free up at
3372 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3373 *
3374 * max_slot can put a limit on how far into the leaf we'll push items. The
3375 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3376 * items
74123bd7 3377 */
44871b1b
CM
3378static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3379 struct btrfs_root *root,
3380 struct btrfs_path *path, int data_size,
3381 int empty, struct extent_buffer *left,
99d8f83c
CM
3382 int free_space, u32 right_nritems,
3383 u32 max_slot)
be0e5c09 3384{
5f39d397
CM
3385 struct btrfs_disk_key disk_key;
3386 struct extent_buffer *right = path->nodes[0];
be0e5c09 3387 int i;
be0e5c09
CM
3388 int push_space = 0;
3389 int push_items = 0;
0783fcfc 3390 struct btrfs_item *item;
7518a238 3391 u32 old_left_nritems;
34a38218 3392 u32 nr;
aa5d6bed 3393 int ret = 0;
db94535d
CM
3394 u32 this_item_size;
3395 u32 old_left_item_size;
cfed81a0
CM
3396 struct btrfs_map_token token;
3397
3398 btrfs_init_map_token(&token);
be0e5c09 3399
34a38218 3400 if (empty)
99d8f83c 3401 nr = min(right_nritems, max_slot);
34a38218 3402 else
99d8f83c 3403 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3404
3405 for (i = 0; i < nr; i++) {
5f39d397 3406 item = btrfs_item_nr(right, i);
db94535d 3407
31840ae1
ZY
3408 if (!empty && push_items > 0) {
3409 if (path->slots[0] < i)
3410 break;
3411 if (path->slots[0] == i) {
3412 int space = btrfs_leaf_free_space(root, right);
3413 if (space + push_space * 2 > free_space)
3414 break;
3415 }
3416 }
3417
be0e5c09 3418 if (path->slots[0] == i)
87b29b20 3419 push_space += data_size;
db94535d
CM
3420
3421 this_item_size = btrfs_item_size(right, item);
3422 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3423 break;
db94535d 3424
be0e5c09 3425 push_items++;
db94535d
CM
3426 push_space += this_item_size + sizeof(*item);
3427 }
3428
be0e5c09 3429 if (push_items == 0) {
925baedd
CM
3430 ret = 1;
3431 goto out;
be0e5c09 3432 }
34a38218 3433 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3434 WARN_ON(1);
5f39d397 3435
be0e5c09 3436 /* push data from right to left */
5f39d397
CM
3437 copy_extent_buffer(left, right,
3438 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3439 btrfs_item_nr_offset(0),
3440 push_items * sizeof(struct btrfs_item));
3441
123abc88 3442 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3443 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3444
3445 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3446 leaf_data_end(root, left) - push_space,
3447 btrfs_leaf_data(right) +
5f39d397 3448 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3449 push_space);
5f39d397 3450 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3451 BUG_ON(old_left_nritems <= 0);
eb60ceac 3452
db94535d 3453 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3454 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3455 u32 ioff;
db94535d 3456
5f39d397 3457 item = btrfs_item_nr(left, i);
db94535d 3458
cfed81a0
CM
3459 ioff = btrfs_token_item_offset(left, item, &token);
3460 btrfs_set_token_item_offset(left, item,
3461 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3462 &token);
be0e5c09 3463 }
5f39d397 3464 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3465
3466 /* fixup right node */
34a38218 3467 if (push_items > right_nritems) {
d397712b
CM
3468 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3469 right_nritems);
34a38218
CM
3470 WARN_ON(1);
3471 }
3472
3473 if (push_items < right_nritems) {
3474 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3475 leaf_data_end(root, right);
3476 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3477 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3478 btrfs_leaf_data(right) +
3479 leaf_data_end(root, right), push_space);
3480
3481 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3482 btrfs_item_nr_offset(push_items),
3483 (btrfs_header_nritems(right) - push_items) *
3484 sizeof(struct btrfs_item));
34a38218 3485 }
eef1c494
Y
3486 right_nritems -= push_items;
3487 btrfs_set_header_nritems(right, right_nritems);
123abc88 3488 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3489 for (i = 0; i < right_nritems; i++) {
3490 item = btrfs_item_nr(right, i);
db94535d 3491
cfed81a0
CM
3492 push_space = push_space - btrfs_token_item_size(right,
3493 item, &token);
3494 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3495 }
eb60ceac 3496
5f39d397 3497 btrfs_mark_buffer_dirty(left);
34a38218
CM
3498 if (right_nritems)
3499 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3500 else
3501 clean_tree_block(trans, root, right);
098f59c2 3502
5f39d397 3503 btrfs_item_key(right, &disk_key, 0);
143bede5 3504 fixup_low_keys(trans, root, path, &disk_key, 1);
be0e5c09
CM
3505
3506 /* then fixup the leaf pointer in the path */
3507 if (path->slots[0] < push_items) {
3508 path->slots[0] += old_left_nritems;
925baedd 3509 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3510 free_extent_buffer(path->nodes[0]);
3511 path->nodes[0] = left;
be0e5c09
CM
3512 path->slots[1] -= 1;
3513 } else {
925baedd 3514 btrfs_tree_unlock(left);
5f39d397 3515 free_extent_buffer(left);
be0e5c09
CM
3516 path->slots[0] -= push_items;
3517 }
eb60ceac 3518 BUG_ON(path->slots[0] < 0);
aa5d6bed 3519 return ret;
925baedd
CM
3520out:
3521 btrfs_tree_unlock(left);
3522 free_extent_buffer(left);
3523 return ret;
be0e5c09
CM
3524}
3525
44871b1b
CM
3526/*
3527 * push some data in the path leaf to the left, trying to free up at
3528 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3529 *
3530 * max_slot can put a limit on how far into the leaf we'll push items. The
3531 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3532 * items
44871b1b
CM
3533 */
3534static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3535 *root, struct btrfs_path *path, int min_data_size,
3536 int data_size, int empty, u32 max_slot)
44871b1b
CM
3537{
3538 struct extent_buffer *right = path->nodes[0];
3539 struct extent_buffer *left;
3540 int slot;
3541 int free_space;
3542 u32 right_nritems;
3543 int ret = 0;
3544
3545 slot = path->slots[1];
3546 if (slot == 0)
3547 return 1;
3548 if (!path->nodes[1])
3549 return 1;
3550
3551 right_nritems = btrfs_header_nritems(right);
3552 if (right_nritems == 0)
3553 return 1;
3554
3555 btrfs_assert_tree_locked(path->nodes[1]);
3556
3557 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3558 if (left == NULL)
3559 return 1;
3560
44871b1b
CM
3561 btrfs_tree_lock(left);
3562 btrfs_set_lock_blocking(left);
3563
3564 free_space = btrfs_leaf_free_space(root, left);
3565 if (free_space < data_size) {
3566 ret = 1;
3567 goto out;
3568 }
3569
3570 /* cow and double check */
3571 ret = btrfs_cow_block(trans, root, left,
3572 path->nodes[1], slot - 1, &left);
3573 if (ret) {
3574 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3575 if (ret == -ENOSPC)
3576 ret = 1;
44871b1b
CM
3577 goto out;
3578 }
3579
3580 free_space = btrfs_leaf_free_space(root, left);
3581 if (free_space < data_size) {
3582 ret = 1;
3583 goto out;
3584 }
3585
99d8f83c
CM
3586 return __push_leaf_left(trans, root, path, min_data_size,
3587 empty, left, free_space, right_nritems,
3588 max_slot);
44871b1b
CM
3589out:
3590 btrfs_tree_unlock(left);
3591 free_extent_buffer(left);
3592 return ret;
3593}
3594
3595/*
3596 * split the path's leaf in two, making sure there is at least data_size
3597 * available for the resulting leaf level of the path.
44871b1b 3598 */
143bede5
JM
3599static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3600 struct btrfs_root *root,
3601 struct btrfs_path *path,
3602 struct extent_buffer *l,
3603 struct extent_buffer *right,
3604 int slot, int mid, int nritems)
44871b1b
CM
3605{
3606 int data_copy_size;
3607 int rt_data_off;
3608 int i;
44871b1b 3609 struct btrfs_disk_key disk_key;
cfed81a0
CM
3610 struct btrfs_map_token token;
3611
3612 btrfs_init_map_token(&token);
44871b1b
CM
3613
3614 nritems = nritems - mid;
3615 btrfs_set_header_nritems(right, nritems);
3616 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3617
3618 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3619 btrfs_item_nr_offset(mid),
3620 nritems * sizeof(struct btrfs_item));
3621
3622 copy_extent_buffer(right, l,
3623 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3624 data_copy_size, btrfs_leaf_data(l) +
3625 leaf_data_end(root, l), data_copy_size);
3626
3627 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3628 btrfs_item_end_nr(l, mid);
3629
3630 for (i = 0; i < nritems; i++) {
3631 struct btrfs_item *item = btrfs_item_nr(right, i);
3632 u32 ioff;
3633
cfed81a0
CM
3634 ioff = btrfs_token_item_offset(right, item, &token);
3635 btrfs_set_token_item_offset(right, item,
3636 ioff + rt_data_off, &token);
44871b1b
CM
3637 }
3638
44871b1b 3639 btrfs_set_header_nritems(l, mid);
44871b1b 3640 btrfs_item_key(right, &disk_key, 0);
143bede5 3641 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3642 path->slots[1] + 1, 1);
44871b1b
CM
3643
3644 btrfs_mark_buffer_dirty(right);
3645 btrfs_mark_buffer_dirty(l);
3646 BUG_ON(path->slots[0] != slot);
3647
44871b1b
CM
3648 if (mid <= slot) {
3649 btrfs_tree_unlock(path->nodes[0]);
3650 free_extent_buffer(path->nodes[0]);
3651 path->nodes[0] = right;
3652 path->slots[0] -= mid;
3653 path->slots[1] += 1;
3654 } else {
3655 btrfs_tree_unlock(right);
3656 free_extent_buffer(right);
3657 }
3658
3659 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3660}
3661
99d8f83c
CM
3662/*
3663 * double splits happen when we need to insert a big item in the middle
3664 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3665 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3666 * A B C
3667 *
3668 * We avoid this by trying to push the items on either side of our target
3669 * into the adjacent leaves. If all goes well we can avoid the double split
3670 * completely.
3671 */
3672static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3673 struct btrfs_root *root,
3674 struct btrfs_path *path,
3675 int data_size)
3676{
3677 int ret;
3678 int progress = 0;
3679 int slot;
3680 u32 nritems;
3681
3682 slot = path->slots[0];
3683
3684 /*
3685 * try to push all the items after our slot into the
3686 * right leaf
3687 */
3688 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3689 if (ret < 0)
3690 return ret;
3691
3692 if (ret == 0)
3693 progress++;
3694
3695 nritems = btrfs_header_nritems(path->nodes[0]);
3696 /*
3697 * our goal is to get our slot at the start or end of a leaf. If
3698 * we've done so we're done
3699 */
3700 if (path->slots[0] == 0 || path->slots[0] == nritems)
3701 return 0;
3702
3703 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3704 return 0;
3705
3706 /* try to push all the items before our slot into the next leaf */
3707 slot = path->slots[0];
3708 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3709 if (ret < 0)
3710 return ret;
3711
3712 if (ret == 0)
3713 progress++;
3714
3715 if (progress)
3716 return 0;
3717 return 1;
3718}
3719
74123bd7
CM
3720/*
3721 * split the path's leaf in two, making sure there is at least data_size
3722 * available for the resulting leaf level of the path.
aa5d6bed
CM
3723 *
3724 * returns 0 if all went well and < 0 on failure.
74123bd7 3725 */
e02119d5
CM
3726static noinline int split_leaf(struct btrfs_trans_handle *trans,
3727 struct btrfs_root *root,
3728 struct btrfs_key *ins_key,
3729 struct btrfs_path *path, int data_size,
3730 int extend)
be0e5c09 3731{
5d4f98a2 3732 struct btrfs_disk_key disk_key;
5f39d397 3733 struct extent_buffer *l;
7518a238 3734 u32 nritems;
eb60ceac
CM
3735 int mid;
3736 int slot;
5f39d397 3737 struct extent_buffer *right;
d4dbff95 3738 int ret = 0;
aa5d6bed 3739 int wret;
5d4f98a2 3740 int split;
cc0c5538 3741 int num_doubles = 0;
99d8f83c 3742 int tried_avoid_double = 0;
aa5d6bed 3743
a5719521
YZ
3744 l = path->nodes[0];
3745 slot = path->slots[0];
3746 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3747 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3748 return -EOVERFLOW;
3749
40689478 3750 /* first try to make some room by pushing left and right */
99d8f83c
CM
3751 if (data_size) {
3752 wret = push_leaf_right(trans, root, path, data_size,
3753 data_size, 0, 0);
d397712b 3754 if (wret < 0)
eaee50e8 3755 return wret;
3685f791 3756 if (wret) {
99d8f83c
CM
3757 wret = push_leaf_left(trans, root, path, data_size,
3758 data_size, 0, (u32)-1);
3685f791
CM
3759 if (wret < 0)
3760 return wret;
3761 }
3762 l = path->nodes[0];
aa5d6bed 3763
3685f791 3764 /* did the pushes work? */
87b29b20 3765 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3766 return 0;
3326d1b0 3767 }
aa5d6bed 3768
5c680ed6 3769 if (!path->nodes[1]) {
e089f05c 3770 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3771 if (ret)
3772 return ret;
3773 }
cc0c5538 3774again:
5d4f98a2 3775 split = 1;
cc0c5538 3776 l = path->nodes[0];
eb60ceac 3777 slot = path->slots[0];
5f39d397 3778 nritems = btrfs_header_nritems(l);
d397712b 3779 mid = (nritems + 1) / 2;
54aa1f4d 3780
5d4f98a2
YZ
3781 if (mid <= slot) {
3782 if (nritems == 1 ||
3783 leaf_space_used(l, mid, nritems - mid) + data_size >
3784 BTRFS_LEAF_DATA_SIZE(root)) {
3785 if (slot >= nritems) {
3786 split = 0;
3787 } else {
3788 mid = slot;
3789 if (mid != nritems &&
3790 leaf_space_used(l, mid, nritems - mid) +
3791 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3792 if (data_size && !tried_avoid_double)
3793 goto push_for_double;
5d4f98a2
YZ
3794 split = 2;
3795 }
3796 }
3797 }
3798 } else {
3799 if (leaf_space_used(l, 0, mid) + data_size >
3800 BTRFS_LEAF_DATA_SIZE(root)) {
3801 if (!extend && data_size && slot == 0) {
3802 split = 0;
3803 } else if ((extend || !data_size) && slot == 0) {
3804 mid = 1;
3805 } else {
3806 mid = slot;
3807 if (mid != nritems &&
3808 leaf_space_used(l, mid, nritems - mid) +
3809 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3810 if (data_size && !tried_avoid_double)
3811 goto push_for_double;
5d4f98a2
YZ
3812 split = 2 ;
3813 }
3814 }
3815 }
3816 }
3817
3818 if (split == 0)
3819 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3820 else
3821 btrfs_item_key(l, &disk_key, mid);
3822
3823 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 3824 root->root_key.objectid,
5581a51a 3825 &disk_key, 0, l->start, 0);
f0486c68 3826 if (IS_ERR(right))
5f39d397 3827 return PTR_ERR(right);
f0486c68
YZ
3828
3829 root_add_used(root, root->leafsize);
5f39d397
CM
3830
3831 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 3832 btrfs_set_header_bytenr(right, right->start);
5f39d397 3833 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 3834 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3835 btrfs_set_header_owner(right, root->root_key.objectid);
3836 btrfs_set_header_level(right, 0);
3837 write_extent_buffer(right, root->fs_info->fsid,
3838 (unsigned long)btrfs_header_fsid(right),
3839 BTRFS_FSID_SIZE);
e17cade2
CM
3840
3841 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3842 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3843 BTRFS_UUID_SIZE);
44871b1b 3844
5d4f98a2
YZ
3845 if (split == 0) {
3846 if (mid <= slot) {
3847 btrfs_set_header_nritems(right, 0);
143bede5 3848 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3849 path->slots[1] + 1, 1);
5d4f98a2
YZ
3850 btrfs_tree_unlock(path->nodes[0]);
3851 free_extent_buffer(path->nodes[0]);
3852 path->nodes[0] = right;
3853 path->slots[0] = 0;
3854 path->slots[1] += 1;
3855 } else {
3856 btrfs_set_header_nritems(right, 0);
143bede5 3857 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3858 path->slots[1], 1);
5d4f98a2
YZ
3859 btrfs_tree_unlock(path->nodes[0]);
3860 free_extent_buffer(path->nodes[0]);
3861 path->nodes[0] = right;
3862 path->slots[0] = 0;
143bede5
JM
3863 if (path->slots[1] == 0)
3864 fixup_low_keys(trans, root, path,
3865 &disk_key, 1);
d4dbff95 3866 }
5d4f98a2
YZ
3867 btrfs_mark_buffer_dirty(right);
3868 return ret;
d4dbff95 3869 }
74123bd7 3870
143bede5 3871 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 3872
5d4f98a2 3873 if (split == 2) {
cc0c5538
CM
3874 BUG_ON(num_doubles != 0);
3875 num_doubles++;
3876 goto again;
a429e513 3877 }
44871b1b 3878
143bede5 3879 return 0;
99d8f83c
CM
3880
3881push_for_double:
3882 push_for_double_split(trans, root, path, data_size);
3883 tried_avoid_double = 1;
3884 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3885 return 0;
3886 goto again;
be0e5c09
CM
3887}
3888
ad48fd75
YZ
3889static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3890 struct btrfs_root *root,
3891 struct btrfs_path *path, int ins_len)
459931ec 3892{
ad48fd75 3893 struct btrfs_key key;
459931ec 3894 struct extent_buffer *leaf;
ad48fd75
YZ
3895 struct btrfs_file_extent_item *fi;
3896 u64 extent_len = 0;
3897 u32 item_size;
3898 int ret;
459931ec
CM
3899
3900 leaf = path->nodes[0];
ad48fd75
YZ
3901 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3902
3903 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3904 key.type != BTRFS_EXTENT_CSUM_KEY);
3905
3906 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3907 return 0;
459931ec
CM
3908
3909 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
3910 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3911 fi = btrfs_item_ptr(leaf, path->slots[0],
3912 struct btrfs_file_extent_item);
3913 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3914 }
b3b4aa74 3915 btrfs_release_path(path);
459931ec 3916
459931ec 3917 path->keep_locks = 1;
ad48fd75
YZ
3918 path->search_for_split = 1;
3919 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 3920 path->search_for_split = 0;
ad48fd75
YZ
3921 if (ret < 0)
3922 goto err;
459931ec 3923
ad48fd75
YZ
3924 ret = -EAGAIN;
3925 leaf = path->nodes[0];
459931ec 3926 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
3927 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3928 goto err;
3929
109f6aef
CM
3930 /* the leaf has changed, it now has room. return now */
3931 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3932 goto err;
3933
ad48fd75
YZ
3934 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3935 fi = btrfs_item_ptr(leaf, path->slots[0],
3936 struct btrfs_file_extent_item);
3937 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3938 goto err;
459931ec
CM
3939 }
3940
b9473439 3941 btrfs_set_path_blocking(path);
ad48fd75 3942 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
3943 if (ret)
3944 goto err;
459931ec 3945
ad48fd75 3946 path->keep_locks = 0;
b9473439 3947 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
3948 return 0;
3949err:
3950 path->keep_locks = 0;
3951 return ret;
3952}
3953
3954static noinline int split_item(struct btrfs_trans_handle *trans,
3955 struct btrfs_root *root,
3956 struct btrfs_path *path,
3957 struct btrfs_key *new_key,
3958 unsigned long split_offset)
3959{
3960 struct extent_buffer *leaf;
3961 struct btrfs_item *item;
3962 struct btrfs_item *new_item;
3963 int slot;
3964 char *buf;
3965 u32 nritems;
3966 u32 item_size;
3967 u32 orig_offset;
3968 struct btrfs_disk_key disk_key;
3969
b9473439
CM
3970 leaf = path->nodes[0];
3971 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3972
b4ce94de
CM
3973 btrfs_set_path_blocking(path);
3974
459931ec
CM
3975 item = btrfs_item_nr(leaf, path->slots[0]);
3976 orig_offset = btrfs_item_offset(leaf, item);
3977 item_size = btrfs_item_size(leaf, item);
3978
459931ec 3979 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
3980 if (!buf)
3981 return -ENOMEM;
3982
459931ec
CM
3983 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3984 path->slots[0]), item_size);
459931ec 3985
ad48fd75 3986 slot = path->slots[0] + 1;
459931ec 3987 nritems = btrfs_header_nritems(leaf);
459931ec
CM
3988 if (slot != nritems) {
3989 /* shift the items */
3990 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
3991 btrfs_item_nr_offset(slot),
3992 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
3993 }
3994
3995 btrfs_cpu_key_to_disk(&disk_key, new_key);
3996 btrfs_set_item_key(leaf, &disk_key, slot);
3997
3998 new_item = btrfs_item_nr(leaf, slot);
3999
4000 btrfs_set_item_offset(leaf, new_item, orig_offset);
4001 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4002
4003 btrfs_set_item_offset(leaf, item,
4004 orig_offset + item_size - split_offset);
4005 btrfs_set_item_size(leaf, item, split_offset);
4006
4007 btrfs_set_header_nritems(leaf, nritems + 1);
4008
4009 /* write the data for the start of the original item */
4010 write_extent_buffer(leaf, buf,
4011 btrfs_item_ptr_offset(leaf, path->slots[0]),
4012 split_offset);
4013
4014 /* write the data for the new item */
4015 write_extent_buffer(leaf, buf + split_offset,
4016 btrfs_item_ptr_offset(leaf, slot),
4017 item_size - split_offset);
4018 btrfs_mark_buffer_dirty(leaf);
4019
ad48fd75 4020 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4021 kfree(buf);
ad48fd75
YZ
4022 return 0;
4023}
4024
4025/*
4026 * This function splits a single item into two items,
4027 * giving 'new_key' to the new item and splitting the
4028 * old one at split_offset (from the start of the item).
4029 *
4030 * The path may be released by this operation. After
4031 * the split, the path is pointing to the old item. The
4032 * new item is going to be in the same node as the old one.
4033 *
4034 * Note, the item being split must be smaller enough to live alone on
4035 * a tree block with room for one extra struct btrfs_item
4036 *
4037 * This allows us to split the item in place, keeping a lock on the
4038 * leaf the entire time.
4039 */
4040int btrfs_split_item(struct btrfs_trans_handle *trans,
4041 struct btrfs_root *root,
4042 struct btrfs_path *path,
4043 struct btrfs_key *new_key,
4044 unsigned long split_offset)
4045{
4046 int ret;
4047 ret = setup_leaf_for_split(trans, root, path,
4048 sizeof(struct btrfs_item));
4049 if (ret)
4050 return ret;
4051
4052 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4053 return ret;
4054}
4055
ad48fd75
YZ
4056/*
4057 * This function duplicate a item, giving 'new_key' to the new item.
4058 * It guarantees both items live in the same tree leaf and the new item
4059 * is contiguous with the original item.
4060 *
4061 * This allows us to split file extent in place, keeping a lock on the
4062 * leaf the entire time.
4063 */
4064int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4065 struct btrfs_root *root,
4066 struct btrfs_path *path,
4067 struct btrfs_key *new_key)
4068{
4069 struct extent_buffer *leaf;
4070 int ret;
4071 u32 item_size;
4072
4073 leaf = path->nodes[0];
4074 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4075 ret = setup_leaf_for_split(trans, root, path,
4076 item_size + sizeof(struct btrfs_item));
4077 if (ret)
4078 return ret;
4079
4080 path->slots[0]++;
143bede5
JM
4081 setup_items_for_insert(trans, root, path, new_key, &item_size,
4082 item_size, item_size +
4083 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4084 leaf = path->nodes[0];
4085 memcpy_extent_buffer(leaf,
4086 btrfs_item_ptr_offset(leaf, path->slots[0]),
4087 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4088 item_size);
4089 return 0;
4090}
4091
d352ac68
CM
4092/*
4093 * make the item pointed to by the path smaller. new_size indicates
4094 * how small to make it, and from_end tells us if we just chop bytes
4095 * off the end of the item or if we shift the item to chop bytes off
4096 * the front.
4097 */
143bede5
JM
4098void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4099 struct btrfs_root *root,
4100 struct btrfs_path *path,
4101 u32 new_size, int from_end)
b18c6685 4102{
b18c6685 4103 int slot;
5f39d397
CM
4104 struct extent_buffer *leaf;
4105 struct btrfs_item *item;
b18c6685
CM
4106 u32 nritems;
4107 unsigned int data_end;
4108 unsigned int old_data_start;
4109 unsigned int old_size;
4110 unsigned int size_diff;
4111 int i;
cfed81a0
CM
4112 struct btrfs_map_token token;
4113
4114 btrfs_init_map_token(&token);
b18c6685 4115
5f39d397 4116 leaf = path->nodes[0];
179e29e4
CM
4117 slot = path->slots[0];
4118
4119 old_size = btrfs_item_size_nr(leaf, slot);
4120 if (old_size == new_size)
143bede5 4121 return;
b18c6685 4122
5f39d397 4123 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4124 data_end = leaf_data_end(root, leaf);
4125
5f39d397 4126 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4127
b18c6685
CM
4128 size_diff = old_size - new_size;
4129
4130 BUG_ON(slot < 0);
4131 BUG_ON(slot >= nritems);
4132
4133 /*
4134 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4135 */
4136 /* first correct the data pointers */
4137 for (i = slot; i < nritems; i++) {
5f39d397
CM
4138 u32 ioff;
4139 item = btrfs_item_nr(leaf, i);
db94535d 4140
cfed81a0
CM
4141 ioff = btrfs_token_item_offset(leaf, item, &token);
4142 btrfs_set_token_item_offset(leaf, item,
4143 ioff + size_diff, &token);
b18c6685 4144 }
db94535d 4145
b18c6685 4146 /* shift the data */
179e29e4
CM
4147 if (from_end) {
4148 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4149 data_end + size_diff, btrfs_leaf_data(leaf) +
4150 data_end, old_data_start + new_size - data_end);
4151 } else {
4152 struct btrfs_disk_key disk_key;
4153 u64 offset;
4154
4155 btrfs_item_key(leaf, &disk_key, slot);
4156
4157 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4158 unsigned long ptr;
4159 struct btrfs_file_extent_item *fi;
4160
4161 fi = btrfs_item_ptr(leaf, slot,
4162 struct btrfs_file_extent_item);
4163 fi = (struct btrfs_file_extent_item *)(
4164 (unsigned long)fi - size_diff);
4165
4166 if (btrfs_file_extent_type(leaf, fi) ==
4167 BTRFS_FILE_EXTENT_INLINE) {
4168 ptr = btrfs_item_ptr_offset(leaf, slot);
4169 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4170 (unsigned long)fi,
4171 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4172 disk_bytenr));
4173 }
4174 }
4175
4176 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4177 data_end + size_diff, btrfs_leaf_data(leaf) +
4178 data_end, old_data_start - data_end);
4179
4180 offset = btrfs_disk_key_offset(&disk_key);
4181 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4182 btrfs_set_item_key(leaf, &disk_key, slot);
4183 if (slot == 0)
4184 fixup_low_keys(trans, root, path, &disk_key, 1);
4185 }
5f39d397
CM
4186
4187 item = btrfs_item_nr(leaf, slot);
4188 btrfs_set_item_size(leaf, item, new_size);
4189 btrfs_mark_buffer_dirty(leaf);
b18c6685 4190
5f39d397
CM
4191 if (btrfs_leaf_free_space(root, leaf) < 0) {
4192 btrfs_print_leaf(root, leaf);
b18c6685 4193 BUG();
5f39d397 4194 }
b18c6685
CM
4195}
4196
d352ac68
CM
4197/*
4198 * make the item pointed to by the path bigger, data_size is the new size.
4199 */
143bede5
JM
4200void btrfs_extend_item(struct btrfs_trans_handle *trans,
4201 struct btrfs_root *root, struct btrfs_path *path,
4202 u32 data_size)
6567e837 4203{
6567e837 4204 int slot;
5f39d397
CM
4205 struct extent_buffer *leaf;
4206 struct btrfs_item *item;
6567e837
CM
4207 u32 nritems;
4208 unsigned int data_end;
4209 unsigned int old_data;
4210 unsigned int old_size;
4211 int i;
cfed81a0
CM
4212 struct btrfs_map_token token;
4213
4214 btrfs_init_map_token(&token);
6567e837 4215
5f39d397 4216 leaf = path->nodes[0];
6567e837 4217
5f39d397 4218 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4219 data_end = leaf_data_end(root, leaf);
4220
5f39d397
CM
4221 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4222 btrfs_print_leaf(root, leaf);
6567e837 4223 BUG();
5f39d397 4224 }
6567e837 4225 slot = path->slots[0];
5f39d397 4226 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4227
4228 BUG_ON(slot < 0);
3326d1b0
CM
4229 if (slot >= nritems) {
4230 btrfs_print_leaf(root, leaf);
d397712b
CM
4231 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4232 slot, nritems);
3326d1b0
CM
4233 BUG_ON(1);
4234 }
6567e837
CM
4235
4236 /*
4237 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4238 */
4239 /* first correct the data pointers */
4240 for (i = slot; i < nritems; i++) {
5f39d397
CM
4241 u32 ioff;
4242 item = btrfs_item_nr(leaf, i);
db94535d 4243
cfed81a0
CM
4244 ioff = btrfs_token_item_offset(leaf, item, &token);
4245 btrfs_set_token_item_offset(leaf, item,
4246 ioff - data_size, &token);
6567e837 4247 }
5f39d397 4248
6567e837 4249 /* shift the data */
5f39d397 4250 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4251 data_end - data_size, btrfs_leaf_data(leaf) +
4252 data_end, old_data - data_end);
5f39d397 4253
6567e837 4254 data_end = old_data;
5f39d397
CM
4255 old_size = btrfs_item_size_nr(leaf, slot);
4256 item = btrfs_item_nr(leaf, slot);
4257 btrfs_set_item_size(leaf, item, old_size + data_size);
4258 btrfs_mark_buffer_dirty(leaf);
6567e837 4259
5f39d397
CM
4260 if (btrfs_leaf_free_space(root, leaf) < 0) {
4261 btrfs_print_leaf(root, leaf);
6567e837 4262 BUG();
5f39d397 4263 }
6567e837
CM
4264}
4265
f3465ca4
JB
4266/*
4267 * Given a key and some data, insert items into the tree.
4268 * This does all the path init required, making room in the tree if needed.
4269 * Returns the number of keys that were inserted.
4270 */
4271int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4272 struct btrfs_root *root,
4273 struct btrfs_path *path,
4274 struct btrfs_key *cpu_key, u32 *data_size,
4275 int nr)
4276{
4277 struct extent_buffer *leaf;
4278 struct btrfs_item *item;
4279 int ret = 0;
4280 int slot;
f3465ca4
JB
4281 int i;
4282 u32 nritems;
4283 u32 total_data = 0;
4284 u32 total_size = 0;
4285 unsigned int data_end;
4286 struct btrfs_disk_key disk_key;
4287 struct btrfs_key found_key;
cfed81a0
CM
4288 struct btrfs_map_token token;
4289
4290 btrfs_init_map_token(&token);
f3465ca4 4291
87b29b20
YZ
4292 for (i = 0; i < nr; i++) {
4293 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4294 BTRFS_LEAF_DATA_SIZE(root)) {
4295 break;
4296 nr = i;
4297 }
f3465ca4 4298 total_data += data_size[i];
87b29b20
YZ
4299 total_size += data_size[i] + sizeof(struct btrfs_item);
4300 }
4301 BUG_ON(nr == 0);
f3465ca4 4302
f3465ca4
JB
4303 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4304 if (ret == 0)
4305 return -EEXIST;
4306 if (ret < 0)
4307 goto out;
4308
f3465ca4
JB
4309 leaf = path->nodes[0];
4310
4311 nritems = btrfs_header_nritems(leaf);
4312 data_end = leaf_data_end(root, leaf);
4313
4314 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4315 for (i = nr; i >= 0; i--) {
4316 total_data -= data_size[i];
4317 total_size -= data_size[i] + sizeof(struct btrfs_item);
4318 if (total_size < btrfs_leaf_free_space(root, leaf))
4319 break;
4320 }
4321 nr = i;
4322 }
4323
4324 slot = path->slots[0];
4325 BUG_ON(slot < 0);
4326
4327 if (slot != nritems) {
4328 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4329
4330 item = btrfs_item_nr(leaf, slot);
4331 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4332
4333 /* figure out how many keys we can insert in here */
4334 total_data = data_size[0];
4335 for (i = 1; i < nr; i++) {
5d4f98a2 4336 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
f3465ca4
JB
4337 break;
4338 total_data += data_size[i];
4339 }
4340 nr = i;
4341
4342 if (old_data < data_end) {
4343 btrfs_print_leaf(root, leaf);
d397712b 4344 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
f3465ca4
JB
4345 slot, old_data, data_end);
4346 BUG_ON(1);
4347 }
4348 /*
4349 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4350 */
4351 /* first correct the data pointers */
f3465ca4
JB
4352 for (i = slot; i < nritems; i++) {
4353 u32 ioff;
4354
4355 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4356 ioff = btrfs_token_item_offset(leaf, item, &token);
4357 btrfs_set_token_item_offset(leaf, item,
4358 ioff - total_data, &token);
f3465ca4 4359 }
f3465ca4
JB
4360 /* shift the items */
4361 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4362 btrfs_item_nr_offset(slot),
4363 (nritems - slot) * sizeof(struct btrfs_item));
4364
4365 /* shift the data */
4366 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4367 data_end - total_data, btrfs_leaf_data(leaf) +
4368 data_end, old_data - data_end);
4369 data_end = old_data;
4370 } else {
4371 /*
4372 * this sucks but it has to be done, if we are inserting at
4373 * the end of the leaf only insert 1 of the items, since we
4374 * have no way of knowing whats on the next leaf and we'd have
4375 * to drop our current locks to figure it out
4376 */
4377 nr = 1;
4378 }
4379
4380 /* setup the item for the new data */
4381 for (i = 0; i < nr; i++) {
4382 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4383 btrfs_set_item_key(leaf, &disk_key, slot + i);
4384 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4385 btrfs_set_token_item_offset(leaf, item,
4386 data_end - data_size[i], &token);
f3465ca4 4387 data_end -= data_size[i];
cfed81a0 4388 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
f3465ca4
JB
4389 }
4390 btrfs_set_header_nritems(leaf, nritems + nr);
4391 btrfs_mark_buffer_dirty(leaf);
4392
4393 ret = 0;
4394 if (slot == 0) {
4395 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4396 fixup_low_keys(trans, root, path, &disk_key, 1);
f3465ca4
JB
4397 }
4398
4399 if (btrfs_leaf_free_space(root, leaf) < 0) {
4400 btrfs_print_leaf(root, leaf);
4401 BUG();
4402 }
4403out:
4404 if (!ret)
4405 ret = nr;
4406 return ret;
4407}
4408
74123bd7 4409/*
44871b1b
CM
4410 * this is a helper for btrfs_insert_empty_items, the main goal here is
4411 * to save stack depth by doing the bulk of the work in a function
4412 * that doesn't call btrfs_search_slot
74123bd7 4413 */
143bede5
JM
4414void setup_items_for_insert(struct btrfs_trans_handle *trans,
4415 struct btrfs_root *root, struct btrfs_path *path,
4416 struct btrfs_key *cpu_key, u32 *data_size,
4417 u32 total_data, u32 total_size, int nr)
be0e5c09 4418{
5f39d397 4419 struct btrfs_item *item;
9c58309d 4420 int i;
7518a238 4421 u32 nritems;
be0e5c09 4422 unsigned int data_end;
e2fa7227 4423 struct btrfs_disk_key disk_key;
44871b1b
CM
4424 struct extent_buffer *leaf;
4425 int slot;
cfed81a0
CM
4426 struct btrfs_map_token token;
4427
4428 btrfs_init_map_token(&token);
e2fa7227 4429
5f39d397 4430 leaf = path->nodes[0];
44871b1b 4431 slot = path->slots[0];
74123bd7 4432
5f39d397 4433 nritems = btrfs_header_nritems(leaf);
123abc88 4434 data_end = leaf_data_end(root, leaf);
eb60ceac 4435
f25956cc 4436 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4437 btrfs_print_leaf(root, leaf);
d397712b 4438 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4439 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4440 BUG();
d4dbff95 4441 }
5f39d397 4442
be0e5c09 4443 if (slot != nritems) {
5f39d397 4444 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4445
5f39d397
CM
4446 if (old_data < data_end) {
4447 btrfs_print_leaf(root, leaf);
d397712b 4448 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4449 slot, old_data, data_end);
4450 BUG_ON(1);
4451 }
be0e5c09
CM
4452 /*
4453 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4454 */
4455 /* first correct the data pointers */
0783fcfc 4456 for (i = slot; i < nritems; i++) {
5f39d397 4457 u32 ioff;
db94535d 4458
5f39d397 4459 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4460 ioff = btrfs_token_item_offset(leaf, item, &token);
4461 btrfs_set_token_item_offset(leaf, item,
4462 ioff - total_data, &token);
0783fcfc 4463 }
be0e5c09 4464 /* shift the items */
9c58309d 4465 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4466 btrfs_item_nr_offset(slot),
d6025579 4467 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4468
4469 /* shift the data */
5f39d397 4470 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4471 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4472 data_end, old_data - data_end);
be0e5c09
CM
4473 data_end = old_data;
4474 }
5f39d397 4475
62e2749e 4476 /* setup the item for the new data */
9c58309d
CM
4477 for (i = 0; i < nr; i++) {
4478 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4479 btrfs_set_item_key(leaf, &disk_key, slot + i);
4480 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4481 btrfs_set_token_item_offset(leaf, item,
4482 data_end - data_size[i], &token);
9c58309d 4483 data_end -= data_size[i];
cfed81a0 4484 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4485 }
44871b1b 4486
9c58309d 4487 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4488
5a01a2e3
CM
4489 if (slot == 0) {
4490 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4491 fixup_low_keys(trans, root, path, &disk_key, 1);
5a01a2e3 4492 }
b9473439
CM
4493 btrfs_unlock_up_safe(path, 1);
4494 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4495
5f39d397
CM
4496 if (btrfs_leaf_free_space(root, leaf) < 0) {
4497 btrfs_print_leaf(root, leaf);
be0e5c09 4498 BUG();
5f39d397 4499 }
44871b1b
CM
4500}
4501
4502/*
4503 * Given a key and some data, insert items into the tree.
4504 * This does all the path init required, making room in the tree if needed.
4505 */
4506int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4507 struct btrfs_root *root,
4508 struct btrfs_path *path,
4509 struct btrfs_key *cpu_key, u32 *data_size,
4510 int nr)
4511{
44871b1b
CM
4512 int ret = 0;
4513 int slot;
4514 int i;
4515 u32 total_size = 0;
4516 u32 total_data = 0;
4517
4518 for (i = 0; i < nr; i++)
4519 total_data += data_size[i];
4520
4521 total_size = total_data + (nr * sizeof(struct btrfs_item));
4522 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4523 if (ret == 0)
4524 return -EEXIST;
4525 if (ret < 0)
143bede5 4526 return ret;
44871b1b 4527
44871b1b
CM
4528 slot = path->slots[0];
4529 BUG_ON(slot < 0);
4530
143bede5 4531 setup_items_for_insert(trans, root, path, cpu_key, data_size,
44871b1b 4532 total_data, total_size, nr);
143bede5 4533 return 0;
62e2749e
CM
4534}
4535
4536/*
4537 * Given a key and some data, insert an item into the tree.
4538 * This does all the path init required, making room in the tree if needed.
4539 */
e089f05c
CM
4540int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4541 *root, struct btrfs_key *cpu_key, void *data, u32
4542 data_size)
62e2749e
CM
4543{
4544 int ret = 0;
2c90e5d6 4545 struct btrfs_path *path;
5f39d397
CM
4546 struct extent_buffer *leaf;
4547 unsigned long ptr;
62e2749e 4548
2c90e5d6 4549 path = btrfs_alloc_path();
db5b493a
TI
4550 if (!path)
4551 return -ENOMEM;
2c90e5d6 4552 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4553 if (!ret) {
5f39d397
CM
4554 leaf = path->nodes[0];
4555 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4556 write_extent_buffer(leaf, data, ptr, data_size);
4557 btrfs_mark_buffer_dirty(leaf);
62e2749e 4558 }
2c90e5d6 4559 btrfs_free_path(path);
aa5d6bed 4560 return ret;
be0e5c09
CM
4561}
4562
74123bd7 4563/*
5de08d7d 4564 * delete the pointer from a given node.
74123bd7 4565 *
d352ac68
CM
4566 * the tree should have been previously balanced so the deletion does not
4567 * empty a node.
74123bd7 4568 */
143bede5 4569static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
4570 struct btrfs_path *path, int level, int slot,
4571 int tree_mod_log)
be0e5c09 4572{
5f39d397 4573 struct extent_buffer *parent = path->nodes[level];
7518a238 4574 u32 nritems;
f3ea38da 4575 int ret;
be0e5c09 4576
5f39d397 4577 nritems = btrfs_header_nritems(parent);
d397712b 4578 if (slot != nritems - 1) {
f3ea38da
JS
4579 if (tree_mod_log && level)
4580 tree_mod_log_eb_move(root->fs_info, parent, slot,
4581 slot + 1, nritems - slot - 1);
5f39d397
CM
4582 memmove_extent_buffer(parent,
4583 btrfs_node_key_ptr_offset(slot),
4584 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4585 sizeof(struct btrfs_key_ptr) *
4586 (nritems - slot - 1));
f395694c 4587 } else if (tree_mod_log && level) {
f3ea38da
JS
4588 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4589 MOD_LOG_KEY_REMOVE);
4590 BUG_ON(ret < 0);
bb803951 4591 }
f3ea38da 4592
7518a238 4593 nritems--;
5f39d397 4594 btrfs_set_header_nritems(parent, nritems);
7518a238 4595 if (nritems == 0 && parent == root->node) {
5f39d397 4596 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4597 /* just turn the root into a leaf and break */
5f39d397 4598 btrfs_set_header_level(root->node, 0);
bb803951 4599 } else if (slot == 0) {
5f39d397
CM
4600 struct btrfs_disk_key disk_key;
4601
4602 btrfs_node_key(parent, &disk_key, 0);
143bede5 4603 fixup_low_keys(trans, root, path, &disk_key, level + 1);
be0e5c09 4604 }
d6025579 4605 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4606}
4607
323ac95b
CM
4608/*
4609 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4610 * path->nodes[1].
323ac95b
CM
4611 *
4612 * This deletes the pointer in path->nodes[1] and frees the leaf
4613 * block extent. zero is returned if it all worked out, < 0 otherwise.
4614 *
4615 * The path must have already been setup for deleting the leaf, including
4616 * all the proper balancing. path->nodes[1] must be locked.
4617 */
143bede5
JM
4618static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4619 struct btrfs_root *root,
4620 struct btrfs_path *path,
4621 struct extent_buffer *leaf)
323ac95b 4622{
5d4f98a2 4623 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
f3ea38da 4624 del_ptr(trans, root, path, 1, path->slots[1], 1);
323ac95b 4625
4d081c41
CM
4626 /*
4627 * btrfs_free_extent is expensive, we want to make sure we
4628 * aren't holding any locks when we call it
4629 */
4630 btrfs_unlock_up_safe(path, 0);
4631
f0486c68
YZ
4632 root_sub_used(root, leaf->len);
4633
3083ee2e 4634 extent_buffer_get(leaf);
5581a51a 4635 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4636 free_extent_buffer_stale(leaf);
323ac95b 4637}
74123bd7
CM
4638/*
4639 * delete the item at the leaf level in path. If that empties
4640 * the leaf, remove it from the tree
4641 */
85e21bac
CM
4642int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4643 struct btrfs_path *path, int slot, int nr)
be0e5c09 4644{
5f39d397
CM
4645 struct extent_buffer *leaf;
4646 struct btrfs_item *item;
85e21bac
CM
4647 int last_off;
4648 int dsize = 0;
aa5d6bed
CM
4649 int ret = 0;
4650 int wret;
85e21bac 4651 int i;
7518a238 4652 u32 nritems;
cfed81a0
CM
4653 struct btrfs_map_token token;
4654
4655 btrfs_init_map_token(&token);
be0e5c09 4656
5f39d397 4657 leaf = path->nodes[0];
85e21bac
CM
4658 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4659
4660 for (i = 0; i < nr; i++)
4661 dsize += btrfs_item_size_nr(leaf, slot + i);
4662
5f39d397 4663 nritems = btrfs_header_nritems(leaf);
be0e5c09 4664
85e21bac 4665 if (slot + nr != nritems) {
123abc88 4666 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4667
4668 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4669 data_end + dsize,
4670 btrfs_leaf_data(leaf) + data_end,
85e21bac 4671 last_off - data_end);
5f39d397 4672
85e21bac 4673 for (i = slot + nr; i < nritems; i++) {
5f39d397 4674 u32 ioff;
db94535d 4675
5f39d397 4676 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4677 ioff = btrfs_token_item_offset(leaf, item, &token);
4678 btrfs_set_token_item_offset(leaf, item,
4679 ioff + dsize, &token);
0783fcfc 4680 }
db94535d 4681
5f39d397 4682 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4683 btrfs_item_nr_offset(slot + nr),
d6025579 4684 sizeof(struct btrfs_item) *
85e21bac 4685 (nritems - slot - nr));
be0e5c09 4686 }
85e21bac
CM
4687 btrfs_set_header_nritems(leaf, nritems - nr);
4688 nritems -= nr;
5f39d397 4689
74123bd7 4690 /* delete the leaf if we've emptied it */
7518a238 4691 if (nritems == 0) {
5f39d397
CM
4692 if (leaf == root->node) {
4693 btrfs_set_header_level(leaf, 0);
9a8dd150 4694 } else {
f0486c68
YZ
4695 btrfs_set_path_blocking(path);
4696 clean_tree_block(trans, root, leaf);
143bede5 4697 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4698 }
be0e5c09 4699 } else {
7518a238 4700 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4701 if (slot == 0) {
5f39d397
CM
4702 struct btrfs_disk_key disk_key;
4703
4704 btrfs_item_key(leaf, &disk_key, 0);
143bede5 4705 fixup_low_keys(trans, root, path, &disk_key, 1);
aa5d6bed 4706 }
aa5d6bed 4707
74123bd7 4708 /* delete the leaf if it is mostly empty */
d717aa1d 4709 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4710 /* push_leaf_left fixes the path.
4711 * make sure the path still points to our leaf
4712 * for possible call to del_ptr below
4713 */
4920c9ac 4714 slot = path->slots[1];
5f39d397
CM
4715 extent_buffer_get(leaf);
4716
b9473439 4717 btrfs_set_path_blocking(path);
99d8f83c
CM
4718 wret = push_leaf_left(trans, root, path, 1, 1,
4719 1, (u32)-1);
54aa1f4d 4720 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4721 ret = wret;
5f39d397
CM
4722
4723 if (path->nodes[0] == leaf &&
4724 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4725 wret = push_leaf_right(trans, root, path, 1,
4726 1, 1, 0);
54aa1f4d 4727 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4728 ret = wret;
4729 }
5f39d397
CM
4730
4731 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4732 path->slots[1] = slot;
143bede5 4733 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4734 free_extent_buffer(leaf);
143bede5 4735 ret = 0;
5de08d7d 4736 } else {
925baedd
CM
4737 /* if we're still in the path, make sure
4738 * we're dirty. Otherwise, one of the
4739 * push_leaf functions must have already
4740 * dirtied this buffer
4741 */
4742 if (path->nodes[0] == leaf)
4743 btrfs_mark_buffer_dirty(leaf);
5f39d397 4744 free_extent_buffer(leaf);
be0e5c09 4745 }
d5719762 4746 } else {
5f39d397 4747 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4748 }
4749 }
aa5d6bed 4750 return ret;
be0e5c09
CM
4751}
4752
7bb86316 4753/*
925baedd 4754 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4755 * returns 0 if it found something or 1 if there are no lesser leaves.
4756 * returns < 0 on io errors.
d352ac68
CM
4757 *
4758 * This may release the path, and so you may lose any locks held at the
4759 * time you call it.
7bb86316
CM
4760 */
4761int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4762{
925baedd
CM
4763 struct btrfs_key key;
4764 struct btrfs_disk_key found_key;
4765 int ret;
7bb86316 4766
925baedd 4767 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4768
925baedd
CM
4769 if (key.offset > 0)
4770 key.offset--;
4771 else if (key.type > 0)
4772 key.type--;
4773 else if (key.objectid > 0)
4774 key.objectid--;
4775 else
4776 return 1;
7bb86316 4777
b3b4aa74 4778 btrfs_release_path(path);
925baedd
CM
4779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4780 if (ret < 0)
4781 return ret;
4782 btrfs_item_key(path->nodes[0], &found_key, 0);
4783 ret = comp_keys(&found_key, &key);
4784 if (ret < 0)
4785 return 0;
4786 return 1;
7bb86316
CM
4787}
4788
3f157a2f
CM
4789/*
4790 * A helper function to walk down the tree starting at min_key, and looking
4791 * for nodes or leaves that are either in cache or have a minimum
d352ac68 4792 * transaction id. This is used by the btree defrag code, and tree logging
3f157a2f
CM
4793 *
4794 * This does not cow, but it does stuff the starting key it finds back
4795 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4796 * key and get a writable path.
4797 *
4798 * This does lock as it descends, and path->keep_locks should be set
4799 * to 1 by the caller.
4800 *
4801 * This honors path->lowest_level to prevent descent past a given level
4802 * of the tree.
4803 *
d352ac68
CM
4804 * min_trans indicates the oldest transaction that you are interested
4805 * in walking through. Any nodes or leaves older than min_trans are
4806 * skipped over (without reading them).
4807 *
3f157a2f
CM
4808 * returns zero if something useful was found, < 0 on error and 1 if there
4809 * was nothing in the tree that matched the search criteria.
4810 */
4811int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4812 struct btrfs_key *max_key,
3f157a2f
CM
4813 struct btrfs_path *path, int cache_only,
4814 u64 min_trans)
4815{
4816 struct extent_buffer *cur;
4817 struct btrfs_key found_key;
4818 int slot;
9652480b 4819 int sret;
3f157a2f
CM
4820 u32 nritems;
4821 int level;
4822 int ret = 1;
4823
934d375b 4824 WARN_ON(!path->keep_locks);
3f157a2f 4825again:
bd681513 4826 cur = btrfs_read_lock_root_node(root);
3f157a2f 4827 level = btrfs_header_level(cur);
e02119d5 4828 WARN_ON(path->nodes[level]);
3f157a2f 4829 path->nodes[level] = cur;
bd681513 4830 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4831
4832 if (btrfs_header_generation(cur) < min_trans) {
4833 ret = 1;
4834 goto out;
4835 }
d397712b 4836 while (1) {
3f157a2f
CM
4837 nritems = btrfs_header_nritems(cur);
4838 level = btrfs_header_level(cur);
9652480b 4839 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4840
323ac95b
CM
4841 /* at the lowest level, we're done, setup the path and exit */
4842 if (level == path->lowest_level) {
e02119d5
CM
4843 if (slot >= nritems)
4844 goto find_next_key;
3f157a2f
CM
4845 ret = 0;
4846 path->slots[level] = slot;
4847 btrfs_item_key_to_cpu(cur, &found_key, slot);
4848 goto out;
4849 }
9652480b
Y
4850 if (sret && slot > 0)
4851 slot--;
3f157a2f
CM
4852 /*
4853 * check this node pointer against the cache_only and
4854 * min_trans parameters. If it isn't in cache or is too
4855 * old, skip to the next one.
4856 */
d397712b 4857 while (slot < nritems) {
3f157a2f
CM
4858 u64 blockptr;
4859 u64 gen;
4860 struct extent_buffer *tmp;
e02119d5
CM
4861 struct btrfs_disk_key disk_key;
4862
3f157a2f
CM
4863 blockptr = btrfs_node_blockptr(cur, slot);
4864 gen = btrfs_node_ptr_generation(cur, slot);
4865 if (gen < min_trans) {
4866 slot++;
4867 continue;
4868 }
4869 if (!cache_only)
4870 break;
4871
e02119d5
CM
4872 if (max_key) {
4873 btrfs_node_key(cur, &disk_key, slot);
4874 if (comp_keys(&disk_key, max_key) >= 0) {
4875 ret = 1;
4876 goto out;
4877 }
4878 }
4879
3f157a2f
CM
4880 tmp = btrfs_find_tree_block(root, blockptr,
4881 btrfs_level_size(root, level - 1));
4882
b9fab919 4883 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
3f157a2f
CM
4884 free_extent_buffer(tmp);
4885 break;
4886 }
4887 if (tmp)
4888 free_extent_buffer(tmp);
4889 slot++;
4890 }
e02119d5 4891find_next_key:
3f157a2f
CM
4892 /*
4893 * we didn't find a candidate key in this node, walk forward
4894 * and find another one
4895 */
4896 if (slot >= nritems) {
e02119d5 4897 path->slots[level] = slot;
b4ce94de 4898 btrfs_set_path_blocking(path);
e02119d5 4899 sret = btrfs_find_next_key(root, path, min_key, level,
3f157a2f 4900 cache_only, min_trans);
e02119d5 4901 if (sret == 0) {
b3b4aa74 4902 btrfs_release_path(path);
3f157a2f
CM
4903 goto again;
4904 } else {
4905 goto out;
4906 }
4907 }
4908 /* save our key for returning back */
4909 btrfs_node_key_to_cpu(cur, &found_key, slot);
4910 path->slots[level] = slot;
4911 if (level == path->lowest_level) {
4912 ret = 0;
f7c79f30 4913 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4914 goto out;
4915 }
b4ce94de 4916 btrfs_set_path_blocking(path);
3f157a2f 4917 cur = read_node_slot(root, cur, slot);
79787eaa 4918 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4919
bd681513 4920 btrfs_tree_read_lock(cur);
b4ce94de 4921
bd681513 4922 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4923 path->nodes[level - 1] = cur;
f7c79f30 4924 unlock_up(path, level, 1, 0, NULL);
bd681513 4925 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4926 }
4927out:
4928 if (ret == 0)
4929 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4930 btrfs_set_path_blocking(path);
3f157a2f
CM
4931 return ret;
4932}
4933
4934/*
4935 * this is similar to btrfs_next_leaf, but does not try to preserve
4936 * and fixup the path. It looks for and returns the next key in the
4937 * tree based on the current path and the cache_only and min_trans
4938 * parameters.
4939 *
4940 * 0 is returned if another key is found, < 0 if there are any errors
4941 * and 1 is returned if there are no higher keys in the tree
4942 *
4943 * path->keep_locks should be set to 1 on the search made before
4944 * calling this function.
4945 */
e7a84565 4946int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
33c66f43 4947 struct btrfs_key *key, int level,
3f157a2f 4948 int cache_only, u64 min_trans)
e7a84565 4949{
e7a84565
CM
4950 int slot;
4951 struct extent_buffer *c;
4952
934d375b 4953 WARN_ON(!path->keep_locks);
d397712b 4954 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
4955 if (!path->nodes[level])
4956 return 1;
4957
4958 slot = path->slots[level] + 1;
4959 c = path->nodes[level];
3f157a2f 4960next:
e7a84565 4961 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
4962 int ret;
4963 int orig_lowest;
4964 struct btrfs_key cur_key;
4965 if (level + 1 >= BTRFS_MAX_LEVEL ||
4966 !path->nodes[level + 1])
e7a84565 4967 return 1;
33c66f43
YZ
4968
4969 if (path->locks[level + 1]) {
4970 level++;
4971 continue;
4972 }
4973
4974 slot = btrfs_header_nritems(c) - 1;
4975 if (level == 0)
4976 btrfs_item_key_to_cpu(c, &cur_key, slot);
4977 else
4978 btrfs_node_key_to_cpu(c, &cur_key, slot);
4979
4980 orig_lowest = path->lowest_level;
b3b4aa74 4981 btrfs_release_path(path);
33c66f43
YZ
4982 path->lowest_level = level;
4983 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4984 0, 0);
4985 path->lowest_level = orig_lowest;
4986 if (ret < 0)
4987 return ret;
4988
4989 c = path->nodes[level];
4990 slot = path->slots[level];
4991 if (ret == 0)
4992 slot++;
4993 goto next;
e7a84565 4994 }
33c66f43 4995
e7a84565
CM
4996 if (level == 0)
4997 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f
CM
4998 else {
4999 u64 blockptr = btrfs_node_blockptr(c, slot);
5000 u64 gen = btrfs_node_ptr_generation(c, slot);
5001
5002 if (cache_only) {
5003 struct extent_buffer *cur;
5004 cur = btrfs_find_tree_block(root, blockptr,
5005 btrfs_level_size(root, level - 1));
b9fab919
CM
5006 if (!cur ||
5007 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
3f157a2f
CM
5008 slot++;
5009 if (cur)
5010 free_extent_buffer(cur);
5011 goto next;
5012 }
5013 free_extent_buffer(cur);
5014 }
5015 if (gen < min_trans) {
5016 slot++;
5017 goto next;
5018 }
e7a84565 5019 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5020 }
e7a84565
CM
5021 return 0;
5022 }
5023 return 1;
5024}
5025
97571fd0 5026/*
925baedd 5027 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5028 * returns 0 if it found something or 1 if there are no greater leaves.
5029 * returns < 0 on io errors.
97571fd0 5030 */
234b63a0 5031int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5032{
5033 return btrfs_next_old_leaf(root, path, 0);
5034}
5035
5036int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5037 u64 time_seq)
d97e63b6
CM
5038{
5039 int slot;
8e73f275 5040 int level;
5f39d397 5041 struct extent_buffer *c;
8e73f275 5042 struct extent_buffer *next;
925baedd
CM
5043 struct btrfs_key key;
5044 u32 nritems;
5045 int ret;
8e73f275 5046 int old_spinning = path->leave_spinning;
bd681513 5047 int next_rw_lock = 0;
925baedd
CM
5048
5049 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5050 if (nritems == 0)
925baedd 5051 return 1;
925baedd 5052
8e73f275
CM
5053 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5054again:
5055 level = 1;
5056 next = NULL;
bd681513 5057 next_rw_lock = 0;
b3b4aa74 5058 btrfs_release_path(path);
8e73f275 5059
a2135011 5060 path->keep_locks = 1;
31533fb2 5061 path->leave_spinning = 1;
8e73f275 5062
3d7806ec
JS
5063 if (time_seq)
5064 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5065 else
5066 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5067 path->keep_locks = 0;
5068
5069 if (ret < 0)
5070 return ret;
5071
a2135011 5072 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5073 /*
5074 * by releasing the path above we dropped all our locks. A balance
5075 * could have added more items next to the key that used to be
5076 * at the very end of the block. So, check again here and
5077 * advance the path if there are now more items available.
5078 */
a2135011 5079 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5080 if (ret == 0)
5081 path->slots[0]++;
8e73f275 5082 ret = 0;
925baedd
CM
5083 goto done;
5084 }
d97e63b6 5085
d397712b 5086 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5087 if (!path->nodes[level]) {
5088 ret = 1;
5089 goto done;
5090 }
5f39d397 5091
d97e63b6
CM
5092 slot = path->slots[level] + 1;
5093 c = path->nodes[level];
5f39d397 5094 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5095 level++;
8e73f275
CM
5096 if (level == BTRFS_MAX_LEVEL) {
5097 ret = 1;
5098 goto done;
5099 }
d97e63b6
CM
5100 continue;
5101 }
5f39d397 5102
925baedd 5103 if (next) {
bd681513 5104 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5105 free_extent_buffer(next);
925baedd 5106 }
5f39d397 5107
8e73f275 5108 next = c;
bd681513 5109 next_rw_lock = path->locks[level];
8e73f275 5110 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5111 slot, &key, 0);
8e73f275
CM
5112 if (ret == -EAGAIN)
5113 goto again;
5f39d397 5114
76a05b35 5115 if (ret < 0) {
b3b4aa74 5116 btrfs_release_path(path);
76a05b35
CM
5117 goto done;
5118 }
5119
5cd57b2c 5120 if (!path->skip_locking) {
bd681513 5121 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5122 if (!ret && time_seq) {
5123 /*
5124 * If we don't get the lock, we may be racing
5125 * with push_leaf_left, holding that lock while
5126 * itself waiting for the leaf we've currently
5127 * locked. To solve this situation, we give up
5128 * on our lock and cycle.
5129 */
5130 btrfs_release_path(path);
5131 cond_resched();
5132 goto again;
5133 }
8e73f275
CM
5134 if (!ret) {
5135 btrfs_set_path_blocking(path);
bd681513 5136 btrfs_tree_read_lock(next);
31533fb2 5137 btrfs_clear_path_blocking(path, next,
bd681513 5138 BTRFS_READ_LOCK);
8e73f275 5139 }
31533fb2 5140 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5141 }
d97e63b6
CM
5142 break;
5143 }
5144 path->slots[level] = slot;
d397712b 5145 while (1) {
d97e63b6
CM
5146 level--;
5147 c = path->nodes[level];
925baedd 5148 if (path->locks[level])
bd681513 5149 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5150
5f39d397 5151 free_extent_buffer(c);
d97e63b6
CM
5152 path->nodes[level] = next;
5153 path->slots[level] = 0;
a74a4b97 5154 if (!path->skip_locking)
bd681513 5155 path->locks[level] = next_rw_lock;
d97e63b6
CM
5156 if (!level)
5157 break;
b4ce94de 5158
8e73f275 5159 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5160 0, &key, 0);
8e73f275
CM
5161 if (ret == -EAGAIN)
5162 goto again;
5163
76a05b35 5164 if (ret < 0) {
b3b4aa74 5165 btrfs_release_path(path);
76a05b35
CM
5166 goto done;
5167 }
5168
5cd57b2c 5169 if (!path->skip_locking) {
bd681513 5170 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5171 if (!ret) {
5172 btrfs_set_path_blocking(path);
bd681513 5173 btrfs_tree_read_lock(next);
31533fb2 5174 btrfs_clear_path_blocking(path, next,
bd681513
CM
5175 BTRFS_READ_LOCK);
5176 }
31533fb2 5177 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5178 }
d97e63b6 5179 }
8e73f275 5180 ret = 0;
925baedd 5181done:
f7c79f30 5182 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5183 path->leave_spinning = old_spinning;
5184 if (!old_spinning)
5185 btrfs_set_path_blocking(path);
5186
5187 return ret;
d97e63b6 5188}
0b86a832 5189
3f157a2f
CM
5190/*
5191 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5192 * searching until it gets past min_objectid or finds an item of 'type'
5193 *
5194 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5195 */
0b86a832
CM
5196int btrfs_previous_item(struct btrfs_root *root,
5197 struct btrfs_path *path, u64 min_objectid,
5198 int type)
5199{
5200 struct btrfs_key found_key;
5201 struct extent_buffer *leaf;
e02119d5 5202 u32 nritems;
0b86a832
CM
5203 int ret;
5204
d397712b 5205 while (1) {
0b86a832 5206 if (path->slots[0] == 0) {
b4ce94de 5207 btrfs_set_path_blocking(path);
0b86a832
CM
5208 ret = btrfs_prev_leaf(root, path);
5209 if (ret != 0)
5210 return ret;
5211 } else {
5212 path->slots[0]--;
5213 }
5214 leaf = path->nodes[0];
e02119d5
CM
5215 nritems = btrfs_header_nritems(leaf);
5216 if (nritems == 0)
5217 return 1;
5218 if (path->slots[0] == nritems)
5219 path->slots[0]--;
5220
0b86a832 5221 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5222 if (found_key.objectid < min_objectid)
5223 break;
0a4eefbb
YZ
5224 if (found_key.type == type)
5225 return 0;
e02119d5
CM
5226 if (found_key.objectid == min_objectid &&
5227 found_key.type < type)
5228 break;
0b86a832
CM
5229 }
5230 return 1;
5231}