USB: ohci-at91: fix null pointer in ohci_hcd_at91_overcurrent_irq
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
43b86af8 23#include <linux/pci.h>
66d4eadd 24#include <linux/irq.h>
8df75f42 25#include <linux/log2.h>
66d4eadd 26#include <linux/module.h>
b0567b3f 27#include <linux/moduleparam.h>
5a0e3ad6 28#include <linux/slab.h>
71c731a2 29#include <linux/dmi.h>
66d4eadd
SS
30
31#include "xhci.h"
32
33#define DRIVER_AUTHOR "Sarah Sharp"
34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
b0567b3f
SS
36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37static int link_quirk;
38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
66d4eadd
SS
41/* TODO: copied from ehci-hcd.c - can this be refactored? */
42/*
43 * handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
48 *
49 * Returns negative errno, or zero on success
50 *
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 */
b92cc66c 55int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
66d4eadd
SS
56 u32 mask, u32 done, int usec)
57{
58 u32 result;
59
60 do {
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
63 return -ENODEV;
64 result &= mask;
65 if (result == done)
66 return 0;
67 udelay(1);
68 usec--;
69 } while (usec > 0);
70 return -ETIMEDOUT;
71}
72
73/*
4f0f0bae 74 * Disable interrupts and begin the xHCI halting process.
66d4eadd 75 */
4f0f0bae 76void xhci_quiesce(struct xhci_hcd *xhci)
66d4eadd
SS
77{
78 u32 halted;
79 u32 cmd;
80 u32 mask;
81
66d4eadd
SS
82 mask = ~(XHCI_IRQS);
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 if (!halted)
85 mask &= ~CMD_RUN;
86
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 cmd &= mask;
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
4f0f0bae
SS
90}
91
92/*
93 * Force HC into halt state.
94 *
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
bdfca502 97 * should halt within 16 ms of the run/stop bit being cleared.
4f0f0bae 98 * Read HC Halted bit in the status register to see when the HC is finished.
4f0f0bae
SS
99 */
100int xhci_halt(struct xhci_hcd *xhci)
101{
c6cc27c7 102 int ret;
4f0f0bae
SS
103 xhci_dbg(xhci, "// Halt the HC\n");
104 xhci_quiesce(xhci);
66d4eadd 105
c6cc27c7 106 ret = handshake(xhci, &xhci->op_regs->status,
66d4eadd 107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
c181bc5b 108 if (!ret) {
c6cc27c7 109 xhci->xhc_state |= XHCI_STATE_HALTED;
c181bc5b
EF
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 } else
5af98bb0
SS
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 XHCI_MAX_HALT_USEC);
c6cc27c7 114 return ret;
66d4eadd
SS
115}
116
ed07453f
SS
117/*
118 * Set the run bit and wait for the host to be running.
119 */
8212a49d 120static int xhci_start(struct xhci_hcd *xhci)
ed07453f
SS
121{
122 u32 temp;
123 int ret;
124
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 temp |= (CMD_RUN);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 temp);
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131 /*
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 * running.
134 */
135 ret = handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
140 XHCI_MAX_HALT_USEC);
c6cc27c7
SS
141 if (!ret)
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
ed07453f
SS
143 return ret;
144}
145
66d4eadd 146/*
ac04e6ff 147 * Reset a halted HC.
66d4eadd
SS
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153int xhci_reset(struct xhci_hcd *xhci)
154{
155 u32 command;
156 u32 state;
f370b996 157 int ret, i;
66d4eadd
SS
158
159 state = xhci_readl(xhci, &xhci->op_regs->status);
d3512f63
SS
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 return 0;
163 }
66d4eadd
SS
164
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
66d4eadd 169
2d62f3ee 170 ret = handshake(xhci, &xhci->op_regs->command,
22ceac19 171 CMD_RESET, 0, 10 * 1000 * 1000);
2d62f3ee
SS
172 if (ret)
173 return ret;
174
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 /*
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
179 */
22ceac19
SS
180 ret = handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
f370b996
AX
182
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
187 }
188
189 return ret;
66d4eadd
SS
190}
191
421aa841
SAS
192#ifdef CONFIG_PCI
193static int xhci_free_msi(struct xhci_hcd *xhci)
43b86af8
DN
194{
195 int i;
43b86af8 196
421aa841
SAS
197 if (!xhci->msix_entries)
198 return -EINVAL;
43b86af8 199
421aa841
SAS
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
203 xhci_to_hcd(xhci));
204 return 0;
43b86af8
DN
205}
206
207/*
208 * Set up MSI
209 */
210static int xhci_setup_msi(struct xhci_hcd *xhci)
66d4eadd
SS
211{
212 int ret;
43b86af8
DN
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215 ret = pci_enable_msi(pdev);
216 if (ret) {
3b9783b2 217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
43b86af8
DN
218 return ret;
219 }
220
221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
223 if (ret) {
3b9783b2 224 xhci_dbg(xhci, "disable MSI interrupt\n");
43b86af8
DN
225 pci_disable_msi(pdev);
226 }
227
228 return ret;
229}
230
421aa841
SAS
231/*
232 * Free IRQs
233 * free all IRQs request
234 */
235static void xhci_free_irq(struct xhci_hcd *xhci)
236{
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 int ret;
239
240 /* return if using legacy interrupt */
cd70469d 241 if (xhci_to_hcd(xhci)->irq > 0)
421aa841
SAS
242 return;
243
244 ret = xhci_free_msi(xhci);
245 if (!ret)
246 return;
cd70469d 247 if (pdev->irq > 0)
421aa841
SAS
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250 return;
251}
252
43b86af8
DN
253/*
254 * Set up MSI-X
255 */
256static int xhci_setup_msix(struct xhci_hcd *xhci)
257{
258 int i, ret = 0;
0029227f
AX
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
66d4eadd 261
43b86af8
DN
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 xhci->msix_entries =
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
86871975 274 GFP_KERNEL);
66d4eadd
SS
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 return -ENOMEM;
278 }
43b86af8
DN
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
283 }
66d4eadd
SS
284
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 if (ret) {
3b9783b2 287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
66d4eadd
SS
288 goto free_entries;
289 }
290
43b86af8
DN
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 (irq_handler_t)xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
295 if (ret)
296 goto disable_msix;
66d4eadd 297 }
43b86af8 298
0029227f 299 hcd->msix_enabled = 1;
43b86af8 300 return ret;
66d4eadd
SS
301
302disable_msix:
3b9783b2 303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
43b86af8 304 xhci_free_irq(xhci);
66d4eadd
SS
305 pci_disable_msix(pdev);
306free_entries:
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
309 return ret;
310}
311
66d4eadd
SS
312/* Free any IRQs and disable MSI-X */
313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314{
0029227f
AX
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
66d4eadd 317
43b86af8
DN
318 xhci_free_irq(xhci);
319
320 if (xhci->msix_entries) {
321 pci_disable_msix(pdev);
322 kfree(xhci->msix_entries);
323 xhci->msix_entries = NULL;
324 } else {
325 pci_disable_msi(pdev);
326 }
327
0029227f 328 hcd->msix_enabled = 0;
43b86af8 329 return;
66d4eadd 330}
66d4eadd 331
421aa841
SAS
332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333{
334 int i;
335
336 if (xhci->msix_entries) {
337 for (i = 0; i < xhci->msix_count; i++)
338 synchronize_irq(xhci->msix_entries[i].vector);
339 }
340}
341
342static int xhci_try_enable_msi(struct usb_hcd *hcd)
343{
344 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 int ret;
347
348 /*
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
351 */
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 return 0;
354
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
cd70469d 358 hcd->irq = 0;
421aa841
SAS
359
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
364
365 if (!ret)
cd70469d 366 /* hcd->irq is 0, we have MSI */
421aa841
SAS
367 return 0;
368
68d07f64
SS
369 if (!pdev->irq) {
370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 return -EINVAL;
372 }
373
421aa841
SAS
374 /* fall back to legacy interrupt*/
375 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376 hcd->irq_descr, hcd);
377 if (ret) {
378 xhci_err(xhci, "request interrupt %d failed\n",
379 pdev->irq);
380 return ret;
381 }
382 hcd->irq = pdev->irq;
383 return 0;
384}
385
386#else
387
388static int xhci_try_enable_msi(struct usb_hcd *hcd)
389{
390 return 0;
391}
392
393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394{
395}
396
397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398{
399}
400
401#endif
402
71c731a2
AC
403static void compliance_mode_recovery(unsigned long arg)
404{
405 struct xhci_hcd *xhci;
406 struct usb_hcd *hcd;
407 u32 temp;
408 int i;
409
410 xhci = (struct xhci_hcd *)arg;
411
412 for (i = 0; i < xhci->num_usb3_ports; i++) {
413 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415 /*
416 * Compliance Mode Detected. Letting USB Core
417 * handle the Warm Reset
418 */
419 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420 i + 1);
421 xhci_dbg(xhci, "Attempting Recovery routine!\n");
422 hcd = xhci->shared_hcd;
423
424 if (hcd->state == HC_STATE_SUSPENDED)
425 usb_hcd_resume_root_hub(hcd);
426
427 usb_hcd_poll_rh_status(hcd);
428 }
429 }
430
431 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432 mod_timer(&xhci->comp_mode_recovery_timer,
433 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434}
435
436/*
437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438 * that causes ports behind that hardware to enter compliance mode sometimes.
439 * The quirk creates a timer that polls every 2 seconds the link state of
440 * each host controller's port and recovers it by issuing a Warm reset
441 * if Compliance mode is detected, otherwise the port will become "dead" (no
442 * device connections or disconnections will be detected anymore). Becasue no
443 * status event is generated when entering compliance mode (per xhci spec),
444 * this quirk is needed on systems that have the failing hardware installed.
445 */
446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447{
448 xhci->port_status_u0 = 0;
449 init_timer(&xhci->comp_mode_recovery_timer);
450
451 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453 xhci->comp_mode_recovery_timer.expires = jiffies +
454 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455
456 set_timer_slack(&xhci->comp_mode_recovery_timer,
457 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458 add_timer(&xhci->comp_mode_recovery_timer);
459 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460}
461
462/*
463 * This function identifies the systems that have installed the SN65LVPE502CP
464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
465 * Systems:
466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467 */
468static bool compliance_mode_recovery_timer_quirk_check(void)
469{
470 const char *dmi_product_name, *dmi_sys_vendor;
471
472 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474
475 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
476 return false;
477
478 if (strstr(dmi_product_name, "Z420") ||
479 strstr(dmi_product_name, "Z620") ||
480 strstr(dmi_product_name, "Z820"))
481 return true;
482
483 return false;
484}
485
486static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
487{
488 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
489}
490
491
66d4eadd
SS
492/*
493 * Initialize memory for HCD and xHC (one-time init).
494 *
495 * Program the PAGESIZE register, initialize the device context array, create
496 * device contexts (?), set up a command ring segment (or two?), create event
497 * ring (one for now).
498 */
499int xhci_init(struct usb_hcd *hcd)
500{
501 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
502 int retval = 0;
503
504 xhci_dbg(xhci, "xhci_init\n");
505 spin_lock_init(&xhci->lock);
d7826599 506 if (xhci->hci_version == 0x95 && link_quirk) {
b0567b3f
SS
507 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
508 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
509 } else {
ac9d8fe7 510 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
b0567b3f 511 }
66d4eadd
SS
512 retval = xhci_mem_init(xhci, GFP_KERNEL);
513 xhci_dbg(xhci, "Finished xhci_init\n");
514
71c731a2
AC
515 /* Initializing Compliance Mode Recovery Data If Needed */
516 if (compliance_mode_recovery_timer_quirk_check()) {
517 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 compliance_mode_recovery_timer_init(xhci);
519 }
520
66d4eadd
SS
521 return retval;
522}
523
7f84eef0
SS
524/*-------------------------------------------------------------------------*/
525
7f84eef0
SS
526
527#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
8212a49d 528static void xhci_event_ring_work(unsigned long arg)
7f84eef0
SS
529{
530 unsigned long flags;
531 int temp;
8e595a5d 532 u64 temp_64;
7f84eef0
SS
533 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
534 int i, j;
535
536 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
537
538 spin_lock_irqsave(&xhci->lock, flags);
539 temp = xhci_readl(xhci, &xhci->op_regs->status);
540 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
7bd89b40
SS
541 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
542 (xhci->xhc_state & XHCI_STATE_HALTED)) {
e4ab05df
SS
543 xhci_dbg(xhci, "HW died, polling stopped.\n");
544 spin_unlock_irqrestore(&xhci->lock, flags);
545 return;
546 }
547
7f84eef0
SS
548 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
549 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
7f84eef0
SS
550 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
551 xhci->error_bitmask = 0;
552 xhci_dbg(xhci, "Event ring:\n");
553 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
554 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
8e595a5d
SS
555 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
556 temp_64 &= ~ERST_PTR_MASK;
557 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
7f84eef0
SS
558 xhci_dbg(xhci, "Command ring:\n");
559 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
560 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
561 xhci_dbg_cmd_ptrs(xhci);
3ffbba95 562 for (i = 0; i < MAX_HC_SLOTS; ++i) {
63a0d9ab
SS
563 if (!xhci->devs[i])
564 continue;
565 for (j = 0; j < 31; ++j) {
e9df17eb 566 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
3ffbba95
SS
567 }
568 }
7f84eef0
SS
569 spin_unlock_irqrestore(&xhci->lock, flags);
570
571 if (!xhci->zombie)
572 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
573 else
574 xhci_dbg(xhci, "Quit polling the event ring.\n");
575}
576#endif
577
f6ff0ac8
SS
578static int xhci_run_finished(struct xhci_hcd *xhci)
579{
580 if (xhci_start(xhci)) {
581 xhci_halt(xhci);
582 return -ENODEV;
583 }
584 xhci->shared_hcd->state = HC_STATE_RUNNING;
c181bc5b 585 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
f6ff0ac8
SS
586
587 if (xhci->quirks & XHCI_NEC_HOST)
588 xhci_ring_cmd_db(xhci);
589
590 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
591 return 0;
592}
593
66d4eadd
SS
594/*
595 * Start the HC after it was halted.
596 *
597 * This function is called by the USB core when the HC driver is added.
598 * Its opposite is xhci_stop().
599 *
600 * xhci_init() must be called once before this function can be called.
601 * Reset the HC, enable device slot contexts, program DCBAAP, and
602 * set command ring pointer and event ring pointer.
603 *
604 * Setup MSI-X vectors and enable interrupts.
605 */
606int xhci_run(struct usb_hcd *hcd)
607{
608 u32 temp;
8e595a5d 609 u64 temp_64;
3fd1ec58 610 int ret;
66d4eadd 611 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
66d4eadd 612
f6ff0ac8
SS
613 /* Start the xHCI host controller running only after the USB 2.0 roothub
614 * is setup.
615 */
66d4eadd 616
0f2a7930 617 hcd->uses_new_polling = 1;
f6ff0ac8
SS
618 if (!usb_hcd_is_primary_hcd(hcd))
619 return xhci_run_finished(xhci);
0f2a7930 620
7f84eef0 621 xhci_dbg(xhci, "xhci_run\n");
43b86af8 622
3fd1ec58 623 ret = xhci_try_enable_msi(hcd);
43b86af8 624 if (ret)
3fd1ec58 625 return ret;
66d4eadd 626
7f84eef0
SS
627#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
628 init_timer(&xhci->event_ring_timer);
629 xhci->event_ring_timer.data = (unsigned long) xhci;
23e3be11 630 xhci->event_ring_timer.function = xhci_event_ring_work;
7f84eef0
SS
631 /* Poll the event ring */
632 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
633 xhci->zombie = 0;
634 xhci_dbg(xhci, "Setting event ring polling timer\n");
635 add_timer(&xhci->event_ring_timer);
636#endif
637
66e49d87
SS
638 xhci_dbg(xhci, "Command ring memory map follows:\n");
639 xhci_debug_ring(xhci, xhci->cmd_ring);
640 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
641 xhci_dbg_cmd_ptrs(xhci);
642
643 xhci_dbg(xhci, "ERST memory map follows:\n");
644 xhci_dbg_erst(xhci, &xhci->erst);
645 xhci_dbg(xhci, "Event ring:\n");
646 xhci_debug_ring(xhci, xhci->event_ring);
647 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
648 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
649 temp_64 &= ~ERST_PTR_MASK;
650 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
651
66d4eadd
SS
652 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
653 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
a4d88302 654 temp &= ~ER_IRQ_INTERVAL_MASK;
66d4eadd
SS
655 temp |= (u32) 160;
656 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
657
658 /* Set the HCD state before we enable the irqs */
66d4eadd
SS
659 temp = xhci_readl(xhci, &xhci->op_regs->command);
660 temp |= (CMD_EIE);
661 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
662 temp);
663 xhci_writel(xhci, temp, &xhci->op_regs->command);
664
665 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
700e2052
GKH
666 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
667 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
66d4eadd
SS
668 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
669 &xhci->ir_set->irq_pending);
09ece30e 670 xhci_print_ir_set(xhci, 0);
66d4eadd 671
0238634d
SS
672 if (xhci->quirks & XHCI_NEC_HOST)
673 xhci_queue_vendor_command(xhci, 0, 0, 0,
674 TRB_TYPE(TRB_NEC_GET_FW));
7f84eef0 675
f6ff0ac8
SS
676 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
677 return 0;
678}
ed07453f 679
f6ff0ac8
SS
680static void xhci_only_stop_hcd(struct usb_hcd *hcd)
681{
682 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
66d4eadd 683
f6ff0ac8
SS
684 spin_lock_irq(&xhci->lock);
685 xhci_halt(xhci);
686
687 /* The shared_hcd is going to be deallocated shortly (the USB core only
688 * calls this function when allocation fails in usb_add_hcd(), or
689 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
690 */
691 xhci->shared_hcd = NULL;
692 spin_unlock_irq(&xhci->lock);
66d4eadd
SS
693}
694
695/*
696 * Stop xHCI driver.
697 *
698 * This function is called by the USB core when the HC driver is removed.
699 * Its opposite is xhci_run().
700 *
701 * Disable device contexts, disable IRQs, and quiesce the HC.
702 * Reset the HC, finish any completed transactions, and cleanup memory.
703 */
704void xhci_stop(struct usb_hcd *hcd)
705{
706 u32 temp;
707 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
708
f6ff0ac8
SS
709 if (!usb_hcd_is_primary_hcd(hcd)) {
710 xhci_only_stop_hcd(xhci->shared_hcd);
711 return;
712 }
713
66d4eadd 714 spin_lock_irq(&xhci->lock);
f6ff0ac8
SS
715 /* Make sure the xHC is halted for a USB3 roothub
716 * (xhci_stop() could be called as part of failed init).
717 */
66d4eadd
SS
718 xhci_halt(xhci);
719 xhci_reset(xhci);
720 spin_unlock_irq(&xhci->lock);
721
40a9fb17
ZR
722 xhci_cleanup_msix(xhci);
723
7f84eef0
SS
724#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
725 /* Tell the event ring poll function not to reschedule */
726 xhci->zombie = 1;
727 del_timer_sync(&xhci->event_ring_timer);
728#endif
729
71c731a2
AC
730 /* Deleting Compliance Mode Recovery Timer */
731 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
732 (!(xhci_all_ports_seen_u0(xhci))))
733 del_timer_sync(&xhci->comp_mode_recovery_timer);
734
c41136b0
AX
735 if (xhci->quirks & XHCI_AMD_PLL_FIX)
736 usb_amd_dev_put();
737
66d4eadd
SS
738 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
739 temp = xhci_readl(xhci, &xhci->op_regs->status);
740 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
741 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
742 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
743 &xhci->ir_set->irq_pending);
09ece30e 744 xhci_print_ir_set(xhci, 0);
66d4eadd
SS
745
746 xhci_dbg(xhci, "cleaning up memory\n");
747 xhci_mem_cleanup(xhci);
748 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
749 xhci_readl(xhci, &xhci->op_regs->status));
750}
751
752/*
753 * Shutdown HC (not bus-specific)
754 *
755 * This is called when the machine is rebooting or halting. We assume that the
756 * machine will be powered off, and the HC's internal state will be reset.
757 * Don't bother to free memory.
f6ff0ac8
SS
758 *
759 * This will only ever be called with the main usb_hcd (the USB3 roothub).
66d4eadd
SS
760 */
761void xhci_shutdown(struct usb_hcd *hcd)
762{
763 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
764
052c7f9f 765 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
e95829f4
SS
766 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
767
66d4eadd
SS
768 spin_lock_irq(&xhci->lock);
769 xhci_halt(xhci);
43b86af8 770 spin_unlock_irq(&xhci->lock);
66d4eadd 771
40a9fb17
ZR
772 xhci_cleanup_msix(xhci);
773
66d4eadd
SS
774 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
775 xhci_readl(xhci, &xhci->op_regs->status));
776}
777
b5b5c3ac 778#ifdef CONFIG_PM
5535b1d5
AX
779static void xhci_save_registers(struct xhci_hcd *xhci)
780{
781 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
782 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
783 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
784 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
5535b1d5
AX
785 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
786 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
787 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
c7713e73
SS
788 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
789 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
5535b1d5
AX
790}
791
792static void xhci_restore_registers(struct xhci_hcd *xhci)
793{
794 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
795 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
796 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
797 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
5535b1d5
AX
798 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
799 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
fb3d85bc 800 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
c7713e73
SS
801 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
802 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
5535b1d5
AX
803}
804
89821320
SS
805static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
806{
807 u64 val_64;
808
809 /* step 2: initialize command ring buffer */
810 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
811 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
812 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
813 xhci->cmd_ring->dequeue) &
814 (u64) ~CMD_RING_RSVD_BITS) |
815 xhci->cmd_ring->cycle_state;
816 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
817 (long unsigned long) val_64);
818 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
819}
820
821/*
822 * The whole command ring must be cleared to zero when we suspend the host.
823 *
824 * The host doesn't save the command ring pointer in the suspend well, so we
825 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
826 * aligned, because of the reserved bits in the command ring dequeue pointer
827 * register. Therefore, we can't just set the dequeue pointer back in the
828 * middle of the ring (TRBs are 16-byte aligned).
829 */
830static void xhci_clear_command_ring(struct xhci_hcd *xhci)
831{
832 struct xhci_ring *ring;
833 struct xhci_segment *seg;
834
835 ring = xhci->cmd_ring;
836 seg = ring->deq_seg;
837 do {
158886cd
AX
838 memset(seg->trbs, 0,
839 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
840 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
841 cpu_to_le32(~TRB_CYCLE);
89821320
SS
842 seg = seg->next;
843 } while (seg != ring->deq_seg);
844
845 /* Reset the software enqueue and dequeue pointers */
846 ring->deq_seg = ring->first_seg;
847 ring->dequeue = ring->first_seg->trbs;
848 ring->enq_seg = ring->deq_seg;
849 ring->enqueue = ring->dequeue;
850
b008df60 851 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
89821320
SS
852 /*
853 * Ring is now zeroed, so the HW should look for change of ownership
854 * when the cycle bit is set to 1.
855 */
856 ring->cycle_state = 1;
857
858 /*
859 * Reset the hardware dequeue pointer.
860 * Yes, this will need to be re-written after resume, but we're paranoid
861 * and want to make sure the hardware doesn't access bogus memory
862 * because, say, the BIOS or an SMI started the host without changing
863 * the command ring pointers.
864 */
865 xhci_set_cmd_ring_deq(xhci);
866}
867
5535b1d5
AX
868/*
869 * Stop HC (not bus-specific)
870 *
871 * This is called when the machine transition into S3/S4 mode.
872 *
873 */
874int xhci_suspend(struct xhci_hcd *xhci)
875{
876 int rc = 0;
877 struct usb_hcd *hcd = xhci_to_hcd(xhci);
878 u32 command;
879
880 spin_lock_irq(&xhci->lock);
881 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
b3209379 882 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
5535b1d5
AX
883 /* step 1: stop endpoint */
884 /* skipped assuming that port suspend has done */
885
886 /* step 2: clear Run/Stop bit */
887 command = xhci_readl(xhci, &xhci->op_regs->command);
888 command &= ~CMD_RUN;
889 xhci_writel(xhci, command, &xhci->op_regs->command);
890 if (handshake(xhci, &xhci->op_regs->status,
891 STS_HALT, STS_HALT, 100*100)) {
892 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
893 spin_unlock_irq(&xhci->lock);
894 return -ETIMEDOUT;
895 }
89821320 896 xhci_clear_command_ring(xhci);
5535b1d5
AX
897
898 /* step 3: save registers */
899 xhci_save_registers(xhci);
900
901 /* step 4: set CSS flag */
902 command = xhci_readl(xhci, &xhci->op_regs->command);
903 command |= CMD_CSS;
904 xhci_writel(xhci, command, &xhci->op_regs->command);
622eb783
AX
905 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
906 xhci_warn(xhci, "WARN: xHC save state timeout\n");
5535b1d5
AX
907 spin_unlock_irq(&xhci->lock);
908 return -ETIMEDOUT;
909 }
5535b1d5
AX
910 spin_unlock_irq(&xhci->lock);
911
71c731a2
AC
912 /*
913 * Deleting Compliance Mode Recovery Timer because the xHCI Host
914 * is about to be suspended.
915 */
916 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917 (!(xhci_all_ports_seen_u0(xhci)))) {
918 del_timer_sync(&xhci->comp_mode_recovery_timer);
919 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
920 }
921
0029227f
AX
922 /* step 5: remove core well power */
923 /* synchronize irq when using MSI-X */
421aa841 924 xhci_msix_sync_irqs(xhci);
0029227f 925
5535b1d5
AX
926 return rc;
927}
928
929/*
930 * start xHC (not bus-specific)
931 *
932 * This is called when the machine transition from S3/S4 mode.
933 *
934 */
935int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
936{
937 u32 command, temp = 0;
938 struct usb_hcd *hcd = xhci_to_hcd(xhci);
65b22f93 939 struct usb_hcd *secondary_hcd;
f69e3120 940 int retval = 0;
5535b1d5 941
f6ff0ac8 942 /* Wait a bit if either of the roothubs need to settle from the
25985edc 943 * transition into bus suspend.
20b67cf5 944 */
f6ff0ac8
SS
945 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
946 time_before(jiffies,
947 xhci->bus_state[1].next_statechange))
5535b1d5
AX
948 msleep(100);
949
f69e3120
AS
950 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
951 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
952
5535b1d5 953 spin_lock_irq(&xhci->lock);
c877b3b2
ML
954 if (xhci->quirks & XHCI_RESET_ON_RESUME)
955 hibernated = true;
5535b1d5
AX
956
957 if (!hibernated) {
958 /* step 1: restore register */
959 xhci_restore_registers(xhci);
960 /* step 2: initialize command ring buffer */
89821320 961 xhci_set_cmd_ring_deq(xhci);
5535b1d5
AX
962 /* step 3: restore state and start state*/
963 /* step 3: set CRS flag */
964 command = xhci_readl(xhci, &xhci->op_regs->command);
965 command |= CMD_CRS;
966 xhci_writel(xhci, command, &xhci->op_regs->command);
967 if (handshake(xhci, &xhci->op_regs->status,
622eb783
AX
968 STS_RESTORE, 0, 10 * 1000)) {
969 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
5535b1d5
AX
970 spin_unlock_irq(&xhci->lock);
971 return -ETIMEDOUT;
972 }
973 temp = xhci_readl(xhci, &xhci->op_regs->status);
974 }
975
976 /* If restore operation fails, re-initialize the HC during resume */
977 if ((temp & STS_SRE) || hibernated) {
fedd383e
SS
978 /* Let the USB core know _both_ roothubs lost power. */
979 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
980 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
5535b1d5
AX
981
982 xhci_dbg(xhci, "Stop HCD\n");
983 xhci_halt(xhci);
984 xhci_reset(xhci);
5535b1d5 985 spin_unlock_irq(&xhci->lock);
0029227f 986 xhci_cleanup_msix(xhci);
5535b1d5
AX
987
988#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
989 /* Tell the event ring poll function not to reschedule */
990 xhci->zombie = 1;
991 del_timer_sync(&xhci->event_ring_timer);
992#endif
993
994 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
995 temp = xhci_readl(xhci, &xhci->op_regs->status);
996 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
997 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
998 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
999 &xhci->ir_set->irq_pending);
09ece30e 1000 xhci_print_ir_set(xhci, 0);
5535b1d5
AX
1001
1002 xhci_dbg(xhci, "cleaning up memory\n");
1003 xhci_mem_cleanup(xhci);
1004 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005 xhci_readl(xhci, &xhci->op_regs->status));
1006
65b22f93
SS
1007 /* USB core calls the PCI reinit and start functions twice:
1008 * first with the primary HCD, and then with the secondary HCD.
1009 * If we don't do the same, the host will never be started.
1010 */
1011 if (!usb_hcd_is_primary_hcd(hcd))
1012 secondary_hcd = hcd;
1013 else
1014 secondary_hcd = xhci->shared_hcd;
1015
1016 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017 retval = xhci_init(hcd->primary_hcd);
5535b1d5
AX
1018 if (retval)
1019 return retval;
65b22f93
SS
1020 xhci_dbg(xhci, "Start the primary HCD\n");
1021 retval = xhci_run(hcd->primary_hcd);
b3209379 1022 if (!retval) {
f69e3120
AS
1023 xhci_dbg(xhci, "Start the secondary HCD\n");
1024 retval = xhci_run(secondary_hcd);
b3209379 1025 }
5535b1d5 1026 hcd->state = HC_STATE_SUSPENDED;
b3209379 1027 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
f69e3120 1028 goto done;
5535b1d5
AX
1029 }
1030
5535b1d5
AX
1031 /* step 4: set Run/Stop bit */
1032 command = xhci_readl(xhci, &xhci->op_regs->command);
1033 command |= CMD_RUN;
1034 xhci_writel(xhci, command, &xhci->op_regs->command);
1035 handshake(xhci, &xhci->op_regs->status, STS_HALT,
1036 0, 250 * 1000);
1037
1038 /* step 5: walk topology and initialize portsc,
1039 * portpmsc and portli
1040 */
1041 /* this is done in bus_resume */
1042
1043 /* step 6: restart each of the previously
1044 * Running endpoints by ringing their doorbells
1045 */
1046
5535b1d5 1047 spin_unlock_irq(&xhci->lock);
f69e3120
AS
1048
1049 done:
1050 if (retval == 0) {
1051 usb_hcd_resume_root_hub(hcd);
1052 usb_hcd_resume_root_hub(xhci->shared_hcd);
1053 }
71c731a2
AC
1054
1055 /*
1056 * If system is subject to the Quirk, Compliance Mode Timer needs to
1057 * be re-initialized Always after a system resume. Ports are subject
1058 * to suffer the Compliance Mode issue again. It doesn't matter if
1059 * ports have entered previously to U0 before system's suspension.
1060 */
1061 if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1062 compliance_mode_recovery_timer_init(xhci);
1063
f69e3120 1064 return retval;
5535b1d5 1065}
b5b5c3ac
SS
1066#endif /* CONFIG_PM */
1067
7f84eef0
SS
1068/*-------------------------------------------------------------------------*/
1069
d0e96f5a
SS
1070/**
1071 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1072 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1073 * value to right shift 1 for the bitmask.
1074 *
1075 * Index = (epnum * 2) + direction - 1,
1076 * where direction = 0 for OUT, 1 for IN.
1077 * For control endpoints, the IN index is used (OUT index is unused), so
1078 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1079 */
1080unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1081{
1082 unsigned int index;
1083 if (usb_endpoint_xfer_control(desc))
1084 index = (unsigned int) (usb_endpoint_num(desc)*2);
1085 else
1086 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1087 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1088 return index;
1089}
1090
f94e0186
SS
1091/* Find the flag for this endpoint (for use in the control context). Use the
1092 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1093 * bit 1, etc.
1094 */
1095unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1096{
1097 return 1 << (xhci_get_endpoint_index(desc) + 1);
1098}
1099
ac9d8fe7
SS
1100/* Find the flag for this endpoint (for use in the control context). Use the
1101 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1102 * bit 1, etc.
1103 */
1104unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1105{
1106 return 1 << (ep_index + 1);
1107}
1108
f94e0186
SS
1109/* Compute the last valid endpoint context index. Basically, this is the
1110 * endpoint index plus one. For slot contexts with more than valid endpoint,
1111 * we find the most significant bit set in the added contexts flags.
1112 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1113 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1114 */
ac9d8fe7 1115unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
f94e0186
SS
1116{
1117 return fls(added_ctxs) - 1;
1118}
1119
d0e96f5a
SS
1120/* Returns 1 if the arguments are OK;
1121 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1122 */
8212a49d 1123static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
64927730
AX
1124 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1125 const char *func) {
1126 struct xhci_hcd *xhci;
1127 struct xhci_virt_device *virt_dev;
1128
d0e96f5a
SS
1129 if (!hcd || (check_ep && !ep) || !udev) {
1130 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1131 func);
1132 return -EINVAL;
1133 }
1134 if (!udev->parent) {
1135 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1136 func);
1137 return 0;
1138 }
64927730 1139
7bd89b40
SS
1140 xhci = hcd_to_xhci(hcd);
1141 if (xhci->xhc_state & XHCI_STATE_HALTED)
1142 return -ENODEV;
1143
64927730 1144 if (check_virt_dev) {
73ddc247 1145 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
64927730
AX
1146 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1147 "device\n", func);
1148 return -EINVAL;
1149 }
1150
1151 virt_dev = xhci->devs[udev->slot_id];
1152 if (virt_dev->udev != udev) {
1153 printk(KERN_DEBUG "xHCI %s called with udev and "
1154 "virt_dev does not match\n", func);
1155 return -EINVAL;
1156 }
d0e96f5a 1157 }
64927730 1158
d0e96f5a
SS
1159 return 1;
1160}
1161
2d3f1fac 1162static int xhci_configure_endpoint(struct xhci_hcd *xhci,
913a8a34
SS
1163 struct usb_device *udev, struct xhci_command *command,
1164 bool ctx_change, bool must_succeed);
2d3f1fac
SS
1165
1166/*
1167 * Full speed devices may have a max packet size greater than 8 bytes, but the
1168 * USB core doesn't know that until it reads the first 8 bytes of the
1169 * descriptor. If the usb_device's max packet size changes after that point,
1170 * we need to issue an evaluate context command and wait on it.
1171 */
1172static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1173 unsigned int ep_index, struct urb *urb)
1174{
1175 struct xhci_container_ctx *in_ctx;
1176 struct xhci_container_ctx *out_ctx;
1177 struct xhci_input_control_ctx *ctrl_ctx;
1178 struct xhci_ep_ctx *ep_ctx;
1179 int max_packet_size;
1180 int hw_max_packet_size;
1181 int ret = 0;
1182
1183 out_ctx = xhci->devs[slot_id]->out_ctx;
1184 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
28ccd296 1185 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
29cc8897 1186 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
2d3f1fac
SS
1187 if (hw_max_packet_size != max_packet_size) {
1188 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1189 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1190 max_packet_size);
1191 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1192 hw_max_packet_size);
1193 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1194
1195 /* Set up the modified control endpoint 0 */
913a8a34
SS
1196 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1197 xhci->devs[slot_id]->out_ctx, ep_index);
2d3f1fac
SS
1198 in_ctx = xhci->devs[slot_id]->in_ctx;
1199 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
28ccd296
ME
1200 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1201 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
2d3f1fac
SS
1202
1203 /* Set up the input context flags for the command */
1204 /* FIXME: This won't work if a non-default control endpoint
1205 * changes max packet sizes.
1206 */
1207 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
28ccd296 1208 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
2d3f1fac
SS
1209 ctrl_ctx->drop_flags = 0;
1210
1211 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1212 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1213 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1214 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1215
913a8a34
SS
1216 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1217 true, false);
2d3f1fac
SS
1218
1219 /* Clean up the input context for later use by bandwidth
1220 * functions.
1221 */
28ccd296 1222 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
2d3f1fac
SS
1223 }
1224 return ret;
1225}
1226
d0e96f5a
SS
1227/*
1228 * non-error returns are a promise to giveback() the urb later
1229 * we drop ownership so next owner (or urb unlink) can get it
1230 */
1231int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1232{
1233 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2ffdea25 1234 struct xhci_td *buffer;
d0e96f5a
SS
1235 unsigned long flags;
1236 int ret = 0;
1237 unsigned int slot_id, ep_index;
8e51adcc
AX
1238 struct urb_priv *urb_priv;
1239 int size, i;
2d3f1fac 1240
64927730
AX
1241 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1242 true, true, __func__) <= 0)
d0e96f5a
SS
1243 return -EINVAL;
1244
1245 slot_id = urb->dev->slot_id;
1246 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
d0e96f5a 1247
541c7d43 1248 if (!HCD_HW_ACCESSIBLE(hcd)) {
d0e96f5a
SS
1249 if (!in_interrupt())
1250 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1251 ret = -ESHUTDOWN;
1252 goto exit;
1253 }
8e51adcc
AX
1254
1255 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1256 size = urb->number_of_packets;
1257 else
1258 size = 1;
1259
1260 urb_priv = kzalloc(sizeof(struct urb_priv) +
1261 size * sizeof(struct xhci_td *), mem_flags);
1262 if (!urb_priv)
1263 return -ENOMEM;
1264
2ffdea25
AX
1265 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1266 if (!buffer) {
1267 kfree(urb_priv);
1268 return -ENOMEM;
1269 }
1270
8e51adcc 1271 for (i = 0; i < size; i++) {
2ffdea25
AX
1272 urb_priv->td[i] = buffer;
1273 buffer++;
8e51adcc
AX
1274 }
1275
1276 urb_priv->length = size;
1277 urb_priv->td_cnt = 0;
1278 urb->hcpriv = urb_priv;
1279
2d3f1fac
SS
1280 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1281 /* Check to see if the max packet size for the default control
1282 * endpoint changed during FS device enumeration
1283 */
1284 if (urb->dev->speed == USB_SPEED_FULL) {
1285 ret = xhci_check_maxpacket(xhci, slot_id,
1286 ep_index, urb);
d13565c1
SS
1287 if (ret < 0) {
1288 xhci_urb_free_priv(xhci, urb_priv);
1289 urb->hcpriv = NULL;
2d3f1fac 1290 return ret;
d13565c1 1291 }
2d3f1fac
SS
1292 }
1293
b11069f5
SS
1294 /* We have a spinlock and interrupts disabled, so we must pass
1295 * atomic context to this function, which may allocate memory.
1296 */
2d3f1fac 1297 spin_lock_irqsave(&xhci->lock, flags);
6f5165cf
SS
1298 if (xhci->xhc_state & XHCI_STATE_DYING)
1299 goto dying;
b11069f5 1300 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
23e3be11 1301 slot_id, ep_index);
d13565c1
SS
1302 if (ret)
1303 goto free_priv;
2d3f1fac
SS
1304 spin_unlock_irqrestore(&xhci->lock, flags);
1305 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1306 spin_lock_irqsave(&xhci->lock, flags);
6f5165cf
SS
1307 if (xhci->xhc_state & XHCI_STATE_DYING)
1308 goto dying;
8df75f42
SS
1309 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1310 EP_GETTING_STREAMS) {
1311 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1312 "is transitioning to using streams.\n");
1313 ret = -EINVAL;
1314 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1315 EP_GETTING_NO_STREAMS) {
1316 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1317 "is transitioning to "
1318 "not having streams.\n");
1319 ret = -EINVAL;
1320 } else {
1321 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1322 slot_id, ep_index);
1323 }
d13565c1
SS
1324 if (ret)
1325 goto free_priv;
2d3f1fac 1326 spin_unlock_irqrestore(&xhci->lock, flags);
624defa1
SS
1327 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1328 spin_lock_irqsave(&xhci->lock, flags);
6f5165cf
SS
1329 if (xhci->xhc_state & XHCI_STATE_DYING)
1330 goto dying;
624defa1
SS
1331 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1332 slot_id, ep_index);
d13565c1
SS
1333 if (ret)
1334 goto free_priv;
624defa1 1335 spin_unlock_irqrestore(&xhci->lock, flags);
2d3f1fac 1336 } else {
787f4e5a
AX
1337 spin_lock_irqsave(&xhci->lock, flags);
1338 if (xhci->xhc_state & XHCI_STATE_DYING)
1339 goto dying;
1340 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1341 slot_id, ep_index);
d13565c1
SS
1342 if (ret)
1343 goto free_priv;
787f4e5a 1344 spin_unlock_irqrestore(&xhci->lock, flags);
2d3f1fac 1345 }
d0e96f5a 1346exit:
d0e96f5a 1347 return ret;
6f5165cf
SS
1348dying:
1349 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1350 "non-responsive xHCI host.\n",
1351 urb->ep->desc.bEndpointAddress, urb);
d13565c1
SS
1352 ret = -ESHUTDOWN;
1353free_priv:
1354 xhci_urb_free_priv(xhci, urb_priv);
1355 urb->hcpriv = NULL;
6f5165cf 1356 spin_unlock_irqrestore(&xhci->lock, flags);
d13565c1 1357 return ret;
d0e96f5a
SS
1358}
1359
021bff91
SS
1360/* Get the right ring for the given URB.
1361 * If the endpoint supports streams, boundary check the URB's stream ID.
1362 * If the endpoint doesn't support streams, return the singular endpoint ring.
1363 */
1364static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1365 struct urb *urb)
1366{
1367 unsigned int slot_id;
1368 unsigned int ep_index;
1369 unsigned int stream_id;
1370 struct xhci_virt_ep *ep;
1371
1372 slot_id = urb->dev->slot_id;
1373 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1374 stream_id = urb->stream_id;
1375 ep = &xhci->devs[slot_id]->eps[ep_index];
1376 /* Common case: no streams */
1377 if (!(ep->ep_state & EP_HAS_STREAMS))
1378 return ep->ring;
1379
1380 if (stream_id == 0) {
1381 xhci_warn(xhci,
1382 "WARN: Slot ID %u, ep index %u has streams, "
1383 "but URB has no stream ID.\n",
1384 slot_id, ep_index);
1385 return NULL;
1386 }
1387
1388 if (stream_id < ep->stream_info->num_streams)
1389 return ep->stream_info->stream_rings[stream_id];
1390
1391 xhci_warn(xhci,
1392 "WARN: Slot ID %u, ep index %u has "
1393 "stream IDs 1 to %u allocated, "
1394 "but stream ID %u is requested.\n",
1395 slot_id, ep_index,
1396 ep->stream_info->num_streams - 1,
1397 stream_id);
1398 return NULL;
1399}
1400
ae636747
SS
1401/*
1402 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1403 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1404 * should pick up where it left off in the TD, unless a Set Transfer Ring
1405 * Dequeue Pointer is issued.
1406 *
1407 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1408 * the ring. Since the ring is a contiguous structure, they can't be physically
1409 * removed. Instead, there are two options:
1410 *
1411 * 1) If the HC is in the middle of processing the URB to be canceled, we
1412 * simply move the ring's dequeue pointer past those TRBs using the Set
1413 * Transfer Ring Dequeue Pointer command. This will be the common case,
1414 * when drivers timeout on the last submitted URB and attempt to cancel.
1415 *
1416 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1417 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1418 * HC will need to invalidate the any TRBs it has cached after the stop
1419 * endpoint command, as noted in the xHCI 0.95 errata.
1420 *
1421 * 3) The TD may have completed by the time the Stop Endpoint Command
1422 * completes, so software needs to handle that case too.
1423 *
1424 * This function should protect against the TD enqueueing code ringing the
1425 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1426 * It also needs to account for multiple cancellations on happening at the same
1427 * time for the same endpoint.
1428 *
1429 * Note that this function can be called in any context, or so says
1430 * usb_hcd_unlink_urb()
d0e96f5a
SS
1431 */
1432int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1433{
ae636747 1434 unsigned long flags;
8e51adcc 1435 int ret, i;
e34b2fbf 1436 u32 temp;
ae636747 1437 struct xhci_hcd *xhci;
8e51adcc 1438 struct urb_priv *urb_priv;
ae636747
SS
1439 struct xhci_td *td;
1440 unsigned int ep_index;
1441 struct xhci_ring *ep_ring;
63a0d9ab 1442 struct xhci_virt_ep *ep;
ae636747
SS
1443
1444 xhci = hcd_to_xhci(hcd);
1445 spin_lock_irqsave(&xhci->lock, flags);
1446 /* Make sure the URB hasn't completed or been unlinked already */
1447 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1448 if (ret || !urb->hcpriv)
1449 goto done;
e34b2fbf 1450 temp = xhci_readl(xhci, &xhci->op_regs->status);
c6cc27c7 1451 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
e34b2fbf 1452 xhci_dbg(xhci, "HW died, freeing TD.\n");
8e51adcc 1453 urb_priv = urb->hcpriv;
585df1d9
SS
1454 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1455 td = urb_priv->td[i];
1456 if (!list_empty(&td->td_list))
1457 list_del_init(&td->td_list);
1458 if (!list_empty(&td->cancelled_td_list))
1459 list_del_init(&td->cancelled_td_list);
1460 }
e34b2fbf
SS
1461
1462 usb_hcd_unlink_urb_from_ep(hcd, urb);
1463 spin_unlock_irqrestore(&xhci->lock, flags);
214f76f7 1464 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
8e51adcc 1465 xhci_urb_free_priv(xhci, urb_priv);
e34b2fbf
SS
1466 return ret;
1467 }
7bd89b40
SS
1468 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1469 (xhci->xhc_state & XHCI_STATE_HALTED)) {
6f5165cf
SS
1470 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1471 "non-responsive xHCI host.\n",
1472 urb->ep->desc.bEndpointAddress, urb);
1473 /* Let the stop endpoint command watchdog timer (which set this
1474 * state) finish cleaning up the endpoint TD lists. We must
1475 * have caught it in the middle of dropping a lock and giving
1476 * back an URB.
1477 */
1478 goto done;
1479 }
ae636747 1480
ae636747 1481 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
63a0d9ab 1482 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
e9df17eb
SS
1483 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1484 if (!ep_ring) {
1485 ret = -EINVAL;
1486 goto done;
1487 }
1488
8e51adcc 1489 urb_priv = urb->hcpriv;
79688acf
SS
1490 i = urb_priv->td_cnt;
1491 if (i < urb_priv->length)
1492 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1493 "starting at offset 0x%llx\n",
1494 urb, urb->dev->devpath,
1495 urb->ep->desc.bEndpointAddress,
1496 (unsigned long long) xhci_trb_virt_to_dma(
1497 urb_priv->td[i]->start_seg,
1498 urb_priv->td[i]->first_trb));
1499
1500 for (; i < urb_priv->length; i++) {
8e51adcc
AX
1501 td = urb_priv->td[i];
1502 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1503 }
1504
ae636747
SS
1505 /* Queue a stop endpoint command, but only if this is
1506 * the first cancellation to be handled.
1507 */
678539cf
SS
1508 if (!(ep->ep_state & EP_HALT_PENDING)) {
1509 ep->ep_state |= EP_HALT_PENDING;
6f5165cf
SS
1510 ep->stop_cmds_pending++;
1511 ep->stop_cmd_timer.expires = jiffies +
1512 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1513 add_timer(&ep->stop_cmd_timer);
be88fe4f 1514 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
23e3be11 1515 xhci_ring_cmd_db(xhci);
ae636747
SS
1516 }
1517done:
1518 spin_unlock_irqrestore(&xhci->lock, flags);
1519 return ret;
d0e96f5a
SS
1520}
1521
f94e0186
SS
1522/* Drop an endpoint from a new bandwidth configuration for this device.
1523 * Only one call to this function is allowed per endpoint before
1524 * check_bandwidth() or reset_bandwidth() must be called.
1525 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1526 * add the endpoint to the schedule with possibly new parameters denoted by a
1527 * different endpoint descriptor in usb_host_endpoint.
1528 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1529 * not allowed.
f88ba78d
SS
1530 *
1531 * The USB core will not allow URBs to be queued to an endpoint that is being
1532 * disabled, so there's no need for mutual exclusion to protect
1533 * the xhci->devs[slot_id] structure.
f94e0186
SS
1534 */
1535int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1536 struct usb_host_endpoint *ep)
1537{
f94e0186 1538 struct xhci_hcd *xhci;
d115b048
JY
1539 struct xhci_container_ctx *in_ctx, *out_ctx;
1540 struct xhci_input_control_ctx *ctrl_ctx;
1541 struct xhci_slot_ctx *slot_ctx;
f94e0186
SS
1542 unsigned int last_ctx;
1543 unsigned int ep_index;
1544 struct xhci_ep_ctx *ep_ctx;
1545 u32 drop_flag;
1546 u32 new_add_flags, new_drop_flags, new_slot_info;
1547 int ret;
1548
64927730 1549 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
f94e0186
SS
1550 if (ret <= 0)
1551 return ret;
1552 xhci = hcd_to_xhci(hcd);
fe6c6c13
SS
1553 if (xhci->xhc_state & XHCI_STATE_DYING)
1554 return -ENODEV;
f94e0186 1555
fe6c6c13 1556 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
f94e0186
SS
1557 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1558 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1559 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1560 __func__, drop_flag);
1561 return 0;
1562 }
1563
f94e0186 1564 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
d115b048
JY
1565 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1566 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
f94e0186 1567 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1568 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
f94e0186
SS
1569 /* If the HC already knows the endpoint is disabled,
1570 * or the HCD has noted it is disabled, ignore this request
1571 */
f5960b69
ME
1572 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1573 cpu_to_le32(EP_STATE_DISABLED)) ||
28ccd296
ME
1574 le32_to_cpu(ctrl_ctx->drop_flags) &
1575 xhci_get_endpoint_flag(&ep->desc)) {
700e2052
GKH
1576 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1577 __func__, ep);
f94e0186
SS
1578 return 0;
1579 }
1580
28ccd296
ME
1581 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1582 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
f94e0186 1583
28ccd296
ME
1584 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1585 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
f94e0186 1586
28ccd296 1587 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
d115b048 1588 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
f94e0186 1589 /* Update the last valid endpoint context, if we deleted the last one */
28ccd296
ME
1590 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1591 LAST_CTX(last_ctx)) {
1592 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1593 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
f94e0186 1594 }
28ccd296 1595 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
f94e0186
SS
1596
1597 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1598
f94e0186
SS
1599 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1600 (unsigned int) ep->desc.bEndpointAddress,
1601 udev->slot_id,
1602 (unsigned int) new_drop_flags,
1603 (unsigned int) new_add_flags,
1604 (unsigned int) new_slot_info);
1605 return 0;
1606}
1607
1608/* Add an endpoint to a new possible bandwidth configuration for this device.
1609 * Only one call to this function is allowed per endpoint before
1610 * check_bandwidth() or reset_bandwidth() must be called.
1611 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1612 * add the endpoint to the schedule with possibly new parameters denoted by a
1613 * different endpoint descriptor in usb_host_endpoint.
1614 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1615 * not allowed.
f88ba78d
SS
1616 *
1617 * The USB core will not allow URBs to be queued to an endpoint until the
1618 * configuration or alt setting is installed in the device, so there's no need
1619 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
f94e0186
SS
1620 */
1621int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1622 struct usb_host_endpoint *ep)
1623{
f94e0186 1624 struct xhci_hcd *xhci;
d115b048 1625 struct xhci_container_ctx *in_ctx, *out_ctx;
f94e0186
SS
1626 unsigned int ep_index;
1627 struct xhci_ep_ctx *ep_ctx;
d115b048
JY
1628 struct xhci_slot_ctx *slot_ctx;
1629 struct xhci_input_control_ctx *ctrl_ctx;
f94e0186
SS
1630 u32 added_ctxs;
1631 unsigned int last_ctx;
1632 u32 new_add_flags, new_drop_flags, new_slot_info;
fa75ac37 1633 struct xhci_virt_device *virt_dev;
f94e0186
SS
1634 int ret = 0;
1635
64927730 1636 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
a1587d97
SS
1637 if (ret <= 0) {
1638 /* So we won't queue a reset ep command for a root hub */
1639 ep->hcpriv = NULL;
f94e0186 1640 return ret;
a1587d97 1641 }
f94e0186 1642 xhci = hcd_to_xhci(hcd);
fe6c6c13
SS
1643 if (xhci->xhc_state & XHCI_STATE_DYING)
1644 return -ENODEV;
f94e0186
SS
1645
1646 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1647 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1648 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1649 /* FIXME when we have to issue an evaluate endpoint command to
1650 * deal with ep0 max packet size changing once we get the
1651 * descriptors
1652 */
1653 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1654 __func__, added_ctxs);
1655 return 0;
1656 }
1657
fa75ac37
SS
1658 virt_dev = xhci->devs[udev->slot_id];
1659 in_ctx = virt_dev->in_ctx;
1660 out_ctx = virt_dev->out_ctx;
d115b048 1661 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
f94e0186 1662 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1663 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
fa75ac37
SS
1664
1665 /* If this endpoint is already in use, and the upper layers are trying
1666 * to add it again without dropping it, reject the addition.
1667 */
1668 if (virt_dev->eps[ep_index].ring &&
1669 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1670 xhci_get_endpoint_flag(&ep->desc))) {
1671 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1672 "without dropping it.\n",
1673 (unsigned int) ep->desc.bEndpointAddress);
1674 return -EINVAL;
1675 }
1676
f94e0186
SS
1677 /* If the HCD has already noted the endpoint is enabled,
1678 * ignore this request.
1679 */
28ccd296
ME
1680 if (le32_to_cpu(ctrl_ctx->add_flags) &
1681 xhci_get_endpoint_flag(&ep->desc)) {
700e2052
GKH
1682 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1683 __func__, ep);
f94e0186
SS
1684 return 0;
1685 }
1686
f88ba78d
SS
1687 /*
1688 * Configuration and alternate setting changes must be done in
1689 * process context, not interrupt context (or so documenation
1690 * for usb_set_interface() and usb_set_configuration() claim).
1691 */
fa75ac37 1692 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
f94e0186
SS
1693 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1694 __func__, ep->desc.bEndpointAddress);
f94e0186
SS
1695 return -ENOMEM;
1696 }
1697
28ccd296
ME
1698 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1699 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
f94e0186
SS
1700
1701 /* If xhci_endpoint_disable() was called for this endpoint, but the
1702 * xHC hasn't been notified yet through the check_bandwidth() call,
1703 * this re-adds a new state for the endpoint from the new endpoint
1704 * descriptors. We must drop and re-add this endpoint, so we leave the
1705 * drop flags alone.
1706 */
28ccd296 1707 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
f94e0186 1708
d115b048 1709 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
f94e0186 1710 /* Update the last valid endpoint context, if we just added one past */
28ccd296
ME
1711 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1712 LAST_CTX(last_ctx)) {
1713 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1714 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
f94e0186 1715 }
28ccd296 1716 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
f94e0186 1717
a1587d97
SS
1718 /* Store the usb_device pointer for later use */
1719 ep->hcpriv = udev;
1720
f94e0186
SS
1721 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1722 (unsigned int) ep->desc.bEndpointAddress,
1723 udev->slot_id,
1724 (unsigned int) new_drop_flags,
1725 (unsigned int) new_add_flags,
1726 (unsigned int) new_slot_info);
1727 return 0;
1728}
1729
d115b048 1730static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
f94e0186 1731{
d115b048 1732 struct xhci_input_control_ctx *ctrl_ctx;
f94e0186 1733 struct xhci_ep_ctx *ep_ctx;
d115b048 1734 struct xhci_slot_ctx *slot_ctx;
f94e0186
SS
1735 int i;
1736
1737 /* When a device's add flag and drop flag are zero, any subsequent
1738 * configure endpoint command will leave that endpoint's state
1739 * untouched. Make sure we don't leave any old state in the input
1740 * endpoint contexts.
1741 */
d115b048
JY
1742 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1743 ctrl_ctx->drop_flags = 0;
1744 ctrl_ctx->add_flags = 0;
1745 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
28ccd296 1746 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
f94e0186 1747 /* Endpoint 0 is always valid */
28ccd296 1748 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
f94e0186 1749 for (i = 1; i < 31; ++i) {
d115b048 1750 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
f94e0186
SS
1751 ep_ctx->ep_info = 0;
1752 ep_ctx->ep_info2 = 0;
8e595a5d 1753 ep_ctx->deq = 0;
f94e0186
SS
1754 ep_ctx->tx_info = 0;
1755 }
1756}
1757
f2217e8e 1758static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
00161f7d 1759 struct usb_device *udev, u32 *cmd_status)
f2217e8e
SS
1760{
1761 int ret;
1762
913a8a34 1763 switch (*cmd_status) {
f2217e8e
SS
1764 case COMP_ENOMEM:
1765 dev_warn(&udev->dev, "Not enough host controller resources "
1766 "for new device state.\n");
1767 ret = -ENOMEM;
1768 /* FIXME: can we allocate more resources for the HC? */
1769 break;
1770 case COMP_BW_ERR:
71d85724 1771 case COMP_2ND_BW_ERR:
f2217e8e
SS
1772 dev_warn(&udev->dev, "Not enough bandwidth "
1773 "for new device state.\n");
1774 ret = -ENOSPC;
1775 /* FIXME: can we go back to the old state? */
1776 break;
1777 case COMP_TRB_ERR:
1778 /* the HCD set up something wrong */
1779 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1780 "add flag = 1, "
1781 "and endpoint is not disabled.\n");
1782 ret = -EINVAL;
1783 break;
f6ba6fe2
AH
1784 case COMP_DEV_ERR:
1785 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1786 "configure command.\n");
1787 ret = -ENODEV;
1788 break;
f2217e8e
SS
1789 case COMP_SUCCESS:
1790 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1791 ret = 0;
1792 break;
1793 default:
1794 xhci_err(xhci, "ERROR: unexpected command completion "
913a8a34 1795 "code 0x%x.\n", *cmd_status);
f2217e8e
SS
1796 ret = -EINVAL;
1797 break;
1798 }
1799 return ret;
1800}
1801
1802static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
00161f7d 1803 struct usb_device *udev, u32 *cmd_status)
f2217e8e
SS
1804{
1805 int ret;
913a8a34 1806 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
f2217e8e 1807
913a8a34 1808 switch (*cmd_status) {
f2217e8e
SS
1809 case COMP_EINVAL:
1810 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1811 "context command.\n");
1812 ret = -EINVAL;
1813 break;
1814 case COMP_EBADSLT:
1815 dev_warn(&udev->dev, "WARN: slot not enabled for"
1816 "evaluate context command.\n");
1817 case COMP_CTX_STATE:
1818 dev_warn(&udev->dev, "WARN: invalid context state for "
1819 "evaluate context command.\n");
1820 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1821 ret = -EINVAL;
1822 break;
f6ba6fe2
AH
1823 case COMP_DEV_ERR:
1824 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1825 "context command.\n");
1826 ret = -ENODEV;
1827 break;
1bb73a88
AH
1828 case COMP_MEL_ERR:
1829 /* Max Exit Latency too large error */
1830 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1831 ret = -EINVAL;
1832 break;
f2217e8e
SS
1833 case COMP_SUCCESS:
1834 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1835 ret = 0;
1836 break;
1837 default:
1838 xhci_err(xhci, "ERROR: unexpected command completion "
913a8a34 1839 "code 0x%x.\n", *cmd_status);
f2217e8e
SS
1840 ret = -EINVAL;
1841 break;
1842 }
1843 return ret;
1844}
1845
2cf95c18
SS
1846static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1847 struct xhci_container_ctx *in_ctx)
1848{
1849 struct xhci_input_control_ctx *ctrl_ctx;
1850 u32 valid_add_flags;
1851 u32 valid_drop_flags;
1852
1853 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1854 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1855 * (bit 1). The default control endpoint is added during the Address
1856 * Device command and is never removed until the slot is disabled.
1857 */
1858 valid_add_flags = ctrl_ctx->add_flags >> 2;
1859 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1860
1861 /* Use hweight32 to count the number of ones in the add flags, or
1862 * number of endpoints added. Don't count endpoints that are changed
1863 * (both added and dropped).
1864 */
1865 return hweight32(valid_add_flags) -
1866 hweight32(valid_add_flags & valid_drop_flags);
1867}
1868
1869static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1870 struct xhci_container_ctx *in_ctx)
1871{
1872 struct xhci_input_control_ctx *ctrl_ctx;
1873 u32 valid_add_flags;
1874 u32 valid_drop_flags;
1875
1876 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1877 valid_add_flags = ctrl_ctx->add_flags >> 2;
1878 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1879
1880 return hweight32(valid_drop_flags) -
1881 hweight32(valid_add_flags & valid_drop_flags);
1882}
1883
1884/*
1885 * We need to reserve the new number of endpoints before the configure endpoint
1886 * command completes. We can't subtract the dropped endpoints from the number
1887 * of active endpoints until the command completes because we can oversubscribe
1888 * the host in this case:
1889 *
1890 * - the first configure endpoint command drops more endpoints than it adds
1891 * - a second configure endpoint command that adds more endpoints is queued
1892 * - the first configure endpoint command fails, so the config is unchanged
1893 * - the second command may succeed, even though there isn't enough resources
1894 *
1895 * Must be called with xhci->lock held.
1896 */
1897static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1898 struct xhci_container_ctx *in_ctx)
1899{
1900 u32 added_eps;
1901
1902 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1903 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1904 xhci_dbg(xhci, "Not enough ep ctxs: "
1905 "%u active, need to add %u, limit is %u.\n",
1906 xhci->num_active_eps, added_eps,
1907 xhci->limit_active_eps);
1908 return -ENOMEM;
1909 }
1910 xhci->num_active_eps += added_eps;
1911 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1912 xhci->num_active_eps);
1913 return 0;
1914}
1915
1916/*
1917 * The configure endpoint was failed by the xHC for some other reason, so we
1918 * need to revert the resources that failed configuration would have used.
1919 *
1920 * Must be called with xhci->lock held.
1921 */
1922static void xhci_free_host_resources(struct xhci_hcd *xhci,
1923 struct xhci_container_ctx *in_ctx)
1924{
1925 u32 num_failed_eps;
1926
1927 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1928 xhci->num_active_eps -= num_failed_eps;
1929 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1930 num_failed_eps,
1931 xhci->num_active_eps);
1932}
1933
1934/*
1935 * Now that the command has completed, clean up the active endpoint count by
1936 * subtracting out the endpoints that were dropped (but not changed).
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1941 struct xhci_container_ctx *in_ctx)
1942{
1943 u32 num_dropped_eps;
1944
1945 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1946 xhci->num_active_eps -= num_dropped_eps;
1947 if (num_dropped_eps)
1948 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1949 num_dropped_eps,
1950 xhci->num_active_eps);
1951}
1952
ed384bd3 1953static unsigned int xhci_get_block_size(struct usb_device *udev)
c29eea62
SS
1954{
1955 switch (udev->speed) {
1956 case USB_SPEED_LOW:
1957 case USB_SPEED_FULL:
1958 return FS_BLOCK;
1959 case USB_SPEED_HIGH:
1960 return HS_BLOCK;
1961 case USB_SPEED_SUPER:
1962 return SS_BLOCK;
1963 case USB_SPEED_UNKNOWN:
1964 case USB_SPEED_WIRELESS:
1965 default:
1966 /* Should never happen */
1967 return 1;
1968 }
1969}
1970
ed384bd3
FB
1971static unsigned int
1972xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
c29eea62
SS
1973{
1974 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1975 return LS_OVERHEAD;
1976 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1977 return FS_OVERHEAD;
1978 return HS_OVERHEAD;
1979}
1980
1981/* If we are changing a LS/FS device under a HS hub,
1982 * make sure (if we are activating a new TT) that the HS bus has enough
1983 * bandwidth for this new TT.
1984 */
1985static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1986 struct xhci_virt_device *virt_dev,
1987 int old_active_eps)
1988{
1989 struct xhci_interval_bw_table *bw_table;
1990 struct xhci_tt_bw_info *tt_info;
1991
1992 /* Find the bandwidth table for the root port this TT is attached to. */
1993 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1994 tt_info = virt_dev->tt_info;
1995 /* If this TT already had active endpoints, the bandwidth for this TT
1996 * has already been added. Removing all periodic endpoints (and thus
1997 * making the TT enactive) will only decrease the bandwidth used.
1998 */
1999 if (old_active_eps)
2000 return 0;
2001 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2002 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2003 return -ENOMEM;
2004 return 0;
2005 }
2006 /* Not sure why we would have no new active endpoints...
2007 *
2008 * Maybe because of an Evaluate Context change for a hub update or a
2009 * control endpoint 0 max packet size change?
2010 * FIXME: skip the bandwidth calculation in that case.
2011 */
2012 return 0;
2013}
2014
2b698999
SS
2015static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2016 struct xhci_virt_device *virt_dev)
2017{
2018 unsigned int bw_reserved;
2019
2020 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2021 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2022 return -ENOMEM;
2023
2024 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2025 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2026 return -ENOMEM;
2027
2028 return 0;
2029}
2030
c29eea62
SS
2031/*
2032 * This algorithm is a very conservative estimate of the worst-case scheduling
2033 * scenario for any one interval. The hardware dynamically schedules the
2034 * packets, so we can't tell which microframe could be the limiting factor in
2035 * the bandwidth scheduling. This only takes into account periodic endpoints.
2036 *
2037 * Obviously, we can't solve an NP complete problem to find the minimum worst
2038 * case scenario. Instead, we come up with an estimate that is no less than
2039 * the worst case bandwidth used for any one microframe, but may be an
2040 * over-estimate.
2041 *
2042 * We walk the requirements for each endpoint by interval, starting with the
2043 * smallest interval, and place packets in the schedule where there is only one
2044 * possible way to schedule packets for that interval. In order to simplify
2045 * this algorithm, we record the largest max packet size for each interval, and
2046 * assume all packets will be that size.
2047 *
2048 * For interval 0, we obviously must schedule all packets for each interval.
2049 * The bandwidth for interval 0 is just the amount of data to be transmitted
2050 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2051 * the number of packets).
2052 *
2053 * For interval 1, we have two possible microframes to schedule those packets
2054 * in. For this algorithm, if we can schedule the same number of packets for
2055 * each possible scheduling opportunity (each microframe), we will do so. The
2056 * remaining number of packets will be saved to be transmitted in the gaps in
2057 * the next interval's scheduling sequence.
2058 *
2059 * As we move those remaining packets to be scheduled with interval 2 packets,
2060 * we have to double the number of remaining packets to transmit. This is
2061 * because the intervals are actually powers of 2, and we would be transmitting
2062 * the previous interval's packets twice in this interval. We also have to be
2063 * sure that when we look at the largest max packet size for this interval, we
2064 * also look at the largest max packet size for the remaining packets and take
2065 * the greater of the two.
2066 *
2067 * The algorithm continues to evenly distribute packets in each scheduling
2068 * opportunity, and push the remaining packets out, until we get to the last
2069 * interval. Then those packets and their associated overhead are just added
2070 * to the bandwidth used.
2e27980e
SS
2071 */
2072static int xhci_check_bw_table(struct xhci_hcd *xhci,
2073 struct xhci_virt_device *virt_dev,
2074 int old_active_eps)
2075{
c29eea62
SS
2076 unsigned int bw_reserved;
2077 unsigned int max_bandwidth;
2078 unsigned int bw_used;
2079 unsigned int block_size;
2080 struct xhci_interval_bw_table *bw_table;
2081 unsigned int packet_size = 0;
2082 unsigned int overhead = 0;
2083 unsigned int packets_transmitted = 0;
2084 unsigned int packets_remaining = 0;
2085 unsigned int i;
2086
2b698999
SS
2087 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2088 return xhci_check_ss_bw(xhci, virt_dev);
2089
c29eea62
SS
2090 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2091 max_bandwidth = HS_BW_LIMIT;
2092 /* Convert percent of bus BW reserved to blocks reserved */
2093 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2094 } else {
2095 max_bandwidth = FS_BW_LIMIT;
2096 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2097 }
2098
2099 bw_table = virt_dev->bw_table;
2100 /* We need to translate the max packet size and max ESIT payloads into
2101 * the units the hardware uses.
2102 */
2103 block_size = xhci_get_block_size(virt_dev->udev);
2104
2105 /* If we are manipulating a LS/FS device under a HS hub, double check
2106 * that the HS bus has enough bandwidth if we are activing a new TT.
2107 */
2108 if (virt_dev->tt_info) {
2109 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2110 virt_dev->real_port);
2111 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2112 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2113 "newly activated TT.\n");
2114 return -ENOMEM;
2115 }
2116 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2117 virt_dev->tt_info->slot_id,
2118 virt_dev->tt_info->ttport);
2119 } else {
2120 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2121 virt_dev->real_port);
2122 }
2123
2124 /* Add in how much bandwidth will be used for interval zero, or the
2125 * rounded max ESIT payload + number of packets * largest overhead.
2126 */
2127 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2128 bw_table->interval_bw[0].num_packets *
2129 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2130
2131 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2132 unsigned int bw_added;
2133 unsigned int largest_mps;
2134 unsigned int interval_overhead;
2135
2136 /*
2137 * How many packets could we transmit in this interval?
2138 * If packets didn't fit in the previous interval, we will need
2139 * to transmit that many packets twice within this interval.
2140 */
2141 packets_remaining = 2 * packets_remaining +
2142 bw_table->interval_bw[i].num_packets;
2143
2144 /* Find the largest max packet size of this or the previous
2145 * interval.
2146 */
2147 if (list_empty(&bw_table->interval_bw[i].endpoints))
2148 largest_mps = 0;
2149 else {
2150 struct xhci_virt_ep *virt_ep;
2151 struct list_head *ep_entry;
2152
2153 ep_entry = bw_table->interval_bw[i].endpoints.next;
2154 virt_ep = list_entry(ep_entry,
2155 struct xhci_virt_ep, bw_endpoint_list);
2156 /* Convert to blocks, rounding up */
2157 largest_mps = DIV_ROUND_UP(
2158 virt_ep->bw_info.max_packet_size,
2159 block_size);
2160 }
2161 if (largest_mps > packet_size)
2162 packet_size = largest_mps;
2163
2164 /* Use the larger overhead of this or the previous interval. */
2165 interval_overhead = xhci_get_largest_overhead(
2166 &bw_table->interval_bw[i]);
2167 if (interval_overhead > overhead)
2168 overhead = interval_overhead;
2169
2170 /* How many packets can we evenly distribute across
2171 * (1 << (i + 1)) possible scheduling opportunities?
2172 */
2173 packets_transmitted = packets_remaining >> (i + 1);
2174
2175 /* Add in the bandwidth used for those scheduled packets */
2176 bw_added = packets_transmitted * (overhead + packet_size);
2177
2178 /* How many packets do we have remaining to transmit? */
2179 packets_remaining = packets_remaining % (1 << (i + 1));
2180
2181 /* What largest max packet size should those packets have? */
2182 /* If we've transmitted all packets, don't carry over the
2183 * largest packet size.
2184 */
2185 if (packets_remaining == 0) {
2186 packet_size = 0;
2187 overhead = 0;
2188 } else if (packets_transmitted > 0) {
2189 /* Otherwise if we do have remaining packets, and we've
2190 * scheduled some packets in this interval, take the
2191 * largest max packet size from endpoints with this
2192 * interval.
2193 */
2194 packet_size = largest_mps;
2195 overhead = interval_overhead;
2196 }
2197 /* Otherwise carry over packet_size and overhead from the last
2198 * time we had a remainder.
2199 */
2200 bw_used += bw_added;
2201 if (bw_used > max_bandwidth) {
2202 xhci_warn(xhci, "Not enough bandwidth. "
2203 "Proposed: %u, Max: %u\n",
2204 bw_used, max_bandwidth);
2205 return -ENOMEM;
2206 }
2207 }
2208 /*
2209 * Ok, we know we have some packets left over after even-handedly
2210 * scheduling interval 15. We don't know which microframes they will
2211 * fit into, so we over-schedule and say they will be scheduled every
2212 * microframe.
2213 */
2214 if (packets_remaining > 0)
2215 bw_used += overhead + packet_size;
2216
2217 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2218 unsigned int port_index = virt_dev->real_port - 1;
2219
2220 /* OK, we're manipulating a HS device attached to a
2221 * root port bandwidth domain. Include the number of active TTs
2222 * in the bandwidth used.
2223 */
2224 bw_used += TT_HS_OVERHEAD *
2225 xhci->rh_bw[port_index].num_active_tts;
2226 }
2227
2228 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2229 "Available: %u " "percent\n",
2230 bw_used, max_bandwidth, bw_reserved,
2231 (max_bandwidth - bw_used - bw_reserved) * 100 /
2232 max_bandwidth);
2233
2234 bw_used += bw_reserved;
2235 if (bw_used > max_bandwidth) {
2236 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2237 bw_used, max_bandwidth);
2238 return -ENOMEM;
2239 }
2240
2241 bw_table->bw_used = bw_used;
2e27980e
SS
2242 return 0;
2243}
2244
2245static bool xhci_is_async_ep(unsigned int ep_type)
2246{
2247 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2248 ep_type != ISOC_IN_EP &&
2249 ep_type != INT_IN_EP);
2250}
2251
2b698999
SS
2252static bool xhci_is_sync_in_ep(unsigned int ep_type)
2253{
2254 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2255}
2256
2257static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2258{
2259 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2260
2261 if (ep_bw->ep_interval == 0)
2262 return SS_OVERHEAD_BURST +
2263 (ep_bw->mult * ep_bw->num_packets *
2264 (SS_OVERHEAD + mps));
2265 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2266 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2267 1 << ep_bw->ep_interval);
2268
2269}
2270
2e27980e
SS
2271void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2272 struct xhci_bw_info *ep_bw,
2273 struct xhci_interval_bw_table *bw_table,
2274 struct usb_device *udev,
2275 struct xhci_virt_ep *virt_ep,
2276 struct xhci_tt_bw_info *tt_info)
2277{
2278 struct xhci_interval_bw *interval_bw;
2279 int normalized_interval;
2280
2b698999 2281 if (xhci_is_async_ep(ep_bw->type))
2e27980e
SS
2282 return;
2283
2b698999
SS
2284 if (udev->speed == USB_SPEED_SUPER) {
2285 if (xhci_is_sync_in_ep(ep_bw->type))
2286 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2287 xhci_get_ss_bw_consumed(ep_bw);
2288 else
2289 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2290 xhci_get_ss_bw_consumed(ep_bw);
2291 return;
2292 }
2293
2294 /* SuperSpeed endpoints never get added to intervals in the table, so
2295 * this check is only valid for HS/FS/LS devices.
2296 */
2297 if (list_empty(&virt_ep->bw_endpoint_list))
2298 return;
2e27980e
SS
2299 /* For LS/FS devices, we need to translate the interval expressed in
2300 * microframes to frames.
2301 */
2302 if (udev->speed == USB_SPEED_HIGH)
2303 normalized_interval = ep_bw->ep_interval;
2304 else
2305 normalized_interval = ep_bw->ep_interval - 3;
2306
2307 if (normalized_interval == 0)
2308 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2309 interval_bw = &bw_table->interval_bw[normalized_interval];
2310 interval_bw->num_packets -= ep_bw->num_packets;
2311 switch (udev->speed) {
2312 case USB_SPEED_LOW:
2313 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2314 break;
2315 case USB_SPEED_FULL:
2316 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2317 break;
2318 case USB_SPEED_HIGH:
2319 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2320 break;
2321 case USB_SPEED_SUPER:
2322 case USB_SPEED_UNKNOWN:
2323 case USB_SPEED_WIRELESS:
2324 /* Should never happen because only LS/FS/HS endpoints will get
2325 * added to the endpoint list.
2326 */
2327 return;
2328 }
2329 if (tt_info)
2330 tt_info->active_eps -= 1;
2331 list_del_init(&virt_ep->bw_endpoint_list);
2332}
2333
2334static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2335 struct xhci_bw_info *ep_bw,
2336 struct xhci_interval_bw_table *bw_table,
2337 struct usb_device *udev,
2338 struct xhci_virt_ep *virt_ep,
2339 struct xhci_tt_bw_info *tt_info)
2340{
2341 struct xhci_interval_bw *interval_bw;
2342 struct xhci_virt_ep *smaller_ep;
2343 int normalized_interval;
2344
2345 if (xhci_is_async_ep(ep_bw->type))
2346 return;
2347
2b698999
SS
2348 if (udev->speed == USB_SPEED_SUPER) {
2349 if (xhci_is_sync_in_ep(ep_bw->type))
2350 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2351 xhci_get_ss_bw_consumed(ep_bw);
2352 else
2353 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2354 xhci_get_ss_bw_consumed(ep_bw);
2355 return;
2356 }
2357
2e27980e
SS
2358 /* For LS/FS devices, we need to translate the interval expressed in
2359 * microframes to frames.
2360 */
2361 if (udev->speed == USB_SPEED_HIGH)
2362 normalized_interval = ep_bw->ep_interval;
2363 else
2364 normalized_interval = ep_bw->ep_interval - 3;
2365
2366 if (normalized_interval == 0)
2367 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2368 interval_bw = &bw_table->interval_bw[normalized_interval];
2369 interval_bw->num_packets += ep_bw->num_packets;
2370 switch (udev->speed) {
2371 case USB_SPEED_LOW:
2372 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2373 break;
2374 case USB_SPEED_FULL:
2375 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2376 break;
2377 case USB_SPEED_HIGH:
2378 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2379 break;
2380 case USB_SPEED_SUPER:
2381 case USB_SPEED_UNKNOWN:
2382 case USB_SPEED_WIRELESS:
2383 /* Should never happen because only LS/FS/HS endpoints will get
2384 * added to the endpoint list.
2385 */
2386 return;
2387 }
2388
2389 if (tt_info)
2390 tt_info->active_eps += 1;
2391 /* Insert the endpoint into the list, largest max packet size first. */
2392 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2393 bw_endpoint_list) {
2394 if (ep_bw->max_packet_size >=
2395 smaller_ep->bw_info.max_packet_size) {
2396 /* Add the new ep before the smaller endpoint */
2397 list_add_tail(&virt_ep->bw_endpoint_list,
2398 &smaller_ep->bw_endpoint_list);
2399 return;
2400 }
2401 }
2402 /* Add the new endpoint at the end of the list. */
2403 list_add_tail(&virt_ep->bw_endpoint_list,
2404 &interval_bw->endpoints);
2405}
2406
2407void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2408 struct xhci_virt_device *virt_dev,
2409 int old_active_eps)
2410{
2411 struct xhci_root_port_bw_info *rh_bw_info;
2412 if (!virt_dev->tt_info)
2413 return;
2414
2415 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2416 if (old_active_eps == 0 &&
2417 virt_dev->tt_info->active_eps != 0) {
2418 rh_bw_info->num_active_tts += 1;
c29eea62 2419 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2e27980e
SS
2420 } else if (old_active_eps != 0 &&
2421 virt_dev->tt_info->active_eps == 0) {
2422 rh_bw_info->num_active_tts -= 1;
c29eea62 2423 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2e27980e
SS
2424 }
2425}
2426
2427static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2428 struct xhci_virt_device *virt_dev,
2429 struct xhci_container_ctx *in_ctx)
2430{
2431 struct xhci_bw_info ep_bw_info[31];
2432 int i;
2433 struct xhci_input_control_ctx *ctrl_ctx;
2434 int old_active_eps = 0;
2435
2e27980e
SS
2436 if (virt_dev->tt_info)
2437 old_active_eps = virt_dev->tt_info->active_eps;
2438
2439 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2440
2441 for (i = 0; i < 31; i++) {
2442 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2443 continue;
2444
2445 /* Make a copy of the BW info in case we need to revert this */
2446 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2447 sizeof(ep_bw_info[i]));
2448 /* Drop the endpoint from the interval table if the endpoint is
2449 * being dropped or changed.
2450 */
2451 if (EP_IS_DROPPED(ctrl_ctx, i))
2452 xhci_drop_ep_from_interval_table(xhci,
2453 &virt_dev->eps[i].bw_info,
2454 virt_dev->bw_table,
2455 virt_dev->udev,
2456 &virt_dev->eps[i],
2457 virt_dev->tt_info);
2458 }
2459 /* Overwrite the information stored in the endpoints' bw_info */
2460 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2461 for (i = 0; i < 31; i++) {
2462 /* Add any changed or added endpoints to the interval table */
2463 if (EP_IS_ADDED(ctrl_ctx, i))
2464 xhci_add_ep_to_interval_table(xhci,
2465 &virt_dev->eps[i].bw_info,
2466 virt_dev->bw_table,
2467 virt_dev->udev,
2468 &virt_dev->eps[i],
2469 virt_dev->tt_info);
2470 }
2471
2472 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2473 /* Ok, this fits in the bandwidth we have.
2474 * Update the number of active TTs.
2475 */
2476 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2477 return 0;
2478 }
2479
2480 /* We don't have enough bandwidth for this, revert the stored info. */
2481 for (i = 0; i < 31; i++) {
2482 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2483 continue;
2484
2485 /* Drop the new copies of any added or changed endpoints from
2486 * the interval table.
2487 */
2488 if (EP_IS_ADDED(ctrl_ctx, i)) {
2489 xhci_drop_ep_from_interval_table(xhci,
2490 &virt_dev->eps[i].bw_info,
2491 virt_dev->bw_table,
2492 virt_dev->udev,
2493 &virt_dev->eps[i],
2494 virt_dev->tt_info);
2495 }
2496 /* Revert the endpoint back to its old information */
2497 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2498 sizeof(ep_bw_info[i]));
2499 /* Add any changed or dropped endpoints back into the table */
2500 if (EP_IS_DROPPED(ctrl_ctx, i))
2501 xhci_add_ep_to_interval_table(xhci,
2502 &virt_dev->eps[i].bw_info,
2503 virt_dev->bw_table,
2504 virt_dev->udev,
2505 &virt_dev->eps[i],
2506 virt_dev->tt_info);
2507 }
2508 return -ENOMEM;
2509}
2510
2511
f2217e8e
SS
2512/* Issue a configure endpoint command or evaluate context command
2513 * and wait for it to finish.
2514 */
2515static int xhci_configure_endpoint(struct xhci_hcd *xhci,
913a8a34
SS
2516 struct usb_device *udev,
2517 struct xhci_command *command,
2518 bool ctx_change, bool must_succeed)
f2217e8e
SS
2519{
2520 int ret;
2521 int timeleft;
2522 unsigned long flags;
913a8a34
SS
2523 struct xhci_container_ctx *in_ctx;
2524 struct completion *cmd_completion;
28ccd296 2525 u32 *cmd_status;
913a8a34 2526 struct xhci_virt_device *virt_dev;
6e4468b9 2527 union xhci_trb *cmd_trb;
f2217e8e
SS
2528
2529 spin_lock_irqsave(&xhci->lock, flags);
913a8a34 2530 virt_dev = xhci->devs[udev->slot_id];
750645f8
SS
2531
2532 if (command)
913a8a34 2533 in_ctx = command->in_ctx;
750645f8
SS
2534 else
2535 in_ctx = virt_dev->in_ctx;
2cf95c18 2536
750645f8
SS
2537 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2538 xhci_reserve_host_resources(xhci, in_ctx)) {
2539 spin_unlock_irqrestore(&xhci->lock, flags);
2540 xhci_warn(xhci, "Not enough host resources, "
2541 "active endpoint contexts = %u\n",
2542 xhci->num_active_eps);
2543 return -ENOMEM;
2544 }
2e27980e
SS
2545 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2546 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2547 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2548 xhci_free_host_resources(xhci, in_ctx);
2549 spin_unlock_irqrestore(&xhci->lock, flags);
2550 xhci_warn(xhci, "Not enough bandwidth\n");
2551 return -ENOMEM;
2552 }
750645f8
SS
2553
2554 if (command) {
913a8a34
SS
2555 cmd_completion = command->completion;
2556 cmd_status = &command->status;
2557 command->command_trb = xhci->cmd_ring->enqueue;
7a3783ef
PZ
2558
2559 /* Enqueue pointer can be left pointing to the link TRB,
2560 * we must handle that
2561 */
f5960b69 2562 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
7a3783ef
PZ
2563 command->command_trb =
2564 xhci->cmd_ring->enq_seg->next->trbs;
2565
913a8a34
SS
2566 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2567 } else {
913a8a34
SS
2568 cmd_completion = &virt_dev->cmd_completion;
2569 cmd_status = &virt_dev->cmd_status;
2570 }
1d68064a 2571 init_completion(cmd_completion);
913a8a34 2572
6e4468b9 2573 cmd_trb = xhci->cmd_ring->dequeue;
f2217e8e 2574 if (!ctx_change)
913a8a34
SS
2575 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2576 udev->slot_id, must_succeed);
f2217e8e 2577 else
913a8a34 2578 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
4b266541 2579 udev->slot_id, must_succeed);
f2217e8e 2580 if (ret < 0) {
c01591bd
SS
2581 if (command)
2582 list_del(&command->cmd_list);
2cf95c18
SS
2583 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2584 xhci_free_host_resources(xhci, in_ctx);
f2217e8e
SS
2585 spin_unlock_irqrestore(&xhci->lock, flags);
2586 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2587 return -ENOMEM;
2588 }
2589 xhci_ring_cmd_db(xhci);
2590 spin_unlock_irqrestore(&xhci->lock, flags);
2591
2592 /* Wait for the configure endpoint command to complete */
2593 timeleft = wait_for_completion_interruptible_timeout(
913a8a34 2594 cmd_completion,
6e4468b9 2595 XHCI_CMD_DEFAULT_TIMEOUT);
f2217e8e
SS
2596 if (timeleft <= 0) {
2597 xhci_warn(xhci, "%s while waiting for %s command\n",
2598 timeleft == 0 ? "Timeout" : "Signal",
2599 ctx_change == 0 ?
2600 "configure endpoint" :
2601 "evaluate context");
6e4468b9
EF
2602 /* cancel the configure endpoint command */
2603 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2604 if (ret < 0)
2605 return ret;
f2217e8e
SS
2606 return -ETIME;
2607 }
2608
2609 if (!ctx_change)
2cf95c18
SS
2610 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2611 else
2612 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2613
2614 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2615 spin_lock_irqsave(&xhci->lock, flags);
2616 /* If the command failed, remove the reserved resources.
2617 * Otherwise, clean up the estimate to include dropped eps.
2618 */
2619 if (ret)
2620 xhci_free_host_resources(xhci, in_ctx);
2621 else
2622 xhci_finish_resource_reservation(xhci, in_ctx);
2623 spin_unlock_irqrestore(&xhci->lock, flags);
2624 }
2625 return ret;
f2217e8e
SS
2626}
2627
f88ba78d
SS
2628/* Called after one or more calls to xhci_add_endpoint() or
2629 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2630 * to call xhci_reset_bandwidth().
2631 *
2632 * Since we are in the middle of changing either configuration or
2633 * installing a new alt setting, the USB core won't allow URBs to be
2634 * enqueued for any endpoint on the old config or interface. Nothing
2635 * else should be touching the xhci->devs[slot_id] structure, so we
2636 * don't need to take the xhci->lock for manipulating that.
2637 */
f94e0186
SS
2638int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2639{
2640 int i;
2641 int ret = 0;
f94e0186
SS
2642 struct xhci_hcd *xhci;
2643 struct xhci_virt_device *virt_dev;
d115b048
JY
2644 struct xhci_input_control_ctx *ctrl_ctx;
2645 struct xhci_slot_ctx *slot_ctx;
f94e0186 2646
64927730 2647 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
f94e0186
SS
2648 if (ret <= 0)
2649 return ret;
2650 xhci = hcd_to_xhci(hcd);
fe6c6c13
SS
2651 if (xhci->xhc_state & XHCI_STATE_DYING)
2652 return -ENODEV;
f94e0186 2653
700e2052 2654 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
f94e0186
SS
2655 virt_dev = xhci->devs[udev->slot_id];
2656
2657 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
d115b048 2658 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
28ccd296
ME
2659 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2660 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2661 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2dc37539
SS
2662
2663 /* Don't issue the command if there's no endpoints to update. */
2664 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2665 ctrl_ctx->drop_flags == 0)
2666 return 0;
2667
f94e0186 2668 xhci_dbg(xhci, "New Input Control Context:\n");
d115b048
JY
2669 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2670 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
28ccd296 2671 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
f94e0186 2672
913a8a34
SS
2673 ret = xhci_configure_endpoint(xhci, udev, NULL,
2674 false, false);
f94e0186
SS
2675 if (ret) {
2676 /* Callee should call reset_bandwidth() */
f94e0186
SS
2677 return ret;
2678 }
2679
2680 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
d115b048 2681 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
28ccd296 2682 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
f94e0186 2683
834cb0fc
SS
2684 /* Free any rings that were dropped, but not changed. */
2685 for (i = 1; i < 31; ++i) {
4819fef5
ME
2686 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2687 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
834cb0fc
SS
2688 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2689 }
d115b048 2690 xhci_zero_in_ctx(xhci, virt_dev);
834cb0fc
SS
2691 /*
2692 * Install any rings for completely new endpoints or changed endpoints,
2693 * and free or cache any old rings from changed endpoints.
2694 */
f94e0186 2695 for (i = 1; i < 31; ++i) {
74f9fe21
SS
2696 if (!virt_dev->eps[i].new_ring)
2697 continue;
2698 /* Only cache or free the old ring if it exists.
2699 * It may not if this is the first add of an endpoint.
2700 */
2701 if (virt_dev->eps[i].ring) {
412566bd 2702 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
f94e0186 2703 }
74f9fe21
SS
2704 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2705 virt_dev->eps[i].new_ring = NULL;
f94e0186
SS
2706 }
2707
f94e0186
SS
2708 return ret;
2709}
2710
2711void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2712{
f94e0186
SS
2713 struct xhci_hcd *xhci;
2714 struct xhci_virt_device *virt_dev;
2715 int i, ret;
2716
64927730 2717 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
f94e0186
SS
2718 if (ret <= 0)
2719 return;
2720 xhci = hcd_to_xhci(hcd);
2721
700e2052 2722 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
f94e0186
SS
2723 virt_dev = xhci->devs[udev->slot_id];
2724 /* Free any rings allocated for added endpoints */
2725 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
2726 if (virt_dev->eps[i].new_ring) {
2727 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2728 virt_dev->eps[i].new_ring = NULL;
f94e0186
SS
2729 }
2730 }
d115b048 2731 xhci_zero_in_ctx(xhci, virt_dev);
f94e0186
SS
2732}
2733
5270b951 2734static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
913a8a34
SS
2735 struct xhci_container_ctx *in_ctx,
2736 struct xhci_container_ctx *out_ctx,
2737 u32 add_flags, u32 drop_flags)
5270b951
SS
2738{
2739 struct xhci_input_control_ctx *ctrl_ctx;
913a8a34 2740 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
28ccd296
ME
2741 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2742 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
913a8a34 2743 xhci_slot_copy(xhci, in_ctx, out_ctx);
28ccd296 2744 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5270b951 2745
913a8a34
SS
2746 xhci_dbg(xhci, "Input Context:\n");
2747 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
5270b951
SS
2748}
2749
8212a49d 2750static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
ac9d8fe7
SS
2751 unsigned int slot_id, unsigned int ep_index,
2752 struct xhci_dequeue_state *deq_state)
2753{
2754 struct xhci_container_ctx *in_ctx;
ac9d8fe7
SS
2755 struct xhci_ep_ctx *ep_ctx;
2756 u32 added_ctxs;
2757 dma_addr_t addr;
2758
913a8a34
SS
2759 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2760 xhci->devs[slot_id]->out_ctx, ep_index);
ac9d8fe7
SS
2761 in_ctx = xhci->devs[slot_id]->in_ctx;
2762 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2763 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2764 deq_state->new_deq_ptr);
2765 if (addr == 0) {
2766 xhci_warn(xhci, "WARN Cannot submit config ep after "
2767 "reset ep command\n");
2768 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2769 deq_state->new_deq_seg,
2770 deq_state->new_deq_ptr);
2771 return;
2772 }
28ccd296 2773 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
ac9d8fe7 2774
ac9d8fe7 2775 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
913a8a34
SS
2776 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2777 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
ac9d8fe7
SS
2778}
2779
82d1009f 2780void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
63a0d9ab 2781 struct usb_device *udev, unsigned int ep_index)
82d1009f
SS
2782{
2783 struct xhci_dequeue_state deq_state;
63a0d9ab 2784 struct xhci_virt_ep *ep;
82d1009f
SS
2785
2786 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
63a0d9ab 2787 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
82d1009f
SS
2788 /* We need to move the HW's dequeue pointer past this TD,
2789 * or it will attempt to resend it on the next doorbell ring.
2790 */
2791 xhci_find_new_dequeue_state(xhci, udev->slot_id,
e9df17eb 2792 ep_index, ep->stopped_stream, ep->stopped_td,
ac9d8fe7 2793 &deq_state);
82d1009f 2794
ac9d8fe7
SS
2795 /* HW with the reset endpoint quirk will use the saved dequeue state to
2796 * issue a configure endpoint command later.
2797 */
2798 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2799 xhci_dbg(xhci, "Queueing new dequeue state\n");
63a0d9ab 2800 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
e9df17eb 2801 ep_index, ep->stopped_stream, &deq_state);
ac9d8fe7
SS
2802 } else {
2803 /* Better hope no one uses the input context between now and the
2804 * reset endpoint completion!
e9df17eb
SS
2805 * XXX: No idea how this hardware will react when stream rings
2806 * are enabled.
ac9d8fe7
SS
2807 */
2808 xhci_dbg(xhci, "Setting up input context for "
2809 "configure endpoint command\n");
2810 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2811 ep_index, &deq_state);
2812 }
82d1009f
SS
2813}
2814
a1587d97
SS
2815/* Deal with stalled endpoints. The core should have sent the control message
2816 * to clear the halt condition. However, we need to make the xHCI hardware
2817 * reset its sequence number, since a device will expect a sequence number of
2818 * zero after the halt condition is cleared.
2819 * Context: in_interrupt
2820 */
2821void xhci_endpoint_reset(struct usb_hcd *hcd,
2822 struct usb_host_endpoint *ep)
2823{
2824 struct xhci_hcd *xhci;
2825 struct usb_device *udev;
2826 unsigned int ep_index;
2827 unsigned long flags;
2828 int ret;
63a0d9ab 2829 struct xhci_virt_ep *virt_ep;
a1587d97
SS
2830
2831 xhci = hcd_to_xhci(hcd);
2832 udev = (struct usb_device *) ep->hcpriv;
2833 /* Called with a root hub endpoint (or an endpoint that wasn't added
2834 * with xhci_add_endpoint()
2835 */
2836 if (!ep->hcpriv)
2837 return;
2838 ep_index = xhci_get_endpoint_index(&ep->desc);
63a0d9ab
SS
2839 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2840 if (!virt_ep->stopped_td) {
c92bcfa7
SS
2841 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2842 ep->desc.bEndpointAddress);
2843 return;
2844 }
82d1009f
SS
2845 if (usb_endpoint_xfer_control(&ep->desc)) {
2846 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2847 return;
2848 }
a1587d97
SS
2849
2850 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2851 spin_lock_irqsave(&xhci->lock, flags);
2852 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
c92bcfa7
SS
2853 /*
2854 * Can't change the ring dequeue pointer until it's transitioned to the
2855 * stopped state, which is only upon a successful reset endpoint
2856 * command. Better hope that last command worked!
2857 */
a1587d97 2858 if (!ret) {
63a0d9ab
SS
2859 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2860 kfree(virt_ep->stopped_td);
a1587d97
SS
2861 xhci_ring_cmd_db(xhci);
2862 }
1624ae1c
SS
2863 virt_ep->stopped_td = NULL;
2864 virt_ep->stopped_trb = NULL;
5e5cf6fc 2865 virt_ep->stopped_stream = 0;
a1587d97
SS
2866 spin_unlock_irqrestore(&xhci->lock, flags);
2867
2868 if (ret)
2869 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2870}
2871
8df75f42
SS
2872static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2873 struct usb_device *udev, struct usb_host_endpoint *ep,
2874 unsigned int slot_id)
2875{
2876 int ret;
2877 unsigned int ep_index;
2878 unsigned int ep_state;
2879
2880 if (!ep)
2881 return -EINVAL;
64927730 2882 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
8df75f42
SS
2883 if (ret <= 0)
2884 return -EINVAL;
842f1690 2885 if (ep->ss_ep_comp.bmAttributes == 0) {
8df75f42
SS
2886 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2887 " descriptor for ep 0x%x does not support streams\n",
2888 ep->desc.bEndpointAddress);
2889 return -EINVAL;
2890 }
2891
2892 ep_index = xhci_get_endpoint_index(&ep->desc);
2893 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2894 if (ep_state & EP_HAS_STREAMS ||
2895 ep_state & EP_GETTING_STREAMS) {
2896 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2897 "already has streams set up.\n",
2898 ep->desc.bEndpointAddress);
2899 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2900 "dynamic stream context array reallocation.\n");
2901 return -EINVAL;
2902 }
2903 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2904 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2905 "endpoint 0x%x; URBs are pending.\n",
2906 ep->desc.bEndpointAddress);
2907 return -EINVAL;
2908 }
2909 return 0;
2910}
2911
2912static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2913 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2914{
2915 unsigned int max_streams;
2916
2917 /* The stream context array size must be a power of two */
2918 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2919 /*
2920 * Find out how many primary stream array entries the host controller
2921 * supports. Later we may use secondary stream arrays (similar to 2nd
2922 * level page entries), but that's an optional feature for xHCI host
2923 * controllers. xHCs must support at least 4 stream IDs.
2924 */
2925 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2926 if (*num_stream_ctxs > max_streams) {
2927 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2928 max_streams);
2929 *num_stream_ctxs = max_streams;
2930 *num_streams = max_streams;
2931 }
2932}
2933
2934/* Returns an error code if one of the endpoint already has streams.
2935 * This does not change any data structures, it only checks and gathers
2936 * information.
2937 */
2938static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2939 struct usb_device *udev,
2940 struct usb_host_endpoint **eps, unsigned int num_eps,
2941 unsigned int *num_streams, u32 *changed_ep_bitmask)
2942{
8df75f42
SS
2943 unsigned int max_streams;
2944 unsigned int endpoint_flag;
2945 int i;
2946 int ret;
2947
2948 for (i = 0; i < num_eps; i++) {
2949 ret = xhci_check_streams_endpoint(xhci, udev,
2950 eps[i], udev->slot_id);
2951 if (ret < 0)
2952 return ret;
2953
18b7ede5 2954 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
8df75f42
SS
2955 if (max_streams < (*num_streams - 1)) {
2956 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2957 eps[i]->desc.bEndpointAddress,
2958 max_streams);
2959 *num_streams = max_streams+1;
2960 }
2961
2962 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2963 if (*changed_ep_bitmask & endpoint_flag)
2964 return -EINVAL;
2965 *changed_ep_bitmask |= endpoint_flag;
2966 }
2967 return 0;
2968}
2969
2970static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2971 struct usb_device *udev,
2972 struct usb_host_endpoint **eps, unsigned int num_eps)
2973{
2974 u32 changed_ep_bitmask = 0;
2975 unsigned int slot_id;
2976 unsigned int ep_index;
2977 unsigned int ep_state;
2978 int i;
2979
2980 slot_id = udev->slot_id;
2981 if (!xhci->devs[slot_id])
2982 return 0;
2983
2984 for (i = 0; i < num_eps; i++) {
2985 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2986 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2987 /* Are streams already being freed for the endpoint? */
2988 if (ep_state & EP_GETTING_NO_STREAMS) {
2989 xhci_warn(xhci, "WARN Can't disable streams for "
2990 "endpoint 0x%x\n, "
2991 "streams are being disabled already.",
2992 eps[i]->desc.bEndpointAddress);
2993 return 0;
2994 }
2995 /* Are there actually any streams to free? */
2996 if (!(ep_state & EP_HAS_STREAMS) &&
2997 !(ep_state & EP_GETTING_STREAMS)) {
2998 xhci_warn(xhci, "WARN Can't disable streams for "
2999 "endpoint 0x%x\n, "
3000 "streams are already disabled!",
3001 eps[i]->desc.bEndpointAddress);
3002 xhci_warn(xhci, "WARN xhci_free_streams() called "
3003 "with non-streams endpoint\n");
3004 return 0;
3005 }
3006 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3007 }
3008 return changed_ep_bitmask;
3009}
3010
3011/*
3012 * The USB device drivers use this function (though the HCD interface in USB
3013 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3014 * coordinate mass storage command queueing across multiple endpoints (basically
3015 * a stream ID == a task ID).
3016 *
3017 * Setting up streams involves allocating the same size stream context array
3018 * for each endpoint and issuing a configure endpoint command for all endpoints.
3019 *
3020 * Don't allow the call to succeed if one endpoint only supports one stream
3021 * (which means it doesn't support streams at all).
3022 *
3023 * Drivers may get less stream IDs than they asked for, if the host controller
3024 * hardware or endpoints claim they can't support the number of requested
3025 * stream IDs.
3026 */
3027int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3028 struct usb_host_endpoint **eps, unsigned int num_eps,
3029 unsigned int num_streams, gfp_t mem_flags)
3030{
3031 int i, ret;
3032 struct xhci_hcd *xhci;
3033 struct xhci_virt_device *vdev;
3034 struct xhci_command *config_cmd;
3035 unsigned int ep_index;
3036 unsigned int num_stream_ctxs;
3037 unsigned long flags;
3038 u32 changed_ep_bitmask = 0;
3039
3040 if (!eps)
3041 return -EINVAL;
3042
3043 /* Add one to the number of streams requested to account for
3044 * stream 0 that is reserved for xHCI usage.
3045 */
3046 num_streams += 1;
3047 xhci = hcd_to_xhci(hcd);
3048 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3049 num_streams);
3050
3051 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3052 if (!config_cmd) {
3053 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3054 return -ENOMEM;
3055 }
3056
3057 /* Check to make sure all endpoints are not already configured for
3058 * streams. While we're at it, find the maximum number of streams that
3059 * all the endpoints will support and check for duplicate endpoints.
3060 */
3061 spin_lock_irqsave(&xhci->lock, flags);
3062 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3063 num_eps, &num_streams, &changed_ep_bitmask);
3064 if (ret < 0) {
3065 xhci_free_command(xhci, config_cmd);
3066 spin_unlock_irqrestore(&xhci->lock, flags);
3067 return ret;
3068 }
3069 if (num_streams <= 1) {
3070 xhci_warn(xhci, "WARN: endpoints can't handle "
3071 "more than one stream.\n");
3072 xhci_free_command(xhci, config_cmd);
3073 spin_unlock_irqrestore(&xhci->lock, flags);
3074 return -EINVAL;
3075 }
3076 vdev = xhci->devs[udev->slot_id];
25985edc 3077 /* Mark each endpoint as being in transition, so
8df75f42
SS
3078 * xhci_urb_enqueue() will reject all URBs.
3079 */
3080 for (i = 0; i < num_eps; i++) {
3081 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3082 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3083 }
3084 spin_unlock_irqrestore(&xhci->lock, flags);
3085
3086 /* Setup internal data structures and allocate HW data structures for
3087 * streams (but don't install the HW structures in the input context
3088 * until we're sure all memory allocation succeeded).
3089 */
3090 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3091 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3092 num_stream_ctxs, num_streams);
3093
3094 for (i = 0; i < num_eps; i++) {
3095 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3096 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3097 num_stream_ctxs,
3098 num_streams, mem_flags);
3099 if (!vdev->eps[ep_index].stream_info)
3100 goto cleanup;
3101 /* Set maxPstreams in endpoint context and update deq ptr to
3102 * point to stream context array. FIXME
3103 */
3104 }
3105
3106 /* Set up the input context for a configure endpoint command. */
3107 for (i = 0; i < num_eps; i++) {
3108 struct xhci_ep_ctx *ep_ctx;
3109
3110 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3111 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3112
3113 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3114 vdev->out_ctx, ep_index);
3115 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3116 vdev->eps[ep_index].stream_info);
3117 }
3118 /* Tell the HW to drop its old copy of the endpoint context info
3119 * and add the updated copy from the input context.
3120 */
3121 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3122 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3123
3124 /* Issue and wait for the configure endpoint command */
3125 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3126 false, false);
3127
3128 /* xHC rejected the configure endpoint command for some reason, so we
3129 * leave the old ring intact and free our internal streams data
3130 * structure.
3131 */
3132 if (ret < 0)
3133 goto cleanup;
3134
3135 spin_lock_irqsave(&xhci->lock, flags);
3136 for (i = 0; i < num_eps; i++) {
3137 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3138 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3139 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3140 udev->slot_id, ep_index);
3141 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3142 }
3143 xhci_free_command(xhci, config_cmd);
3144 spin_unlock_irqrestore(&xhci->lock, flags);
3145
3146 /* Subtract 1 for stream 0, which drivers can't use */
3147 return num_streams - 1;
3148
3149cleanup:
3150 /* If it didn't work, free the streams! */
3151 for (i = 0; i < num_eps; i++) {
3152 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3153 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
8a007748 3154 vdev->eps[ep_index].stream_info = NULL;
8df75f42
SS
3155 /* FIXME Unset maxPstreams in endpoint context and
3156 * update deq ptr to point to normal string ring.
3157 */
3158 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3159 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3160 xhci_endpoint_zero(xhci, vdev, eps[i]);
3161 }
3162 xhci_free_command(xhci, config_cmd);
3163 return -ENOMEM;
3164}
3165
3166/* Transition the endpoint from using streams to being a "normal" endpoint
3167 * without streams.
3168 *
3169 * Modify the endpoint context state, submit a configure endpoint command,
3170 * and free all endpoint rings for streams if that completes successfully.
3171 */
3172int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3173 struct usb_host_endpoint **eps, unsigned int num_eps,
3174 gfp_t mem_flags)
3175{
3176 int i, ret;
3177 struct xhci_hcd *xhci;
3178 struct xhci_virt_device *vdev;
3179 struct xhci_command *command;
3180 unsigned int ep_index;
3181 unsigned long flags;
3182 u32 changed_ep_bitmask;
3183
3184 xhci = hcd_to_xhci(hcd);
3185 vdev = xhci->devs[udev->slot_id];
3186
3187 /* Set up a configure endpoint command to remove the streams rings */
3188 spin_lock_irqsave(&xhci->lock, flags);
3189 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3190 udev, eps, num_eps);
3191 if (changed_ep_bitmask == 0) {
3192 spin_unlock_irqrestore(&xhci->lock, flags);
3193 return -EINVAL;
3194 }
3195
3196 /* Use the xhci_command structure from the first endpoint. We may have
3197 * allocated too many, but the driver may call xhci_free_streams() for
3198 * each endpoint it grouped into one call to xhci_alloc_streams().
3199 */
3200 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3201 command = vdev->eps[ep_index].stream_info->free_streams_command;
3202 for (i = 0; i < num_eps; i++) {
3203 struct xhci_ep_ctx *ep_ctx;
3204
3205 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3206 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3207 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3208 EP_GETTING_NO_STREAMS;
3209
3210 xhci_endpoint_copy(xhci, command->in_ctx,
3211 vdev->out_ctx, ep_index);
3212 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3213 &vdev->eps[ep_index]);
3214 }
3215 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3216 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3217 spin_unlock_irqrestore(&xhci->lock, flags);
3218
3219 /* Issue and wait for the configure endpoint command,
3220 * which must succeed.
3221 */
3222 ret = xhci_configure_endpoint(xhci, udev, command,
3223 false, true);
3224
3225 /* xHC rejected the configure endpoint command for some reason, so we
3226 * leave the streams rings intact.
3227 */
3228 if (ret < 0)
3229 return ret;
3230
3231 spin_lock_irqsave(&xhci->lock, flags);
3232 for (i = 0; i < num_eps; i++) {
3233 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
8a007748 3235 vdev->eps[ep_index].stream_info = NULL;
8df75f42
SS
3236 /* FIXME Unset maxPstreams in endpoint context and
3237 * update deq ptr to point to normal string ring.
3238 */
3239 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3240 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3241 }
3242 spin_unlock_irqrestore(&xhci->lock, flags);
3243
3244 return 0;
3245}
3246
2cf95c18
SS
3247/*
3248 * Deletes endpoint resources for endpoints that were active before a Reset
3249 * Device command, or a Disable Slot command. The Reset Device command leaves
3250 * the control endpoint intact, whereas the Disable Slot command deletes it.
3251 *
3252 * Must be called with xhci->lock held.
3253 */
3254void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3255 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3256{
3257 int i;
3258 unsigned int num_dropped_eps = 0;
3259 unsigned int drop_flags = 0;
3260
3261 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3262 if (virt_dev->eps[i].ring) {
3263 drop_flags |= 1 << i;
3264 num_dropped_eps++;
3265 }
3266 }
3267 xhci->num_active_eps -= num_dropped_eps;
3268 if (num_dropped_eps)
3269 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3270 "%u now active.\n",
3271 num_dropped_eps, drop_flags,
3272 xhci->num_active_eps);
3273}
3274
2a8f82c4
SS
3275/*
3276 * This submits a Reset Device Command, which will set the device state to 0,
3277 * set the device address to 0, and disable all the endpoints except the default
3278 * control endpoint. The USB core should come back and call
3279 * xhci_address_device(), and then re-set up the configuration. If this is
3280 * called because of a usb_reset_and_verify_device(), then the old alternate
3281 * settings will be re-installed through the normal bandwidth allocation
3282 * functions.
3283 *
3284 * Wait for the Reset Device command to finish. Remove all structures
3285 * associated with the endpoints that were disabled. Clear the input device
3286 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
f0615c45
AX
3287 *
3288 * If the virt_dev to be reset does not exist or does not match the udev,
3289 * it means the device is lost, possibly due to the xHC restore error and
3290 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3291 * re-allocate the device.
2a8f82c4 3292 */
f0615c45 3293int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2a8f82c4
SS
3294{
3295 int ret, i;
3296 unsigned long flags;
3297 struct xhci_hcd *xhci;
3298 unsigned int slot_id;
3299 struct xhci_virt_device *virt_dev;
3300 struct xhci_command *reset_device_cmd;
3301 int timeleft;
3302 int last_freed_endpoint;
001fd382 3303 struct xhci_slot_ctx *slot_ctx;
2e27980e 3304 int old_active_eps = 0;
2a8f82c4 3305
f0615c45 3306 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2a8f82c4
SS
3307 if (ret <= 0)
3308 return ret;
3309 xhci = hcd_to_xhci(hcd);
3310 slot_id = udev->slot_id;
3311 virt_dev = xhci->devs[slot_id];
f0615c45
AX
3312 if (!virt_dev) {
3313 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3314 "not exist. Re-allocate the device\n", slot_id);
3315 ret = xhci_alloc_dev(hcd, udev);
3316 if (ret == 1)
3317 return 0;
3318 else
3319 return -EINVAL;
3320 }
3321
3322 if (virt_dev->udev != udev) {
3323 /* If the virt_dev and the udev does not match, this virt_dev
3324 * may belong to another udev.
3325 * Re-allocate the device.
3326 */
3327 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3328 "not match the udev. Re-allocate the device\n",
3329 slot_id);
3330 ret = xhci_alloc_dev(hcd, udev);
3331 if (ret == 1)
3332 return 0;
3333 else
3334 return -EINVAL;
3335 }
2a8f82c4 3336
001fd382
ML
3337 /* If device is not setup, there is no point in resetting it */
3338 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3339 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3340 SLOT_STATE_DISABLED)
3341 return 0;
3342
2a8f82c4
SS
3343 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3344 /* Allocate the command structure that holds the struct completion.
3345 * Assume we're in process context, since the normal device reset
3346 * process has to wait for the device anyway. Storage devices are
3347 * reset as part of error handling, so use GFP_NOIO instead of
3348 * GFP_KERNEL.
3349 */
3350 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3351 if (!reset_device_cmd) {
3352 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3353 return -ENOMEM;
3354 }
3355
3356 /* Attempt to submit the Reset Device command to the command ring */
3357 spin_lock_irqsave(&xhci->lock, flags);
3358 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
7a3783ef
PZ
3359
3360 /* Enqueue pointer can be left pointing to the link TRB,
3361 * we must handle that
3362 */
f5960b69 3363 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
7a3783ef
PZ
3364 reset_device_cmd->command_trb =
3365 xhci->cmd_ring->enq_seg->next->trbs;
3366
2a8f82c4
SS
3367 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3368 ret = xhci_queue_reset_device(xhci, slot_id);
3369 if (ret) {
3370 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3371 list_del(&reset_device_cmd->cmd_list);
3372 spin_unlock_irqrestore(&xhci->lock, flags);
3373 goto command_cleanup;
3374 }
3375 xhci_ring_cmd_db(xhci);
3376 spin_unlock_irqrestore(&xhci->lock, flags);
3377
3378 /* Wait for the Reset Device command to finish */
3379 timeleft = wait_for_completion_interruptible_timeout(
3380 reset_device_cmd->completion,
3381 USB_CTRL_SET_TIMEOUT);
3382 if (timeleft <= 0) {
3383 xhci_warn(xhci, "%s while waiting for reset device command\n",
3384 timeleft == 0 ? "Timeout" : "Signal");
3385 spin_lock_irqsave(&xhci->lock, flags);
3386 /* The timeout might have raced with the event ring handler, so
3387 * only delete from the list if the item isn't poisoned.
3388 */
3389 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3390 list_del(&reset_device_cmd->cmd_list);
3391 spin_unlock_irqrestore(&xhci->lock, flags);
3392 ret = -ETIME;
3393 goto command_cleanup;
3394 }
3395
3396 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3397 * unless we tried to reset a slot ID that wasn't enabled,
3398 * or the device wasn't in the addressed or configured state.
3399 */
3400 ret = reset_device_cmd->status;
3401 switch (ret) {
3402 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3403 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3404 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3405 slot_id,
3406 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3407 xhci_info(xhci, "Not freeing device rings.\n");
3408 /* Don't treat this as an error. May change my mind later. */
3409 ret = 0;
3410 goto command_cleanup;
3411 case COMP_SUCCESS:
3412 xhci_dbg(xhci, "Successful reset device command.\n");
3413 break;
3414 default:
3415 if (xhci_is_vendor_info_code(xhci, ret))
3416 break;
3417 xhci_warn(xhci, "Unknown completion code %u for "
3418 "reset device command.\n", ret);
3419 ret = -EINVAL;
3420 goto command_cleanup;
3421 }
3422
2cf95c18
SS
3423 /* Free up host controller endpoint resources */
3424 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3425 spin_lock_irqsave(&xhci->lock, flags);
3426 /* Don't delete the default control endpoint resources */
3427 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3428 spin_unlock_irqrestore(&xhci->lock, flags);
3429 }
3430
2a8f82c4
SS
3431 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3432 last_freed_endpoint = 1;
3433 for (i = 1; i < 31; ++i) {
2dea75d9
DT
3434 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3435
3436 if (ep->ep_state & EP_HAS_STREAMS) {
3437 xhci_free_stream_info(xhci, ep->stream_info);
3438 ep->stream_info = NULL;
3439 ep->ep_state &= ~EP_HAS_STREAMS;
3440 }
3441
3442 if (ep->ring) {
3443 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3444 last_freed_endpoint = i;
3445 }
2e27980e
SS
3446 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3447 xhci_drop_ep_from_interval_table(xhci,
3448 &virt_dev->eps[i].bw_info,
3449 virt_dev->bw_table,
3450 udev,
3451 &virt_dev->eps[i],
3452 virt_dev->tt_info);
9af5d71d 3453 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
2a8f82c4 3454 }
2e27980e
SS
3455 /* If necessary, update the number of active TTs on this root port */
3456 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3457
2a8f82c4
SS
3458 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3459 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3460 ret = 0;
3461
3462command_cleanup:
3463 xhci_free_command(xhci, reset_device_cmd);
3464 return ret;
3465}
3466
3ffbba95
SS
3467/*
3468 * At this point, the struct usb_device is about to go away, the device has
3469 * disconnected, and all traffic has been stopped and the endpoints have been
3470 * disabled. Free any HC data structures associated with that device.
3471 */
3472void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3473{
3474 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
6f5165cf 3475 struct xhci_virt_device *virt_dev;
3ffbba95 3476 unsigned long flags;
c526d0d4 3477 u32 state;
64927730 3478 int i, ret;
3ffbba95 3479
64927730 3480 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
7bd89b40
SS
3481 /* If the host is halted due to driver unload, we still need to free the
3482 * device.
3483 */
3484 if (ret <= 0 && ret != -ENODEV)
3ffbba95 3485 return;
64927730 3486
6f5165cf 3487 virt_dev = xhci->devs[udev->slot_id];
6f5165cf
SS
3488
3489 /* Stop any wayward timer functions (which may grab the lock) */
3490 for (i = 0; i < 31; ++i) {
3491 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3492 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3493 }
3ffbba95 3494
65580b43
AX
3495 if (udev->usb2_hw_lpm_enabled) {
3496 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3497 udev->usb2_hw_lpm_enabled = 0;
3498 }
3499
3ffbba95 3500 spin_lock_irqsave(&xhci->lock, flags);
c526d0d4
SS
3501 /* Don't disable the slot if the host controller is dead. */
3502 state = xhci_readl(xhci, &xhci->op_regs->status);
7bd89b40
SS
3503 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3504 (xhci->xhc_state & XHCI_STATE_HALTED)) {
c526d0d4
SS
3505 xhci_free_virt_device(xhci, udev->slot_id);
3506 spin_unlock_irqrestore(&xhci->lock, flags);
3507 return;
3508 }
3509
23e3be11 3510 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3ffbba95
SS
3511 spin_unlock_irqrestore(&xhci->lock, flags);
3512 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3513 return;
3514 }
23e3be11 3515 xhci_ring_cmd_db(xhci);
3ffbba95
SS
3516 spin_unlock_irqrestore(&xhci->lock, flags);
3517 /*
3518 * Event command completion handler will free any data structures
f88ba78d 3519 * associated with the slot. XXX Can free sleep?
3ffbba95
SS
3520 */
3521}
3522
2cf95c18
SS
3523/*
3524 * Checks if we have enough host controller resources for the default control
3525 * endpoint.
3526 *
3527 * Must be called with xhci->lock held.
3528 */
3529static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3530{
3531 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3532 xhci_dbg(xhci, "Not enough ep ctxs: "
3533 "%u active, need to add 1, limit is %u.\n",
3534 xhci->num_active_eps, xhci->limit_active_eps);
3535 return -ENOMEM;
3536 }
3537 xhci->num_active_eps += 1;
3538 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3539 xhci->num_active_eps);
3540 return 0;
3541}
3542
3543
3ffbba95
SS
3544/*
3545 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3546 * timed out, or allocating memory failed. Returns 1 on success.
3547 */
3548int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3549{
3550 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3551 unsigned long flags;
3552 int timeleft;
3553 int ret;
6e4468b9 3554 union xhci_trb *cmd_trb;
3ffbba95
SS
3555
3556 spin_lock_irqsave(&xhci->lock, flags);
6e4468b9 3557 cmd_trb = xhci->cmd_ring->dequeue;
23e3be11 3558 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3ffbba95
SS
3559 if (ret) {
3560 spin_unlock_irqrestore(&xhci->lock, flags);
3561 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3562 return 0;
3563 }
23e3be11 3564 xhci_ring_cmd_db(xhci);
3ffbba95
SS
3565 spin_unlock_irqrestore(&xhci->lock, flags);
3566
3567 /* XXX: how much time for xHC slot assignment? */
3568 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
6e4468b9 3569 XHCI_CMD_DEFAULT_TIMEOUT);
3ffbba95
SS
3570 if (timeleft <= 0) {
3571 xhci_warn(xhci, "%s while waiting for a slot\n",
3572 timeleft == 0 ? "Timeout" : "Signal");
6e4468b9
EF
3573 /* cancel the enable slot request */
3574 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3ffbba95
SS
3575 }
3576
3ffbba95
SS
3577 if (!xhci->slot_id) {
3578 xhci_err(xhci, "Error while assigning device slot ID\n");
3ffbba95
SS
3579 return 0;
3580 }
2cf95c18
SS
3581
3582 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3583 spin_lock_irqsave(&xhci->lock, flags);
3584 ret = xhci_reserve_host_control_ep_resources(xhci);
3585 if (ret) {
3586 spin_unlock_irqrestore(&xhci->lock, flags);
3587 xhci_warn(xhci, "Not enough host resources, "
3588 "active endpoint contexts = %u\n",
3589 xhci->num_active_eps);
3590 goto disable_slot;
3591 }
3592 spin_unlock_irqrestore(&xhci->lock, flags);
3593 }
3594 /* Use GFP_NOIO, since this function can be called from
a6d940dd
SS
3595 * xhci_discover_or_reset_device(), which may be called as part of
3596 * mass storage driver error handling.
3597 */
3598 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3ffbba95 3599 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2cf95c18 3600 goto disable_slot;
3ffbba95
SS
3601 }
3602 udev->slot_id = xhci->slot_id;
3603 /* Is this a LS or FS device under a HS hub? */
3604 /* Hub or peripherial? */
3ffbba95 3605 return 1;
2cf95c18
SS
3606
3607disable_slot:
3608 /* Disable slot, if we can do it without mem alloc */
3609 spin_lock_irqsave(&xhci->lock, flags);
3610 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3611 xhci_ring_cmd_db(xhci);
3612 spin_unlock_irqrestore(&xhci->lock, flags);
3613 return 0;
3ffbba95
SS
3614}
3615
3616/*
3617 * Issue an Address Device command (which will issue a SetAddress request to
3618 * the device).
3619 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3620 * we should only issue and wait on one address command at the same time.
3621 *
3622 * We add one to the device address issued by the hardware because the USB core
3623 * uses address 1 for the root hubs (even though they're not really devices).
3624 */
3625int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3626{
3627 unsigned long flags;
3628 int timeleft;
3629 struct xhci_virt_device *virt_dev;
3630 int ret = 0;
3631 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
d115b048
JY
3632 struct xhci_slot_ctx *slot_ctx;
3633 struct xhci_input_control_ctx *ctrl_ctx;
8e595a5d 3634 u64 temp_64;
6e4468b9 3635 union xhci_trb *cmd_trb;
3ffbba95
SS
3636
3637 if (!udev->slot_id) {
3638 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3639 return -EINVAL;
3640 }
3641
3ffbba95
SS
3642 virt_dev = xhci->devs[udev->slot_id];
3643
7ed603ec
ME
3644 if (WARN_ON(!virt_dev)) {
3645 /*
3646 * In plug/unplug torture test with an NEC controller,
3647 * a zero-dereference was observed once due to virt_dev = 0.
3648 * Print useful debug rather than crash if it is observed again!
3649 */
3650 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3651 udev->slot_id);
3652 return -EINVAL;
3653 }
3654
f0615c45
AX
3655 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3656 /*
3657 * If this is the first Set Address since device plug-in or
3658 * virt_device realloaction after a resume with an xHCI power loss,
3659 * then set up the slot context.
3660 */
3661 if (!slot_ctx->dev_info)
3ffbba95 3662 xhci_setup_addressable_virt_dev(xhci, udev);
f0615c45 3663 /* Otherwise, update the control endpoint ring enqueue pointer. */
2d1ee590
SS
3664 else
3665 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
d31c285b
SS
3666 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3667 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3668 ctrl_ctx->drop_flags = 0;
3669
66e49d87 3670 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
d115b048 3671 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3ffbba95 3672
f88ba78d 3673 spin_lock_irqsave(&xhci->lock, flags);
6e4468b9 3674 cmd_trb = xhci->cmd_ring->dequeue;
d115b048
JY
3675 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3676 udev->slot_id);
3ffbba95
SS
3677 if (ret) {
3678 spin_unlock_irqrestore(&xhci->lock, flags);
3679 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3680 return ret;
3681 }
23e3be11 3682 xhci_ring_cmd_db(xhci);
3ffbba95
SS
3683 spin_unlock_irqrestore(&xhci->lock, flags);
3684
3685 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3686 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
6e4468b9 3687 XHCI_CMD_DEFAULT_TIMEOUT);
3ffbba95
SS
3688 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3689 * the SetAddress() "recovery interval" required by USB and aborting the
3690 * command on a timeout.
3691 */
3692 if (timeleft <= 0) {
cd68176a 3693 xhci_warn(xhci, "%s while waiting for address device command\n",
3ffbba95 3694 timeleft == 0 ? "Timeout" : "Signal");
6e4468b9
EF
3695 /* cancel the address device command */
3696 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3697 if (ret < 0)
3698 return ret;
3ffbba95
SS
3699 return -ETIME;
3700 }
3701
3ffbba95
SS
3702 switch (virt_dev->cmd_status) {
3703 case COMP_CTX_STATE:
3704 case COMP_EBADSLT:
3705 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3706 udev->slot_id);
3707 ret = -EINVAL;
3708 break;
3709 case COMP_TX_ERR:
3710 dev_warn(&udev->dev, "Device not responding to set address.\n");
3711 ret = -EPROTO;
3712 break;
f6ba6fe2
AH
3713 case COMP_DEV_ERR:
3714 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3715 "device command.\n");
3716 ret = -ENODEV;
3717 break;
3ffbba95
SS
3718 case COMP_SUCCESS:
3719 xhci_dbg(xhci, "Successful Address Device command\n");
3720 break;
3721 default:
3722 xhci_err(xhci, "ERROR: unexpected command completion "
3723 "code 0x%x.\n", virt_dev->cmd_status);
66e49d87 3724 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
d115b048 3725 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3ffbba95
SS
3726 ret = -EINVAL;
3727 break;
3728 }
3729 if (ret) {
3ffbba95
SS
3730 return ret;
3731 }
8e595a5d
SS
3732 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3733 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3734 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
28ccd296
ME
3735 udev->slot_id,
3736 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3737 (unsigned long long)
3738 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
700e2052 3739 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
d115b048 3740 (unsigned long long)virt_dev->out_ctx->dma);
3ffbba95 3741 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
d115b048 3742 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3ffbba95 3743 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
d115b048 3744 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3ffbba95
SS
3745 /*
3746 * USB core uses address 1 for the roothubs, so we add one to the
3747 * address given back to us by the HC.
3748 */
d115b048 3749 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
c8d4af8e
AX
3750 /* Use kernel assigned address for devices; store xHC assigned
3751 * address locally. */
28ccd296
ME
3752 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3753 + 1;
f94e0186 3754 /* Zero the input context control for later use */
d115b048
JY
3755 ctrl_ctx->add_flags = 0;
3756 ctrl_ctx->drop_flags = 0;
3ffbba95 3757
c8d4af8e 3758 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3ffbba95
SS
3759
3760 return 0;
3761}
3762
9574323c
AX
3763#ifdef CONFIG_USB_SUSPEND
3764
3765/* BESL to HIRD Encoding array for USB2 LPM */
3766static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3767 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3768
3769/* Calculate HIRD/BESL for USB2 PORTPMSC*/
f99298bf
AX
3770static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3771 struct usb_device *udev)
9574323c 3772{
f99298bf
AX
3773 int u2del, besl, besl_host;
3774 int besl_device = 0;
3775 u32 field;
3776
3777 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3778 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
9574323c 3779
f99298bf
AX
3780 if (field & USB_BESL_SUPPORT) {
3781 for (besl_host = 0; besl_host < 16; besl_host++) {
3782 if (xhci_besl_encoding[besl_host] >= u2del)
9574323c
AX
3783 break;
3784 }
f99298bf
AX
3785 /* Use baseline BESL value as default */
3786 if (field & USB_BESL_BASELINE_VALID)
3787 besl_device = USB_GET_BESL_BASELINE(field);
3788 else if (field & USB_BESL_DEEP_VALID)
3789 besl_device = USB_GET_BESL_DEEP(field);
9574323c
AX
3790 } else {
3791 if (u2del <= 50)
f99298bf 3792 besl_host = 0;
9574323c 3793 else
f99298bf 3794 besl_host = (u2del - 51) / 75 + 1;
9574323c
AX
3795 }
3796
f99298bf
AX
3797 besl = besl_host + besl_device;
3798 if (besl > 15)
3799 besl = 15;
3800
3801 return besl;
9574323c
AX
3802}
3803
3804static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3805 struct usb_device *udev)
3806{
3807 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3808 struct dev_info *dev_info;
3809 __le32 __iomem **port_array;
3810 __le32 __iomem *addr, *pm_addr;
3811 u32 temp, dev_id;
3812 unsigned int port_num;
3813 unsigned long flags;
f99298bf 3814 int hird;
9574323c
AX
3815 int ret;
3816
3817 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3818 !udev->lpm_capable)
3819 return -EINVAL;
3820
3821 /* we only support lpm for non-hub device connected to root hub yet */
3822 if (!udev->parent || udev->parent->parent ||
3823 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3824 return -EINVAL;
3825
3826 spin_lock_irqsave(&xhci->lock, flags);
3827
3828 /* Look for devices in lpm_failed_devs list */
3829 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3830 le16_to_cpu(udev->descriptor.idProduct);
3831 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3832 if (dev_info->dev_id == dev_id) {
3833 ret = -EINVAL;
3834 goto finish;
3835 }
3836 }
3837
3838 port_array = xhci->usb2_ports;
3839 port_num = udev->portnum - 1;
3840
3841 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3842 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3843 ret = -EINVAL;
3844 goto finish;
3845 }
3846
3847 /*
3848 * Test USB 2.0 software LPM.
3849 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3850 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3851 * in the June 2011 errata release.
3852 */
3853 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3854 /*
3855 * Set L1 Device Slot and HIRD/BESL.
3856 * Check device's USB 2.0 extension descriptor to determine whether
3857 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3858 */
3859 pm_addr = port_array[port_num] + 1;
f99298bf 3860 hird = xhci_calculate_hird_besl(xhci, udev);
9574323c
AX
3861 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3862 xhci_writel(xhci, temp, pm_addr);
3863
3864 /* Set port link state to U2(L1) */
3865 addr = port_array[port_num];
3866 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3867
3868 /* wait for ACK */
3869 spin_unlock_irqrestore(&xhci->lock, flags);
3870 msleep(10);
3871 spin_lock_irqsave(&xhci->lock, flags);
3872
3873 /* Check L1 Status */
3874 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3875 if (ret != -ETIMEDOUT) {
3876 /* enter L1 successfully */
3877 temp = xhci_readl(xhci, addr);
3878 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3879 port_num, temp);
3880 ret = 0;
3881 } else {
3882 temp = xhci_readl(xhci, pm_addr);
3883 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3884 port_num, temp & PORT_L1S_MASK);
3885 ret = -EINVAL;
3886 }
3887
3888 /* Resume the port */
3889 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3890
3891 spin_unlock_irqrestore(&xhci->lock, flags);
3892 msleep(10);
3893 spin_lock_irqsave(&xhci->lock, flags);
3894
3895 /* Clear PLC */
3896 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3897
3898 /* Check PORTSC to make sure the device is in the right state */
3899 if (!ret) {
3900 temp = xhci_readl(xhci, addr);
3901 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3902 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3903 (temp & PORT_PLS_MASK) != XDEV_U0) {
3904 xhci_dbg(xhci, "port L1 resume fail\n");
3905 ret = -EINVAL;
3906 }
3907 }
3908
3909 if (ret) {
3910 /* Insert dev to lpm_failed_devs list */
3911 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3912 "re-enumerate\n");
3913 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3914 if (!dev_info) {
3915 ret = -ENOMEM;
3916 goto finish;
3917 }
3918 dev_info->dev_id = dev_id;
3919 INIT_LIST_HEAD(&dev_info->list);
3920 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3921 } else {
3922 xhci_ring_device(xhci, udev->slot_id);
3923 }
3924
3925finish:
3926 spin_unlock_irqrestore(&xhci->lock, flags);
3927 return ret;
3928}
3929
65580b43
AX
3930int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3931 struct usb_device *udev, int enable)
3932{
3933 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3934 __le32 __iomem **port_array;
3935 __le32 __iomem *pm_addr;
3936 u32 temp;
3937 unsigned int port_num;
3938 unsigned long flags;
f99298bf 3939 int hird;
65580b43
AX
3940
3941 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3942 !udev->lpm_capable)
3943 return -EPERM;
3944
3945 if (!udev->parent || udev->parent->parent ||
3946 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3947 return -EPERM;
3948
3949 if (udev->usb2_hw_lpm_capable != 1)
3950 return -EPERM;
3951
3952 spin_lock_irqsave(&xhci->lock, flags);
3953
3954 port_array = xhci->usb2_ports;
3955 port_num = udev->portnum - 1;
3956 pm_addr = port_array[port_num] + 1;
3957 temp = xhci_readl(xhci, pm_addr);
3958
3959 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3960 enable ? "enable" : "disable", port_num);
3961
f99298bf 3962 hird = xhci_calculate_hird_besl(xhci, udev);
65580b43
AX
3963
3964 if (enable) {
3965 temp &= ~PORT_HIRD_MASK;
3966 temp |= PORT_HIRD(hird) | PORT_RWE;
3967 xhci_writel(xhci, temp, pm_addr);
3968 temp = xhci_readl(xhci, pm_addr);
3969 temp |= PORT_HLE;
3970 xhci_writel(xhci, temp, pm_addr);
3971 } else {
3972 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3973 xhci_writel(xhci, temp, pm_addr);
3974 }
3975
3976 spin_unlock_irqrestore(&xhci->lock, flags);
3977 return 0;
3978}
3979
b01bcbf7
SS
3980int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3981{
3982 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3983 int ret;
3984
3985 ret = xhci_usb2_software_lpm_test(hcd, udev);
3986 if (!ret) {
3987 xhci_dbg(xhci, "software LPM test succeed\n");
3988 if (xhci->hw_lpm_support == 1) {
3989 udev->usb2_hw_lpm_capable = 1;
3990 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3991 if (!ret)
3992 udev->usb2_hw_lpm_enabled = 1;
3993 }
3994 }
3995
3996 return 0;
3997}
3998
3999#else
4000
4001int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4002 struct usb_device *udev, int enable)
4003{
4004 return 0;
4005}
4006
4007int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4008{
4009 return 0;
4010}
4011
4012#endif /* CONFIG_USB_SUSPEND */
4013
3b3db026
SS
4014/*---------------------- USB 3.0 Link PM functions ------------------------*/
4015
b01bcbf7 4016#ifdef CONFIG_PM
e3567d2c
SS
4017/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4018static unsigned long long xhci_service_interval_to_ns(
4019 struct usb_endpoint_descriptor *desc)
4020{
4021 return (1 << (desc->bInterval - 1)) * 125 * 1000;
4022}
4023
3b3db026
SS
4024static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4025 enum usb3_link_state state)
4026{
4027 unsigned long long sel;
4028 unsigned long long pel;
4029 unsigned int max_sel_pel;
4030 char *state_name;
4031
4032 switch (state) {
4033 case USB3_LPM_U1:
4034 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4035 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4036 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4037 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4038 state_name = "U1";
4039 break;
4040 case USB3_LPM_U2:
4041 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4042 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4043 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4044 state_name = "U2";
4045 break;
4046 default:
4047 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4048 __func__);
e25e62ae 4049 return USB3_LPM_DISABLED;
3b3db026
SS
4050 }
4051
4052 if (sel <= max_sel_pel && pel <= max_sel_pel)
4053 return USB3_LPM_DEVICE_INITIATED;
4054
4055 if (sel > max_sel_pel)
4056 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4057 "due to long SEL %llu ms\n",
4058 state_name, sel);
4059 else
4060 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4061 "due to long PEL %llu\n ms",
4062 state_name, pel);
4063 return USB3_LPM_DISABLED;
4064}
4065
e3567d2c
SS
4066/* Returns the hub-encoded U1 timeout value.
4067 * The U1 timeout should be the maximum of the following values:
4068 * - For control endpoints, U1 system exit latency (SEL) * 3
4069 * - For bulk endpoints, U1 SEL * 5
4070 * - For interrupt endpoints:
4071 * - Notification EPs, U1 SEL * 3
4072 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4073 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4074 */
4075static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4076 struct usb_endpoint_descriptor *desc)
4077{
4078 unsigned long long timeout_ns;
4079 int ep_type;
4080 int intr_type;
4081
4082 ep_type = usb_endpoint_type(desc);
4083 switch (ep_type) {
4084 case USB_ENDPOINT_XFER_CONTROL:
4085 timeout_ns = udev->u1_params.sel * 3;
4086 break;
4087 case USB_ENDPOINT_XFER_BULK:
4088 timeout_ns = udev->u1_params.sel * 5;
4089 break;
4090 case USB_ENDPOINT_XFER_INT:
4091 intr_type = usb_endpoint_interrupt_type(desc);
4092 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4093 timeout_ns = udev->u1_params.sel * 3;
4094 break;
4095 }
4096 /* Otherwise the calculation is the same as isoc eps */
4097 case USB_ENDPOINT_XFER_ISOC:
4098 timeout_ns = xhci_service_interval_to_ns(desc);
c88db160 4099 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
e3567d2c
SS
4100 if (timeout_ns < udev->u1_params.sel * 2)
4101 timeout_ns = udev->u1_params.sel * 2;
4102 break;
4103 default:
4104 return 0;
4105 }
4106
4107 /* The U1 timeout is encoded in 1us intervals. */
c88db160 4108 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
e3567d2c
SS
4109 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4110 if (timeout_ns == USB3_LPM_DISABLED)
4111 timeout_ns++;
4112
4113 /* If the necessary timeout value is bigger than what we can set in the
4114 * USB 3.0 hub, we have to disable hub-initiated U1.
4115 */
4116 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4117 return timeout_ns;
4118 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4119 "due to long timeout %llu ms\n", timeout_ns);
4120 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4121}
4122
4123/* Returns the hub-encoded U2 timeout value.
4124 * The U2 timeout should be the maximum of:
4125 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4126 * - largest bInterval of any active periodic endpoint (to avoid going
4127 * into lower power link states between intervals).
4128 * - the U2 Exit Latency of the device
4129 */
4130static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4131 struct usb_endpoint_descriptor *desc)
4132{
4133 unsigned long long timeout_ns;
4134 unsigned long long u2_del_ns;
4135
4136 timeout_ns = 10 * 1000 * 1000;
4137
4138 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4139 (xhci_service_interval_to_ns(desc) > timeout_ns))
4140 timeout_ns = xhci_service_interval_to_ns(desc);
4141
4142 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4143 if (u2_del_ns > timeout_ns)
4144 timeout_ns = u2_del_ns;
4145
4146 /* The U2 timeout is encoded in 256us intervals */
c88db160 4147 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
e3567d2c
SS
4148 /* If the necessary timeout value is bigger than what we can set in the
4149 * USB 3.0 hub, we have to disable hub-initiated U2.
4150 */
4151 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4152 return timeout_ns;
4153 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4154 "due to long timeout %llu ms\n", timeout_ns);
4155 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4156}
4157
3b3db026
SS
4158static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4159 struct usb_device *udev,
4160 struct usb_endpoint_descriptor *desc,
4161 enum usb3_link_state state,
4162 u16 *timeout)
4163{
e3567d2c
SS
4164 if (state == USB3_LPM_U1) {
4165 if (xhci->quirks & XHCI_INTEL_HOST)
4166 return xhci_calculate_intel_u1_timeout(udev, desc);
4167 } else {
4168 if (xhci->quirks & XHCI_INTEL_HOST)
4169 return xhci_calculate_intel_u2_timeout(udev, desc);
4170 }
4171
3b3db026
SS
4172 return USB3_LPM_DISABLED;
4173}
4174
4175static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4176 struct usb_device *udev,
4177 struct usb_endpoint_descriptor *desc,
4178 enum usb3_link_state state,
4179 u16 *timeout)
4180{
4181 u16 alt_timeout;
4182
4183 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4184 desc, state, timeout);
4185
4186 /* If we found we can't enable hub-initiated LPM, or
4187 * the U1 or U2 exit latency was too high to allow
4188 * device-initiated LPM as well, just stop searching.
4189 */
4190 if (alt_timeout == USB3_LPM_DISABLED ||
4191 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4192 *timeout = alt_timeout;
4193 return -E2BIG;
4194 }
4195 if (alt_timeout > *timeout)
4196 *timeout = alt_timeout;
4197 return 0;
4198}
4199
4200static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4201 struct usb_device *udev,
4202 struct usb_host_interface *alt,
4203 enum usb3_link_state state,
4204 u16 *timeout)
4205{
4206 int j;
4207
4208 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4209 if (xhci_update_timeout_for_endpoint(xhci, udev,
4210 &alt->endpoint[j].desc, state, timeout))
4211 return -E2BIG;
4212 continue;
4213 }
4214 return 0;
4215}
4216
e3567d2c
SS
4217static int xhci_check_intel_tier_policy(struct usb_device *udev,
4218 enum usb3_link_state state)
4219{
4220 struct usb_device *parent;
4221 unsigned int num_hubs;
4222
4223 if (state == USB3_LPM_U2)
4224 return 0;
4225
4226 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4227 for (parent = udev->parent, num_hubs = 0; parent->parent;
4228 parent = parent->parent)
4229 num_hubs++;
4230
4231 if (num_hubs < 2)
4232 return 0;
4233
4234 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4235 " below second-tier hub.\n");
4236 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4237 "to decrease power consumption.\n");
4238 return -E2BIG;
4239}
4240
3b3db026
SS
4241static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4242 struct usb_device *udev,
4243 enum usb3_link_state state)
4244{
e3567d2c
SS
4245 if (xhci->quirks & XHCI_INTEL_HOST)
4246 return xhci_check_intel_tier_policy(udev, state);
3b3db026
SS
4247 return -EINVAL;
4248}
4249
4250/* Returns the U1 or U2 timeout that should be enabled.
4251 * If the tier check or timeout setting functions return with a non-zero exit
4252 * code, that means the timeout value has been finalized and we shouldn't look
4253 * at any more endpoints.
4254 */
4255static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4256 struct usb_device *udev, enum usb3_link_state state)
4257{
4258 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4259 struct usb_host_config *config;
4260 char *state_name;
4261 int i;
4262 u16 timeout = USB3_LPM_DISABLED;
4263
4264 if (state == USB3_LPM_U1)
4265 state_name = "U1";
4266 else if (state == USB3_LPM_U2)
4267 state_name = "U2";
4268 else {
4269 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4270 state);
4271 return timeout;
4272 }
4273
4274 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4275 return timeout;
4276
4277 /* Gather some information about the currently installed configuration
4278 * and alternate interface settings.
4279 */
4280 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4281 state, &timeout))
4282 return timeout;
4283
4284 config = udev->actconfig;
4285 if (!config)
4286 return timeout;
4287
4288 for (i = 0; i < USB_MAXINTERFACES; i++) {
4289 struct usb_driver *driver;
4290 struct usb_interface *intf = config->interface[i];
4291
4292 if (!intf)
4293 continue;
4294
4295 /* Check if any currently bound drivers want hub-initiated LPM
4296 * disabled.
4297 */
4298 if (intf->dev.driver) {
4299 driver = to_usb_driver(intf->dev.driver);
4300 if (driver && driver->disable_hub_initiated_lpm) {
4301 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4302 "at request of driver %s\n",
4303 state_name, driver->name);
4304 return xhci_get_timeout_no_hub_lpm(udev, state);
4305 }
4306 }
4307
4308 /* Not sure how this could happen... */
4309 if (!intf->cur_altsetting)
4310 continue;
4311
4312 if (xhci_update_timeout_for_interface(xhci, udev,
4313 intf->cur_altsetting,
4314 state, &timeout))
4315 return timeout;
4316 }
4317 return timeout;
4318}
4319
4320/*
4321 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4322 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4323 */
4324static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4325 struct usb_device *udev, u16 max_exit_latency)
4326{
4327 struct xhci_virt_device *virt_dev;
4328 struct xhci_command *command;
4329 struct xhci_input_control_ctx *ctrl_ctx;
4330 struct xhci_slot_ctx *slot_ctx;
4331 unsigned long flags;
4332 int ret;
4333
4334 spin_lock_irqsave(&xhci->lock, flags);
4335 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4336 spin_unlock_irqrestore(&xhci->lock, flags);
4337 return 0;
4338 }
4339
4340 /* Attempt to issue an Evaluate Context command to change the MEL. */
4341 virt_dev = xhci->devs[udev->slot_id];
4342 command = xhci->lpm_command;
4343 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4344 spin_unlock_irqrestore(&xhci->lock, flags);
4345
4346 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4347 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4348 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4349 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4350 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4351
4352 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4353 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4354 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4355
4356 /* Issue and wait for the evaluate context command. */
4357 ret = xhci_configure_endpoint(xhci, udev, command,
4358 true, true);
4359 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4360 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4361
4362 if (!ret) {
4363 spin_lock_irqsave(&xhci->lock, flags);
4364 virt_dev->current_mel = max_exit_latency;
4365 spin_unlock_irqrestore(&xhci->lock, flags);
4366 }
4367 return ret;
4368}
4369
4370static int calculate_max_exit_latency(struct usb_device *udev,
4371 enum usb3_link_state state_changed,
4372 u16 hub_encoded_timeout)
4373{
4374 unsigned long long u1_mel_us = 0;
4375 unsigned long long u2_mel_us = 0;
4376 unsigned long long mel_us = 0;
4377 bool disabling_u1;
4378 bool disabling_u2;
4379 bool enabling_u1;
4380 bool enabling_u2;
4381
4382 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4383 hub_encoded_timeout == USB3_LPM_DISABLED);
4384 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4385 hub_encoded_timeout == USB3_LPM_DISABLED);
4386
4387 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4388 hub_encoded_timeout != USB3_LPM_DISABLED);
4389 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4390 hub_encoded_timeout != USB3_LPM_DISABLED);
4391
4392 /* If U1 was already enabled and we're not disabling it,
4393 * or we're going to enable U1, account for the U1 max exit latency.
4394 */
4395 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4396 enabling_u1)
4397 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4398 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4399 enabling_u2)
4400 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4401
4402 if (u1_mel_us > u2_mel_us)
4403 mel_us = u1_mel_us;
4404 else
4405 mel_us = u2_mel_us;
4406 /* xHCI host controller max exit latency field is only 16 bits wide. */
4407 if (mel_us > MAX_EXIT) {
4408 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4409 "is too big.\n", mel_us);
4410 return -E2BIG;
4411 }
4412 return mel_us;
4413}
4414
4415/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4416int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4417 struct usb_device *udev, enum usb3_link_state state)
4418{
4419 struct xhci_hcd *xhci;
4420 u16 hub_encoded_timeout;
4421 int mel;
4422 int ret;
4423
4424 xhci = hcd_to_xhci(hcd);
4425 /* The LPM timeout values are pretty host-controller specific, so don't
4426 * enable hub-initiated timeouts unless the vendor has provided
4427 * information about their timeout algorithm.
4428 */
4429 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4430 !xhci->devs[udev->slot_id])
4431 return USB3_LPM_DISABLED;
4432
4433 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4434 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4435 if (mel < 0) {
4436 /* Max Exit Latency is too big, disable LPM. */
4437 hub_encoded_timeout = USB3_LPM_DISABLED;
4438 mel = 0;
4439 }
4440
4441 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4442 if (ret)
4443 return ret;
4444 return hub_encoded_timeout;
4445}
4446
4447int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4448 struct usb_device *udev, enum usb3_link_state state)
4449{
4450 struct xhci_hcd *xhci;
4451 u16 mel;
4452 int ret;
4453
4454 xhci = hcd_to_xhci(hcd);
4455 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4456 !xhci->devs[udev->slot_id])
4457 return 0;
4458
4459 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4460 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4461 if (ret)
4462 return ret;
4463 return 0;
4464}
b01bcbf7 4465#else /* CONFIG_PM */
9574323c 4466
b01bcbf7
SS
4467int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4468 struct usb_device *udev, enum usb3_link_state state)
65580b43 4469{
b01bcbf7 4470 return USB3_LPM_DISABLED;
65580b43
AX
4471}
4472
b01bcbf7
SS
4473int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4474 struct usb_device *udev, enum usb3_link_state state)
9574323c
AX
4475{
4476 return 0;
4477}
b01bcbf7 4478#endif /* CONFIG_PM */
9574323c 4479
b01bcbf7 4480/*-------------------------------------------------------------------------*/
9574323c 4481
ac1c1b7f
SS
4482/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4483 * internal data structures for the device.
4484 */
4485int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4486 struct usb_tt *tt, gfp_t mem_flags)
4487{
4488 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4489 struct xhci_virt_device *vdev;
4490 struct xhci_command *config_cmd;
4491 struct xhci_input_control_ctx *ctrl_ctx;
4492 struct xhci_slot_ctx *slot_ctx;
4493 unsigned long flags;
4494 unsigned think_time;
4495 int ret;
4496
4497 /* Ignore root hubs */
4498 if (!hdev->parent)
4499 return 0;
4500
4501 vdev = xhci->devs[hdev->slot_id];
4502 if (!vdev) {
4503 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4504 return -EINVAL;
4505 }
a1d78c16 4506 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
ac1c1b7f
SS
4507 if (!config_cmd) {
4508 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4509 return -ENOMEM;
4510 }
4511
4512 spin_lock_irqsave(&xhci->lock, flags);
839c817c
SS
4513 if (hdev->speed == USB_SPEED_HIGH &&
4514 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4515 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4516 xhci_free_command(xhci, config_cmd);
4517 spin_unlock_irqrestore(&xhci->lock, flags);
4518 return -ENOMEM;
4519 }
4520
ac1c1b7f
SS
4521 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4522 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
28ccd296 4523 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
ac1c1b7f 4524 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
28ccd296 4525 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
ac1c1b7f 4526 if (tt->multi)
28ccd296 4527 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
ac1c1b7f
SS
4528 if (xhci->hci_version > 0x95) {
4529 xhci_dbg(xhci, "xHCI version %x needs hub "
4530 "TT think time and number of ports\n",
4531 (unsigned int) xhci->hci_version);
28ccd296 4532 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
ac1c1b7f
SS
4533 /* Set TT think time - convert from ns to FS bit times.
4534 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4535 * 2 = 24 FS bit times, 3 = 32 FS bit times.
700b4173
AX
4536 *
4537 * xHCI 1.0: this field shall be 0 if the device is not a
4538 * High-spped hub.
ac1c1b7f
SS
4539 */
4540 think_time = tt->think_time;
4541 if (think_time != 0)
4542 think_time = (think_time / 666) - 1;
700b4173
AX
4543 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4544 slot_ctx->tt_info |=
4545 cpu_to_le32(TT_THINK_TIME(think_time));
ac1c1b7f
SS
4546 } else {
4547 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4548 "TT think time or number of ports\n",
4549 (unsigned int) xhci->hci_version);
4550 }
4551 slot_ctx->dev_state = 0;
4552 spin_unlock_irqrestore(&xhci->lock, flags);
4553
4554 xhci_dbg(xhci, "Set up %s for hub device.\n",
4555 (xhci->hci_version > 0x95) ?
4556 "configure endpoint" : "evaluate context");
4557 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4558 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4559
4560 /* Issue and wait for the configure endpoint or
4561 * evaluate context command.
4562 */
4563 if (xhci->hci_version > 0x95)
4564 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4565 false, false);
4566 else
4567 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4568 true, false);
4569
4570 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4571 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4572
4573 xhci_free_command(xhci, config_cmd);
4574 return ret;
4575}
4576
66d4eadd
SS
4577int xhci_get_frame(struct usb_hcd *hcd)
4578{
4579 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4580 /* EHCI mods by the periodic size. Why? */
4581 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4582}
4583
552e0c4f
SAS
4584int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4585{
4586 struct xhci_hcd *xhci;
4587 struct device *dev = hcd->self.controller;
4588 int retval;
4589 u32 temp;
4590
fdaf8b31
AX
4591 /* Accept arbitrarily long scatter-gather lists */
4592 hcd->self.sg_tablesize = ~0;
19181bc5
HG
4593 /* XHCI controllers don't stop the ep queue on short packets :| */
4594 hcd->self.no_stop_on_short = 1;
552e0c4f
SAS
4595
4596 if (usb_hcd_is_primary_hcd(hcd)) {
4597 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4598 if (!xhci)
4599 return -ENOMEM;
4600 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4601 xhci->main_hcd = hcd;
4602 /* Mark the first roothub as being USB 2.0.
4603 * The xHCI driver will register the USB 3.0 roothub.
4604 */
4605 hcd->speed = HCD_USB2;
4606 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4607 /*
4608 * USB 2.0 roothub under xHCI has an integrated TT,
4609 * (rate matching hub) as opposed to having an OHCI/UHCI
4610 * companion controller.
4611 */
4612 hcd->has_tt = 1;
4613 } else {
4614 /* xHCI private pointer was set in xhci_pci_probe for the second
4615 * registered roothub.
4616 */
4617 xhci = hcd_to_xhci(hcd);
4618 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4619 if (HCC_64BIT_ADDR(temp)) {
4620 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4621 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4622 } else {
4623 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4624 }
4625 return 0;
4626 }
4627
4628 xhci->cap_regs = hcd->regs;
4629 xhci->op_regs = hcd->regs +
4630 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4631 xhci->run_regs = hcd->regs +
4632 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4633 /* Cache read-only capability registers */
4634 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4635 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4636 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4637 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4638 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4639 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4640 xhci_print_registers(xhci);
4641
4642 get_quirks(dev, xhci);
4643
4644 /* Make sure the HC is halted. */
4645 retval = xhci_halt(xhci);
4646 if (retval)
4647 goto error;
4648
4649 xhci_dbg(xhci, "Resetting HCD\n");
4650 /* Reset the internal HC memory state and registers. */
4651 retval = xhci_reset(xhci);
4652 if (retval)
4653 goto error;
4654 xhci_dbg(xhci, "Reset complete\n");
4655
4656 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4657 if (HCC_64BIT_ADDR(temp)) {
4658 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4659 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4660 } else {
4661 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4662 }
4663
4664 xhci_dbg(xhci, "Calling HCD init\n");
4665 /* Initialize HCD and host controller data structures. */
4666 retval = xhci_init(hcd);
4667 if (retval)
4668 goto error;
4669 xhci_dbg(xhci, "Called HCD init\n");
4670 return 0;
4671error:
4672 kfree(xhci);
4673 return retval;
4674}
4675
66d4eadd
SS
4676MODULE_DESCRIPTION(DRIVER_DESC);
4677MODULE_AUTHOR(DRIVER_AUTHOR);
4678MODULE_LICENSE("GPL");
4679
4680static int __init xhci_hcd_init(void)
4681{
0cc47d54 4682 int retval;
66d4eadd
SS
4683
4684 retval = xhci_register_pci();
66d4eadd
SS
4685 if (retval < 0) {
4686 printk(KERN_DEBUG "Problem registering PCI driver.");
4687 return retval;
4688 }
3429e91a
SAS
4689 retval = xhci_register_plat();
4690 if (retval < 0) {
4691 printk(KERN_DEBUG "Problem registering platform driver.");
4692 goto unreg_pci;
4693 }
98441973
SS
4694 /*
4695 * Check the compiler generated sizes of structures that must be laid
4696 * out in specific ways for hardware access.
4697 */
4698 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4699 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4700 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4701 /* xhci_device_control has eight fields, and also
4702 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4703 */
98441973
SS
4704 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4705 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4706 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4707 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4708 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4709 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4710 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
66d4eadd 4711 return 0;
3429e91a
SAS
4712unreg_pci:
4713 xhci_unregister_pci();
4714 return retval;
66d4eadd
SS
4715}
4716module_init(xhci_hcd_init);
4717
4718static void __exit xhci_hcd_cleanup(void)
4719{
66d4eadd 4720 xhci_unregister_pci();
3429e91a 4721 xhci_unregister_plat();
66d4eadd
SS
4722}
4723module_exit(xhci_hcd_cleanup);