xhci: Fix invalid loop check in xhci_free_tt_info()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
186a7ef1
AX
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 unsigned int cycle_state, gfp_t flags)
0ebbab37
SS
39{
40 struct xhci_segment *seg;
41 dma_addr_t dma;
186a7ef1 42 int i;
0ebbab37
SS
43
44 seg = kzalloc(sizeof *seg, flags);
45 if (!seg)
326b4810 46 return NULL;
0ebbab37
SS
47
48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 if (!seg->trbs) {
50 kfree(seg);
326b4810 51 return NULL;
0ebbab37 52 }
0ebbab37
SS
53
54 memset(seg->trbs, 0, SEGMENT_SIZE);
186a7ef1
AX
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= TRB_CYCLE;
59 }
0ebbab37
SS
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64}
65
66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67{
0ebbab37 68 if (seg->trbs) {
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
0ebbab37
SS
72 kfree(seg);
73}
74
70d43601
AX
75static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 struct xhci_segment *first)
77{
78 struct xhci_segment *seg;
79
80 seg = first->next;
81 while (seg != first) {
82 struct xhci_segment *next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 xhci_segment_free(xhci, first);
87}
88
0ebbab37
SS
89/*
90 * Make the prev segment point to the next segment.
91 *
92 * Change the last TRB in the prev segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
96static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
3b72fca0 97 struct xhci_segment *next, enum xhci_ring_type type)
0ebbab37
SS
98{
99 u32 val;
100
101 if (!prev || !next)
102 return;
103 prev->next = next;
3b72fca0 104 if (type != TYPE_EVENT) {
f5960b69
ME
105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 cpu_to_le64(next->dma);
0ebbab37
SS
107
108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
110 val &= ~TRB_TYPE_BITMASK;
111 val |= TRB_TYPE(TRB_LINK);
b0567b3f 112 /* Always set the chain bit with 0.95 hardware */
7e393a83
AX
113 /* Set chain bit for isoc rings on AMD 0.96 host */
114 if (xhci_link_trb_quirk(xhci) ||
3b72fca0
AX
115 (type == TYPE_ISOC &&
116 (xhci->quirks & XHCI_AMD_0x96_HOST)))
b0567b3f 117 val |= TRB_CHAIN;
28ccd296 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 119 }
0ebbab37
SS
120}
121
8dfec614
AX
122/*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129{
130 struct xhci_segment *next;
131
132 if (!ring || !first || !last)
133 return;
134
135 next = ring->enq_seg->next;
136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 xhci_link_segments(xhci, last, next, ring->type);
138 ring->num_segs += num_segs;
139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 &= ~cpu_to_le32(LINK_TOGGLE);
144 last->trbs[TRBS_PER_SEGMENT-1].link.control
145 |= cpu_to_le32(LINK_TOGGLE);
146 ring->last_seg = last;
147 }
148}
149
0ebbab37 150/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 151void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37 152{
0e6c7f74 153 if (!ring)
0ebbab37 154 return;
70d43601
AX
155
156 if (ring->first_seg)
157 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
0ebbab37
SS
159 kfree(ring);
160}
161
186a7ef1
AX
162static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 unsigned int cycle_state)
74f9fe21
SS
164{
165 /* The ring is empty, so the enqueue pointer == dequeue pointer */
166 ring->enqueue = ring->first_seg->trbs;
167 ring->enq_seg = ring->first_seg;
168 ring->dequeue = ring->enqueue;
169 ring->deq_seg = ring->first_seg;
170 /* The ring is initialized to 0. The producer must write 1 to the cycle
171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
172 * compare CCS to the cycle bit to check ownership, so CCS = 1.
186a7ef1
AX
173 *
174 * New rings are initialized with cycle state equal to 1; if we are
175 * handling ring expansion, set the cycle state equal to the old ring.
74f9fe21 176 */
186a7ef1 177 ring->cycle_state = cycle_state;
74f9fe21
SS
178 /* Not necessary for new rings, but needed for re-initialized rings */
179 ring->enq_updates = 0;
180 ring->deq_updates = 0;
b008df60
AX
181
182 /*
183 * Each segment has a link TRB, and leave an extra TRB for SW
184 * accounting purpose
185 */
186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
74f9fe21
SS
187}
188
70d43601
AX
189/* Allocate segments and link them for a ring */
190static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 struct xhci_segment **first, struct xhci_segment **last,
186a7ef1
AX
192 unsigned int num_segs, unsigned int cycle_state,
193 enum xhci_ring_type type, gfp_t flags)
70d43601
AX
194{
195 struct xhci_segment *prev;
196
186a7ef1 197 prev = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601
AX
198 if (!prev)
199 return -ENOMEM;
200 num_segs--;
201
202 *first = prev;
203 while (num_segs > 0) {
204 struct xhci_segment *next;
205
186a7ef1 206 next = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601
AX
207 if (!next) {
208 xhci_free_segments_for_ring(xhci, *first);
209 return -ENOMEM;
210 }
211 xhci_link_segments(xhci, prev, next, type);
212
213 prev = next;
214 num_segs--;
215 }
216 xhci_link_segments(xhci, prev, *first, type);
217 *last = prev;
218
219 return 0;
220}
221
0ebbab37
SS
222/**
223 * Create a new ring with zero or more segments.
224 *
225 * Link each segment together into a ring.
226 * Set the end flag and the cycle toggle bit on the last segment.
227 * See section 4.9.1 and figures 15 and 16.
228 */
229static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
186a7ef1
AX
230 unsigned int num_segs, unsigned int cycle_state,
231 enum xhci_ring_type type, gfp_t flags)
0ebbab37
SS
232{
233 struct xhci_ring *ring;
70d43601 234 int ret;
0ebbab37
SS
235
236 ring = kzalloc(sizeof *(ring), flags);
0ebbab37 237 if (!ring)
326b4810 238 return NULL;
0ebbab37 239
3fe4fe08 240 ring->num_segs = num_segs;
d0e96f5a 241 INIT_LIST_HEAD(&ring->td_list);
3b72fca0 242 ring->type = type;
0ebbab37
SS
243 if (num_segs == 0)
244 return ring;
245
70d43601 246 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
186a7ef1 247 &ring->last_seg, num_segs, cycle_state, type, flags);
70d43601 248 if (ret)
0ebbab37 249 goto fail;
0ebbab37 250
3b72fca0
AX
251 /* Only event ring does not use link TRB */
252 if (type != TYPE_EVENT) {
0ebbab37 253 /* See section 4.9.2.1 and 6.4.4.1 */
70d43601 254 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
f5960b69 255 cpu_to_le32(LINK_TOGGLE);
0ebbab37 256 }
186a7ef1 257 xhci_initialize_ring_info(ring, cycle_state);
0ebbab37
SS
258 return ring;
259
260fail:
261 xhci_ring_free(xhci, ring);
326b4810 262 return NULL;
0ebbab37
SS
263}
264
412566bd
SS
265void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
266 struct xhci_virt_device *virt_dev,
267 unsigned int ep_index)
268{
269 int rings_cached;
270
271 rings_cached = virt_dev->num_rings_cached;
272 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
412566bd
SS
273 virt_dev->ring_cache[rings_cached] =
274 virt_dev->eps[ep_index].ring;
30f89ca0 275 virt_dev->num_rings_cached++;
412566bd
SS
276 xhci_dbg(xhci, "Cached old ring, "
277 "%d ring%s cached\n",
30f89ca0
SS
278 virt_dev->num_rings_cached,
279 (virt_dev->num_rings_cached > 1) ? "s" : "");
412566bd
SS
280 } else {
281 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
282 xhci_dbg(xhci, "Ring cache full (%d rings), "
283 "freeing ring\n",
284 virt_dev->num_rings_cached);
285 }
286 virt_dev->eps[ep_index].ring = NULL;
287}
288
74f9fe21
SS
289/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
290 * pointers to the beginning of the ring.
291 */
292static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
186a7ef1
AX
293 struct xhci_ring *ring, unsigned int cycle_state,
294 enum xhci_ring_type type)
74f9fe21
SS
295{
296 struct xhci_segment *seg = ring->first_seg;
186a7ef1
AX
297 int i;
298
74f9fe21
SS
299 do {
300 memset(seg->trbs, 0,
301 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
186a7ef1
AX
302 if (cycle_state == 0) {
303 for (i = 0; i < TRBS_PER_SEGMENT; i++)
304 seg->trbs[i].link.control |= TRB_CYCLE;
305 }
74f9fe21 306 /* All endpoint rings have link TRBs */
3b72fca0 307 xhci_link_segments(xhci, seg, seg->next, type);
74f9fe21
SS
308 seg = seg->next;
309 } while (seg != ring->first_seg);
3b72fca0 310 ring->type = type;
186a7ef1 311 xhci_initialize_ring_info(ring, cycle_state);
74f9fe21
SS
312 /* td list should be empty since all URBs have been cancelled,
313 * but just in case...
314 */
315 INIT_LIST_HEAD(&ring->td_list);
316}
317
8dfec614
AX
318/*
319 * Expand an existing ring.
320 * Look for a cached ring or allocate a new ring which has same segment numbers
321 * and link the two rings.
322 */
323int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
324 unsigned int num_trbs, gfp_t flags)
325{
326 struct xhci_segment *first;
327 struct xhci_segment *last;
328 unsigned int num_segs;
329 unsigned int num_segs_needed;
330 int ret;
331
332 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
333 (TRBS_PER_SEGMENT - 1);
334
335 /* Allocate number of segments we needed, or double the ring size */
336 num_segs = ring->num_segs > num_segs_needed ?
337 ring->num_segs : num_segs_needed;
338
339 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
340 num_segs, ring->cycle_state, ring->type, flags);
341 if (ret)
342 return -ENOMEM;
343
344 xhci_link_rings(xhci, ring, first, last, num_segs);
345 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
346 ring->num_segs);
347
348 return 0;
349}
350
d115b048
JY
351#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
352
326b4810 353static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
354 int type, gfp_t flags)
355{
356 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
357 if (!ctx)
358 return NULL;
359
360 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
361 ctx->type = type;
362 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
363 if (type == XHCI_CTX_TYPE_INPUT)
364 ctx->size += CTX_SIZE(xhci->hcc_params);
365
366 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
367 memset(ctx->bytes, 0, ctx->size);
368 return ctx;
369}
370
326b4810 371static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
372 struct xhci_container_ctx *ctx)
373{
a1d78c16
SS
374 if (!ctx)
375 return;
d115b048
JY
376 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
377 kfree(ctx);
378}
379
380struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
381 struct xhci_container_ctx *ctx)
382{
383 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
384 return (struct xhci_input_control_ctx *)ctx->bytes;
385}
386
387struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
388 struct xhci_container_ctx *ctx)
389{
390 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
391 return (struct xhci_slot_ctx *)ctx->bytes;
392
393 return (struct xhci_slot_ctx *)
394 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
395}
396
397struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
398 struct xhci_container_ctx *ctx,
399 unsigned int ep_index)
400{
401 /* increment ep index by offset of start of ep ctx array */
402 ep_index++;
403 if (ctx->type == XHCI_CTX_TYPE_INPUT)
404 ep_index++;
405
406 return (struct xhci_ep_ctx *)
407 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
408}
409
8df75f42
SS
410
411/***************** Streams structures manipulation *************************/
412
8212a49d 413static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
414 unsigned int num_stream_ctxs,
415 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
416{
417 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418
419 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 420 dma_free_coherent(&pdev->dev,
8df75f42
SS
421 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
422 stream_ctx, dma);
423 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
424 return dma_pool_free(xhci->small_streams_pool,
425 stream_ctx, dma);
426 else
427 return dma_pool_free(xhci->medium_streams_pool,
428 stream_ctx, dma);
429}
430
431/*
432 * The stream context array for each endpoint with bulk streams enabled can
433 * vary in size, based on:
434 * - how many streams the endpoint supports,
435 * - the maximum primary stream array size the host controller supports,
436 * - and how many streams the device driver asks for.
437 *
438 * The stream context array must be a power of 2, and can be as small as
439 * 64 bytes or as large as 1MB.
440 */
8212a49d 441static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
442 unsigned int num_stream_ctxs, dma_addr_t *dma,
443 gfp_t mem_flags)
444{
445 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
446
447 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 448 return dma_alloc_coherent(&pdev->dev,
8df75f42 449 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
22d45f01 450 dma, mem_flags);
8df75f42
SS
451 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
452 return dma_pool_alloc(xhci->small_streams_pool,
453 mem_flags, dma);
454 else
455 return dma_pool_alloc(xhci->medium_streams_pool,
456 mem_flags, dma);
457}
458
e9df17eb
SS
459struct xhci_ring *xhci_dma_to_transfer_ring(
460 struct xhci_virt_ep *ep,
461 u64 address)
462{
463 if (ep->ep_state & EP_HAS_STREAMS)
464 return radix_tree_lookup(&ep->stream_info->trb_address_map,
465 address >> SEGMENT_SHIFT);
466 return ep->ring;
467}
468
469/* Only use this when you know stream_info is valid */
8df75f42 470#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
e9df17eb 471static struct xhci_ring *dma_to_stream_ring(
8df75f42
SS
472 struct xhci_stream_info *stream_info,
473 u64 address)
474{
475 return radix_tree_lookup(&stream_info->trb_address_map,
476 address >> SEGMENT_SHIFT);
477}
478#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
479
e9df17eb
SS
480struct xhci_ring *xhci_stream_id_to_ring(
481 struct xhci_virt_device *dev,
482 unsigned int ep_index,
483 unsigned int stream_id)
484{
485 struct xhci_virt_ep *ep = &dev->eps[ep_index];
486
487 if (stream_id == 0)
488 return ep->ring;
489 if (!ep->stream_info)
490 return NULL;
491
492 if (stream_id > ep->stream_info->num_streams)
493 return NULL;
494 return ep->stream_info->stream_rings[stream_id];
495}
496
8df75f42
SS
497#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
498static int xhci_test_radix_tree(struct xhci_hcd *xhci,
499 unsigned int num_streams,
500 struct xhci_stream_info *stream_info)
501{
502 u32 cur_stream;
503 struct xhci_ring *cur_ring;
504 u64 addr;
505
506 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
507 struct xhci_ring *mapped_ring;
508 int trb_size = sizeof(union xhci_trb);
509
510 cur_ring = stream_info->stream_rings[cur_stream];
511 for (addr = cur_ring->first_seg->dma;
512 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
513 addr += trb_size) {
514 mapped_ring = dma_to_stream_ring(stream_info, addr);
515 if (cur_ring != mapped_ring) {
516 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
517 "didn't map to stream ID %u; "
518 "mapped to ring %p\n",
519 (unsigned long long) addr,
520 cur_stream,
521 mapped_ring);
522 return -EINVAL;
523 }
524 }
525 /* One TRB after the end of the ring segment shouldn't return a
526 * pointer to the current ring (although it may be a part of a
527 * different ring).
528 */
529 mapped_ring = dma_to_stream_ring(stream_info, addr);
530 if (mapped_ring != cur_ring) {
531 /* One TRB before should also fail */
532 addr = cur_ring->first_seg->dma - trb_size;
533 mapped_ring = dma_to_stream_ring(stream_info, addr);
534 }
535 if (mapped_ring == cur_ring) {
536 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
537 "mapped to valid stream ID %u; "
538 "mapped ring = %p\n",
539 (unsigned long long) addr,
540 cur_stream,
541 mapped_ring);
542 return -EINVAL;
543 }
544 }
545 return 0;
546}
547#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
548
549/*
550 * Change an endpoint's internal structure so it supports stream IDs. The
551 * number of requested streams includes stream 0, which cannot be used by device
552 * drivers.
553 *
554 * The number of stream contexts in the stream context array may be bigger than
555 * the number of streams the driver wants to use. This is because the number of
556 * stream context array entries must be a power of two.
557 *
558 * We need a radix tree for mapping physical addresses of TRBs to which stream
559 * ID they belong to. We need to do this because the host controller won't tell
560 * us which stream ring the TRB came from. We could store the stream ID in an
561 * event data TRB, but that doesn't help us for the cancellation case, since the
562 * endpoint may stop before it reaches that event data TRB.
563 *
564 * The radix tree maps the upper portion of the TRB DMA address to a ring
565 * segment that has the same upper portion of DMA addresses. For example, say I
566 * have segments of size 1KB, that are always 64-byte aligned. A segment may
567 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
568 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
569 * pass the radix tree a key to get the right stream ID:
570 *
571 * 0x10c90fff >> 10 = 0x43243
572 * 0x10c912c0 >> 10 = 0x43244
573 * 0x10c91400 >> 10 = 0x43245
574 *
575 * Obviously, only those TRBs with DMA addresses that are within the segment
576 * will make the radix tree return the stream ID for that ring.
577 *
578 * Caveats for the radix tree:
579 *
580 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
581 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
582 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
583 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
584 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
585 * extended systems (where the DMA address can be bigger than 32-bits),
586 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
587 */
588struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
589 unsigned int num_stream_ctxs,
590 unsigned int num_streams, gfp_t mem_flags)
591{
592 struct xhci_stream_info *stream_info;
593 u32 cur_stream;
594 struct xhci_ring *cur_ring;
595 unsigned long key;
596 u64 addr;
597 int ret;
598
599 xhci_dbg(xhci, "Allocating %u streams and %u "
600 "stream context array entries.\n",
601 num_streams, num_stream_ctxs);
602 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
603 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
604 return NULL;
605 }
606 xhci->cmd_ring_reserved_trbs++;
607
608 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
609 if (!stream_info)
610 goto cleanup_trbs;
611
612 stream_info->num_streams = num_streams;
613 stream_info->num_stream_ctxs = num_stream_ctxs;
614
615 /* Initialize the array of virtual pointers to stream rings. */
616 stream_info->stream_rings = kzalloc(
617 sizeof(struct xhci_ring *)*num_streams,
618 mem_flags);
619 if (!stream_info->stream_rings)
620 goto cleanup_info;
621
622 /* Initialize the array of DMA addresses for stream rings for the HW. */
623 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
624 num_stream_ctxs, &stream_info->ctx_array_dma,
625 mem_flags);
626 if (!stream_info->stream_ctx_array)
627 goto cleanup_ctx;
628 memset(stream_info->stream_ctx_array, 0,
629 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
630
631 /* Allocate everything needed to free the stream rings later */
632 stream_info->free_streams_command =
633 xhci_alloc_command(xhci, true, true, mem_flags);
634 if (!stream_info->free_streams_command)
635 goto cleanup_ctx;
636
637 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
638
639 /* Allocate rings for all the streams that the driver will use,
640 * and add their segment DMA addresses to the radix tree.
641 * Stream 0 is reserved.
642 */
643 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
644 stream_info->stream_rings[cur_stream] =
2fdcd47b 645 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
8df75f42
SS
646 cur_ring = stream_info->stream_rings[cur_stream];
647 if (!cur_ring)
648 goto cleanup_rings;
e9df17eb 649 cur_ring->stream_id = cur_stream;
8df75f42
SS
650 /* Set deq ptr, cycle bit, and stream context type */
651 addr = cur_ring->first_seg->dma |
652 SCT_FOR_CTX(SCT_PRI_TR) |
653 cur_ring->cycle_state;
f5960b69
ME
654 stream_info->stream_ctx_array[cur_stream].stream_ring =
655 cpu_to_le64(addr);
8df75f42
SS
656 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
657 cur_stream, (unsigned long long) addr);
658
659 key = (unsigned long)
660 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
661 ret = radix_tree_insert(&stream_info->trb_address_map,
662 key, cur_ring);
663 if (ret) {
664 xhci_ring_free(xhci, cur_ring);
665 stream_info->stream_rings[cur_stream] = NULL;
666 goto cleanup_rings;
667 }
668 }
669 /* Leave the other unused stream ring pointers in the stream context
670 * array initialized to zero. This will cause the xHC to give us an
671 * error if the device asks for a stream ID we don't have setup (if it
672 * was any other way, the host controller would assume the ring is
673 * "empty" and wait forever for data to be queued to that stream ID).
674 */
675#if XHCI_DEBUG
676 /* Do a little test on the radix tree to make sure it returns the
677 * correct values.
678 */
679 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
680 goto cleanup_rings;
681#endif
682
683 return stream_info;
684
685cleanup_rings:
686 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
687 cur_ring = stream_info->stream_rings[cur_stream];
688 if (cur_ring) {
689 addr = cur_ring->first_seg->dma;
690 radix_tree_delete(&stream_info->trb_address_map,
691 addr >> SEGMENT_SHIFT);
692 xhci_ring_free(xhci, cur_ring);
693 stream_info->stream_rings[cur_stream] = NULL;
694 }
695 }
696 xhci_free_command(xhci, stream_info->free_streams_command);
697cleanup_ctx:
698 kfree(stream_info->stream_rings);
699cleanup_info:
700 kfree(stream_info);
701cleanup_trbs:
702 xhci->cmd_ring_reserved_trbs--;
703 return NULL;
704}
705/*
706 * Sets the MaxPStreams field and the Linear Stream Array field.
707 * Sets the dequeue pointer to the stream context array.
708 */
709void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
710 struct xhci_ep_ctx *ep_ctx,
711 struct xhci_stream_info *stream_info)
712{
713 u32 max_primary_streams;
714 /* MaxPStreams is the number of stream context array entries, not the
715 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
716 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
717 */
718 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
719 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
720 1 << (max_primary_streams + 1));
28ccd296
ME
721 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
722 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
723 | EP_HAS_LSA);
724 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
725}
726
727/*
728 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
729 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
730 * not at the beginning of the ring).
731 */
732void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
733 struct xhci_ep_ctx *ep_ctx,
734 struct xhci_virt_ep *ep)
735{
736 dma_addr_t addr;
28ccd296 737 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 738 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 739 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
740}
741
742/* Frees all stream contexts associated with the endpoint,
743 *
744 * Caller should fix the endpoint context streams fields.
745 */
746void xhci_free_stream_info(struct xhci_hcd *xhci,
747 struct xhci_stream_info *stream_info)
748{
749 int cur_stream;
750 struct xhci_ring *cur_ring;
751 dma_addr_t addr;
752
753 if (!stream_info)
754 return;
755
756 for (cur_stream = 1; cur_stream < stream_info->num_streams;
757 cur_stream++) {
758 cur_ring = stream_info->stream_rings[cur_stream];
759 if (cur_ring) {
760 addr = cur_ring->first_seg->dma;
761 radix_tree_delete(&stream_info->trb_address_map,
762 addr >> SEGMENT_SHIFT);
763 xhci_ring_free(xhci, cur_ring);
764 stream_info->stream_rings[cur_stream] = NULL;
765 }
766 }
767 xhci_free_command(xhci, stream_info->free_streams_command);
768 xhci->cmd_ring_reserved_trbs--;
769 if (stream_info->stream_ctx_array)
770 xhci_free_stream_ctx(xhci,
771 stream_info->num_stream_ctxs,
772 stream_info->stream_ctx_array,
773 stream_info->ctx_array_dma);
774
775 if (stream_info)
776 kfree(stream_info->stream_rings);
777 kfree(stream_info);
778}
779
780
781/***************** Device context manipulation *************************/
782
6f5165cf
SS
783static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
784 struct xhci_virt_ep *ep)
785{
786 init_timer(&ep->stop_cmd_timer);
787 ep->stop_cmd_timer.data = (unsigned long) ep;
788 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
789 ep->xhci = xhci;
790}
791
839c817c
SS
792static void xhci_free_tt_info(struct xhci_hcd *xhci,
793 struct xhci_virt_device *virt_dev,
794 int slot_id)
795{
839c817c 796 struct list_head *tt_list_head;
46ed8f00
TI
797 struct xhci_tt_bw_info *tt_info, *next;
798 bool slot_found = false;
839c817c
SS
799
800 /* If the device never made it past the Set Address stage,
801 * it may not have the real_port set correctly.
802 */
803 if (virt_dev->real_port == 0 ||
804 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
805 xhci_dbg(xhci, "Bad real port.\n");
806 return;
807 }
808
809 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
46ed8f00
TI
810 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
811 /* Multi-TT hubs will have more than one entry */
812 if (tt_info->slot_id == slot_id) {
813 slot_found = true;
814 list_del(&tt_info->tt_list);
815 kfree(tt_info);
816 } else if (slot_found) {
839c817c 817 break;
46ed8f00 818 }
839c817c 819 }
839c817c
SS
820}
821
822int xhci_alloc_tt_info(struct xhci_hcd *xhci,
823 struct xhci_virt_device *virt_dev,
824 struct usb_device *hdev,
825 struct usb_tt *tt, gfp_t mem_flags)
826{
827 struct xhci_tt_bw_info *tt_info;
828 unsigned int num_ports;
829 int i, j;
830
831 if (!tt->multi)
832 num_ports = 1;
833 else
834 num_ports = hdev->maxchild;
835
836 for (i = 0; i < num_ports; i++, tt_info++) {
837 struct xhci_interval_bw_table *bw_table;
838
839 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
840 if (!tt_info)
841 goto free_tts;
842 INIT_LIST_HEAD(&tt_info->tt_list);
843 list_add(&tt_info->tt_list,
844 &xhci->rh_bw[virt_dev->real_port - 1].tts);
845 tt_info->slot_id = virt_dev->udev->slot_id;
846 if (tt->multi)
847 tt_info->ttport = i+1;
848 bw_table = &tt_info->bw_table;
849 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
850 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
851 }
852 return 0;
853
854free_tts:
855 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
856 return -ENOMEM;
857}
858
859
860/* All the xhci_tds in the ring's TD list should be freed at this point.
861 * Should be called with xhci->lock held if there is any chance the TT lists
862 * will be manipulated by the configure endpoint, allocate device, or update
863 * hub functions while this function is removing the TT entries from the list.
864 */
3ffbba95
SS
865void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
866{
867 struct xhci_virt_device *dev;
868 int i;
2e27980e 869 int old_active_eps = 0;
3ffbba95
SS
870
871 /* Slot ID 0 is reserved */
872 if (slot_id == 0 || !xhci->devs[slot_id])
873 return;
874
875 dev = xhci->devs[slot_id];
8e595a5d 876 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
877 if (!dev)
878 return;
879
2e27980e
SS
880 if (dev->tt_info)
881 old_active_eps = dev->tt_info->active_eps;
882
8df75f42 883 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
884 if (dev->eps[i].ring)
885 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
886 if (dev->eps[i].stream_info)
887 xhci_free_stream_info(xhci,
888 dev->eps[i].stream_info);
2e27980e
SS
889 /* Endpoints on the TT/root port lists should have been removed
890 * when usb_disable_device() was called for the device.
891 * We can't drop them anyway, because the udev might have gone
892 * away by this point, and we can't tell what speed it was.
893 */
894 if (!list_empty(&dev->eps[i].bw_endpoint_list))
895 xhci_warn(xhci, "Slot %u endpoint %u "
896 "not removed from BW list!\n",
897 slot_id, i);
8df75f42 898 }
839c817c
SS
899 /* If this is a hub, free the TT(s) from the TT list */
900 xhci_free_tt_info(xhci, dev, slot_id);
2e27980e
SS
901 /* If necessary, update the number of active TTs on this root port */
902 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
3ffbba95 903
74f9fe21
SS
904 if (dev->ring_cache) {
905 for (i = 0; i < dev->num_rings_cached; i++)
906 xhci_ring_free(xhci, dev->ring_cache[i]);
907 kfree(dev->ring_cache);
908 }
909
3ffbba95 910 if (dev->in_ctx)
d115b048 911 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 912 if (dev->out_ctx)
d115b048
JY
913 xhci_free_container_ctx(xhci, dev->out_ctx);
914
3ffbba95 915 kfree(xhci->devs[slot_id]);
326b4810 916 xhci->devs[slot_id] = NULL;
3ffbba95
SS
917}
918
919int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
920 struct usb_device *udev, gfp_t flags)
921{
3ffbba95 922 struct xhci_virt_device *dev;
63a0d9ab 923 int i;
3ffbba95
SS
924
925 /* Slot ID 0 is reserved */
926 if (slot_id == 0 || xhci->devs[slot_id]) {
927 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
928 return 0;
929 }
930
931 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
932 if (!xhci->devs[slot_id])
933 return 0;
934 dev = xhci->devs[slot_id];
935
d115b048
JY
936 /* Allocate the (output) device context that will be used in the HC. */
937 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
938 if (!dev->out_ctx)
939 goto fail;
d115b048 940
700e2052 941 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 942 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
943
944 /* Allocate the (input) device context for address device command */
d115b048 945 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
946 if (!dev->in_ctx)
947 goto fail;
d115b048 948
700e2052 949 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 950 (unsigned long long)dev->in_ctx->dma);
3ffbba95 951
6f5165cf
SS
952 /* Initialize the cancellation list and watchdog timers for each ep */
953 for (i = 0; i < 31; i++) {
954 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 955 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
2e27980e 956 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
6f5165cf 957 }
63a0d9ab 958
3ffbba95 959 /* Allocate endpoint 0 ring */
2fdcd47b 960 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
63a0d9ab 961 if (!dev->eps[0].ring)
3ffbba95
SS
962 goto fail;
963
74f9fe21
SS
964 /* Allocate pointers to the ring cache */
965 dev->ring_cache = kzalloc(
966 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
967 flags);
968 if (!dev->ring_cache)
969 goto fail;
970 dev->num_rings_cached = 0;
971
f94e0186 972 init_completion(&dev->cmd_completion);
913a8a34 973 INIT_LIST_HEAD(&dev->cmd_list);
64927730 974 dev->udev = udev;
f94e0186 975
28c2d2ef 976 /* Point to output device context in dcbaa. */
28ccd296 977 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 978 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
979 slot_id,
980 &xhci->dcbaa->dev_context_ptrs[slot_id],
f5960b69 981 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
982
983 return 1;
984fail:
985 xhci_free_virt_device(xhci, slot_id);
986 return 0;
987}
988
2d1ee590
SS
989void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
990 struct usb_device *udev)
991{
992 struct xhci_virt_device *virt_dev;
993 struct xhci_ep_ctx *ep0_ctx;
994 struct xhci_ring *ep_ring;
995
996 virt_dev = xhci->devs[udev->slot_id];
997 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
998 ep_ring = virt_dev->eps[0].ring;
999 /*
1000 * FIXME we don't keep track of the dequeue pointer very well after a
1001 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1002 * host to our enqueue pointer. This should only be called after a
1003 * configured device has reset, so all control transfers should have
1004 * been completed or cancelled before the reset.
1005 */
28ccd296
ME
1006 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1007 ep_ring->enqueue)
1008 | ep_ring->cycle_state);
2d1ee590
SS
1009}
1010
f6ff0ac8
SS
1011/*
1012 * The xHCI roothub may have ports of differing speeds in any order in the port
1013 * status registers. xhci->port_array provides an array of the port speed for
1014 * each offset into the port status registers.
1015 *
1016 * The xHCI hardware wants to know the roothub port number that the USB device
1017 * is attached to (or the roothub port its ancestor hub is attached to). All we
1018 * know is the index of that port under either the USB 2.0 or the USB 3.0
1019 * roothub, but that doesn't give us the real index into the HW port status
1020 * registers. Scan through the xHCI roothub port array, looking for the Nth
1021 * entry of the correct port speed. Return the port number of that entry.
1022 */
1023static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1024 struct usb_device *udev)
1025{
1026 struct usb_device *top_dev;
1027 unsigned int num_similar_speed_ports;
1028 unsigned int faked_port_num;
1029 int i;
1030
1031 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1032 top_dev = top_dev->parent)
1033 /* Found device below root hub */;
1034 faked_port_num = top_dev->portnum;
1035 for (i = 0, num_similar_speed_ports = 0;
1036 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1037 u8 port_speed = xhci->port_array[i];
1038
1039 /*
1040 * Skip ports that don't have known speeds, or have duplicate
1041 * Extended Capabilities port speed entries.
1042 */
22e04870 1043 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
f6ff0ac8
SS
1044 continue;
1045
1046 /*
1047 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1048 * 1.1 ports are under the USB 2.0 hub. If the port speed
1049 * matches the device speed, it's a similar speed port.
1050 */
1051 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1052 num_similar_speed_ports++;
1053 if (num_similar_speed_ports == faked_port_num)
1054 /* Roothub ports are numbered from 1 to N */
1055 return i+1;
1056 }
1057 return 0;
1058}
1059
3ffbba95
SS
1060/* Setup an xHCI virtual device for a Set Address command */
1061int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1062{
1063 struct xhci_virt_device *dev;
1064 struct xhci_ep_ctx *ep0_ctx;
d115b048 1065 struct xhci_slot_ctx *slot_ctx;
f6ff0ac8
SS
1066 u32 port_num;
1067 struct usb_device *top_dev;
3ffbba95
SS
1068
1069 dev = xhci->devs[udev->slot_id];
1070 /* Slot ID 0 is reserved */
1071 if (udev->slot_id == 0 || !dev) {
1072 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073 udev->slot_id);
1074 return -EINVAL;
1075 }
d115b048 1076 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
d115b048 1077 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95 1078
3ffbba95 1079 /* 3) Only the control endpoint is valid - one endpoint context */
f5960b69 1080 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
3ffbba95
SS
1081 switch (udev->speed) {
1082 case USB_SPEED_SUPER:
f5960b69 1083 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
3ffbba95
SS
1084 break;
1085 case USB_SPEED_HIGH:
f5960b69 1086 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
3ffbba95
SS
1087 break;
1088 case USB_SPEED_FULL:
f5960b69 1089 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
3ffbba95
SS
1090 break;
1091 case USB_SPEED_LOW:
f5960b69 1092 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
3ffbba95 1093 break;
551cdbbe 1094 case USB_SPEED_WIRELESS:
3ffbba95
SS
1095 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1096 return -EINVAL;
1097 break;
1098 default:
1099 /* Speed was set earlier, this shouldn't happen. */
1100 BUG();
1101 }
1102 /* Find the root hub port this device is under */
f6ff0ac8
SS
1103 port_num = xhci_find_real_port_number(xhci, udev);
1104 if (!port_num)
1105 return -EINVAL;
f5960b69 1106 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
f6ff0ac8 1107 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
1108 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1109 top_dev = top_dev->parent)
1110 /* Found device below root hub */;
fe30182c 1111 dev->fake_port = top_dev->portnum;
66381755 1112 dev->real_port = port_num;
f6ff0ac8 1113 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
fe30182c 1114 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
3ffbba95 1115
839c817c
SS
1116 /* Find the right bandwidth table that this device will be a part of.
1117 * If this is a full speed device attached directly to a root port (or a
1118 * decendent of one), it counts as a primary bandwidth domain, not a
1119 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1120 * will never be created for the HS root hub.
1121 */
1122 if (!udev->tt || !udev->tt->hub->parent) {
1123 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1124 } else {
1125 struct xhci_root_port_bw_info *rh_bw;
1126 struct xhci_tt_bw_info *tt_bw;
1127
1128 rh_bw = &xhci->rh_bw[port_num - 1];
1129 /* Find the right TT. */
1130 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1131 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1132 continue;
1133
1134 if (!dev->udev->tt->multi ||
1135 (udev->tt->multi &&
1136 tt_bw->ttport == dev->udev->ttport)) {
1137 dev->bw_table = &tt_bw->bw_table;
1138 dev->tt_info = tt_bw;
1139 break;
1140 }
1141 }
1142 if (!dev->tt_info)
1143 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1144 }
1145
aa1b13ef
SS
1146 /* Is this a LS/FS device under an external HS hub? */
1147 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
1148 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1149 (udev->ttport << 8));
07b6de10 1150 if (udev->tt->multi)
28ccd296 1151 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 1152 }
700e2052 1153 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
1154 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1155
1156 /* Step 4 - ring already allocated */
1157 /* Step 5 */
28ccd296 1158 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
3ffbba95 1159 /*
3ffbba95
SS
1160 * XXX: Not sure about wireless USB devices.
1161 */
47aded8a
SS
1162 switch (udev->speed) {
1163 case USB_SPEED_SUPER:
28ccd296 1164 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
47aded8a
SS
1165 break;
1166 case USB_SPEED_HIGH:
1167 /* USB core guesses at a 64-byte max packet first for FS devices */
1168 case USB_SPEED_FULL:
28ccd296 1169 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
47aded8a
SS
1170 break;
1171 case USB_SPEED_LOW:
28ccd296 1172 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
47aded8a 1173 break;
551cdbbe 1174 case USB_SPEED_WIRELESS:
47aded8a
SS
1175 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1176 return -EINVAL;
1177 break;
1178 default:
1179 /* New speed? */
1180 BUG();
1181 }
3ffbba95 1182 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
28ccd296 1183 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
3ffbba95 1184
28ccd296
ME
1185 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1186 dev->eps[0].ring->cycle_state);
3ffbba95
SS
1187
1188 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1189
1190 return 0;
1191}
1192
dfa49c4a
DT
1193/*
1194 * Convert interval expressed as 2^(bInterval - 1) == interval into
1195 * straight exponent value 2^n == interval.
1196 *
1197 */
1198static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1199 struct usb_host_endpoint *ep)
1200{
1201 unsigned int interval;
1202
1203 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1204 if (interval != ep->desc.bInterval - 1)
1205 dev_warn(&udev->dev,
cd3c18ba 1206 "ep %#x - rounding interval to %d %sframes\n",
dfa49c4a 1207 ep->desc.bEndpointAddress,
cd3c18ba
DT
1208 1 << interval,
1209 udev->speed == USB_SPEED_FULL ? "" : "micro");
1210
1211 if (udev->speed == USB_SPEED_FULL) {
1212 /*
1213 * Full speed isoc endpoints specify interval in frames,
1214 * not microframes. We are using microframes everywhere,
1215 * so adjust accordingly.
1216 */
1217 interval += 3; /* 1 frame = 2^3 uframes */
1218 }
dfa49c4a
DT
1219
1220 return interval;
1221}
1222
1223/*
340a3504 1224 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
dfa49c4a
DT
1225 * microframes, rounded down to nearest power of 2.
1226 */
340a3504
SS
1227static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1228 struct usb_host_endpoint *ep, unsigned int desc_interval,
1229 unsigned int min_exponent, unsigned int max_exponent)
dfa49c4a
DT
1230{
1231 unsigned int interval;
1232
340a3504
SS
1233 interval = fls(desc_interval) - 1;
1234 interval = clamp_val(interval, min_exponent, max_exponent);
1235 if ((1 << interval) != desc_interval)
dfa49c4a
DT
1236 dev_warn(&udev->dev,
1237 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1238 ep->desc.bEndpointAddress,
1239 1 << interval,
340a3504 1240 desc_interval);
dfa49c4a
DT
1241
1242 return interval;
1243}
1244
340a3504
SS
1245static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1246 struct usb_host_endpoint *ep)
1247{
1248 return xhci_microframes_to_exponent(udev, ep,
1249 ep->desc.bInterval, 0, 15);
1250}
1251
1252
1253static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1254 struct usb_host_endpoint *ep)
1255{
1256 return xhci_microframes_to_exponent(udev, ep,
1257 ep->desc.bInterval * 8, 3, 10);
1258}
1259
f94e0186
SS
1260/* Return the polling or NAK interval.
1261 *
1262 * The polling interval is expressed in "microframes". If xHCI's Interval field
1263 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1264 *
1265 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1266 * is set to 0.
1267 */
575688e1 1268static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1269 struct usb_host_endpoint *ep)
1270{
1271 unsigned int interval = 0;
1272
1273 switch (udev->speed) {
1274 case USB_SPEED_HIGH:
1275 /* Max NAK rate */
1276 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1277 usb_endpoint_xfer_bulk(&ep->desc)) {
340a3504 1278 interval = xhci_parse_microframe_interval(udev, ep);
dfa49c4a
DT
1279 break;
1280 }
f94e0186 1281 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1282
f94e0186
SS
1283 case USB_SPEED_SUPER:
1284 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1285 usb_endpoint_xfer_isoc(&ep->desc)) {
1286 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1287 }
1288 break;
dfa49c4a 1289
f94e0186 1290 case USB_SPEED_FULL:
b513d447 1291 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1292 interval = xhci_parse_exponent_interval(udev, ep);
1293 break;
1294 }
1295 /*
b513d447 1296 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1297 * since it uses the same rules as low speed interrupt
1298 * endpoints.
1299 */
1300
f94e0186
SS
1301 case USB_SPEED_LOW:
1302 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1303 usb_endpoint_xfer_isoc(&ep->desc)) {
1304
1305 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1306 }
1307 break;
dfa49c4a 1308
f94e0186
SS
1309 default:
1310 BUG();
1311 }
1312 return EP_INTERVAL(interval);
1313}
1314
c30c791c 1315/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1316 * High speed endpoint descriptors can define "the number of additional
1317 * transaction opportunities per microframe", but that goes in the Max Burst
1318 * endpoint context field.
1319 */
575688e1 1320static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1321 struct usb_host_endpoint *ep)
1322{
c30c791c
SS
1323 if (udev->speed != USB_SPEED_SUPER ||
1324 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1325 return 0;
842f1690 1326 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1327}
1328
575688e1 1329static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1330 struct usb_host_endpoint *ep)
1331{
1332 int in;
1333 u32 type;
1334
1335 in = usb_endpoint_dir_in(&ep->desc);
1336 if (usb_endpoint_xfer_control(&ep->desc)) {
1337 type = EP_TYPE(CTRL_EP);
1338 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1339 if (in)
1340 type = EP_TYPE(BULK_IN_EP);
1341 else
1342 type = EP_TYPE(BULK_OUT_EP);
1343 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1344 if (in)
1345 type = EP_TYPE(ISOC_IN_EP);
1346 else
1347 type = EP_TYPE(ISOC_OUT_EP);
1348 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1349 if (in)
1350 type = EP_TYPE(INT_IN_EP);
1351 else
1352 type = EP_TYPE(INT_OUT_EP);
1353 } else {
1354 BUG();
1355 }
1356 return type;
1357}
1358
9238f25d
SS
1359/* Return the maximum endpoint service interval time (ESIT) payload.
1360 * Basically, this is the maxpacket size, multiplied by the burst size
1361 * and mult size.
1362 */
575688e1 1363static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1364 struct usb_device *udev,
1365 struct usb_host_endpoint *ep)
1366{
1367 int max_burst;
1368 int max_packet;
1369
1370 /* Only applies for interrupt or isochronous endpoints */
1371 if (usb_endpoint_xfer_control(&ep->desc) ||
1372 usb_endpoint_xfer_bulk(&ep->desc))
1373 return 0;
1374
842f1690 1375 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1376 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1377
29cc8897
KM
1378 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1379 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
9238f25d
SS
1380 /* A 0 in max burst means 1 transfer per ESIT */
1381 return max_packet * (max_burst + 1);
1382}
1383
8df75f42
SS
1384/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1385 * Drivers will have to call usb_alloc_streams() to do that.
1386 */
f94e0186
SS
1387int xhci_endpoint_init(struct xhci_hcd *xhci,
1388 struct xhci_virt_device *virt_dev,
1389 struct usb_device *udev,
f88ba78d
SS
1390 struct usb_host_endpoint *ep,
1391 gfp_t mem_flags)
f94e0186
SS
1392{
1393 unsigned int ep_index;
1394 struct xhci_ep_ctx *ep_ctx;
1395 struct xhci_ring *ep_ring;
1396 unsigned int max_packet;
1397 unsigned int max_burst;
3b72fca0 1398 enum xhci_ring_type type;
9238f25d 1399 u32 max_esit_payload;
f94e0186
SS
1400
1401 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1402 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186 1403
3b72fca0 1404 type = usb_endpoint_type(&ep->desc);
f94e0186 1405 /* Set up the endpoint ring */
8dfec614 1406 virt_dev->eps[ep_index].new_ring =
2fdcd47b 1407 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
74f9fe21
SS
1408 if (!virt_dev->eps[ep_index].new_ring) {
1409 /* Attempt to use the ring cache */
1410 if (virt_dev->num_rings_cached == 0)
1411 return -ENOMEM;
1412 virt_dev->eps[ep_index].new_ring =
1413 virt_dev->ring_cache[virt_dev->num_rings_cached];
1414 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1415 virt_dev->num_rings_cached--;
7e393a83 1416 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
186a7ef1 1417 1, type);
74f9fe21 1418 }
d18240db 1419 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1420 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1421 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1422
28ccd296
ME
1423 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1424 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1425
1426 /* FIXME dig Mult and streams info out of ep companion desc */
1427
47692d17 1428 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1429 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1430 */
f94e0186 1431 if (!usb_endpoint_xfer_isoc(&ep->desc))
28ccd296 1432 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
f94e0186 1433 else
7b1fc2ea 1434 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
f94e0186 1435
28ccd296 1436 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
f94e0186
SS
1437
1438 /* Set the max packet size and max burst */
1439 switch (udev->speed) {
1440 case USB_SPEED_SUPER:
29cc8897 1441 max_packet = usb_endpoint_maxp(&ep->desc);
28ccd296 1442 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
b10de142 1443 /* dig out max burst from ep companion desc */
842f1690 1444 max_packet = ep->ss_ep_comp.bMaxBurst;
28ccd296 1445 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
f94e0186
SS
1446 break;
1447 case USB_SPEED_HIGH:
1448 /* bits 11:12 specify the number of additional transaction
1449 * opportunities per microframe (USB 2.0, section 9.6.6)
1450 */
1451 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1452 usb_endpoint_xfer_int(&ep->desc)) {
29cc8897 1453 max_burst = (usb_endpoint_maxp(&ep->desc)
28ccd296
ME
1454 & 0x1800) >> 11;
1455 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
f94e0186
SS
1456 }
1457 /* Fall through */
1458 case USB_SPEED_FULL:
1459 case USB_SPEED_LOW:
29cc8897 1460 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
28ccd296 1461 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
f94e0186
SS
1462 break;
1463 default:
1464 BUG();
1465 }
9238f25d 1466 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1467 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1468
1469 /*
1470 * XXX no idea how to calculate the average TRB buffer length for bulk
1471 * endpoints, as the driver gives us no clue how big each scatter gather
1472 * list entry (or buffer) is going to be.
1473 *
1474 * For isochronous and interrupt endpoints, we set it to the max
1475 * available, until we have new API in the USB core to allow drivers to
1476 * declare how much bandwidth they actually need.
1477 *
1478 * Normally, it would be calculated by taking the total of the buffer
1479 * lengths in the TD and then dividing by the number of TRBs in a TD,
1480 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1481 * use Event Data TRBs, and we don't chain in a link TRB on short
1482 * transfers, we're basically dividing by 1.
51eb01a7
AX
1483 *
1484 * xHCI 1.0 specification indicates that the Average TRB Length should
1485 * be set to 8 for control endpoints.
9238f25d 1486 */
51eb01a7
AX
1487 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1488 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1489 else
1490 ep_ctx->tx_info |=
1491 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1492
f94e0186
SS
1493 /* FIXME Debug endpoint context */
1494 return 0;
1495}
1496
1497void xhci_endpoint_zero(struct xhci_hcd *xhci,
1498 struct xhci_virt_device *virt_dev,
1499 struct usb_host_endpoint *ep)
1500{
1501 unsigned int ep_index;
1502 struct xhci_ep_ctx *ep_ctx;
1503
1504 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1505 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1506
1507 ep_ctx->ep_info = 0;
1508 ep_ctx->ep_info2 = 0;
8e595a5d 1509 ep_ctx->deq = 0;
f94e0186
SS
1510 ep_ctx->tx_info = 0;
1511 /* Don't free the endpoint ring until the set interface or configuration
1512 * request succeeds.
1513 */
1514}
1515
9af5d71d
SS
1516void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1517{
1518 bw_info->ep_interval = 0;
1519 bw_info->mult = 0;
1520 bw_info->num_packets = 0;
1521 bw_info->max_packet_size = 0;
1522 bw_info->type = 0;
1523 bw_info->max_esit_payload = 0;
1524}
1525
1526void xhci_update_bw_info(struct xhci_hcd *xhci,
1527 struct xhci_container_ctx *in_ctx,
1528 struct xhci_input_control_ctx *ctrl_ctx,
1529 struct xhci_virt_device *virt_dev)
1530{
1531 struct xhci_bw_info *bw_info;
1532 struct xhci_ep_ctx *ep_ctx;
1533 unsigned int ep_type;
1534 int i;
1535
1536 for (i = 1; i < 31; ++i) {
1537 bw_info = &virt_dev->eps[i].bw_info;
1538
1539 /* We can't tell what endpoint type is being dropped, but
1540 * unconditionally clearing the bandwidth info for non-periodic
1541 * endpoints should be harmless because the info will never be
1542 * set in the first place.
1543 */
1544 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1545 /* Dropped endpoint */
1546 xhci_clear_endpoint_bw_info(bw_info);
1547 continue;
1548 }
1549
1550 if (EP_IS_ADDED(ctrl_ctx, i)) {
1551 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1552 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1553
1554 /* Ignore non-periodic endpoints */
1555 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1556 ep_type != ISOC_IN_EP &&
1557 ep_type != INT_IN_EP)
1558 continue;
1559
1560 /* Added or changed endpoint */
1561 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1562 le32_to_cpu(ep_ctx->ep_info));
170c0263
SS
1563 /* Number of packets and mult are zero-based in the
1564 * input context, but we want one-based for the
1565 * interval table.
9af5d71d 1566 */
170c0263
SS
1567 bw_info->mult = CTX_TO_EP_MULT(
1568 le32_to_cpu(ep_ctx->ep_info)) + 1;
9af5d71d
SS
1569 bw_info->num_packets = CTX_TO_MAX_BURST(
1570 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1571 bw_info->max_packet_size = MAX_PACKET_DECODED(
1572 le32_to_cpu(ep_ctx->ep_info2));
1573 bw_info->type = ep_type;
1574 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1575 le32_to_cpu(ep_ctx->tx_info));
1576 }
1577 }
1578}
1579
f2217e8e
SS
1580/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1581 * Useful when you want to change one particular aspect of the endpoint and then
1582 * issue a configure endpoint command.
1583 */
1584void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1585 struct xhci_container_ctx *in_ctx,
1586 struct xhci_container_ctx *out_ctx,
1587 unsigned int ep_index)
f2217e8e
SS
1588{
1589 struct xhci_ep_ctx *out_ep_ctx;
1590 struct xhci_ep_ctx *in_ep_ctx;
1591
913a8a34
SS
1592 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1593 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1594
1595 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1596 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1597 in_ep_ctx->deq = out_ep_ctx->deq;
1598 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1599}
1600
1601/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command. Only the context entries field matters,
1604 * but we'll copy the whole thing anyway.
1605 */
913a8a34
SS
1606void xhci_slot_copy(struct xhci_hcd *xhci,
1607 struct xhci_container_ctx *in_ctx,
1608 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1609{
1610 struct xhci_slot_ctx *in_slot_ctx;
1611 struct xhci_slot_ctx *out_slot_ctx;
1612
913a8a34
SS
1613 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1615
1616 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620}
1621
254c80a3
JY
1622/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624{
1625 int i;
1626 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1627 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1630
1631 if (!num_sp)
1632 return 0;
1633
1634 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1635 if (!xhci->scratchpad)
1636 goto fail_sp;
1637
22d45f01 1638 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
254c80a3 1639 num_sp * sizeof(u64),
22d45f01 1640 &xhci->scratchpad->sp_dma, flags);
254c80a3
JY
1641 if (!xhci->scratchpad->sp_array)
1642 goto fail_sp2;
1643
1644 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1645 if (!xhci->scratchpad->sp_buffers)
1646 goto fail_sp3;
1647
1648 xhci->scratchpad->sp_dma_buffers =
1649 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1650
1651 if (!xhci->scratchpad->sp_dma_buffers)
1652 goto fail_sp4;
1653
28ccd296 1654 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1655 for (i = 0; i < num_sp; i++) {
1656 dma_addr_t dma;
22d45f01
SAS
1657 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1658 flags);
254c80a3
JY
1659 if (!buf)
1660 goto fail_sp5;
1661
1662 xhci->scratchpad->sp_array[i] = dma;
1663 xhci->scratchpad->sp_buffers[i] = buf;
1664 xhci->scratchpad->sp_dma_buffers[i] = dma;
1665 }
1666
1667 return 0;
1668
1669 fail_sp5:
1670 for (i = i - 1; i >= 0; i--) {
22d45f01 1671 dma_free_coherent(dev, xhci->page_size,
254c80a3
JY
1672 xhci->scratchpad->sp_buffers[i],
1673 xhci->scratchpad->sp_dma_buffers[i]);
1674 }
1675 kfree(xhci->scratchpad->sp_dma_buffers);
1676
1677 fail_sp4:
1678 kfree(xhci->scratchpad->sp_buffers);
1679
1680 fail_sp3:
22d45f01 1681 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1682 xhci->scratchpad->sp_array,
1683 xhci->scratchpad->sp_dma);
1684
1685 fail_sp2:
1686 kfree(xhci->scratchpad);
1687 xhci->scratchpad = NULL;
1688
1689 fail_sp:
1690 return -ENOMEM;
1691}
1692
1693static void scratchpad_free(struct xhci_hcd *xhci)
1694{
1695 int num_sp;
1696 int i;
1697 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1698
1699 if (!xhci->scratchpad)
1700 return;
1701
1702 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704 for (i = 0; i < num_sp; i++) {
22d45f01 1705 dma_free_coherent(&pdev->dev, xhci->page_size,
254c80a3
JY
1706 xhci->scratchpad->sp_buffers[i],
1707 xhci->scratchpad->sp_dma_buffers[i]);
1708 }
1709 kfree(xhci->scratchpad->sp_dma_buffers);
1710 kfree(xhci->scratchpad->sp_buffers);
22d45f01 1711 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
254c80a3
JY
1712 xhci->scratchpad->sp_array,
1713 xhci->scratchpad->sp_dma);
1714 kfree(xhci->scratchpad);
1715 xhci->scratchpad = NULL;
1716}
1717
913a8a34 1718struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1719 bool allocate_in_ctx, bool allocate_completion,
1720 gfp_t mem_flags)
913a8a34
SS
1721{
1722 struct xhci_command *command;
1723
1724 command = kzalloc(sizeof(*command), mem_flags);
1725 if (!command)
1726 return NULL;
1727
a1d78c16
SS
1728 if (allocate_in_ctx) {
1729 command->in_ctx =
1730 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1731 mem_flags);
1732 if (!command->in_ctx) {
1733 kfree(command);
1734 return NULL;
1735 }
06e18291 1736 }
913a8a34
SS
1737
1738 if (allocate_completion) {
1739 command->completion =
1740 kzalloc(sizeof(struct completion), mem_flags);
1741 if (!command->completion) {
1742 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1743 kfree(command);
913a8a34
SS
1744 return NULL;
1745 }
1746 init_completion(command->completion);
1747 }
1748
1749 command->status = 0;
1750 INIT_LIST_HEAD(&command->cmd_list);
1751 return command;
1752}
1753
8e51adcc
AX
1754void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1755{
2ffdea25
AX
1756 if (urb_priv) {
1757 kfree(urb_priv->td[0]);
1758 kfree(urb_priv);
8e51adcc 1759 }
8e51adcc
AX
1760}
1761
913a8a34
SS
1762void xhci_free_command(struct xhci_hcd *xhci,
1763 struct xhci_command *command)
1764{
1765 xhci_free_container_ctx(xhci,
1766 command->in_ctx);
1767 kfree(command->completion);
1768 kfree(command);
1769}
1770
66d4eadd
SS
1771void xhci_mem_cleanup(struct xhci_hcd *xhci)
1772{
0ebbab37 1773 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
9574323c 1774 struct dev_info *dev_info, *next;
f8a9e72d
ON
1775 struct list_head *tt_list_head;
1776 struct list_head *tt;
1777 struct list_head *endpoints;
1778 struct list_head *ep, *q;
1779 struct xhci_tt_bw_info *tt_info;
1780 struct xhci_interval_bw_table *bwt;
1781 struct xhci_virt_ep *virt_ep;
1782
9574323c 1783 unsigned long flags;
0ebbab37 1784 int size;
3ffbba95 1785 int i;
0ebbab37
SS
1786
1787 /* Free the Event Ring Segment Table and the actual Event Ring */
0ebbab37
SS
1788 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1789 if (xhci->erst.entries)
22d45f01 1790 dma_free_coherent(&pdev->dev, size,
0ebbab37
SS
1791 xhci->erst.entries, xhci->erst.erst_dma_addr);
1792 xhci->erst.entries = NULL;
1793 xhci_dbg(xhci, "Freed ERST\n");
1794 if (xhci->event_ring)
1795 xhci_ring_free(xhci, xhci->event_ring);
1796 xhci->event_ring = NULL;
1797 xhci_dbg(xhci, "Freed event ring\n");
1798
dbc33303
SS
1799 if (xhci->lpm_command)
1800 xhci_free_command(xhci, xhci->lpm_command);
33b2831a 1801 xhci->cmd_ring_reserved_trbs = 0;
0ebbab37
SS
1802 if (xhci->cmd_ring)
1803 xhci_ring_free(xhci, xhci->cmd_ring);
1804 xhci->cmd_ring = NULL;
1805 xhci_dbg(xhci, "Freed command ring\n");
3ffbba95
SS
1806
1807 for (i = 1; i < MAX_HC_SLOTS; ++i)
1808 xhci_free_virt_device(xhci, i);
1809
0ebbab37
SS
1810 if (xhci->segment_pool)
1811 dma_pool_destroy(xhci->segment_pool);
1812 xhci->segment_pool = NULL;
1813 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
1814
1815 if (xhci->device_pool)
1816 dma_pool_destroy(xhci->device_pool);
1817 xhci->device_pool = NULL;
1818 xhci_dbg(xhci, "Freed device context pool\n");
1819
8df75f42
SS
1820 if (xhci->small_streams_pool)
1821 dma_pool_destroy(xhci->small_streams_pool);
1822 xhci->small_streams_pool = NULL;
1823 xhci_dbg(xhci, "Freed small stream array pool\n");
1824
1825 if (xhci->medium_streams_pool)
1826 dma_pool_destroy(xhci->medium_streams_pool);
1827 xhci->medium_streams_pool = NULL;
1828 xhci_dbg(xhci, "Freed medium stream array pool\n");
1829
a74588f9 1830 if (xhci->dcbaa)
22d45f01 1831 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
a74588f9
SS
1832 xhci->dcbaa, xhci->dcbaa->dma);
1833 xhci->dcbaa = NULL;
3ffbba95 1834
5294bea4 1835 scratchpad_free(xhci);
da6699ce 1836
9574323c
AX
1837 spin_lock_irqsave(&xhci->lock, flags);
1838 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1839 list_del(&dev_info->list);
1840 kfree(dev_info);
1841 }
1842 spin_unlock_irqrestore(&xhci->lock, flags);
1843
f8a9e72d
ON
1844 bwt = &xhci->rh_bw->bw_table;
1845 for (i = 0; i < XHCI_MAX_INTERVAL; i++) {
1846 endpoints = &bwt->interval_bw[i].endpoints;
1847 list_for_each_safe(ep, q, endpoints) {
1848 virt_ep = list_entry(ep, struct xhci_virt_ep, bw_endpoint_list);
1849 list_del(&virt_ep->bw_endpoint_list);
1850 kfree(virt_ep);
1851 }
1852 }
1853
1854 tt_list_head = &xhci->rh_bw->tts;
1855 list_for_each_safe(tt, q, tt_list_head) {
1856 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
1857 list_del(tt);
1858 kfree(tt_info);
1859 }
1860
da6699ce
SS
1861 xhci->num_usb2_ports = 0;
1862 xhci->num_usb3_ports = 0;
f8a9e72d 1863 xhci->num_active_eps = 0;
da6699ce
SS
1864 kfree(xhci->usb2_ports);
1865 kfree(xhci->usb3_ports);
1866 kfree(xhci->port_array);
839c817c 1867 kfree(xhci->rh_bw);
da6699ce 1868
66d4eadd
SS
1869 xhci->page_size = 0;
1870 xhci->page_shift = 0;
20b67cf5 1871 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1872 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1873}
1874
6648f29d
SS
1875static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1876 struct xhci_segment *input_seg,
1877 union xhci_trb *start_trb,
1878 union xhci_trb *end_trb,
1879 dma_addr_t input_dma,
1880 struct xhci_segment *result_seg,
1881 char *test_name, int test_number)
1882{
1883 unsigned long long start_dma;
1884 unsigned long long end_dma;
1885 struct xhci_segment *seg;
1886
1887 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1888 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1889
1890 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1891 if (seg != result_seg) {
1892 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1893 test_name, test_number);
1894 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1895 "input DMA 0x%llx\n",
1896 input_seg,
1897 (unsigned long long) input_dma);
1898 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1899 "ending TRB %p (0x%llx DMA)\n",
1900 start_trb, start_dma,
1901 end_trb, end_dma);
1902 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1903 result_seg, seg);
1904 return -1;
1905 }
1906 return 0;
1907}
1908
1909/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1910static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1911{
1912 struct {
1913 dma_addr_t input_dma;
1914 struct xhci_segment *result_seg;
1915 } simple_test_vector [] = {
1916 /* A zeroed DMA field should fail */
1917 { 0, NULL },
1918 /* One TRB before the ring start should fail */
1919 { xhci->event_ring->first_seg->dma - 16, NULL },
1920 /* One byte before the ring start should fail */
1921 { xhci->event_ring->first_seg->dma - 1, NULL },
1922 /* Starting TRB should succeed */
1923 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1924 /* Ending TRB should succeed */
1925 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1926 xhci->event_ring->first_seg },
1927 /* One byte after the ring end should fail */
1928 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1929 /* One TRB after the ring end should fail */
1930 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1931 /* An address of all ones should fail */
1932 { (dma_addr_t) (~0), NULL },
1933 };
1934 struct {
1935 struct xhci_segment *input_seg;
1936 union xhci_trb *start_trb;
1937 union xhci_trb *end_trb;
1938 dma_addr_t input_dma;
1939 struct xhci_segment *result_seg;
1940 } complex_test_vector [] = {
1941 /* Test feeding a valid DMA address from a different ring */
1942 { .input_seg = xhci->event_ring->first_seg,
1943 .start_trb = xhci->event_ring->first_seg->trbs,
1944 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1945 .input_dma = xhci->cmd_ring->first_seg->dma,
1946 .result_seg = NULL,
1947 },
1948 /* Test feeding a valid end TRB from a different ring */
1949 { .input_seg = xhci->event_ring->first_seg,
1950 .start_trb = xhci->event_ring->first_seg->trbs,
1951 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1952 .input_dma = xhci->cmd_ring->first_seg->dma,
1953 .result_seg = NULL,
1954 },
1955 /* Test feeding a valid start and end TRB from a different ring */
1956 { .input_seg = xhci->event_ring->first_seg,
1957 .start_trb = xhci->cmd_ring->first_seg->trbs,
1958 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1959 .input_dma = xhci->cmd_ring->first_seg->dma,
1960 .result_seg = NULL,
1961 },
1962 /* TRB in this ring, but after this TD */
1963 { .input_seg = xhci->event_ring->first_seg,
1964 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1965 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1966 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1967 .result_seg = NULL,
1968 },
1969 /* TRB in this ring, but before this TD */
1970 { .input_seg = xhci->event_ring->first_seg,
1971 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1972 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1973 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1974 .result_seg = NULL,
1975 },
1976 /* TRB in this ring, but after this wrapped TD */
1977 { .input_seg = xhci->event_ring->first_seg,
1978 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1979 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1980 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1981 .result_seg = NULL,
1982 },
1983 /* TRB in this ring, but before this wrapped TD */
1984 { .input_seg = xhci->event_ring->first_seg,
1985 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1986 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1987 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1988 .result_seg = NULL,
1989 },
1990 /* TRB not in this ring, and we have a wrapped TD */
1991 { .input_seg = xhci->event_ring->first_seg,
1992 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1993 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1994 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1995 .result_seg = NULL,
1996 },
1997 };
1998
1999 unsigned int num_tests;
2000 int i, ret;
2001
e10fa478 2002 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
2003 for (i = 0; i < num_tests; i++) {
2004 ret = xhci_test_trb_in_td(xhci,
2005 xhci->event_ring->first_seg,
2006 xhci->event_ring->first_seg->trbs,
2007 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2008 simple_test_vector[i].input_dma,
2009 simple_test_vector[i].result_seg,
2010 "Simple", i);
2011 if (ret < 0)
2012 return ret;
2013 }
2014
e10fa478 2015 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
2016 for (i = 0; i < num_tests; i++) {
2017 ret = xhci_test_trb_in_td(xhci,
2018 complex_test_vector[i].input_seg,
2019 complex_test_vector[i].start_trb,
2020 complex_test_vector[i].end_trb,
2021 complex_test_vector[i].input_dma,
2022 complex_test_vector[i].result_seg,
2023 "Complex", i);
2024 if (ret < 0)
2025 return ret;
2026 }
2027 xhci_dbg(xhci, "TRB math tests passed.\n");
2028 return 0;
2029}
2030
257d585a
SS
2031static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2032{
2033 u64 temp;
2034 dma_addr_t deq;
2035
2036 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2037 xhci->event_ring->dequeue);
2038 if (deq == 0 && !in_interrupt())
2039 xhci_warn(xhci, "WARN something wrong with SW event ring "
2040 "dequeue ptr.\n");
2041 /* Update HC event ring dequeue pointer */
2042 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2043 temp &= ERST_PTR_MASK;
2044 /* Don't clear the EHB bit (which is RW1C) because
2045 * there might be more events to service.
2046 */
2047 temp &= ~ERST_EHB;
2048 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2049 "preserving EHB bit\n");
2050 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2051 &xhci->ir_set->erst_dequeue);
2052}
2053
da6699ce 2054static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
28ccd296 2055 __le32 __iomem *addr, u8 major_revision)
da6699ce
SS
2056{
2057 u32 temp, port_offset, port_count;
2058 int i;
2059
2060 if (major_revision > 0x03) {
2061 xhci_warn(xhci, "Ignoring unknown port speed, "
2062 "Ext Cap %p, revision = 0x%x\n",
2063 addr, major_revision);
2064 /* Ignoring port protocol we can't understand. FIXME */
2065 return;
2066 }
2067
2068 /* Port offset and count in the third dword, see section 7.2 */
2069 temp = xhci_readl(xhci, addr + 2);
2070 port_offset = XHCI_EXT_PORT_OFF(temp);
2071 port_count = XHCI_EXT_PORT_COUNT(temp);
2072 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2073 "count = %u, revision = 0x%x\n",
2074 addr, port_offset, port_count, major_revision);
2075 /* Port count includes the current port offset */
2076 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2077 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2078 return;
fc71ff75
AX
2079
2080 /* Check the host's USB2 LPM capability */
2081 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2082 (temp & XHCI_L1C)) {
2083 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2084 xhci->sw_lpm_support = 1;
2085 }
2086
2087 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2088 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2089 xhci->sw_lpm_support = 1;
2090 if (temp & XHCI_HLC) {
2091 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2092 xhci->hw_lpm_support = 1;
2093 }
2094 }
2095
da6699ce
SS
2096 port_offset--;
2097 for (i = port_offset; i < (port_offset + port_count); i++) {
2098 /* Duplicate entry. Ignore the port if the revisions differ. */
2099 if (xhci->port_array[i] != 0) {
2100 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2101 " port %u\n", addr, i);
2102 xhci_warn(xhci, "Port was marked as USB %u, "
2103 "duplicated as USB %u\n",
2104 xhci->port_array[i], major_revision);
2105 /* Only adjust the roothub port counts if we haven't
2106 * found a similar duplicate.
2107 */
2108 if (xhci->port_array[i] != major_revision &&
22e04870 2109 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
2110 if (xhci->port_array[i] == 0x03)
2111 xhci->num_usb3_ports--;
2112 else
2113 xhci->num_usb2_ports--;
22e04870 2114 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
2115 }
2116 /* FIXME: Should we disable the port? */
f8bbeabc 2117 continue;
da6699ce
SS
2118 }
2119 xhci->port_array[i] = major_revision;
2120 if (major_revision == 0x03)
2121 xhci->num_usb3_ports++;
2122 else
2123 xhci->num_usb2_ports++;
2124 }
2125 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2126}
2127
2128/*
2129 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2130 * specify what speeds each port is supposed to be. We can't count on the port
2131 * speed bits in the PORTSC register being correct until a device is connected,
2132 * but we need to set up the two fake roothubs with the correct number of USB
2133 * 3.0 and USB 2.0 ports at host controller initialization time.
2134 */
2135static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2136{
28ccd296 2137 __le32 __iomem *addr;
da6699ce
SS
2138 u32 offset;
2139 unsigned int num_ports;
2e27980e 2140 int i, j, port_index;
da6699ce
SS
2141
2142 addr = &xhci->cap_regs->hcc_params;
2143 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2144 if (offset == 0) {
2145 xhci_err(xhci, "No Extended Capability registers, "
2146 "unable to set up roothub.\n");
2147 return -ENODEV;
2148 }
2149
2150 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2151 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2152 if (!xhci->port_array)
2153 return -ENOMEM;
2154
839c817c
SS
2155 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2156 if (!xhci->rh_bw)
2157 return -ENOMEM;
2e27980e
SS
2158 for (i = 0; i < num_ports; i++) {
2159 struct xhci_interval_bw_table *bw_table;
2160
839c817c 2161 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2e27980e
SS
2162 bw_table = &xhci->rh_bw[i].bw_table;
2163 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2164 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2165 }
839c817c 2166
da6699ce
SS
2167 /*
2168 * For whatever reason, the first capability offset is from the
2169 * capability register base, not from the HCCPARAMS register.
2170 * See section 5.3.6 for offset calculation.
2171 */
2172 addr = &xhci->cap_regs->hc_capbase + offset;
2173 while (1) {
2174 u32 cap_id;
2175
2176 cap_id = xhci_readl(xhci, addr);
2177 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2178 xhci_add_in_port(xhci, num_ports, addr,
2179 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2180 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2181 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2182 == num_ports)
2183 break;
2184 /*
2185 * Once you're into the Extended Capabilities, the offset is
2186 * always relative to the register holding the offset.
2187 */
2188 addr += offset;
2189 }
2190
2191 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2192 xhci_warn(xhci, "No ports on the roothubs?\n");
2193 return -ENODEV;
2194 }
2195 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2196 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
2197
2198 /* Place limits on the number of roothub ports so that the hub
2199 * descriptors aren't longer than the USB core will allocate.
2200 */
2201 if (xhci->num_usb3_ports > 15) {
2202 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2203 xhci->num_usb3_ports = 15;
2204 }
2205 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2206 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2207 USB_MAXCHILDREN);
2208 xhci->num_usb2_ports = USB_MAXCHILDREN;
2209 }
2210
da6699ce
SS
2211 /*
2212 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2213 * Not sure how the USB core will handle a hub with no ports...
2214 */
2215 if (xhci->num_usb2_ports) {
2216 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2217 xhci->num_usb2_ports, flags);
2218 if (!xhci->usb2_ports)
2219 return -ENOMEM;
2220
2221 port_index = 0;
f8bbeabc
SS
2222 for (i = 0; i < num_ports; i++) {
2223 if (xhci->port_array[i] == 0x03 ||
2224 xhci->port_array[i] == 0 ||
22e04870 2225 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
2226 continue;
2227
2228 xhci->usb2_ports[port_index] =
2229 &xhci->op_regs->port_status_base +
2230 NUM_PORT_REGS*i;
2231 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2232 "addr = %p\n", i,
2233 xhci->usb2_ports[port_index]);
2234 port_index++;
d30b2a20
SS
2235 if (port_index == xhci->num_usb2_ports)
2236 break;
f8bbeabc 2237 }
da6699ce
SS
2238 }
2239 if (xhci->num_usb3_ports) {
2240 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2241 xhci->num_usb3_ports, flags);
2242 if (!xhci->usb3_ports)
2243 return -ENOMEM;
2244
2245 port_index = 0;
2246 for (i = 0; i < num_ports; i++)
2247 if (xhci->port_array[i] == 0x03) {
2248 xhci->usb3_ports[port_index] =
2249 &xhci->op_regs->port_status_base +
2250 NUM_PORT_REGS*i;
2251 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2252 "addr = %p\n", i,
2253 xhci->usb3_ports[port_index]);
2254 port_index++;
d30b2a20
SS
2255 if (port_index == xhci->num_usb3_ports)
2256 break;
da6699ce
SS
2257 }
2258 }
2259 return 0;
2260}
6648f29d 2261
66d4eadd
SS
2262int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2263{
0ebbab37
SS
2264 dma_addr_t dma;
2265 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 2266 unsigned int val, val2;
8e595a5d 2267 u64 val_64;
0ebbab37 2268 struct xhci_segment *seg;
623bef9e 2269 u32 page_size, temp;
66d4eadd
SS
2270 int i;
2271
2272 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2273 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2274 for (i = 0; i < 16; i++) {
2275 if ((0x1 & page_size) != 0)
2276 break;
2277 page_size = page_size >> 1;
2278 }
2279 if (i < 16)
2280 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2281 else
2282 xhci_warn(xhci, "WARN: no supported page size\n");
2283 /* Use 4K pages, since that's common and the minimum the HC supports */
2284 xhci->page_shift = 12;
2285 xhci->page_size = 1 << xhci->page_shift;
2286 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2287
2288 /*
2289 * Program the Number of Device Slots Enabled field in the CONFIG
2290 * register with the max value of slots the HC can handle.
2291 */
2292 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2293 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2294 (unsigned int) val);
2295 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2296 val |= (val2 & ~HCS_SLOTS_MASK);
2297 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2298 (unsigned int) val);
2299 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2300
a74588f9
SS
2301 /*
2302 * Section 5.4.8 - doorbell array must be
2303 * "physically contiguous and 64-byte (cache line) aligned".
2304 */
22d45f01
SAS
2305 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2306 GFP_KERNEL);
a74588f9
SS
2307 if (!xhci->dcbaa)
2308 goto fail;
2309 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2310 xhci->dcbaa->dma = dma;
700e2052
GKH
2311 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2312 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 2313 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 2314
0ebbab37
SS
2315 /*
2316 * Initialize the ring segment pool. The ring must be a contiguous
2317 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2318 * however, the command ring segment needs 64-byte aligned segments,
2319 * so we pick the greater alignment need.
2320 */
2321 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2322 SEGMENT_SIZE, 64, xhci->page_size);
d115b048 2323
3ffbba95 2324 /* See Table 46 and Note on Figure 55 */
3ffbba95 2325 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 2326 2112, 64, xhci->page_size);
3ffbba95 2327 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
2328 goto fail;
2329
8df75f42
SS
2330 /* Linear stream context arrays don't have any boundary restrictions,
2331 * and only need to be 16-byte aligned.
2332 */
2333 xhci->small_streams_pool =
2334 dma_pool_create("xHCI 256 byte stream ctx arrays",
2335 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2336 xhci->medium_streams_pool =
2337 dma_pool_create("xHCI 1KB stream ctx arrays",
2338 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2339 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
22d45f01 2340 * will be allocated with dma_alloc_coherent()
8df75f42
SS
2341 */
2342
2343 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2344 goto fail;
2345
0ebbab37 2346 /* Set up the command ring to have one segments for now. */
186a7ef1 2347 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
0ebbab37
SS
2348 if (!xhci->cmd_ring)
2349 goto fail;
700e2052
GKH
2350 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2351 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2352 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2353
2354 /* Set the address in the Command Ring Control register */
8e595a5d
SS
2355 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2356 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2357 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2358 xhci->cmd_ring->cycle_state;
8e595a5d
SS
2359 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2360 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2361 xhci_dbg_cmd_ptrs(xhci);
2362
dbc33303
SS
2363 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2364 if (!xhci->lpm_command)
2365 goto fail;
2366
2367 /* Reserve one command ring TRB for disabling LPM.
2368 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2369 * disabling LPM, we only need to reserve one TRB for all devices.
2370 */
2371 xhci->cmd_ring_reserved_trbs++;
2372
0ebbab37
SS
2373 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2374 val &= DBOFF_MASK;
2375 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2376 " from cap regs base addr\n", val);
c50a00f8 2377 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2378 xhci_dbg_regs(xhci);
2379 xhci_print_run_regs(xhci);
2380 /* Set ir_set to interrupt register set 0 */
c50a00f8 2381 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2382
2383 /*
2384 * Event ring setup: Allocate a normal ring, but also setup
2385 * the event ring segment table (ERST). Section 4.9.3.
2386 */
2387 xhci_dbg(xhci, "// Allocating event ring\n");
186a7ef1 2388 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
7e393a83 2389 flags);
0ebbab37
SS
2390 if (!xhci->event_ring)
2391 goto fail;
6648f29d
SS
2392 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2393 goto fail;
0ebbab37 2394
22d45f01
SAS
2395 xhci->erst.entries = dma_alloc_coherent(dev,
2396 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2397 GFP_KERNEL);
0ebbab37
SS
2398 if (!xhci->erst.entries)
2399 goto fail;
700e2052
GKH
2400 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2401 (unsigned long long)dma);
0ebbab37
SS
2402
2403 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2404 xhci->erst.num_entries = ERST_NUM_SEGS;
2405 xhci->erst.erst_dma_addr = dma;
700e2052 2406 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 2407 xhci->erst.num_entries,
700e2052
GKH
2408 xhci->erst.entries,
2409 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2410
2411 /* set ring base address and size for each segment table entry */
2412 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2413 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2414 entry->seg_addr = cpu_to_le64(seg->dma);
2415 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2416 entry->rsvd = 0;
2417 seg = seg->next;
2418 }
2419
2420 /* set ERST count with the number of entries in the segment table */
2421 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2422 val &= ERST_SIZE_MASK;
2423 val |= ERST_NUM_SEGS;
2424 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2425 val);
2426 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2427
2428 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2429 /* set the segment table base address */
700e2052
GKH
2430 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2431 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
2432 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2433 val_64 &= ERST_PTR_MASK;
2434 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2435 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2436
2437 /* Set the event ring dequeue address */
23e3be11 2438 xhci_set_hc_event_deq(xhci);
0ebbab37 2439 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
09ece30e 2440 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2441
2442 /*
2443 * XXX: Might need to set the Interrupter Moderation Register to
2444 * something other than the default (~1ms minimum between interrupts).
2445 * See section 5.5.1.2.
2446 */
3ffbba95
SS
2447 init_completion(&xhci->addr_dev);
2448 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2449 xhci->devs[i] = NULL;
f6ff0ac8 2450 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2451 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8
SS
2452 xhci->bus_state[1].resume_done[i] = 0;
2453 }
66d4eadd 2454
254c80a3
JY
2455 if (scratchpad_alloc(xhci, flags))
2456 goto fail;
da6699ce
SS
2457 if (xhci_setup_port_arrays(xhci, flags))
2458 goto fail;
254c80a3 2459
9574323c
AX
2460 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2461
623bef9e
SS
2462 /* Enable USB 3.0 device notifications for function remote wake, which
2463 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2464 * U3 (device suspend).
2465 */
2466 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2467 temp &= ~DEV_NOTE_MASK;
2468 temp |= DEV_NOTE_FWAKE;
2469 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2470
66d4eadd 2471 return 0;
254c80a3 2472
66d4eadd
SS
2473fail:
2474 xhci_warn(xhci, "Couldn't initialize memory\n");
159e1fcc
SS
2475 xhci_halt(xhci);
2476 xhci_reset(xhci);
66d4eadd
SS
2477 xhci_mem_cleanup(xhci);
2478 return -ENOMEM;
2479}