disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
8ae12a0d
DB
42static void spidev_release(struct device *dev)
43{
0ffa0285 44 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
0c868461 50 spi_master_put(spi->master);
07a389fe 51 kfree(spi);
8ae12a0d
DB
52}
53
54static ssize_t
55modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56{
57 const struct spi_device *spi = to_spi_device(dev);
58
d8e328b3 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
60}
61
62static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
65};
66
67/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
69 */
70
75368bf6
AV
71static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73{
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80}
81
82const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83{
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85
86 return spi_match_id(sdrv->id_table, sdev);
87}
88EXPORT_SYMBOL_GPL(spi_get_device_id);
89
8ae12a0d
DB
90static int spi_match_device(struct device *dev, struct device_driver *drv)
91{
92 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
2b7a32f7
SA
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
64bee4d2
MW
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
75368bf6
AV
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 105
35f74fca 106 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
107}
108
7eff2e7a 109static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
110{
111 const struct spi_device *spi = to_spi_device(dev);
112
e0626e38 113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
114 return 0;
115}
116
3ae22e8c
MB
117#ifdef CONFIG_PM_SLEEP
118static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 119{
3c72426f 120 int value = 0;
b885244e 121 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 122
8ae12a0d 123 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
129 }
8ae12a0d
DB
130 return value;
131}
132
3ae22e8c 133static int spi_legacy_resume(struct device *dev)
8ae12a0d 134{
3c72426f 135 int value = 0;
b885244e 136 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 137
8ae12a0d 138 /* resume may restart the i/o queue */
3c72426f
DB
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
144 }
8ae12a0d
DB
145 return value;
146}
147
3ae22e8c
MB
148static int spi_pm_suspend(struct device *dev)
149{
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
156}
157
158static int spi_pm_resume(struct device *dev)
159{
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
166}
167
168static int spi_pm_freeze(struct device *dev)
169{
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
176}
177
178static int spi_pm_thaw(struct device *dev)
179{
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
186}
187
188static int spi_pm_poweroff(struct device *dev)
189{
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196}
197
198static int spi_pm_restore(struct device *dev)
199{
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
206}
8ae12a0d 207#else
3ae22e8c
MB
208#define spi_pm_suspend NULL
209#define spi_pm_resume NULL
210#define spi_pm_freeze NULL
211#define spi_pm_thaw NULL
212#define spi_pm_poweroff NULL
213#define spi_pm_restore NULL
8ae12a0d
DB
214#endif
215
3ae22e8c
MB
216static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 pm_generic_runtime_idle
227 )
228};
229
8ae12a0d
DB
230struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
3ae22e8c 235 .pm = &spi_pm,
8ae12a0d
DB
236};
237EXPORT_SYMBOL_GPL(spi_bus_type);
238
b885244e
DB
239
240static int spi_drv_probe(struct device *dev)
241{
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
243
244 return sdrv->probe(to_spi_device(dev));
245}
246
247static int spi_drv_remove(struct device *dev)
248{
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
250
251 return sdrv->remove(to_spi_device(dev));
252}
253
254static void spi_drv_shutdown(struct device *dev)
255{
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
257
258 sdrv->shutdown(to_spi_device(dev));
259}
260
33e34dc6
DB
261/**
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
265 */
b885244e
DB
266int spi_register_driver(struct spi_driver *sdrv)
267{
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
276}
277EXPORT_SYMBOL_GPL(spi_register_driver);
278
8ae12a0d
DB
279/*-------------------------------------------------------------------------*/
280
281/* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
285 */
286
287struct boardinfo {
288 struct list_head list;
2b9603a0 289 struct spi_board_info board_info;
8ae12a0d
DB
290};
291
292static LIST_HEAD(board_list);
2b9603a0
FT
293static LIST_HEAD(spi_master_list);
294
295/*
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
298 */
94040828 299static DEFINE_MUTEX(board_lock);
8ae12a0d 300
dc87c98e
GL
301/**
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
305 *
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
310 *
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
315 *
316 * Returns a pointer to the new device, or NULL.
317 */
318struct spi_device *spi_alloc_device(struct spi_master *master)
319{
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
322
323 if (!spi_master_get(master))
324 return NULL;
325
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
331 }
332
333 spi->master = master;
178db7d3 334 spi->dev.parent = &master->dev;
dc87c98e
GL
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
446411e1 337 spi->cs_gpio = -ENOENT;
dc87c98e
GL
338 device_initialize(&spi->dev);
339 return spi;
340}
341EXPORT_SYMBOL_GPL(spi_alloc_device);
342
343/**
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
346 *
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
349 *
e48880e0 350 * Returns 0 on success; negative errno on failure
dc87c98e
GL
351 */
352int spi_add_device(struct spi_device *spi)
353{
e48880e0 354 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
8ec130a0 357 struct device *d;
dc87c98e
GL
358 int status;
359
360 /* Chipselects are numbered 0..max; validate. */
74317984 361 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
74317984 364 master->num_chipselect);
dc87c98e
GL
365 return -EINVAL;
366 }
367
368 /* Set the bus ID string */
35f74fca 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
370 spi->chip_select);
371
e48880e0
DB
372
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
376 */
377 mutex_lock(&spi_add_lock);
378
8ec130a0
RT
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
e48880e0
DB
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
8ec130a0 383 put_device(d);
e48880e0
DB
384 status = -EBUSY;
385 goto done;
386 }
387
74317984
JCPV
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
390
e48880e0
DB
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
394 */
7d077197 395 status = spi_setup(spi);
dc87c98e 396 if (status < 0) {
eb288a1f
LW
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
e48880e0 399 goto done;
dc87c98e
GL
400 }
401
e48880e0 402 /* Device may be bound to an active driver when this returns */
dc87c98e 403 status = device_add(&spi->dev);
e48880e0 404 if (status < 0)
eb288a1f
LW
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
e48880e0 407 else
35f74fca 408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 409
e48880e0
DB
410done:
411 mutex_unlock(&spi_add_lock);
412 return status;
dc87c98e
GL
413}
414EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 415
33e34dc6
DB
416/**
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
421 *
422 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
427 *
428 * Returns the new device, or NULL.
8ae12a0d 429 */
e9d5a461
AB
430struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
8ae12a0d
DB
432{
433 struct spi_device *proxy;
8ae12a0d
DB
434 int status;
435
082c8cb4
DB
436 /* NOTE: caller did any chip->bus_num checks necessary.
437 *
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
441 */
442
dc87c98e
GL
443 proxy = spi_alloc_device(master);
444 if (!proxy)
8ae12a0d
DB
445 return NULL;
446
102eb975
GL
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448
8ae12a0d
DB
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 451 proxy->mode = chip->mode;
8ae12a0d 452 proxy->irq = chip->irq;
102eb975 453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
8ae12a0d 457
dc87c98e 458 status = spi_add_device(proxy);
8ae12a0d 459 if (status < 0) {
dc87c98e
GL
460 spi_dev_put(proxy);
461 return NULL;
8ae12a0d
DB
462 }
463
8ae12a0d
DB
464 return proxy;
465}
466EXPORT_SYMBOL_GPL(spi_new_device);
467
2b9603a0
FT
468static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
470{
471 struct spi_device *dev;
472
473 if (master->bus_num != bi->bus_num)
474 return;
475
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
480}
481
33e34dc6
DB
482/**
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
487 *
8ae12a0d
DB
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
493 *
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
497 *
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
500 */
fd4a319b 501int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 502{
2b9603a0
FT
503 struct boardinfo *bi;
504 int i;
8ae12a0d 505
2b9603a0 506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
507 if (!bi)
508 return -ENOMEM;
8ae12a0d 509
2b9603a0
FT
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
8ae12a0d 512
2b9603a0
FT
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
8ae12a0d 519 }
2b9603a0
FT
520
521 return 0;
8ae12a0d
DB
522}
523
524/*-------------------------------------------------------------------------*/
525
ffbbdd21
LW
526/**
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
529 *
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
533 *
534 */
535static void spi_pump_messages(struct kthread_work *work)
536{
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
542
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
546 if (!master->busy) {
547 spin_unlock_irqrestore(&master->queue_lock, flags);
548 return;
ffbbdd21
LW
549 }
550 master->busy = false;
551 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
552 if (master->unprepare_transfer_hardware &&
553 master->unprepare_transfer_hardware(master))
554 dev_err(&master->dev,
555 "failed to unprepare transfer hardware\n");
ffbbdd21
LW
556 return;
557 }
558
559 /* Make sure we are not already running a message */
560 if (master->cur_msg) {
561 spin_unlock_irqrestore(&master->queue_lock, flags);
562 return;
563 }
564 /* Extract head of queue */
565 master->cur_msg =
566 list_entry(master->queue.next, struct spi_message, queue);
567
568 list_del_init(&master->cur_msg->queue);
569 if (master->busy)
570 was_busy = true;
571 else
572 master->busy = true;
573 spin_unlock_irqrestore(&master->queue_lock, flags);
574
7dfd2bd7 575 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
576 ret = master->prepare_transfer_hardware(master);
577 if (ret) {
578 dev_err(&master->dev,
579 "failed to prepare transfer hardware\n");
580 return;
581 }
582 }
583
584 ret = master->transfer_one_message(master, master->cur_msg);
585 if (ret) {
586 dev_err(&master->dev,
69823005 587 "failed to transfer one message from queue\n");
ffbbdd21
LW
588 return;
589 }
590}
591
592static int spi_init_queue(struct spi_master *master)
593{
594 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
595
596 INIT_LIST_HEAD(&master->queue);
597 spin_lock_init(&master->queue_lock);
598
599 master->running = false;
600 master->busy = false;
601
602 init_kthread_worker(&master->kworker);
603 master->kworker_task = kthread_run(kthread_worker_fn,
604 &master->kworker,
605 dev_name(&master->dev));
606 if (IS_ERR(master->kworker_task)) {
607 dev_err(&master->dev, "failed to create message pump task\n");
608 return -ENOMEM;
609 }
610 init_kthread_work(&master->pump_messages, spi_pump_messages);
611
612 /*
613 * Master config will indicate if this controller should run the
614 * message pump with high (realtime) priority to reduce the transfer
615 * latency on the bus by minimising the delay between a transfer
616 * request and the scheduling of the message pump thread. Without this
617 * setting the message pump thread will remain at default priority.
618 */
619 if (master->rt) {
620 dev_info(&master->dev,
621 "will run message pump with realtime priority\n");
622 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
623 }
624
625 return 0;
626}
627
628/**
629 * spi_get_next_queued_message() - called by driver to check for queued
630 * messages
631 * @master: the master to check for queued messages
632 *
633 * If there are more messages in the queue, the next message is returned from
634 * this call.
635 */
636struct spi_message *spi_get_next_queued_message(struct spi_master *master)
637{
638 struct spi_message *next;
639 unsigned long flags;
640
641 /* get a pointer to the next message, if any */
642 spin_lock_irqsave(&master->queue_lock, flags);
643 if (list_empty(&master->queue))
644 next = NULL;
645 else
646 next = list_entry(master->queue.next,
647 struct spi_message, queue);
648 spin_unlock_irqrestore(&master->queue_lock, flags);
649
650 return next;
651}
652EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
653
654/**
655 * spi_finalize_current_message() - the current message is complete
656 * @master: the master to return the message to
657 *
658 * Called by the driver to notify the core that the message in the front of the
659 * queue is complete and can be removed from the queue.
660 */
661void spi_finalize_current_message(struct spi_master *master)
662{
663 struct spi_message *mesg;
664 unsigned long flags;
665
666 spin_lock_irqsave(&master->queue_lock, flags);
667 mesg = master->cur_msg;
668 master->cur_msg = NULL;
669
670 queue_kthread_work(&master->kworker, &master->pump_messages);
671 spin_unlock_irqrestore(&master->queue_lock, flags);
672
673 mesg->state = NULL;
674 if (mesg->complete)
675 mesg->complete(mesg->context);
676}
677EXPORT_SYMBOL_GPL(spi_finalize_current_message);
678
679static int spi_start_queue(struct spi_master *master)
680{
681 unsigned long flags;
682
683 spin_lock_irqsave(&master->queue_lock, flags);
684
685 if (master->running || master->busy) {
686 spin_unlock_irqrestore(&master->queue_lock, flags);
687 return -EBUSY;
688 }
689
690 master->running = true;
691 master->cur_msg = NULL;
692 spin_unlock_irqrestore(&master->queue_lock, flags);
693
694 queue_kthread_work(&master->kworker, &master->pump_messages);
695
696 return 0;
697}
698
699static int spi_stop_queue(struct spi_master *master)
700{
701 unsigned long flags;
702 unsigned limit = 500;
703 int ret = 0;
704
705 spin_lock_irqsave(&master->queue_lock, flags);
706
707 /*
708 * This is a bit lame, but is optimized for the common execution path.
709 * A wait_queue on the master->busy could be used, but then the common
710 * execution path (pump_messages) would be required to call wake_up or
711 * friends on every SPI message. Do this instead.
712 */
713 while ((!list_empty(&master->queue) || master->busy) && limit--) {
714 spin_unlock_irqrestore(&master->queue_lock, flags);
715 msleep(10);
716 spin_lock_irqsave(&master->queue_lock, flags);
717 }
718
719 if (!list_empty(&master->queue) || master->busy)
720 ret = -EBUSY;
721 else
722 master->running = false;
723
724 spin_unlock_irqrestore(&master->queue_lock, flags);
725
726 if (ret) {
727 dev_warn(&master->dev,
728 "could not stop message queue\n");
729 return ret;
730 }
731 return ret;
732}
733
734static int spi_destroy_queue(struct spi_master *master)
735{
736 int ret;
737
738 ret = spi_stop_queue(master);
739
740 /*
741 * flush_kthread_worker will block until all work is done.
742 * If the reason that stop_queue timed out is that the work will never
743 * finish, then it does no good to call flush/stop thread, so
744 * return anyway.
745 */
746 if (ret) {
747 dev_err(&master->dev, "problem destroying queue\n");
748 return ret;
749 }
750
751 flush_kthread_worker(&master->kworker);
752 kthread_stop(master->kworker_task);
753
754 return 0;
755}
756
757/**
758 * spi_queued_transfer - transfer function for queued transfers
759 * @spi: spi device which is requesting transfer
760 * @msg: spi message which is to handled is queued to driver queue
761 */
762static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
763{
764 struct spi_master *master = spi->master;
765 unsigned long flags;
766
767 spin_lock_irqsave(&master->queue_lock, flags);
768
769 if (!master->running) {
770 spin_unlock_irqrestore(&master->queue_lock, flags);
771 return -ESHUTDOWN;
772 }
773 msg->actual_length = 0;
774 msg->status = -EINPROGRESS;
775
776 list_add_tail(&msg->queue, &master->queue);
777 if (master->running && !master->busy)
778 queue_kthread_work(&master->kworker, &master->pump_messages);
779
780 spin_unlock_irqrestore(&master->queue_lock, flags);
781 return 0;
782}
783
784static int spi_master_initialize_queue(struct spi_master *master)
785{
786 int ret;
787
788 master->queued = true;
789 master->transfer = spi_queued_transfer;
790
791 /* Initialize and start queue */
792 ret = spi_init_queue(master);
793 if (ret) {
794 dev_err(&master->dev, "problem initializing queue\n");
795 goto err_init_queue;
796 }
797 ret = spi_start_queue(master);
798 if (ret) {
799 dev_err(&master->dev, "problem starting queue\n");
800 goto err_start_queue;
801 }
802
803 return 0;
804
805err_start_queue:
806err_init_queue:
807 spi_destroy_queue(master);
808 return ret;
809}
810
811/*-------------------------------------------------------------------------*/
812
7cb94361 813#if defined(CONFIG_OF)
d57a4282
GL
814/**
815 * of_register_spi_devices() - Register child devices onto the SPI bus
816 * @master: Pointer to spi_master device
817 *
818 * Registers an spi_device for each child node of master node which has a 'reg'
819 * property.
820 */
821static void of_register_spi_devices(struct spi_master *master)
822{
823 struct spi_device *spi;
824 struct device_node *nc;
825 const __be32 *prop;
cb71941a 826 char modalias[SPI_NAME_SIZE + 4];
d57a4282
GL
827 int rc;
828 int len;
829
830 if (!master->dev.of_node)
831 return;
832
f3b6159e 833 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
834 /* Alloc an spi_device */
835 spi = spi_alloc_device(master);
836 if (!spi) {
837 dev_err(&master->dev, "spi_device alloc error for %s\n",
838 nc->full_name);
839 spi_dev_put(spi);
840 continue;
841 }
842
843 /* Select device driver */
844 if (of_modalias_node(nc, spi->modalias,
845 sizeof(spi->modalias)) < 0) {
846 dev_err(&master->dev, "cannot find modalias for %s\n",
847 nc->full_name);
848 spi_dev_put(spi);
849 continue;
850 }
851
852 /* Device address */
853 prop = of_get_property(nc, "reg", &len);
854 if (!prop || len < sizeof(*prop)) {
855 dev_err(&master->dev, "%s has no 'reg' property\n",
856 nc->full_name);
857 spi_dev_put(spi);
858 continue;
859 }
860 spi->chip_select = be32_to_cpup(prop);
861
862 /* Mode (clock phase/polarity/etc.) */
863 if (of_find_property(nc, "spi-cpha", NULL))
864 spi->mode |= SPI_CPHA;
865 if (of_find_property(nc, "spi-cpol", NULL))
866 spi->mode |= SPI_CPOL;
867 if (of_find_property(nc, "spi-cs-high", NULL))
868 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
869 if (of_find_property(nc, "spi-3wire", NULL))
870 spi->mode |= SPI_3WIRE;
d57a4282
GL
871
872 /* Device speed */
873 prop = of_get_property(nc, "spi-max-frequency", &len);
874 if (!prop || len < sizeof(*prop)) {
875 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
876 nc->full_name);
877 spi_dev_put(spi);
878 continue;
879 }
880 spi->max_speed_hz = be32_to_cpup(prop);
881
882 /* IRQ */
883 spi->irq = irq_of_parse_and_map(nc, 0);
884
885 /* Store a pointer to the node in the device structure */
886 of_node_get(nc);
887 spi->dev.of_node = nc;
888
889 /* Register the new device */
cb71941a
DD
890 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
891 spi->modalias);
892 request_module(modalias);
d57a4282
GL
893 rc = spi_add_device(spi);
894 if (rc) {
895 dev_err(&master->dev, "spi_device register error %s\n",
896 nc->full_name);
897 spi_dev_put(spi);
898 }
899
900 }
901}
902#else
903static void of_register_spi_devices(struct spi_master *master) { }
904#endif
905
64bee4d2
MW
906#ifdef CONFIG_ACPI
907static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
908{
909 struct spi_device *spi = data;
910
911 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
912 struct acpi_resource_spi_serialbus *sb;
913
914 sb = &ares->data.spi_serial_bus;
915 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
916 spi->chip_select = sb->device_selection;
917 spi->max_speed_hz = sb->connection_speed;
918
919 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
920 spi->mode |= SPI_CPHA;
921 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
922 spi->mode |= SPI_CPOL;
923 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
924 spi->mode |= SPI_CS_HIGH;
925 }
926 } else if (spi->irq < 0) {
927 struct resource r;
928
929 if (acpi_dev_resource_interrupt(ares, 0, &r))
930 spi->irq = r.start;
931 }
932
933 /* Always tell the ACPI core to skip this resource */
934 return 1;
935}
936
937static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
938 void *data, void **return_value)
939{
940 struct spi_master *master = data;
941 struct list_head resource_list;
942 struct acpi_device *adev;
943 struct spi_device *spi;
944 int ret;
945
946 if (acpi_bus_get_device(handle, &adev))
947 return AE_OK;
948 if (acpi_bus_get_status(adev) || !adev->status.present)
949 return AE_OK;
950
951 spi = spi_alloc_device(master);
952 if (!spi) {
953 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
954 dev_name(&adev->dev));
955 return AE_NO_MEMORY;
956 }
957
958 ACPI_HANDLE_SET(&spi->dev, handle);
959 spi->irq = -1;
960
961 INIT_LIST_HEAD(&resource_list);
962 ret = acpi_dev_get_resources(adev, &resource_list,
963 acpi_spi_add_resource, spi);
964 acpi_dev_free_resource_list(&resource_list);
965
966 if (ret < 0 || !spi->max_speed_hz) {
967 spi_dev_put(spi);
968 return AE_OK;
969 }
970
971 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
972 if (spi_add_device(spi)) {
973 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
974 dev_name(&adev->dev));
975 spi_dev_put(spi);
976 }
977
978 return AE_OK;
979}
980
981static void acpi_register_spi_devices(struct spi_master *master)
982{
983 acpi_status status;
984 acpi_handle handle;
985
29896178 986 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
987 if (!handle)
988 return;
989
990 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
991 acpi_spi_add_device, NULL,
992 master, NULL);
993 if (ACPI_FAILURE(status))
994 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
995}
996#else
997static inline void acpi_register_spi_devices(struct spi_master *master) {}
998#endif /* CONFIG_ACPI */
999
49dce689 1000static void spi_master_release(struct device *dev)
8ae12a0d
DB
1001{
1002 struct spi_master *master;
1003
49dce689 1004 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1005 kfree(master);
1006}
1007
1008static struct class spi_master_class = {
1009 .name = "spi_master",
1010 .owner = THIS_MODULE,
49dce689 1011 .dev_release = spi_master_release,
8ae12a0d
DB
1012};
1013
1014
ffbbdd21 1015
8ae12a0d
DB
1016/**
1017 * spi_alloc_master - allocate SPI master controller
1018 * @dev: the controller, possibly using the platform_bus
33e34dc6 1019 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1020 * memory is in the driver_data field of the returned device,
0c868461 1021 * accessible with spi_master_get_devdata().
33e34dc6 1022 * Context: can sleep
8ae12a0d
DB
1023 *
1024 * This call is used only by SPI master controller drivers, which are the
1025 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1026 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1027 *
1028 * This must be called from context that can sleep. It returns the SPI
1029 * master structure on success, else NULL.
1030 *
1031 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1032 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1033 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1034 * leak.
8ae12a0d 1035 */
e9d5a461 1036struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1037{
1038 struct spi_master *master;
1039
0c868461
DB
1040 if (!dev)
1041 return NULL;
1042
e94b1766 1043 master = kzalloc(size + sizeof *master, GFP_KERNEL);
8ae12a0d
DB
1044 if (!master)
1045 return NULL;
1046
49dce689 1047 device_initialize(&master->dev);
1e8a52e1
GL
1048 master->bus_num = -1;
1049 master->num_chipselect = 1;
49dce689
TJ
1050 master->dev.class = &spi_master_class;
1051 master->dev.parent = get_device(dev);
0c868461 1052 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1053
1054 return master;
1055}
1056EXPORT_SYMBOL_GPL(spi_alloc_master);
1057
74317984
JCPV
1058#ifdef CONFIG_OF
1059static int of_spi_register_master(struct spi_master *master)
1060{
e80beb27 1061 int nb, i, *cs;
74317984
JCPV
1062 struct device_node *np = master->dev.of_node;
1063
1064 if (!np)
1065 return 0;
1066
1067 nb = of_gpio_named_count(np, "cs-gpios");
e80beb27 1068 master->num_chipselect = max(nb, (int)master->num_chipselect);
74317984 1069
8ec5d84e
AL
1070 /* Return error only for an incorrectly formed cs-gpios property */
1071 if (nb == 0 || nb == -ENOENT)
74317984 1072 return 0;
8ec5d84e
AL
1073 else if (nb < 0)
1074 return nb;
74317984
JCPV
1075
1076 cs = devm_kzalloc(&master->dev,
1077 sizeof(int) * master->num_chipselect,
1078 GFP_KERNEL);
1079 master->cs_gpios = cs;
1080
1081 if (!master->cs_gpios)
1082 return -ENOMEM;
1083
0da83bb1 1084 for (i = 0; i < master->num_chipselect; i++)
446411e1 1085 cs[i] = -ENOENT;
74317984
JCPV
1086
1087 for (i = 0; i < nb; i++)
1088 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1089
1090 return 0;
1091}
1092#else
1093static int of_spi_register_master(struct spi_master *master)
1094{
1095 return 0;
1096}
1097#endif
1098
8ae12a0d
DB
1099/**
1100 * spi_register_master - register SPI master controller
1101 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1102 * Context: can sleep
8ae12a0d
DB
1103 *
1104 * SPI master controllers connect to their drivers using some non-SPI bus,
1105 * such as the platform bus. The final stage of probe() in that code
1106 * includes calling spi_register_master() to hook up to this SPI bus glue.
1107 *
1108 * SPI controllers use board specific (often SOC specific) bus numbers,
1109 * and board-specific addressing for SPI devices combines those numbers
1110 * with chip select numbers. Since SPI does not directly support dynamic
1111 * device identification, boards need configuration tables telling which
1112 * chip is at which address.
1113 *
1114 * This must be called from context that can sleep. It returns zero on
1115 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1116 * After a successful return, the caller is responsible for calling
1117 * spi_unregister_master().
8ae12a0d 1118 */
e9d5a461 1119int spi_register_master(struct spi_master *master)
8ae12a0d 1120{
e44a45ae 1121 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1122 struct device *dev = master->dev.parent;
2b9603a0 1123 struct boardinfo *bi;
8ae12a0d
DB
1124 int status = -ENODEV;
1125 int dynamic = 0;
1126
0c868461
DB
1127 if (!dev)
1128 return -ENODEV;
1129
74317984
JCPV
1130 status = of_spi_register_master(master);
1131 if (status)
1132 return status;
1133
082c8cb4
DB
1134 /* even if it's just one always-selected device, there must
1135 * be at least one chipselect
1136 */
1137 if (master->num_chipselect == 0)
1138 return -EINVAL;
1139
bb29785e
GL
1140 if ((master->bus_num < 0) && master->dev.of_node)
1141 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1142
8ae12a0d 1143 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1144 if (master->bus_num < 0) {
082c8cb4
DB
1145 /* FIXME switch to an IDR based scheme, something like
1146 * I2C now uses, so we can't run out of "dynamic" IDs
1147 */
8ae12a0d 1148 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1149 dynamic = 1;
8ae12a0d
DB
1150 }
1151
cf32b71e
ES
1152 spin_lock_init(&master->bus_lock_spinlock);
1153 mutex_init(&master->bus_lock_mutex);
1154 master->bus_lock_flag = 0;
1155
8ae12a0d
DB
1156 /* register the device, then userspace will see it.
1157 * registration fails if the bus ID is in use.
1158 */
35f74fca 1159 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1160 status = device_add(&master->dev);
b885244e 1161 if (status < 0)
8ae12a0d 1162 goto done;
35f74fca 1163 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1164 dynamic ? " (dynamic)" : "");
1165
ffbbdd21
LW
1166 /* If we're using a queued driver, start the queue */
1167 if (master->transfer)
1168 dev_info(dev, "master is unqueued, this is deprecated\n");
1169 else {
1170 status = spi_master_initialize_queue(master);
1171 if (status) {
1172 device_unregister(&master->dev);
1173 goto done;
1174 }
1175 }
1176
2b9603a0
FT
1177 mutex_lock(&board_lock);
1178 list_add_tail(&master->list, &spi_master_list);
1179 list_for_each_entry(bi, &board_list, list)
1180 spi_match_master_to_boardinfo(master, &bi->board_info);
1181 mutex_unlock(&board_lock);
1182
64bee4d2 1183 /* Register devices from the device tree and ACPI */
12b15e83 1184 of_register_spi_devices(master);
64bee4d2 1185 acpi_register_spi_devices(master);
8ae12a0d
DB
1186done:
1187 return status;
1188}
1189EXPORT_SYMBOL_GPL(spi_register_master);
1190
34860089 1191static int __unregister(struct device *dev, void *null)
8ae12a0d 1192{
34860089 1193 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1194 return 0;
1195}
1196
1197/**
1198 * spi_unregister_master - unregister SPI master controller
1199 * @master: the master being unregistered
33e34dc6 1200 * Context: can sleep
8ae12a0d
DB
1201 *
1202 * This call is used only by SPI master controller drivers, which are the
1203 * only ones directly touching chip registers.
1204 *
1205 * This must be called from context that can sleep.
1206 */
1207void spi_unregister_master(struct spi_master *master)
1208{
89fc9a1a
JG
1209 int dummy;
1210
ffbbdd21
LW
1211 if (master->queued) {
1212 if (spi_destroy_queue(master))
1213 dev_err(&master->dev, "queue remove failed\n");
1214 }
1215
2b9603a0
FT
1216 mutex_lock(&board_lock);
1217 list_del(&master->list);
1218 mutex_unlock(&board_lock);
1219
97dbf37d 1220 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1221 device_unregister(&master->dev);
8ae12a0d
DB
1222}
1223EXPORT_SYMBOL_GPL(spi_unregister_master);
1224
ffbbdd21
LW
1225int spi_master_suspend(struct spi_master *master)
1226{
1227 int ret;
1228
1229 /* Basically no-ops for non-queued masters */
1230 if (!master->queued)
1231 return 0;
1232
1233 ret = spi_stop_queue(master);
1234 if (ret)
1235 dev_err(&master->dev, "queue stop failed\n");
1236
1237 return ret;
1238}
1239EXPORT_SYMBOL_GPL(spi_master_suspend);
1240
1241int spi_master_resume(struct spi_master *master)
1242{
1243 int ret;
1244
1245 if (!master->queued)
1246 return 0;
1247
1248 ret = spi_start_queue(master);
1249 if (ret)
1250 dev_err(&master->dev, "queue restart failed\n");
1251
1252 return ret;
1253}
1254EXPORT_SYMBOL_GPL(spi_master_resume);
1255
9f3b795a 1256static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1257{
1258 struct spi_master *m;
9f3b795a 1259 const u16 *bus_num = data;
5ed2c832
DY
1260
1261 m = container_of(dev, struct spi_master, dev);
1262 return m->bus_num == *bus_num;
1263}
1264
8ae12a0d
DB
1265/**
1266 * spi_busnum_to_master - look up master associated with bus_num
1267 * @bus_num: the master's bus number
33e34dc6 1268 * Context: can sleep
8ae12a0d
DB
1269 *
1270 * This call may be used with devices that are registered after
1271 * arch init time. It returns a refcounted pointer to the relevant
1272 * spi_master (which the caller must release), or NULL if there is
1273 * no such master registered.
1274 */
1275struct spi_master *spi_busnum_to_master(u16 bus_num)
1276{
49dce689 1277 struct device *dev;
1e9a51dc 1278 struct spi_master *master = NULL;
5ed2c832 1279
695794ae 1280 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1281 __spi_master_match);
1282 if (dev)
1283 master = container_of(dev, struct spi_master, dev);
1284 /* reference got in class_find_device */
1e9a51dc 1285 return master;
8ae12a0d
DB
1286}
1287EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1288
1289
1290/*-------------------------------------------------------------------------*/
1291
7d077197
DB
1292/* Core methods for SPI master protocol drivers. Some of the
1293 * other core methods are currently defined as inline functions.
1294 */
1295
1296/**
1297 * spi_setup - setup SPI mode and clock rate
1298 * @spi: the device whose settings are being modified
1299 * Context: can sleep, and no requests are queued to the device
1300 *
1301 * SPI protocol drivers may need to update the transfer mode if the
1302 * device doesn't work with its default. They may likewise need
1303 * to update clock rates or word sizes from initial values. This function
1304 * changes those settings, and must be called from a context that can sleep.
1305 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1306 * effect the next time the device is selected and data is transferred to
1307 * or from it. When this function returns, the spi device is deselected.
1308 *
1309 * Note that this call will fail if the protocol driver specifies an option
1310 * that the underlying controller or its driver does not support. For
1311 * example, not all hardware supports wire transfers using nine bit words,
1312 * LSB-first wire encoding, or active-high chipselects.
1313 */
1314int spi_setup(struct spi_device *spi)
1315{
e7db06b5 1316 unsigned bad_bits;
caae070c 1317 int status = 0;
7d077197 1318
e7db06b5
DB
1319 /* help drivers fail *cleanly* when they need options
1320 * that aren't supported with their current master
1321 */
1322 bad_bits = spi->mode & ~spi->master->mode_bits;
1323 if (bad_bits) {
eb288a1f 1324 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1325 bad_bits);
1326 return -EINVAL;
1327 }
1328
7d077197
DB
1329 if (!spi->bits_per_word)
1330 spi->bits_per_word = 8;
1331
caae070c
LD
1332 if (spi->master->setup)
1333 status = spi->master->setup(spi);
7d077197
DB
1334
1335 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1336 "%u bits/w, %u Hz max --> %d\n",
1337 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1338 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1339 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1340 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1341 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1342 spi->bits_per_word, spi->max_speed_hz,
1343 status);
1344
1345 return status;
1346}
1347EXPORT_SYMBOL_GPL(spi_setup);
1348
cf32b71e
ES
1349static int __spi_async(struct spi_device *spi, struct spi_message *message)
1350{
1351 struct spi_master *master = spi->master;
e6811d1d 1352 struct spi_transfer *xfer;
cf32b71e
ES
1353
1354 /* Half-duplex links include original MicroWire, and ones with
1355 * only one data pin like SPI_3WIRE (switches direction) or where
1356 * either MOSI or MISO is missing. They can also be caused by
1357 * software limitations.
1358 */
1359 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1360 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1361 unsigned flags = master->flags;
1362
1363 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1364 if (xfer->rx_buf && xfer->tx_buf)
1365 return -EINVAL;
1366 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1367 return -EINVAL;
1368 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1369 return -EINVAL;
1370 }
1371 }
1372
e6811d1d 1373 /**
059b8ffe
LD
1374 * Set transfer bits_per_word and max speed as spi device default if
1375 * it is not set for this transfer.
e6811d1d
LD
1376 */
1377 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1378 if (!xfer->bits_per_word)
1379 xfer->bits_per_word = spi->bits_per_word;
059b8ffe
LD
1380 if (!xfer->speed_hz)
1381 xfer->speed_hz = spi->max_speed_hz;
543bb255
SW
1382 if (master->bits_per_word_mask) {
1383 /* Only 32 bits fit in the mask */
1384 if (xfer->bits_per_word > 32)
1385 return -EINVAL;
1386 if (!(master->bits_per_word_mask &
1387 BIT(xfer->bits_per_word - 1)))
1388 return -EINVAL;
1389 }
e6811d1d
LD
1390 }
1391
cf32b71e
ES
1392 message->spi = spi;
1393 message->status = -EINPROGRESS;
1394 return master->transfer(spi, message);
1395}
1396
568d0697
DB
1397/**
1398 * spi_async - asynchronous SPI transfer
1399 * @spi: device with which data will be exchanged
1400 * @message: describes the data transfers, including completion callback
1401 * Context: any (irqs may be blocked, etc)
1402 *
1403 * This call may be used in_irq and other contexts which can't sleep,
1404 * as well as from task contexts which can sleep.
1405 *
1406 * The completion callback is invoked in a context which can't sleep.
1407 * Before that invocation, the value of message->status is undefined.
1408 * When the callback is issued, message->status holds either zero (to
1409 * indicate complete success) or a negative error code. After that
1410 * callback returns, the driver which issued the transfer request may
1411 * deallocate the associated memory; it's no longer in use by any SPI
1412 * core or controller driver code.
1413 *
1414 * Note that although all messages to a spi_device are handled in
1415 * FIFO order, messages may go to different devices in other orders.
1416 * Some device might be higher priority, or have various "hard" access
1417 * time requirements, for example.
1418 *
1419 * On detection of any fault during the transfer, processing of
1420 * the entire message is aborted, and the device is deselected.
1421 * Until returning from the associated message completion callback,
1422 * no other spi_message queued to that device will be processed.
1423 * (This rule applies equally to all the synchronous transfer calls,
1424 * which are wrappers around this core asynchronous primitive.)
1425 */
1426int spi_async(struct spi_device *spi, struct spi_message *message)
1427{
1428 struct spi_master *master = spi->master;
cf32b71e
ES
1429 int ret;
1430 unsigned long flags;
568d0697 1431
cf32b71e 1432 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1433
cf32b71e
ES
1434 if (master->bus_lock_flag)
1435 ret = -EBUSY;
1436 else
1437 ret = __spi_async(spi, message);
568d0697 1438
cf32b71e
ES
1439 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1440
1441 return ret;
568d0697
DB
1442}
1443EXPORT_SYMBOL_GPL(spi_async);
1444
cf32b71e
ES
1445/**
1446 * spi_async_locked - version of spi_async with exclusive bus usage
1447 * @spi: device with which data will be exchanged
1448 * @message: describes the data transfers, including completion callback
1449 * Context: any (irqs may be blocked, etc)
1450 *
1451 * This call may be used in_irq and other contexts which can't sleep,
1452 * as well as from task contexts which can sleep.
1453 *
1454 * The completion callback is invoked in a context which can't sleep.
1455 * Before that invocation, the value of message->status is undefined.
1456 * When the callback is issued, message->status holds either zero (to
1457 * indicate complete success) or a negative error code. After that
1458 * callback returns, the driver which issued the transfer request may
1459 * deallocate the associated memory; it's no longer in use by any SPI
1460 * core or controller driver code.
1461 *
1462 * Note that although all messages to a spi_device are handled in
1463 * FIFO order, messages may go to different devices in other orders.
1464 * Some device might be higher priority, or have various "hard" access
1465 * time requirements, for example.
1466 *
1467 * On detection of any fault during the transfer, processing of
1468 * the entire message is aborted, and the device is deselected.
1469 * Until returning from the associated message completion callback,
1470 * no other spi_message queued to that device will be processed.
1471 * (This rule applies equally to all the synchronous transfer calls,
1472 * which are wrappers around this core asynchronous primitive.)
1473 */
1474int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1475{
1476 struct spi_master *master = spi->master;
1477 int ret;
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1481
1482 ret = __spi_async(spi, message);
1483
1484 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1485
1486 return ret;
1487
1488}
1489EXPORT_SYMBOL_GPL(spi_async_locked);
1490
7d077197
DB
1491
1492/*-------------------------------------------------------------------------*/
1493
1494/* Utility methods for SPI master protocol drivers, layered on
1495 * top of the core. Some other utility methods are defined as
1496 * inline functions.
1497 */
1498
5d870c8e
AM
1499static void spi_complete(void *arg)
1500{
1501 complete(arg);
1502}
1503
cf32b71e
ES
1504static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1505 int bus_locked)
1506{
1507 DECLARE_COMPLETION_ONSTACK(done);
1508 int status;
1509 struct spi_master *master = spi->master;
1510
1511 message->complete = spi_complete;
1512 message->context = &done;
1513
1514 if (!bus_locked)
1515 mutex_lock(&master->bus_lock_mutex);
1516
1517 status = spi_async_locked(spi, message);
1518
1519 if (!bus_locked)
1520 mutex_unlock(&master->bus_lock_mutex);
1521
1522 if (status == 0) {
1523 wait_for_completion(&done);
1524 status = message->status;
1525 }
1526 message->context = NULL;
1527 return status;
1528}
1529
8ae12a0d
DB
1530/**
1531 * spi_sync - blocking/synchronous SPI data transfers
1532 * @spi: device with which data will be exchanged
1533 * @message: describes the data transfers
33e34dc6 1534 * Context: can sleep
8ae12a0d
DB
1535 *
1536 * This call may only be used from a context that may sleep. The sleep
1537 * is non-interruptible, and has no timeout. Low-overhead controller
1538 * drivers may DMA directly into and out of the message buffers.
1539 *
1540 * Note that the SPI device's chip select is active during the message,
1541 * and then is normally disabled between messages. Drivers for some
1542 * frequently-used devices may want to minimize costs of selecting a chip,
1543 * by leaving it selected in anticipation that the next message will go
1544 * to the same chip. (That may increase power usage.)
1545 *
0c868461
DB
1546 * Also, the caller is guaranteeing that the memory associated with the
1547 * message will not be freed before this call returns.
1548 *
9b938b74 1549 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1550 */
1551int spi_sync(struct spi_device *spi, struct spi_message *message)
1552{
cf32b71e 1553 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1554}
1555EXPORT_SYMBOL_GPL(spi_sync);
1556
cf32b71e
ES
1557/**
1558 * spi_sync_locked - version of spi_sync with exclusive bus usage
1559 * @spi: device with which data will be exchanged
1560 * @message: describes the data transfers
1561 * Context: can sleep
1562 *
1563 * This call may only be used from a context that may sleep. The sleep
1564 * is non-interruptible, and has no timeout. Low-overhead controller
1565 * drivers may DMA directly into and out of the message buffers.
1566 *
1567 * This call should be used by drivers that require exclusive access to the
25985edc 1568 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1569 * be released by a spi_bus_unlock call when the exclusive access is over.
1570 *
1571 * It returns zero on success, else a negative error code.
1572 */
1573int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1574{
1575 return __spi_sync(spi, message, 1);
1576}
1577EXPORT_SYMBOL_GPL(spi_sync_locked);
1578
1579/**
1580 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1581 * @master: SPI bus master that should be locked for exclusive bus access
1582 * Context: can sleep
1583 *
1584 * This call may only be used from a context that may sleep. The sleep
1585 * is non-interruptible, and has no timeout.
1586 *
1587 * This call should be used by drivers that require exclusive access to the
1588 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1589 * exclusive access is over. Data transfer must be done by spi_sync_locked
1590 * and spi_async_locked calls when the SPI bus lock is held.
1591 *
1592 * It returns zero on success, else a negative error code.
1593 */
1594int spi_bus_lock(struct spi_master *master)
1595{
1596 unsigned long flags;
1597
1598 mutex_lock(&master->bus_lock_mutex);
1599
1600 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1601 master->bus_lock_flag = 1;
1602 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1603
1604 /* mutex remains locked until spi_bus_unlock is called */
1605
1606 return 0;
1607}
1608EXPORT_SYMBOL_GPL(spi_bus_lock);
1609
1610/**
1611 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1612 * @master: SPI bus master that was locked for exclusive bus access
1613 * Context: can sleep
1614 *
1615 * This call may only be used from a context that may sleep. The sleep
1616 * is non-interruptible, and has no timeout.
1617 *
1618 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1619 * call.
1620 *
1621 * It returns zero on success, else a negative error code.
1622 */
1623int spi_bus_unlock(struct spi_master *master)
1624{
1625 master->bus_lock_flag = 0;
1626
1627 mutex_unlock(&master->bus_lock_mutex);
1628
1629 return 0;
1630}
1631EXPORT_SYMBOL_GPL(spi_bus_unlock);
1632
a9948b61
DB
1633/* portable code must never pass more than 32 bytes */
1634#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
8ae12a0d
DB
1635
1636static u8 *buf;
1637
1638/**
1639 * spi_write_then_read - SPI synchronous write followed by read
1640 * @spi: device with which data will be exchanged
1641 * @txbuf: data to be written (need not be dma-safe)
1642 * @n_tx: size of txbuf, in bytes
27570497
JP
1643 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1644 * @n_rx: size of rxbuf, in bytes
33e34dc6 1645 * Context: can sleep
8ae12a0d
DB
1646 *
1647 * This performs a half duplex MicroWire style transaction with the
1648 * device, sending txbuf and then reading rxbuf. The return value
1649 * is zero for success, else a negative errno status code.
b885244e 1650 * This call may only be used from a context that may sleep.
8ae12a0d 1651 *
0c868461 1652 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1653 * portable code should never use this for more than 32 bytes.
1654 * Performance-sensitive or bulk transfer code should instead use
0c868461 1655 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1656 */
1657int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1658 const void *txbuf, unsigned n_tx,
1659 void *rxbuf, unsigned n_rx)
8ae12a0d 1660{
068f4070 1661 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1662
1663 int status;
1664 struct spi_message message;
bdff549e 1665 struct spi_transfer x[2];
8ae12a0d
DB
1666 u8 *local_buf;
1667
b3a223ee
MB
1668 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1669 * copying here, (as a pure convenience thing), but we can
1670 * keep heap costs out of the hot path unless someone else is
1671 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 1672 */
b3a223ee 1673 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
1674 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1675 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
1676 if (!local_buf)
1677 return -ENOMEM;
1678 } else {
1679 local_buf = buf;
1680 }
8ae12a0d 1681
8275c642 1682 spi_message_init(&message);
bdff549e
DB
1683 memset(x, 0, sizeof x);
1684 if (n_tx) {
1685 x[0].len = n_tx;
1686 spi_message_add_tail(&x[0], &message);
1687 }
1688 if (n_rx) {
1689 x[1].len = n_rx;
1690 spi_message_add_tail(&x[1], &message);
1691 }
8275c642 1692
8ae12a0d 1693 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1694 x[0].tx_buf = local_buf;
1695 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1696
1697 /* do the i/o */
8ae12a0d 1698 status = spi_sync(spi, &message);
9b938b74 1699 if (status == 0)
bdff549e 1700 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1701
bdff549e 1702 if (x[0].tx_buf == buf)
068f4070 1703 mutex_unlock(&lock);
8ae12a0d
DB
1704 else
1705 kfree(local_buf);
1706
1707 return status;
1708}
1709EXPORT_SYMBOL_GPL(spi_write_then_read);
1710
1711/*-------------------------------------------------------------------------*/
1712
1713static int __init spi_init(void)
1714{
b885244e
DB
1715 int status;
1716
e94b1766 1717 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
1718 if (!buf) {
1719 status = -ENOMEM;
1720 goto err0;
1721 }
1722
1723 status = bus_register(&spi_bus_type);
1724 if (status < 0)
1725 goto err1;
8ae12a0d 1726
b885244e
DB
1727 status = class_register(&spi_master_class);
1728 if (status < 0)
1729 goto err2;
8ae12a0d 1730 return 0;
b885244e
DB
1731
1732err2:
1733 bus_unregister(&spi_bus_type);
1734err1:
1735 kfree(buf);
1736 buf = NULL;
1737err0:
1738 return status;
8ae12a0d 1739}
b885244e 1740
8ae12a0d
DB
1741/* board_info is normally registered in arch_initcall(),
1742 * but even essential drivers wait till later
b885244e
DB
1743 *
1744 * REVISIT only boardinfo really needs static linking. the rest (device and
1745 * driver registration) _could_ be dynamically linked (modular) ... costs
1746 * include needing to have boardinfo data structures be much more public.
8ae12a0d 1747 */
673c0c00 1748postcore_initcall(spi_init);
8ae12a0d 1749