drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / wd33c93.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
3 * john@geolog.com
4 * jshiffle@netcom.com
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17/*
18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
19 * provided much of the inspiration and some of the code for this
20 * driver. Everything I know about Amiga DMA was gleaned from careful
21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
22 * borrowed shamelessly from all over that source. Thanks Hamish!
23 *
24 * _This_ driver is (I feel) an improvement over the old one in
25 * several respects:
26 *
27 * - Target Disconnection/Reconnection is now supported. Any
28 * system with more than one device active on the SCSI bus
29 * will benefit from this. The driver defaults to what I
30 * call 'adaptive disconnect' - meaning that each command
31 * is evaluated individually as to whether or not it should
32 * be run with the option to disconnect/reselect (if the
33 * device chooses), or as a "SCSI-bus-hog".
34 *
35 * - Synchronous data transfers are now supported. Because of
36 * a few devices that choke after telling the driver that
37 * they can do sync transfers, we don't automatically use
38 * this faster protocol - it can be enabled via the command-
39 * line on a device-by-device basis.
40 *
41 * - Runtime operating parameters can now be specified through
42 * the 'amiboot' or the 'insmod' command line. For amiboot do:
43 * "amiboot [usual stuff] wd33c93=blah,blah,blah"
44 * The defaults should be good for most people. See the comment
45 * for 'setup_strings' below for more details.
46 *
47 * - The old driver relied exclusively on what the Western Digital
48 * docs call "Combination Level 2 Commands", which are a great
49 * idea in that the CPU is relieved of a lot of interrupt
50 * overhead. However, by accepting a certain (user-settable)
51 * amount of additional interrupts, this driver achieves
52 * better control over the SCSI bus, and data transfers are
53 * almost as fast while being much easier to define, track,
54 * and debug.
55 *
56 *
57 * TODO:
58 * more speed. linked commands.
59 *
60 *
61 * People with bug reports, wish-lists, complaints, comments,
62 * or improvements are asked to pah-leeez email me (John Shifflett)
63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
64 * this thing into as good a shape as possible, and I'm positive
65 * there are lots of lurking bugs and "Stupid Places".
66 *
67 * Updates:
68 *
69 * Added support for pre -A chips, which don't have advanced features
70 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
71 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000
a5d8421b 72 *
73 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
74 * default_sx_per for asynchronous data transfers. Added adjustment
75 * of transfer periods in sx_table to the actual input-clock.
76 * peter fuerst <post@pfrst.de> February 2007
1da177e4
LT
77 */
78
1da177e4
LT
79#include <linux/module.h>
80
1da177e4
LT
81#include <linux/string.h>
82#include <linux/delay.h>
1da177e4 83#include <linux/init.h>
cf7f5b45 84#include <linux/interrupt.h>
1da177e4 85#include <linux/blkdev.h>
1da177e4
LT
86
87#include <scsi/scsi.h>
88#include <scsi/scsi_cmnd.h>
89#include <scsi/scsi_device.h>
90#include <scsi/scsi_host.h>
91
078dda95
AB
92#include <asm/irq.h>
93
1da177e4
LT
94#include "wd33c93.h"
95
a5d8421b 96#define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
97
1da177e4 98
a5d8421b 99#define WD33C93_VERSION "1.26++"
100#define WD33C93_DATE "10/Feb/2007"
1da177e4
LT
101
102MODULE_AUTHOR("John Shifflett");
103MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
104MODULE_LICENSE("GPL");
105
106/*
107 * 'setup_strings' is a single string used to pass operating parameters and
108 * settings from the kernel/module command-line to the driver. 'setup_args[]'
109 * is an array of strings that define the compile-time default values for
110 * these settings. If Linux boots with an amiboot or insmod command-line,
111 * those settings are combined with 'setup_args[]'. Note that amiboot
112 * command-lines are prefixed with "wd33c93=" while insmod uses a
113 * "setup_strings=" prefix. The driver recognizes the following keywords
114 * (lower case required) and arguments:
115 *
116 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
117 * the 7 possible SCSI devices. Set a bit to negotiate for
118 * asynchronous transfers on that device. To maintain
119 * backwards compatibility, a command-line such as
120 * "wd33c93=255" will be automatically translated to
121 * "wd33c93=nosync:0xff".
122 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
123 * optional - if not present, same as "nodma:1".
124 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
125 * period. Default is 500; acceptable values are 250 - 1000.
126 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
127 * x = 1 does 'adaptive' disconnects, which is the default
128 * and generally the best choice.
129 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
130 * various types of debug output to printed - see the DB_xxx
131 * defines in wd33c93.h
132 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
133 * would be from 8 through 20. Default is 8.
a5d8421b 134 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
135 * Single Byte DMA, which is the default. Argument is
136 * optional - if not present, same as "burst:1".
137 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with
138 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
139 * it, which is the default. Argument is optional - if not
140 * present, same as "fast:1".
1da177e4
LT
141 * - next -No argument. Used to separate blocks of keywords when
142 * there's more than one host adapter in the system.
143 *
144 * Syntax Notes:
145 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
146 * _must_ be a colon between a keyword and its numeric argument, with no
147 * spaces.
148 * - Keywords are separated by commas, no spaces, in the standard kernel
149 * command-line manner.
150 * - A keyword in the 'nth' comma-separated command-line member will overwrite
151 * the 'nth' element of setup_args[]. A blank command-line member (in
152 * other words, a comma with no preceding keyword) will _not_ overwrite
153 * the corresponding setup_args[] element.
154 * - If a keyword is used more than once, the first one applies to the first
155 * SCSI host found, the second to the second card, etc, unless the 'next'
156 * keyword is used to change the order.
157 *
158 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
159 * - wd33c93=nosync:255
160 * - wd33c93=nodma
161 * - wd33c93=nodma:1
162 * - wd33c93=disconnect:2,nosync:0x08,period:250
163 * - wd33c93=debug:0x1c
164 */
165
166/* Normally, no defaults are specified */
a5d8421b 167static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
1da177e4
LT
168
169static char *setup_strings;
170module_param(setup_strings, charp, 0);
171
172static void wd33c93_execute(struct Scsi_Host *instance);
173
174#ifdef CONFIG_WD33C93_PIO
175static inline uchar
176read_wd33c93(const wd33c93_regs regs, uchar reg_num)
177{
178 uchar data;
179
180 outb(reg_num, regs.SASR);
181 data = inb(regs.SCMD);
182 return data;
183}
184
185static inline unsigned long
186read_wd33c93_count(const wd33c93_regs regs)
187{
188 unsigned long value;
189
190 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
191 value = inb(regs.SCMD) << 16;
192 value |= inb(regs.SCMD) << 8;
193 value |= inb(regs.SCMD);
194 return value;
195}
196
197static inline uchar
198read_aux_stat(const wd33c93_regs regs)
199{
200 return inb(regs.SASR);
201}
202
203static inline void
204write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
205{
206 outb(reg_num, regs.SASR);
207 outb(value, regs.SCMD);
208}
209
210static inline void
211write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
212{
213 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
214 outb((value >> 16) & 0xff, regs.SCMD);
215 outb((value >> 8) & 0xff, regs.SCMD);
216 outb( value & 0xff, regs.SCMD);
217}
218
219#define write_wd33c93_cmd(regs, cmd) \
220 write_wd33c93((regs), WD_COMMAND, (cmd))
221
222static inline void
223write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
224{
225 int i;
226
227 outb(WD_CDB_1, regs.SASR);
228 for (i=0; i<len; i++)
229 outb(cmnd[i], regs.SCMD);
230}
231
232#else /* CONFIG_WD33C93_PIO */
233static inline uchar
234read_wd33c93(const wd33c93_regs regs, uchar reg_num)
235{
236 *regs.SASR = reg_num;
237 mb();
238 return (*regs.SCMD);
239}
240
241static unsigned long
242read_wd33c93_count(const wd33c93_regs regs)
243{
244 unsigned long value;
245
246 *regs.SASR = WD_TRANSFER_COUNT_MSB;
247 mb();
248 value = *regs.SCMD << 16;
249 value |= *regs.SCMD << 8;
250 value |= *regs.SCMD;
251 mb();
252 return value;
253}
254
255static inline uchar
256read_aux_stat(const wd33c93_regs regs)
257{
258 return *regs.SASR;
259}
260
261static inline void
262write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
263{
264 *regs.SASR = reg_num;
265 mb();
266 *regs.SCMD = value;
267 mb();
268}
269
270static void
271write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
272{
273 *regs.SASR = WD_TRANSFER_COUNT_MSB;
274 mb();
275 *regs.SCMD = value >> 16;
276 *regs.SCMD = value >> 8;
277 *regs.SCMD = value;
278 mb();
279}
280
281static inline void
282write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
283{
284 *regs.SASR = WD_COMMAND;
285 mb();
286 *regs.SCMD = cmd;
287 mb();
288}
289
290static inline void
291write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
292{
293 int i;
294
295 *regs.SASR = WD_CDB_1;
296 for (i = 0; i < len; i++)
297 *regs.SCMD = cmnd[i];
298}
299#endif /* CONFIG_WD33C93_PIO */
300
301static inline uchar
302read_1_byte(const wd33c93_regs regs)
303{
304 uchar asr;
305 uchar x = 0;
306
307 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
308 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
309 do {
310 asr = read_aux_stat(regs);
311 if (asr & ASR_DBR)
312 x = read_wd33c93(regs, WD_DATA);
313 } while (!(asr & ASR_INT));
314 return x;
315}
316
1da177e4 317static int
a5d8421b 318round_period(unsigned int period, const struct sx_period *sx_table)
1da177e4
LT
319{
320 int x;
321
322 for (x = 1; sx_table[x].period_ns; x++) {
323 if ((period <= sx_table[x - 0].period_ns) &&
324 (period > sx_table[x - 1].period_ns)) {
325 return x;
326 }
327 }
328 return 7;
329}
330
a5d8421b 331/*
332 * Calculate Synchronous Transfer Register value from SDTR code.
333 */
1da177e4 334static uchar
a5d8421b 335calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
336 const struct sx_period *sx_table)
1da177e4 337{
a5d8421b 338 /* When doing Fast SCSI synchronous data transfers, the corresponding
339 * value in 'sx_table' is two times the actually used transfer period.
340 */
1da177e4
LT
341 uchar result;
342
a5d8421b 343 if (offset && fast) {
344 fast = STR_FSS;
345 period *= 2;
346 } else {
347 fast = 0;
348 }
1da177e4 349 period *= 4; /* convert SDTR code to ns */
a5d8421b 350 result = sx_table[round_period(period,sx_table)].reg_value;
1da177e4 351 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
a5d8421b 352 result |= fast;
1da177e4
LT
353 return result;
354}
355
a5d8421b 356/*
357 * Calculate SDTR code bytes [3],[4] from period and offset.
358 */
359static inline void
360calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
361 uchar msg[2])
362{
363 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
364 * actually used transfer period for Fast SCSI synchronous data
365 * transfers is half that value.
366 */
367 period /= 4;
368 if (offset && fast)
369 period /= 2;
370 msg[0] = period;
371 msg[1] = offset;
372}
373
f281233d
JG
374static int
375wd33c93_queuecommand_lck(struct scsi_cmnd *cmd,
1da177e4
LT
376 void (*done)(struct scsi_cmnd *))
377{
378 struct WD33C93_hostdata *hostdata;
379 struct scsi_cmnd *tmp;
380
381 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
382
383 DB(DB_QUEUE_COMMAND,
5cd049a5 384 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0]))
1da177e4
LT
385
386/* Set up a few fields in the scsi_cmnd structure for our own use:
387 * - host_scribble is the pointer to the next cmd in the input queue
388 * - scsi_done points to the routine we call when a cmd is finished
389 * - result is what you'd expect
390 */
391 cmd->host_scribble = NULL;
392 cmd->scsi_done = done;
393 cmd->result = 0;
394
395/* We use the Scsi_Pointer structure that's included with each command
396 * as a scratchpad (as it's intended to be used!). The handy thing about
397 * the SCp.xxx fields is that they're always associated with a given
398 * cmd, and are preserved across disconnect-reselect. This means we
399 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
400 * if we keep all the critical pointers and counters in SCp:
401 * - SCp.ptr is the pointer into the RAM buffer
402 * - SCp.this_residual is the size of that buffer
403 * - SCp.buffer points to the current scatter-gather buffer
404 * - SCp.buffers_residual tells us how many S.G. buffers there are
405 * - SCp.have_data_in is not used
406 * - SCp.sent_command is not used
407 * - SCp.phase records this command's SRCID_ER bit setting
408 */
409
ee0ae927
BH
410 if (scsi_bufflen(cmd)) {
411 cmd->SCp.buffer = scsi_sglist(cmd);
412 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
45711f1a 413 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
1da177e4
LT
414 cmd->SCp.this_residual = cmd->SCp.buffer->length;
415 } else {
416 cmd->SCp.buffer = NULL;
417 cmd->SCp.buffers_residual = 0;
ee0ae927
BH
418 cmd->SCp.ptr = NULL;
419 cmd->SCp.this_residual = 0;
1da177e4
LT
420 }
421
422/* WD docs state that at the conclusion of a "LEVEL2" command, the
423 * status byte can be retrieved from the LUN register. Apparently,
424 * this is the case only for *uninterrupted* LEVEL2 commands! If
425 * there are any unexpected phases entered, even if they are 100%
426 * legal (different devices may choose to do things differently),
427 * the LEVEL2 command sequence is exited. This often occurs prior
428 * to receiving the status byte, in which case the driver does a
429 * status phase interrupt and gets the status byte on its own.
430 * While such a command can then be "resumed" (ie restarted to
431 * finish up as a LEVEL2 command), the LUN register will NOT be
432 * a valid status byte at the command's conclusion, and we must
433 * use the byte obtained during the earlier interrupt. Here, we
434 * preset SCp.Status to an illegal value (0xff) so that when
435 * this command finally completes, we can tell where the actual
436 * status byte is stored.
437 */
438
439 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
440
441 /*
442 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
443 * commands are added to the head of the queue so that the desired
444 * sense data is not lost before REQUEST_SENSE executes.
445 */
446
447 spin_lock_irq(&hostdata->lock);
448
449 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
450 cmd->host_scribble = (uchar *) hostdata->input_Q;
451 hostdata->input_Q = cmd;
452 } else { /* find the end of the queue */
453 for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
454 tmp->host_scribble;
455 tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
456 tmp->host_scribble = (uchar *) cmd;
457 }
458
459/* We know that there's at least one command in 'input_Q' now.
460 * Go see if any of them are runnable!
461 */
462
463 wd33c93_execute(cmd->device->host);
464
5cd049a5 465 DB(DB_QUEUE_COMMAND, printk(")Q "))
1da177e4
LT
466
467 spin_unlock_irq(&hostdata->lock);
468 return 0;
469}
470
f281233d
JG
471DEF_SCSI_QCMD(wd33c93_queuecommand)
472
1da177e4
LT
473/*
474 * This routine attempts to start a scsi command. If the host_card is
475 * already connected, we give up immediately. Otherwise, look through
476 * the input_Q, using the first command we find that's intended
477 * for a currently non-busy target/lun.
478 *
479 * wd33c93_execute() is always called with interrupts disabled or from
480 * the wd33c93_intr itself, which means that a wd33c93 interrupt
481 * cannot occur while we are in here.
482 */
483static void
484wd33c93_execute(struct Scsi_Host *instance)
485{
486 struct WD33C93_hostdata *hostdata =
487 (struct WD33C93_hostdata *) instance->hostdata;
488 const wd33c93_regs regs = hostdata->regs;
489 struct scsi_cmnd *cmd, *prev;
490
491 DB(DB_EXECUTE, printk("EX("))
492 if (hostdata->selecting || hostdata->connected) {
493 DB(DB_EXECUTE, printk(")EX-0 "))
494 return;
495 }
496
497 /*
498 * Search through the input_Q for a command destined
499 * for an idle target/lun.
500 */
501
502 cmd = (struct scsi_cmnd *) hostdata->input_Q;
a5d361fc 503 prev = NULL;
1da177e4
LT
504 while (cmd) {
505 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
506 break;
507 prev = cmd;
508 cmd = (struct scsi_cmnd *) cmd->host_scribble;
509 }
510
511 /* quit if queue empty or all possible targets are busy */
512
513 if (!cmd) {
514 DB(DB_EXECUTE, printk(")EX-1 "))
515 return;
516 }
517
518 /* remove command from queue */
519
520 if (prev)
521 prev->host_scribble = cmd->host_scribble;
522 else
523 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
524
525#ifdef PROC_STATISTICS
526 hostdata->cmd_cnt[cmd->device->id]++;
527#endif
528
529 /*
530 * Start the selection process
531 */
532
533 if (cmd->sc_data_direction == DMA_TO_DEVICE)
534 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
535 else
536 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
537
538/* Now we need to figure out whether or not this command is a good
539 * candidate for disconnect/reselect. We guess to the best of our
540 * ability, based on a set of hierarchical rules. When several
541 * devices are operating simultaneously, disconnects are usually
542 * an advantage. In a single device system, or if only 1 device
543 * is being accessed, transfers usually go faster if disconnects
544 * are not allowed:
545 *
546 * + Commands should NEVER disconnect if hostdata->disconnect =
547 * DIS_NEVER (this holds for tape drives also), and ALWAYS
548 * disconnect if hostdata->disconnect = DIS_ALWAYS.
549 * + Tape drive commands should always be allowed to disconnect.
550 * + Disconnect should be allowed if disconnected_Q isn't empty.
551 * + Commands should NOT disconnect if input_Q is empty.
552 * + Disconnect should be allowed if there are commands in input_Q
553 * for a different target/lun. In this case, the other commands
554 * should be made disconnect-able, if not already.
555 *
556 * I know, I know - this code would flunk me out of any
557 * "C Programming 101" class ever offered. But it's easy
558 * to change around and experiment with for now.
559 */
560
561 cmd->SCp.phase = 0; /* assume no disconnect */
562 if (hostdata->disconnect == DIS_NEVER)
563 goto no;
564 if (hostdata->disconnect == DIS_ALWAYS)
565 goto yes;
566 if (cmd->device->type == 1) /* tape drive? */
567 goto yes;
568 if (hostdata->disconnected_Q) /* other commands disconnected? */
569 goto yes;
570 if (!(hostdata->input_Q)) /* input_Q empty? */
571 goto no;
572 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
573 prev = (struct scsi_cmnd *) prev->host_scribble) {
574 if ((prev->device->id != cmd->device->id) ||
575 (prev->device->lun != cmd->device->lun)) {
576 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
577 prev = (struct scsi_cmnd *) prev->host_scribble)
578 prev->SCp.phase = 1;
579 goto yes;
580 }
581 }
582
583 goto no;
584
585 yes:
586 cmd->SCp.phase = 1;
587
588#ifdef PROC_STATISTICS
589 hostdata->disc_allowed_cnt[cmd->device->id]++;
590#endif
591
592 no:
593
594 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
595
596 write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun);
597 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
598 hostdata->sync_xfer[cmd->device->id]);
599 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
600
601 if ((hostdata->level2 == L2_NONE) ||
602 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
603
604 /*
605 * Do a 'Select-With-ATN' command. This will end with
606 * one of the following interrupts:
607 * CSR_RESEL_AM: failure - can try again later.
608 * CSR_TIMEOUT: failure - give up.
609 * CSR_SELECT: success - proceed.
610 */
611
612 hostdata->selecting = cmd;
613
614/* Every target has its own synchronous transfer setting, kept in the
615 * sync_xfer array, and a corresponding status byte in sync_stat[].
616 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
617 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
618 * means that the parameters are undetermined as yet, and that we
619 * need to send an SDTR message to this device after selection is
620 * complete: We set SS_FIRST to tell the interrupt routine to do so.
621 * If we've been asked not to try synchronous transfers on this
622 * target (and _all_ luns within it), we'll still send the SDTR message
623 * later, but at that time we'll negotiate for async by specifying a
624 * sync fifo depth of 0.
625 */
626 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
627 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
628 hostdata->state = S_SELECTING;
629 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
630 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
631 } else {
632
633 /*
634 * Do a 'Select-With-ATN-Xfer' command. This will end with
635 * one of the following interrupts:
636 * CSR_RESEL_AM: failure - can try again later.
637 * CSR_TIMEOUT: failure - give up.
638 * anything else: success - proceed.
639 */
640
641 hostdata->connected = cmd;
642 write_wd33c93(regs, WD_COMMAND_PHASE, 0);
643
644 /* copy command_descriptor_block into WD chip
645 * (take advantage of auto-incrementing)
646 */
647
648 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
649
650 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
651 * it's doing a 'select-and-transfer'. To be safe, we write the
652 * size of the CDB into the OWN_ID register for every case. This
653 * way there won't be problems with vendor-unique, audio, etc.
654 */
655
656 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
657
658 /* When doing a non-disconnect command with DMA, we can save
659 * ourselves a DATA phase interrupt later by setting everything
660 * up ahead of time.
661 */
662
663 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
664 if (hostdata->dma_setup(cmd,
665 (cmd->sc_data_direction == DMA_TO_DEVICE) ?
666 DATA_OUT_DIR : DATA_IN_DIR))
667 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
668 else {
669 write_wd33c93_count(regs,
670 cmd->SCp.this_residual);
671 write_wd33c93(regs, WD_CONTROL,
a5d8421b 672 CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
1da177e4
LT
673 hostdata->dma = D_DMA_RUNNING;
674 }
675 } else
676 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
677
678 hostdata->state = S_RUNNING_LEVEL2;
679 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
680 }
681
682 /*
683 * Since the SCSI bus can handle only 1 connection at a time,
684 * we get out of here now. If the selection fails, or when
685 * the command disconnects, we'll come back to this routine
686 * to search the input_Q again...
687 */
688
689 DB(DB_EXECUTE,
5cd049a5 690 printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
1da177e4
LT
691}
692
693static void
694transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
695 int data_in_dir, struct WD33C93_hostdata *hostdata)
696{
697 uchar asr;
698
699 DB(DB_TRANSFER,
700 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
701
702 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
703 write_wd33c93_count(regs, cnt);
704 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
705 if (data_in_dir) {
706 do {
707 asr = read_aux_stat(regs);
708 if (asr & ASR_DBR)
709 *buf++ = read_wd33c93(regs, WD_DATA);
710 } while (!(asr & ASR_INT));
711 } else {
712 do {
713 asr = read_aux_stat(regs);
714 if (asr & ASR_DBR)
715 write_wd33c93(regs, WD_DATA, *buf++);
716 } while (!(asr & ASR_INT));
717 }
718
719 /* Note: we are returning with the interrupt UN-cleared.
720 * Since (presumably) an entire I/O operation has
721 * completed, the bus phase is probably different, and
722 * the interrupt routine will discover this when it
723 * responds to the uncleared int.
724 */
725
726}
727
728static void
729transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
730 int data_in_dir)
731{
732 struct WD33C93_hostdata *hostdata;
733 unsigned long length;
734
735 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
736
737/* Normally, you'd expect 'this_residual' to be non-zero here.
738 * In a series of scatter-gather transfers, however, this
739 * routine will usually be called with 'this_residual' equal
740 * to 0 and 'buffers_residual' non-zero. This means that a
741 * previous transfer completed, clearing 'this_residual', and
742 * now we need to setup the next scatter-gather buffer as the
743 * source or destination for THIS transfer.
744 */
745 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
746 ++cmd->SCp.buffer;
747 --cmd->SCp.buffers_residual;
748 cmd->SCp.this_residual = cmd->SCp.buffer->length;
45711f1a 749 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
1da177e4 750 }
a5d8421b 751 if (!cmd->SCp.this_residual) /* avoid bogus setups */
752 return;
1da177e4
LT
753
754 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
755 hostdata->sync_xfer[cmd->device->id]);
756
757/* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
758 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
759 */
760
761 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
762#ifdef PROC_STATISTICS
763 hostdata->pio_cnt++;
764#endif
765 transfer_pio(regs, (uchar *) cmd->SCp.ptr,
766 cmd->SCp.this_residual, data_in_dir, hostdata);
767 length = cmd->SCp.this_residual;
768 cmd->SCp.this_residual = read_wd33c93_count(regs);
769 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
770 }
771
772/* We are able to do DMA (in fact, the Amiga hardware is
773 * already going!), so start up the wd33c93 in DMA mode.
774 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
775 * transfer completes and causes an interrupt, we're
776 * reminded to tell the Amiga to shut down its end. We'll
777 * postpone the updating of 'this_residual' and 'ptr'
778 * until then.
779 */
780
781 else {
782#ifdef PROC_STATISTICS
783 hostdata->dma_cnt++;
784#endif
a5d8421b 785 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
1da177e4
LT
786 write_wd33c93_count(regs, cmd->SCp.this_residual);
787
788 if ((hostdata->level2 >= L2_DATA) ||
789 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
790 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
791 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
792 hostdata->state = S_RUNNING_LEVEL2;
793 } else
794 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
795
796 hostdata->dma = D_DMA_RUNNING;
797 }
798}
799
800void
801wd33c93_intr(struct Scsi_Host *instance)
802{
803 struct WD33C93_hostdata *hostdata =
804 (struct WD33C93_hostdata *) instance->hostdata;
805 const wd33c93_regs regs = hostdata->regs;
806 struct scsi_cmnd *patch, *cmd;
807 uchar asr, sr, phs, id, lun, *ucp, msg;
808 unsigned long length, flags;
809
810 asr = read_aux_stat(regs);
811 if (!(asr & ASR_INT) || (asr & ASR_BSY))
812 return;
813
814 spin_lock_irqsave(&hostdata->lock, flags);
815
816#ifdef PROC_STATISTICS
817 hostdata->int_cnt++;
818#endif
819
820 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
821 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
822 phs = read_wd33c93(regs, WD_COMMAND_PHASE);
823
824 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
825
826/* After starting a DMA transfer, the next interrupt
827 * is guaranteed to be in response to completion of
828 * the transfer. Since the Amiga DMA hardware runs in
829 * in an open-ended fashion, it needs to be told when
830 * to stop; do that here if D_DMA_RUNNING is true.
831 * Also, we have to update 'this_residual' and 'ptr'
832 * based on the contents of the TRANSFER_COUNT register,
833 * in case the device decided to do an intermediate
834 * disconnect (a device may do this if it has to do a
835 * seek, or just to be nice and let other devices have
836 * some bus time during long transfers). After doing
837 * whatever is needed, we go on and service the WD3393
838 * interrupt normally.
839 */
840 if (hostdata->dma == D_DMA_RUNNING) {
841 DB(DB_TRANSFER,
842 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
843 hostdata->dma_stop(cmd->device->host, cmd, 1);
844 hostdata->dma = D_DMA_OFF;
845 length = cmd->SCp.this_residual;
846 cmd->SCp.this_residual = read_wd33c93_count(regs);
847 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
848 DB(DB_TRANSFER,
849 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
850 }
851
852/* Respond to the specific WD3393 interrupt - there are quite a few! */
853 switch (sr) {
854 case CSR_TIMEOUT:
855 DB(DB_INTR, printk("TIMEOUT"))
856
857 if (hostdata->state == S_RUNNING_LEVEL2)
858 hostdata->connected = NULL;
859 else {
860 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
861 hostdata->selecting = NULL;
862 }
863
864 cmd->result = DID_NO_CONNECT << 16;
865 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
866 hostdata->state = S_UNCONNECTED;
867 cmd->scsi_done(cmd);
868
869 /* From esp.c:
870 * There is a window of time within the scsi_done() path
871 * of execution where interrupts are turned back on full
872 * blast and left that way. During that time we could
873 * reconnect to a disconnected command, then we'd bomb
874 * out below. We could also end up executing two commands
875 * at _once_. ...just so you know why the restore_flags()
876 * is here...
877 */
878
879 spin_unlock_irqrestore(&hostdata->lock, flags);
880
881/* We are not connected to a target - check to see if there
882 * are commands waiting to be executed.
883 */
884
885 wd33c93_execute(instance);
886 break;
887
888/* Note: this interrupt should not occur in a LEVEL2 command */
889
890 case CSR_SELECT:
891 DB(DB_INTR, printk("SELECT"))
892 hostdata->connected = cmd =
893 (struct scsi_cmnd *) hostdata->selecting;
894 hostdata->selecting = NULL;
895
896 /* construct an IDENTIFY message with correct disconnect bit */
897
898 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
899 if (cmd->SCp.phase)
900 hostdata->outgoing_msg[0] |= 0x40;
901
902 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
1da177e4
LT
903
904 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
905
906/* Tack on a 2nd message to ask about synchronous transfers. If we've
907 * been asked to do only asynchronous transfers on this device, we
908 * request a fifo depth of 0, which is equivalent to async - should
909 * solve the problems some people have had with GVP's Guru ROM.
910 */
911
912 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
913 hostdata->outgoing_msg[2] = 3;
914 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
915 if (hostdata->no_sync & (1 << cmd->device->id)) {
a5d8421b 916 calc_sync_msg(hostdata->default_sx_per, 0,
917 0, hostdata->outgoing_msg + 4);
1da177e4 918 } else {
a5d8421b 919 calc_sync_msg(optimum_sx_per(hostdata),
920 OPTIMUM_SX_OFF,
921 hostdata->fast,
922 hostdata->outgoing_msg + 4);
1da177e4
LT
923 }
924 hostdata->outgoing_len = 6;
a5d8421b 925#ifdef SYNC_DEBUG
926 ucp = hostdata->outgoing_msg + 1;
927 printk(" sending SDTR %02x03%02x%02x%02x ",
928 ucp[0], ucp[2], ucp[3], ucp[4]);
929#endif
1da177e4
LT
930 } else
931 hostdata->outgoing_len = 1;
932
933 hostdata->state = S_CONNECTED;
934 spin_unlock_irqrestore(&hostdata->lock, flags);
935 break;
936
937 case CSR_XFER_DONE | PHS_DATA_IN:
938 case CSR_UNEXP | PHS_DATA_IN:
939 case CSR_SRV_REQ | PHS_DATA_IN:
940 DB(DB_INTR,
941 printk("IN-%d.%d", cmd->SCp.this_residual,
942 cmd->SCp.buffers_residual))
943 transfer_bytes(regs, cmd, DATA_IN_DIR);
944 if (hostdata->state != S_RUNNING_LEVEL2)
945 hostdata->state = S_CONNECTED;
946 spin_unlock_irqrestore(&hostdata->lock, flags);
947 break;
948
949 case CSR_XFER_DONE | PHS_DATA_OUT:
950 case CSR_UNEXP | PHS_DATA_OUT:
951 case CSR_SRV_REQ | PHS_DATA_OUT:
952 DB(DB_INTR,
953 printk("OUT-%d.%d", cmd->SCp.this_residual,
954 cmd->SCp.buffers_residual))
955 transfer_bytes(regs, cmd, DATA_OUT_DIR);
956 if (hostdata->state != S_RUNNING_LEVEL2)
957 hostdata->state = S_CONNECTED;
958 spin_unlock_irqrestore(&hostdata->lock, flags);
959 break;
960
961/* Note: this interrupt should not occur in a LEVEL2 command */
962
963 case CSR_XFER_DONE | PHS_COMMAND:
964 case CSR_UNEXP | PHS_COMMAND:
965 case CSR_SRV_REQ | PHS_COMMAND:
5cd049a5 966 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
1da177e4
LT
967 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
968 hostdata);
969 hostdata->state = S_CONNECTED;
970 spin_unlock_irqrestore(&hostdata->lock, flags);
971 break;
972
973 case CSR_XFER_DONE | PHS_STATUS:
974 case CSR_UNEXP | PHS_STATUS:
975 case CSR_SRV_REQ | PHS_STATUS:
976 DB(DB_INTR, printk("STATUS="))
977 cmd->SCp.Status = read_1_byte(regs);
978 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
979 if (hostdata->level2 >= L2_BASIC) {
980 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
882905c7 981 udelay(7);
1da177e4
LT
982 hostdata->state = S_RUNNING_LEVEL2;
983 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
984 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
985 } else {
986 hostdata->state = S_CONNECTED;
987 }
988 spin_unlock_irqrestore(&hostdata->lock, flags);
989 break;
990
991 case CSR_XFER_DONE | PHS_MESS_IN:
992 case CSR_UNEXP | PHS_MESS_IN:
993 case CSR_SRV_REQ | PHS_MESS_IN:
994 DB(DB_INTR, printk("MSG_IN="))
995
996 msg = read_1_byte(regs);
997 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
882905c7 998 udelay(7);
1da177e4
LT
999
1000 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1001 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1002 msg = EXTENDED_MESSAGE;
1003 else
1004 hostdata->incoming_ptr = 0;
1005
1006 cmd->SCp.Message = msg;
1007 switch (msg) {
1008
1009 case COMMAND_COMPLETE:
5cd049a5 1010 DB(DB_INTR, printk("CCMP"))
1da177e4
LT
1011 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1012 hostdata->state = S_PRE_CMP_DISC;
1013 break;
1014
1015 case SAVE_POINTERS:
1016 DB(DB_INTR, printk("SDP"))
1017 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1018 hostdata->state = S_CONNECTED;
1019 break;
1020
1021 case RESTORE_POINTERS:
1022 DB(DB_INTR, printk("RDP"))
1023 if (hostdata->level2 >= L2_BASIC) {
1024 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1025 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1026 hostdata->state = S_RUNNING_LEVEL2;
1027 } else {
1028 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1029 hostdata->state = S_CONNECTED;
1030 }
1031 break;
1032
1033 case DISCONNECT:
1034 DB(DB_INTR, printk("DIS"))
1035 cmd->device->disconnect = 1;
1036 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1037 hostdata->state = S_PRE_TMP_DISC;
1038 break;
1039
1040 case MESSAGE_REJECT:
1041 DB(DB_INTR, printk("REJ"))
1042#ifdef SYNC_DEBUG
1043 printk("-REJ-");
1044#endif
a5d8421b 1045 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
1da177e4 1046 hostdata->sync_stat[cmd->device->id] = SS_SET;
a5d8421b 1047 /* we want default_sx_per, not DEFAULT_SX_PER */
1048 hostdata->sync_xfer[cmd->device->id] =
1049 calc_sync_xfer(hostdata->default_sx_per
1050 / 4, 0, 0, hostdata->sx_table);
1051 }
1da177e4
LT
1052 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1053 hostdata->state = S_CONNECTED;
1054 break;
1055
1056 case EXTENDED_MESSAGE:
1057 DB(DB_INTR, printk("EXT"))
1058
1059 ucp = hostdata->incoming_msg;
1060
1061#ifdef SYNC_DEBUG
1062 printk("%02x", ucp[hostdata->incoming_ptr]);
1063#endif
1064 /* Is this the last byte of the extended message? */
1065
1066 if ((hostdata->incoming_ptr >= 2) &&
1067 (hostdata->incoming_ptr == (ucp[1] + 1))) {
1068
1069 switch (ucp[2]) { /* what's the EXTENDED code? */
1070 case EXTENDED_SDTR:
a5d8421b 1071 /* default to default async period */
1072 id = calc_sync_xfer(hostdata->
1073 default_sx_per / 4, 0,
1074 0, hostdata->sx_table);
1da177e4
LT
1075 if (hostdata->sync_stat[cmd->device->id] !=
1076 SS_WAITING) {
1077
1078/* A device has sent an unsolicited SDTR message; rather than go
1079 * through the effort of decoding it and then figuring out what
1080 * our reply should be, we're just gonna say that we have a
1081 * synchronous fifo depth of 0. This will result in asynchronous
1082 * transfers - not ideal but so much easier.
1083 * Actually, this is OK because it assures us that if we don't
1084 * specifically ask for sync transfers, we won't do any.
1085 */
1086
1087 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1088 hostdata->outgoing_msg[0] =
1089 EXTENDED_MESSAGE;
1090 hostdata->outgoing_msg[1] = 3;
1091 hostdata->outgoing_msg[2] =
1092 EXTENDED_SDTR;
a5d8421b 1093 calc_sync_msg(hostdata->
1094 default_sx_per, 0,
1095 0, hostdata->outgoing_msg + 3);
1da177e4 1096 hostdata->outgoing_len = 5;
1da177e4 1097 } else {
a5d8421b 1098 if (ucp[4]) /* well, sync transfer */
1099 id = calc_sync_xfer(ucp[3], ucp[4],
1100 hostdata->fast,
1101 hostdata->sx_table);
1102 else if (ucp[3]) /* very unlikely... */
1103 id = calc_sync_xfer(ucp[3], ucp[4],
1104 0, hostdata->sx_table);
1da177e4 1105 }
a5d8421b 1106 hostdata->sync_xfer[cmd->device->id] = id;
1da177e4 1107#ifdef SYNC_DEBUG
a5d8421b 1108 printk(" sync_xfer=%02x\n",
1da177e4
LT
1109 hostdata->sync_xfer[cmd->device->id]);
1110#endif
1111 hostdata->sync_stat[cmd->device->id] =
1112 SS_SET;
1113 write_wd33c93_cmd(regs,
1114 WD_CMD_NEGATE_ACK);
1115 hostdata->state = S_CONNECTED;
1116 break;
1117 case EXTENDED_WDTR:
1118 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1119 printk("sending WDTR ");
1120 hostdata->outgoing_msg[0] =
1121 EXTENDED_MESSAGE;
1122 hostdata->outgoing_msg[1] = 2;
1123 hostdata->outgoing_msg[2] =
1124 EXTENDED_WDTR;
1125 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1126 hostdata->outgoing_len = 4;
1127 write_wd33c93_cmd(regs,
1128 WD_CMD_NEGATE_ACK);
1129 hostdata->state = S_CONNECTED;
1130 break;
1131 default:
1132 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1133 printk
1134 ("Rejecting Unknown Extended Message(%02x). ",
1135 ucp[2]);
1136 hostdata->outgoing_msg[0] =
1137 MESSAGE_REJECT;
1138 hostdata->outgoing_len = 1;
1139 write_wd33c93_cmd(regs,
1140 WD_CMD_NEGATE_ACK);
1141 hostdata->state = S_CONNECTED;
1142 break;
1143 }
1144 hostdata->incoming_ptr = 0;
1145 }
1146
1147 /* We need to read more MESS_IN bytes for the extended message */
1148
1149 else {
1150 hostdata->incoming_ptr++;
1151 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1152 hostdata->state = S_CONNECTED;
1153 }
1154 break;
1155
1156 default:
1157 printk("Rejecting Unknown Message(%02x) ", msg);
1158 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1159 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1160 hostdata->outgoing_len = 1;
1161 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1162 hostdata->state = S_CONNECTED;
1163 }
1164 spin_unlock_irqrestore(&hostdata->lock, flags);
1165 break;
1166
1167/* Note: this interrupt will occur only after a LEVEL2 command */
1168
1169 case CSR_SEL_XFER_DONE:
1170
1171/* Make sure that reselection is enabled at this point - it may
1172 * have been turned off for the command that just completed.
1173 */
1174
1175 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1176 if (phs == 0x60) {
5cd049a5 1177 DB(DB_INTR, printk("SX-DONE"))
1da177e4
LT
1178 cmd->SCp.Message = COMMAND_COMPLETE;
1179 lun = read_wd33c93(regs, WD_TARGET_LUN);
1180 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1181 hostdata->connected = NULL;
1182 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1183 hostdata->state = S_UNCONNECTED;
1184 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1185 cmd->SCp.Status = lun;
1186 if (cmd->cmnd[0] == REQUEST_SENSE
1187 && cmd->SCp.Status != GOOD)
1188 cmd->result =
1189 (cmd->
1190 result & 0x00ffff) | (DID_ERROR << 16);
1191 else
1192 cmd->result =
1193 cmd->SCp.Status | (cmd->SCp.Message << 8);
1194 cmd->scsi_done(cmd);
1195
1196/* We are no longer connected to a target - check to see if
1197 * there are commands waiting to be executed.
1198 */
1199 spin_unlock_irqrestore(&hostdata->lock, flags);
1200 wd33c93_execute(instance);
1201 } else {
1202 printk
5cd049a5
CH
1203 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---",
1204 asr, sr, phs);
1da177e4
LT
1205 spin_unlock_irqrestore(&hostdata->lock, flags);
1206 }
1207 break;
1208
1209/* Note: this interrupt will occur only after a LEVEL2 command */
1210
1211 case CSR_SDP:
1212 DB(DB_INTR, printk("SDP"))
1213 hostdata->state = S_RUNNING_LEVEL2;
1214 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1215 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1216 spin_unlock_irqrestore(&hostdata->lock, flags);
1217 break;
1218
1219 case CSR_XFER_DONE | PHS_MESS_OUT:
1220 case CSR_UNEXP | PHS_MESS_OUT:
1221 case CSR_SRV_REQ | PHS_MESS_OUT:
1222 DB(DB_INTR, printk("MSG_OUT="))
1223
1224/* To get here, we've probably requested MESSAGE_OUT and have
1225 * already put the correct bytes in outgoing_msg[] and filled
1226 * in outgoing_len. We simply send them out to the SCSI bus.
1227 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1228 * it - like when our SDTR message is rejected by a target. Some
1229 * targets send the REJECT before receiving all of the extended
1230 * message, and then seem to go back to MESSAGE_OUT for a byte
1231 * or two. Not sure why, or if I'm doing something wrong to
1232 * cause this to happen. Regardless, it seems that sending
1233 * NOP messages in these situations results in no harm and
1234 * makes everyone happy.
1235 */
1236 if (hostdata->outgoing_len == 0) {
1237 hostdata->outgoing_len = 1;
1238 hostdata->outgoing_msg[0] = NOP;
1239 }
1240 transfer_pio(regs, hostdata->outgoing_msg,
1241 hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1242 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1243 hostdata->outgoing_len = 0;
1244 hostdata->state = S_CONNECTED;
1245 spin_unlock_irqrestore(&hostdata->lock, flags);
1246 break;
1247
1248 case CSR_UNEXP_DISC:
1249
1250/* I think I've seen this after a request-sense that was in response
1251 * to an error condition, but not sure. We certainly need to do
1252 * something when we get this interrupt - the question is 'what?'.
1253 * Let's think positively, and assume some command has finished
1254 * in a legal manner (like a command that provokes a request-sense),
1255 * so we treat it as a normal command-complete-disconnect.
1256 */
1257
1258/* Make sure that reselection is enabled at this point - it may
1259 * have been turned off for the command that just completed.
1260 */
1261
1262 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1263 if (cmd == NULL) {
1264 printk(" - Already disconnected! ");
1265 hostdata->state = S_UNCONNECTED;
1266 spin_unlock_irqrestore(&hostdata->lock, flags);
1267 return;
1268 }
5cd049a5 1269 DB(DB_INTR, printk("UNEXP_DISC"))
1da177e4
LT
1270 hostdata->connected = NULL;
1271 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1272 hostdata->state = S_UNCONNECTED;
1273 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1274 cmd->result =
1275 (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1276 else
1277 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1278 cmd->scsi_done(cmd);
1279
1280/* We are no longer connected to a target - check to see if
1281 * there are commands waiting to be executed.
1282 */
1283 /* look above for comments on scsi_done() */
1284 spin_unlock_irqrestore(&hostdata->lock, flags);
1285 wd33c93_execute(instance);
1286 break;
1287
1288 case CSR_DISC:
1289
1290/* Make sure that reselection is enabled at this point - it may
1291 * have been turned off for the command that just completed.
1292 */
1293
1294 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
5cd049a5 1295 DB(DB_INTR, printk("DISC"))
1da177e4
LT
1296 if (cmd == NULL) {
1297 printk(" - Already disconnected! ");
1298 hostdata->state = S_UNCONNECTED;
1299 }
1300 switch (hostdata->state) {
1301 case S_PRE_CMP_DISC:
1302 hostdata->connected = NULL;
1303 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1304 hostdata->state = S_UNCONNECTED;
1305 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1306 if (cmd->cmnd[0] == REQUEST_SENSE
1307 && cmd->SCp.Status != GOOD)
1308 cmd->result =
1309 (cmd->
1310 result & 0x00ffff) | (DID_ERROR << 16);
1311 else
1312 cmd->result =
1313 cmd->SCp.Status | (cmd->SCp.Message << 8);
1314 cmd->scsi_done(cmd);
1315 break;
1316 case S_PRE_TMP_DISC:
1317 case S_RUNNING_LEVEL2:
1318 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1319 hostdata->disconnected_Q = cmd;
1320 hostdata->connected = NULL;
1321 hostdata->state = S_UNCONNECTED;
1322
1323#ifdef PROC_STATISTICS
1324 hostdata->disc_done_cnt[cmd->device->id]++;
1325#endif
1326
1327 break;
1328 default:
1329 printk("*** Unexpected DISCONNECT interrupt! ***");
1330 hostdata->state = S_UNCONNECTED;
1331 }
1332
1333/* We are no longer connected to a target - check to see if
1334 * there are commands waiting to be executed.
1335 */
1336 spin_unlock_irqrestore(&hostdata->lock, flags);
1337 wd33c93_execute(instance);
1338 break;
1339
1340 case CSR_RESEL_AM:
1341 case CSR_RESEL:
1342 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1343
1344 /* Old chips (pre -A ???) don't have advanced features and will
1345 * generate CSR_RESEL. In that case we have to extract the LUN the
1346 * hard way (see below).
1347 * First we have to make sure this reselection didn't
1348 * happen during Arbitration/Selection of some other device.
1349 * If yes, put losing command back on top of input_Q.
1350 */
1351 if (hostdata->level2 <= L2_NONE) {
1352
1353 if (hostdata->selecting) {
1354 cmd = (struct scsi_cmnd *) hostdata->selecting;
1355 hostdata->selecting = NULL;
1356 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1357 cmd->host_scribble =
1358 (uchar *) hostdata->input_Q;
1359 hostdata->input_Q = cmd;
1360 }
1361 }
1362
1363 else {
1364
1365 if (cmd) {
1366 if (phs == 0x00) {
1367 hostdata->busy[cmd->device->id] &=
1368 ~(1 << cmd->device->lun);
1369 cmd->host_scribble =
1370 (uchar *) hostdata->input_Q;
1371 hostdata->input_Q = cmd;
1372 } else {
1373 printk
1374 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1375 asr, sr, phs);
1376 while (1)
1377 printk("\r");
1378 }
1379 }
1380
1381 }
1382
1383 /* OK - find out which device reselected us. */
1384
1385 id = read_wd33c93(regs, WD_SOURCE_ID);
1386 id &= SRCID_MASK;
1387
1388 /* and extract the lun from the ID message. (Note that we don't
1389 * bother to check for a valid message here - I guess this is
1390 * not the right way to go, but...)
1391 */
1392
1393 if (sr == CSR_RESEL_AM) {
1394 lun = read_wd33c93(regs, WD_DATA);
1395 if (hostdata->level2 < L2_RESELECT)
1396 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1397 lun &= 7;
1398 } else {
1399 /* Old chip; wait for msgin phase to pick up the LUN. */
1400 for (lun = 255; lun; lun--) {
1401 if ((asr = read_aux_stat(regs)) & ASR_INT)
1402 break;
1403 udelay(10);
1404 }
1405 if (!(asr & ASR_INT)) {
1406 printk
1407 ("wd33c93: Reselected without IDENTIFY\n");
1408 lun = 0;
1409 } else {
1410 /* Verify this is a change to MSG_IN and read the message */
1411 sr = read_wd33c93(regs, WD_SCSI_STATUS);
882905c7 1412 udelay(7);
1da177e4
LT
1413 if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1414 sr == (CSR_UNEXP | PHS_MESS_IN) ||
1415 sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1416 /* Got MSG_IN, grab target LUN */
1417 lun = read_1_byte(regs);
1418 /* Now we expect a 'paused with ACK asserted' int.. */
1419 asr = read_aux_stat(regs);
1420 if (!(asr & ASR_INT)) {
1421 udelay(10);
1422 asr = read_aux_stat(regs);
1423 if (!(asr & ASR_INT))
1424 printk
1425 ("wd33c93: No int after LUN on RESEL (%02x)\n",
1426 asr);
1427 }
1428 sr = read_wd33c93(regs, WD_SCSI_STATUS);
882905c7 1429 udelay(7);
1da177e4
LT
1430 if (sr != CSR_MSGIN)
1431 printk
1432 ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1433 sr);
1434 lun &= 7;
1435 write_wd33c93_cmd(regs,
1436 WD_CMD_NEGATE_ACK);
1437 } else {
1438 printk
1439 ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1440 sr);
1441 lun = 0;
1442 }
1443 }
1444 }
1445
1446 /* Now we look for the command that's reconnecting. */
1447
1448 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1449 patch = NULL;
1450 while (cmd) {
1451 if (id == cmd->device->id && lun == cmd->device->lun)
1452 break;
1453 patch = cmd;
1454 cmd = (struct scsi_cmnd *) cmd->host_scribble;
1455 }
1456
1457 /* Hmm. Couldn't find a valid command.... What to do? */
1458
1459 if (!cmd) {
1460 printk
1461 ("---TROUBLE: target %d.%d not in disconnect queue---",
1462 id, lun);
1463 spin_unlock_irqrestore(&hostdata->lock, flags);
1464 return;
1465 }
1466
1467 /* Ok, found the command - now start it up again. */
1468
1469 if (patch)
1470 patch->host_scribble = cmd->host_scribble;
1471 else
1472 hostdata->disconnected_Q =
1473 (struct scsi_cmnd *) cmd->host_scribble;
1474 hostdata->connected = cmd;
1475
1476 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1477 * because these things are preserved over a disconnect.
1478 * But we DO need to fix the DPD bit so it's correct for this command.
1479 */
1480
1481 if (cmd->sc_data_direction == DMA_TO_DEVICE)
1482 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1483 else
1484 write_wd33c93(regs, WD_DESTINATION_ID,
1485 cmd->device->id | DSTID_DPD);
1486 if (hostdata->level2 >= L2_RESELECT) {
1487 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
1488 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1489 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1490 hostdata->state = S_RUNNING_LEVEL2;
1491 } else
1492 hostdata->state = S_CONNECTED;
1493
1da177e4
LT
1494 spin_unlock_irqrestore(&hostdata->lock, flags);
1495 break;
1496
1497 default:
1498 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1499 spin_unlock_irqrestore(&hostdata->lock, flags);
1500 }
1501
1502 DB(DB_INTR, printk("} "))
1503
1504}
1505
1506static void
1507reset_wd33c93(struct Scsi_Host *instance)
1508{
1509 struct WD33C93_hostdata *hostdata =
1510 (struct WD33C93_hostdata *) instance->hostdata;
1511 const wd33c93_regs regs = hostdata->regs;
1512 uchar sr;
1513
1514#ifdef CONFIG_SGI_IP22
1515 {
1516 int busycount = 0;
1517 extern void sgiwd93_reset(unsigned long);
1518 /* wait 'til the chip gets some time for us */
1519 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1520 udelay (10);
1521 /*
1522 * there are scsi devices out there, which manage to lock up
1523 * the wd33c93 in a busy condition. In this state it won't
1524 * accept the reset command. The only way to solve this is to
1525 * give the chip a hardware reset (if possible). The code below
1526 * does this for the SGI Indy, where this is possible
1527 */
1528 /* still busy ? */
1529 if (read_aux_stat(regs) & ASR_BSY)
1530 sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1531 }
1532#endif
1533
1534 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1535 instance->this_id | hostdata->clock_freq);
1536 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1537 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1538 calc_sync_xfer(hostdata->default_sx_per / 4,
a5d8421b 1539 DEFAULT_SX_OFF, 0, hostdata->sx_table));
1da177e4
LT
1540 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1541
1542
1543#ifdef CONFIG_MVME147_SCSI
1544 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
1545#endif
1546
1547 while (!(read_aux_stat(regs) & ASR_INT))
1548 ;
1549 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1550
1551 hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1552 if (sr == 0x00)
1553 hostdata->chip = C_WD33C93;
1554 else if (sr == 0x01) {
1555 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
1556 sr = read_wd33c93(regs, WD_QUEUE_TAG);
1557 if (sr == 0xa5) {
1558 hostdata->chip = C_WD33C93B;
1559 write_wd33c93(regs, WD_QUEUE_TAG, 0);
1560 } else
1561 hostdata->chip = C_WD33C93A;
1562 } else
1563 hostdata->chip = C_UNKNOWN_CHIP;
1564
a5d8421b 1565 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */
1566 hostdata->fast = 0;
1567
1da177e4
LT
1568 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1569 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1570}
1571
1572int
1573wd33c93_host_reset(struct scsi_cmnd * SCpnt)
1574{
1575 struct Scsi_Host *instance;
1576 struct WD33C93_hostdata *hostdata;
1577 int i;
1578
1579 instance = SCpnt->device->host;
1580 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1581
1582 printk("scsi%d: reset. ", instance->host_no);
1583 disable_irq(instance->irq);
1584
1585 hostdata->dma_stop(instance, NULL, 0);
1586 for (i = 0; i < 8; i++) {
1587 hostdata->busy[i] = 0;
1588 hostdata->sync_xfer[i] =
a5d8421b 1589 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1590 0, hostdata->sx_table);
1da177e4
LT
1591 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1592 }
1593 hostdata->input_Q = NULL;
1594 hostdata->selecting = NULL;
1595 hostdata->connected = NULL;
1596 hostdata->disconnected_Q = NULL;
1597 hostdata->state = S_UNCONNECTED;
1598 hostdata->dma = D_DMA_OFF;
1599 hostdata->incoming_ptr = 0;
1600 hostdata->outgoing_len = 0;
1601
1602 reset_wd33c93(instance);
1603 SCpnt->result = DID_RESET << 16;
1604 enable_irq(instance->irq);
1605 return SUCCESS;
1606}
1607
1608int
1609wd33c93_abort(struct scsi_cmnd * cmd)
1610{
1611 struct Scsi_Host *instance;
1612 struct WD33C93_hostdata *hostdata;
1613 wd33c93_regs regs;
1614 struct scsi_cmnd *tmp, *prev;
1615
1616 disable_irq(cmd->device->host->irq);
1617
1618 instance = cmd->device->host;
1619 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1620 regs = hostdata->regs;
1621
1622/*
1623 * Case 1 : If the command hasn't been issued yet, we simply remove it
1624 * from the input_Q.
1625 */
1626
1627 tmp = (struct scsi_cmnd *) hostdata->input_Q;
a5d361fc 1628 prev = NULL;
1da177e4
LT
1629 while (tmp) {
1630 if (tmp == cmd) {
1631 if (prev)
1632 prev->host_scribble = cmd->host_scribble;
1633 else
1634 hostdata->input_Q =
1635 (struct scsi_cmnd *) cmd->host_scribble;
1636 cmd->host_scribble = NULL;
1637 cmd->result = DID_ABORT << 16;
1638 printk
5cd049a5
CH
1639 ("scsi%d: Abort - removing command from input_Q. ",
1640 instance->host_no);
1da177e4
LT
1641 enable_irq(cmd->device->host->irq);
1642 cmd->scsi_done(cmd);
1643 return SUCCESS;
1644 }
1645 prev = tmp;
1646 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1647 }
1648
1649/*
1650 * Case 2 : If the command is connected, we're going to fail the abort
1651 * and let the high level SCSI driver retry at a later time or
1652 * issue a reset.
1653 *
1654 * Timeouts, and therefore aborted commands, will be highly unlikely
1655 * and handling them cleanly in this situation would make the common
1656 * case of noresets less efficient, and would pollute our code. So,
1657 * we fail.
1658 */
1659
1660 if (hostdata->connected == cmd) {
1661 uchar sr, asr;
1662 unsigned long timeout;
1663
5cd049a5
CH
1664 printk("scsi%d: Aborting connected command - ",
1665 instance->host_no);
1da177e4
LT
1666
1667 printk("stopping DMA - ");
1668 if (hostdata->dma == D_DMA_RUNNING) {
1669 hostdata->dma_stop(instance, cmd, 0);
1670 hostdata->dma = D_DMA_OFF;
1671 }
1672
1673 printk("sending wd33c93 ABORT command - ");
1674 write_wd33c93(regs, WD_CONTROL,
1675 CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1676 write_wd33c93_cmd(regs, WD_CMD_ABORT);
1677
1678/* Now we have to attempt to flush out the FIFO... */
1679
1680 printk("flushing fifo - ");
1681 timeout = 1000000;
1682 do {
1683 asr = read_aux_stat(regs);
1684 if (asr & ASR_DBR)
1685 read_wd33c93(regs, WD_DATA);
1686 } while (!(asr & ASR_INT) && timeout-- > 0);
1687 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1688 printk
1689 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1690 asr, sr, read_wd33c93_count(regs), timeout);
1691
1692 /*
1693 * Abort command processed.
1694 * Still connected.
1695 * We must disconnect.
1696 */
1697
1698 printk("sending wd33c93 DISCONNECT command - ");
1699 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1700
1701 timeout = 1000000;
1702 asr = read_aux_stat(regs);
1703 while ((asr & ASR_CIP) && timeout-- > 0)
1704 asr = read_aux_stat(regs);
1705 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1706 printk("asr=%02x, sr=%02x.", asr, sr);
1707
1708 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1709 hostdata->connected = NULL;
1710 hostdata->state = S_UNCONNECTED;
1711 cmd->result = DID_ABORT << 16;
1712
1713/* sti();*/
1714 wd33c93_execute(instance);
1715
1716 enable_irq(cmd->device->host->irq);
1717 cmd->scsi_done(cmd);
1718 return SUCCESS;
1719 }
1720
1721/*
1722 * Case 3: If the command is currently disconnected from the bus,
1723 * we're not going to expend much effort here: Let's just return
1724 * an ABORT_SNOOZE and hope for the best...
1725 */
1726
1727 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1728 while (tmp) {
1729 if (tmp == cmd) {
1730 printk
5cd049a5
CH
1731 ("scsi%d: Abort - command found on disconnected_Q - ",
1732 instance->host_no);
1da177e4
LT
1733 printk("Abort SNOOZE. ");
1734 enable_irq(cmd->device->host->irq);
1735 return FAILED;
1736 }
1737 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1738 }
1739
1740/*
1741 * Case 4 : If we reached this point, the command was not found in any of
1742 * the queues.
1743 *
1744 * We probably reached this point because of an unlikely race condition
1745 * between the command completing successfully and the abortion code,
1746 * so we won't panic, but we will notify the user in case something really
1747 * broke.
1748 */
1749
1750/* sti();*/
1751 wd33c93_execute(instance);
1752
1753 enable_irq(cmd->device->host->irq);
1754 printk("scsi%d: warning : SCSI command probably completed successfully"
1755 " before abortion. ", instance->host_no);
1756 return FAILED;
1757}
1758
1759#define MAX_WD33C93_HOSTS 4
6391a113 1760#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1da177e4
LT
1761#define SETUP_BUFFER_SIZE 200
1762static char setup_buffer[SETUP_BUFFER_SIZE];
1763static char setup_used[MAX_SETUP_ARGS];
1764static int done_setup = 0;
1765
078dda95 1766static int
1da177e4
LT
1767wd33c93_setup(char *str)
1768{
1769 int i;
1770 char *p1, *p2;
1771
1772 /* The kernel does some processing of the command-line before calling
1773 * this function: If it begins with any decimal or hex number arguments,
1774 * ints[0] = how many numbers found and ints[1] through [n] are the values
1775 * themselves. str points to where the non-numeric arguments (if any)
1776 * start: We do our own parsing of those. We construct synthetic 'nosync'
1777 * keywords out of numeric args (to maintain compatibility with older
1778 * versions) and then add the rest of the arguments.
1779 */
1780
1781 p1 = setup_buffer;
1782 *p1 = '\0';
1783 if (str)
1784 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
1785 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1786 p1 = setup_buffer;
1787 i = 0;
1788 while (*p1 && (i < MAX_SETUP_ARGS)) {
1789 p2 = strchr(p1, ',');
1790 if (p2) {
1791 *p2 = '\0';
1792 if (p1 != p2)
1793 setup_args[i] = p1;
1794 p1 = p2 + 1;
1795 i++;
1796 } else {
1797 setup_args[i] = p1;
1798 break;
1799 }
1800 }
1801 for (i = 0; i < MAX_SETUP_ARGS; i++)
1802 setup_used[i] = 0;
1803 done_setup = 1;
1804
1805 return 1;
1806}
1807__setup("wd33c93=", wd33c93_setup);
1808
1809/* check_setup_args() returns index if key found, 0 if not
1810 */
1811static int
1812check_setup_args(char *key, int *flags, int *val, char *buf)
1813{
1814 int x;
1815 char *cp;
1816
1817 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1818 if (setup_used[x])
1819 continue;
1820 if (!strncmp(setup_args[x], key, strlen(key)))
1821 break;
1822 if (!strncmp(setup_args[x], "next", strlen("next")))
1823 return 0;
1824 }
1825 if (x == MAX_SETUP_ARGS)
1826 return 0;
1827 setup_used[x] = 1;
1828 cp = setup_args[x] + strlen(key);
1829 *val = -1;
1830 if (*cp != ':')
1831 return ++x;
1832 cp++;
1833 if ((*cp >= '0') && (*cp <= '9')) {
1834 *val = simple_strtoul(cp, NULL, 0);
1835 }
1836 return ++x;
1837}
1838
a5d8421b 1839/*
1840 * Calculate internal data-transfer-clock cycle from input-clock
1841 * frequency (/MHz) and fill 'sx_table'.
1842 *
1843 * The original driver used to rely on a fixed sx_table, containing periods
1844 * for (only) the lower limits of the respective input-clock-frequency ranges
25985edc 1845 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with
a5d8421b 1846 * this setting so far, it might be desirable to adjust the transfer periods
1847 * closer to the really attached, possibly 25% higher, input-clock, since
1848 * - the wd33c93 may really use a significant shorter period, than it has
1849 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
1850 * instead).
1851 * - the wd33c93 may ask the target for a lower transfer rate, than the target
1852 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of
1853 * possible 200ns, which indeed shows up in tests as an approx. 10% lower
1854 * transfer rate).
1855 */
1856static inline unsigned int
1857round_4(unsigned int x)
1858{
1859 switch (x & 3) {
1860 case 1: --x;
1861 break;
1862 case 2: ++x;
1863 case 3: ++x;
1864 }
1865 return x;
1866}
1867
1868static void
1869calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
1870{
1871 unsigned int d, i;
1872 if (mhz < 11)
1873 d = 2; /* divisor for 8-10 MHz input-clock */
1874 else if (mhz < 16)
1875 d = 3; /* divisor for 12-15 MHz input-clock */
1876 else
1877 d = 4; /* divisor for 16-20 MHz input-clock */
1878
1879 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
1880
1881 sx_table[0].period_ns = 1;
1882 sx_table[0].reg_value = 0x20;
1883 for (i = 1; i < 8; i++) {
1884 sx_table[i].period_ns = round_4((i+1)*d / 100);
1885 sx_table[i].reg_value = (i+1)*0x10;
1886 }
1887 sx_table[7].reg_value = 0;
1888 sx_table[8].period_ns = 0;
1889 sx_table[8].reg_value = 0;
1890}
1891
1892/*
1893 * check and, maybe, map an init- or "clock:"- argument.
1894 */
1895static uchar
1896set_clk_freq(int freq, int *mhz)
1897{
1898 int x = freq;
1899 if (WD33C93_FS_8_10 == freq)
1900 freq = 8;
1901 else if (WD33C93_FS_12_15 == freq)
1902 freq = 12;
1903 else if (WD33C93_FS_16_20 == freq)
1904 freq = 16;
1905 else if (freq > 7 && freq < 11)
1906 x = WD33C93_FS_8_10;
1907 else if (freq > 11 && freq < 16)
1908 x = WD33C93_FS_12_15;
1909 else if (freq > 15 && freq < 21)
1910 x = WD33C93_FS_16_20;
1911 else {
1912 /* Hmm, wouldn't it be safer to assume highest freq here? */
1913 x = WD33C93_FS_8_10;
1914 freq = 8;
1915 }
1916 *mhz = freq;
1917 return x;
1918}
1919
1920/*
1921 * to be used with the resync: fast: ... options
1922 */
1923static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
1924{
1925 int i;
1926 for (i = 0; i < 8; i++)
1927 if (mask & (1 << i))
1928 hd->sync_stat[i] = SS_UNSET;
1929}
1930
1da177e4
LT
1931void
1932wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1933 dma_setup_t setup, dma_stop_t stop, int clock_freq)
1934{
1935 struct WD33C93_hostdata *hostdata;
1936 int i;
1937 int flags;
1938 int val;
1939 char buf[32];
1940
1941 if (!done_setup && setup_strings)
1942 wd33c93_setup(setup_strings);
1943
1944 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1945
1946 hostdata->regs = regs;
a5d8421b 1947 hostdata->clock_freq = set_clk_freq(clock_freq, &i);
1948 calc_sx_table(i, hostdata->sx_table);
1da177e4
LT
1949 hostdata->dma_setup = setup;
1950 hostdata->dma_stop = stop;
1951 hostdata->dma_bounce_buffer = NULL;
1952 hostdata->dma_bounce_len = 0;
1953 for (i = 0; i < 8; i++) {
1954 hostdata->busy[i] = 0;
1955 hostdata->sync_xfer[i] =
a5d8421b 1956 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1957 0, hostdata->sx_table);
1da177e4
LT
1958 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1959#ifdef PROC_STATISTICS
1960 hostdata->cmd_cnt[i] = 0;
1961 hostdata->disc_allowed_cnt[i] = 0;
1962 hostdata->disc_done_cnt[i] = 0;
1963#endif
1964 }
1965 hostdata->input_Q = NULL;
1966 hostdata->selecting = NULL;
1967 hostdata->connected = NULL;
1968 hostdata->disconnected_Q = NULL;
1969 hostdata->state = S_UNCONNECTED;
1970 hostdata->dma = D_DMA_OFF;
1971 hostdata->level2 = L2_BASIC;
1972 hostdata->disconnect = DIS_ADAPTIVE;
1973 hostdata->args = DEBUG_DEFAULTS;
1974 hostdata->incoming_ptr = 0;
1975 hostdata->outgoing_len = 0;
1976 hostdata->default_sx_per = DEFAULT_SX_PER;
1da177e4
LT
1977 hostdata->no_dma = 0; /* default is DMA enabled */
1978
1979#ifdef PROC_INTERFACE
1980 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1981 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
1982#ifdef PROC_STATISTICS
1983 hostdata->dma_cnt = 0;
1984 hostdata->pio_cnt = 0;
1985 hostdata->int_cnt = 0;
1986#endif
1987#endif
1988
a5d8421b 1989 if (check_setup_args("clock", &flags, &val, buf)) {
1990 hostdata->clock_freq = set_clk_freq(val, &val);
1991 calc_sx_table(val, hostdata->sx_table);
1992 }
1993
1da177e4
LT
1994 if (check_setup_args("nosync", &flags, &val, buf))
1995 hostdata->no_sync = val;
1996
1997 if (check_setup_args("nodma", &flags, &val, buf))
1998 hostdata->no_dma = (val == -1) ? 1 : val;
1999
2000 if (check_setup_args("period", &flags, &val, buf))
2001 hostdata->default_sx_per =
a5d8421b 2002 hostdata->sx_table[round_period((unsigned int) val,
2003 hostdata->sx_table)].period_ns;
1da177e4
LT
2004
2005 if (check_setup_args("disconnect", &flags, &val, buf)) {
2006 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2007 hostdata->disconnect = val;
2008 else
2009 hostdata->disconnect = DIS_ADAPTIVE;
2010 }
2011
2012 if (check_setup_args("level2", &flags, &val, buf))
2013 hostdata->level2 = val;
2014
2015 if (check_setup_args("debug", &flags, &val, buf))
2016 hostdata->args = val & DB_MASK;
2017
a5d8421b 2018 if (check_setup_args("burst", &flags, &val, buf))
2019 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
2020
2021 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
2022 && check_setup_args("fast", &flags, &val, buf))
2023 hostdata->fast = !!val;
1da177e4
LT
2024
2025 if ((i = check_setup_args("next", &flags, &val, buf))) {
2026 while (i)
2027 setup_used[--i] = 1;
2028 }
2029#ifdef PROC_INTERFACE
2030 if (check_setup_args("proc", &flags, &val, buf))
2031 hostdata->proc = val;
2032#endif
2033
2034 spin_lock_irq(&hostdata->lock);
2035 reset_wd33c93(instance);
2036 spin_unlock_irq(&hostdata->lock);
2037
2038 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
2039 instance->host_no,
2040 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
2041 C_WD33C93A) ?
2042 "WD33c93A" : (hostdata->chip ==
2043 C_WD33C93B) ? "WD33c93B" : "unknown",
2044 hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
2045#ifdef DEBUGGING_ON
2046 printk(" debug_flags=0x%02x\n", hostdata->args);
2047#else
2048 printk(" debugging=OFF\n");
2049#endif
2050 printk(" setup_args=");
2051 for (i = 0; i < MAX_SETUP_ARGS; i++)
2052 printk("%s,", setup_args[i]);
2053 printk("\n");
565502f8 2054 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE);
1da177e4
LT
2055}
2056
408bb25b 2057int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len)
1da177e4 2058{
1da177e4 2059#ifdef PROC_INTERFACE
1da177e4 2060 char *bp;
1da177e4 2061 struct WD33C93_hostdata *hd;
a5d8421b 2062 int x;
1da177e4
LT
2063
2064 hd = (struct WD33C93_hostdata *) instance->hostdata;
2065
408bb25b 2066/* We accept the following
a5d8421b 2067 * keywords (same format as command-line, but arguments are not optional):
1da177e4
LT
2068 * debug
2069 * disconnect
2070 * period
2071 * resync
2072 * proc
2073 * nodma
a5d8421b 2074 * level2
2075 * burst
2076 * fast
2077 * nosync
1da177e4
LT
2078 */
2079
408bb25b
AV
2080 buf[len] = '\0';
2081 for (bp = buf; *bp; ) {
2082 while (',' == *bp || ' ' == *bp)
2083 ++bp;
2084 if (!strncmp(bp, "debug:", 6)) {
2085 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
2086 } else if (!strncmp(bp, "disconnect:", 11)) {
2087 x = simple_strtoul(bp+11, &bp, 0);
2088 if (x < DIS_NEVER || x > DIS_ALWAYS)
2089 x = DIS_ADAPTIVE;
2090 hd->disconnect = x;
2091 } else if (!strncmp(bp, "period:", 7)) {
2092 x = simple_strtoul(bp+7, &bp, 0);
2093 hd->default_sx_per =
2094 hd->sx_table[round_period((unsigned int) x,
2095 hd->sx_table)].period_ns;
2096 } else if (!strncmp(bp, "resync:", 7)) {
2097 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
2098 } else if (!strncmp(bp, "proc:", 5)) {
2099 hd->proc = simple_strtoul(bp+5, &bp, 0);
2100 } else if (!strncmp(bp, "nodma:", 6)) {
2101 hd->no_dma = simple_strtoul(bp+6, &bp, 0);
2102 } else if (!strncmp(bp, "level2:", 7)) {
2103 hd->level2 = simple_strtoul(bp+7, &bp, 0);
2104 } else if (!strncmp(bp, "burst:", 6)) {
2105 hd->dma_mode =
2106 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
2107 } else if (!strncmp(bp, "fast:", 5)) {
2108 x = !!simple_strtol(bp+5, &bp, 0);
2109 if (x != hd->fast)
2110 set_resync(hd, 0xff);
2111 hd->fast = x;
2112 } else if (!strncmp(bp, "nosync:", 7)) {
a5d8421b 2113 x = simple_strtoul(bp+7, &bp, 0);
408bb25b
AV
2114 set_resync(hd, x ^ hd->no_sync);
2115 hd->no_sync = x;
2116 } else {
2117 break; /* unknown keyword,syntax-error,... */
1da177e4 2118 }
1da177e4 2119 }
408bb25b
AV
2120 return len;
2121#else
2122 return 0;
2123#endif
2124}
2125
2126int
2127wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance)
2128{
2129#ifdef PROC_INTERFACE
2130 struct WD33C93_hostdata *hd;
2131 struct scsi_cmnd *cmd;
2132 int x;
2133
2134 hd = (struct WD33C93_hostdata *) instance->hostdata;
1da177e4
LT
2135
2136 spin_lock_irq(&hd->lock);
408bb25b
AV
2137 if (hd->proc & PR_VERSION)
2138 seq_printf(m, "\nVersion %s - %s.",
565502f8 2139 WD33C93_VERSION, WD33C93_DATE);
408bb25b 2140
1da177e4 2141 if (hd->proc & PR_INFO) {
408bb25b 2142 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
a5d8421b 2143 " dma_mode=%02x fast=%d",
2144 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
408bb25b
AV
2145 seq_printf(m, "\nsync_xfer[] = ");
2146 for (x = 0; x < 7; x++)
2147 seq_printf(m, "\t%02x", hd->sync_xfer[x]);
2148 seq_printf(m, "\nsync_stat[] = ");
2149 for (x = 0; x < 7; x++)
2150 seq_printf(m, "\t%02x", hd->sync_stat[x]);
1da177e4
LT
2151 }
2152#ifdef PROC_STATISTICS
2153 if (hd->proc & PR_STATISTICS) {
408bb25b
AV
2154 seq_printf(m, "\ncommands issued: ");
2155 for (x = 0; x < 7; x++)
2156 seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
2157 seq_printf(m, "\ndisconnects allowed:");
2158 for (x = 0; x < 7; x++)
2159 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
2160 seq_printf(m, "\ndisconnects done: ");
2161 for (x = 0; x < 7; x++)
2162 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2163 seq_printf(m,
1da177e4
LT
2164 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2165 hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
1da177e4
LT
2166 }
2167#endif
2168 if (hd->proc & PR_CONNECTED) {
408bb25b 2169 seq_printf(m, "\nconnected: ");
1da177e4
LT
2170 if (hd->connected) {
2171 cmd = (struct scsi_cmnd *) hd->connected;
408bb25b 2172 seq_printf(m, " %d:%d(%02x)",
5cd049a5 2173 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
1da177e4
LT
2174 }
2175 }
2176 if (hd->proc & PR_INPUTQ) {
408bb25b 2177 seq_printf(m, "\ninput_Q: ");
1da177e4
LT
2178 cmd = (struct scsi_cmnd *) hd->input_Q;
2179 while (cmd) {
408bb25b 2180 seq_printf(m, " %d:%d(%02x)",
5cd049a5 2181 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
1da177e4
LT
2182 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2183 }
2184 }
2185 if (hd->proc & PR_DISCQ) {
408bb25b 2186 seq_printf(m, "\ndisconnected_Q:");
1da177e4
LT
2187 cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2188 while (cmd) {
408bb25b 2189 seq_printf(m, " %d:%d(%02x)",
5cd049a5 2190 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
1da177e4
LT
2191 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2192 }
2193 }
408bb25b 2194 seq_printf(m, "\n");
1da177e4 2195 spin_unlock_irq(&hd->lock);
1da177e4 2196#endif /* PROC_INTERFACE */
408bb25b 2197 return 0;
1da177e4
LT
2198}
2199
1da177e4
LT
2200EXPORT_SYMBOL(wd33c93_host_reset);
2201EXPORT_SYMBOL(wd33c93_init);
1da177e4
LT
2202EXPORT_SYMBOL(wd33c93_abort);
2203EXPORT_SYMBOL(wd33c93_queuecommand);
2204EXPORT_SYMBOL(wd33c93_intr);
408bb25b
AV
2205EXPORT_SYMBOL(wd33c93_show_info);
2206EXPORT_SYMBOL(wd33c93_write_info);