Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / rtc / rtc-bfin.c
CommitLineData
8cc75c9a
WB
1/*
2 * Blackfin On-Chip Real Time Clock Driver
9980060b 3 * Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
8cc75c9a 4 *
d7c7ef90 5 * Copyright 2004-2010 Analog Devices Inc.
8cc75c9a
WB
6 *
7 * Enter bugs at http://blackfin.uclinux.org/
8 *
9 * Licensed under the GPL-2 or later.
10 */
11
12/* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz. So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded. This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
21 *
22 * To keep this delay from significantly degrading performance (we, in theory,
25985edc 23 * would have to sleep for up to 1 second every time we wanted to write a
8cc75c9a 24 * register), we only check the write pending status before we start to issue
25985edc 25 * a new write. We bank on the idea that it doesn't matter when the sync
8cc75c9a
WB
26 * happens so long as we don't attempt another write before it does. The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
30 *
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
33 */
34
26cb8bb2
MF
35/* It may seem odd that there is no SWCNT code in here (which would be exposed
36 * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral
37 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39 * The same exact behavior can be accomplished by using the update interrupt
40 * event (UIE). Maybe down the line the RTC peripheral will suck less in which
41 * case we can re-introduce PIE support.
42 */
43
8cc75c9a 44#include <linux/bcd.h>
095b9d54
MF
45#include <linux/completion.h>
46#include <linux/delay.h>
8cc75c9a 47#include <linux/init.h>
095b9d54
MF
48#include <linux/interrupt.h>
49#include <linux/kernel.h>
50#include <linux/module.h>
8cc75c9a 51#include <linux/platform_device.h>
095b9d54 52#include <linux/rtc.h>
8cc75c9a 53#include <linux/seq_file.h>
5a0e3ad6 54#include <linux/slab.h>
8cc75c9a
WB
55
56#include <asm/blackfin.h>
57
5438de44 58#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
8cc75c9a
WB
59
60struct bfin_rtc {
61 struct rtc_device *rtc_dev;
62 struct rtc_time rtc_alarm;
095b9d54 63 u16 rtc_wrote_regs;
8cc75c9a
WB
64};
65
66/* Bit values for the ISTAT / ICTL registers */
67#define RTC_ISTAT_WRITE_COMPLETE 0x8000
68#define RTC_ISTAT_WRITE_PENDING 0x4000
69#define RTC_ISTAT_ALARM_DAY 0x0040
70#define RTC_ISTAT_24HR 0x0020
71#define RTC_ISTAT_HOUR 0x0010
72#define RTC_ISTAT_MIN 0x0008
73#define RTC_ISTAT_SEC 0x0004
74#define RTC_ISTAT_ALARM 0x0002
75#define RTC_ISTAT_STOPWATCH 0x0001
76
77/* Shift values for RTC_STAT register */
78#define DAY_BITS_OFF 17
79#define HOUR_BITS_OFF 12
80#define MIN_BITS_OFF 6
81#define SEC_BITS_OFF 0
82
83/* Some helper functions to convert between the common RTC notion of time
5c236343 84 * and the internal Blackfin notion that is encoded in 32bits.
8cc75c9a
WB
85 */
86static inline u32 rtc_time_to_bfin(unsigned long now)
87{
88 u32 sec = (now % 60);
89 u32 min = (now % (60 * 60)) / 60;
90 u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
91 u32 days = (now / (60 * 60 * 24));
92 return (sec << SEC_BITS_OFF) +
93 (min << MIN_BITS_OFF) +
94 (hour << HOUR_BITS_OFF) +
95 (days << DAY_BITS_OFF);
96}
97static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
98{
99 return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
100 (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
101 (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
102 (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
103}
104static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
105{
106 rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
107}
108
095b9d54
MF
109/**
110 * bfin_rtc_sync_pending - make sure pending writes have complete
111 *
112 * Wait for the previous write to a RTC register to complete.
8cc75c9a
WB
113 * Unfortunately, we can't sleep here as that introduces a race condition when
114 * turning on interrupt events. Consider this:
115 * - process sets alarm
116 * - process enables alarm
117 * - process sleeps while waiting for rtc write to sync
118 * - interrupt fires while process is sleeping
119 * - interrupt acks the event by writing to ISTAT
120 * - interrupt sets the WRITE PENDING bit
121 * - interrupt handler finishes
122 * - process wakes up, sees WRITE PENDING bit set, goes to sleep
123 * - interrupt fires while process is sleeping
124 * If anyone can point out the obvious solution here, i'm listening :). This
125 * shouldn't be an issue on an SMP or preempt system as this function should
126 * only be called with the rtc lock held.
5c236343
MF
127 *
128 * Other options:
129 * - disable PREN so the sync happens at 32.768kHZ ... but this changes the
130 * inc rate for all RTC registers from 1HZ to 32.768kHZ ...
131 * - use the write complete IRQ
8cc75c9a 132 */
095b9d54
MF
133/*
134static void bfin_rtc_sync_pending_polled(void)
8cc75c9a 135{
095b9d54 136 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
8cc75c9a
WB
137 if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
138 break;
8cc75c9a
WB
139 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
140}
095b9d54
MF
141*/
142static DECLARE_COMPLETION(bfin_write_complete);
143static void bfin_rtc_sync_pending(struct device *dev)
144{
145 dev_dbg_stamp(dev);
146 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
147 wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
148 dev_dbg_stamp(dev);
149}
8cc75c9a 150
095b9d54
MF
151/**
152 * bfin_rtc_reset - set RTC to sane/known state
153 *
154 * Initialize the RTC. Enable pre-scaler to scale RTC clock
155 * to 1Hz and clear interrupt/status registers.
156 */
3b128fe0 157static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
8cc75c9a 158{
5438de44 159 struct bfin_rtc *rtc = dev_get_drvdata(dev);
095b9d54
MF
160 dev_dbg_stamp(dev);
161 bfin_rtc_sync_pending(dev);
8cc75c9a 162 bfin_write_RTC_PREN(0x1);
3b128fe0 163 bfin_write_RTC_ICTL(rtc_ictl);
8cc75c9a
WB
164 bfin_write_RTC_ALARM(0);
165 bfin_write_RTC_ISTAT(0xFFFF);
095b9d54 166 rtc->rtc_wrote_regs = 0;
8cc75c9a
WB
167}
168
095b9d54
MF
169/**
170 * bfin_rtc_interrupt - handle interrupt from RTC
171 *
172 * Since we handle all RTC events here, we have to make sure the requested
173 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
174 * always gets updated regardless of the interrupt being enabled. So when one
175 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
176 * and say that other events have happened as well (e.g. second). We do not
177 * have to worry about pending writes to the RTC_ICTL register as interrupts
178 * only fire if they are enabled in the RTC_ICTL register.
179 */
8cc75c9a
WB
180static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
181{
d7827d88
MF
182 struct device *dev = dev_id;
183 struct bfin_rtc *rtc = dev_get_drvdata(dev);
8cc75c9a 184 unsigned long events = 0;
095b9d54 185 bool write_complete = false;
286f9f95 186 u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits;
8cc75c9a 187
5438de44 188 dev_dbg_stamp(dev);
8cc75c9a 189
8cc75c9a 190 rtc_istat = bfin_read_RTC_ISTAT();
095b9d54 191 rtc_ictl = bfin_read_RTC_ICTL();
286f9f95 192 rtc_istat_clear = 0;
8cc75c9a 193
286f9f95
MF
194 bits = RTC_ISTAT_WRITE_COMPLETE;
195 if (rtc_istat & bits) {
196 rtc_istat_clear |= bits;
095b9d54
MF
197 write_complete = true;
198 complete(&bfin_write_complete);
8cc75c9a
WB
199 }
200
286f9f95
MF
201 bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
202 if (rtc_ictl & bits) {
203 if (rtc_istat & bits) {
204 rtc_istat_clear |= bits;
095b9d54
MF
205 events |= RTC_AF | RTC_IRQF;
206 }
8cc75c9a
WB
207 }
208
286f9f95
MF
209 bits = RTC_ISTAT_SEC;
210 if (rtc_ictl & bits) {
211 if (rtc_istat & bits) {
212 rtc_istat_clear |= bits;
095b9d54
MF
213 events |= RTC_UF | RTC_IRQF;
214 }
215 }
8cc75c9a 216
095b9d54
MF
217 if (events)
218 rtc_update_irq(rtc->rtc_dev, 1, events);
8cc75c9a 219
286f9f95
MF
220 if (write_complete || events) {
221 bfin_write_RTC_ISTAT(rtc_istat_clear);
095b9d54 222 return IRQ_HANDLED;
286f9f95 223 } else
095b9d54 224 return IRQ_NONE;
8cc75c9a
WB
225}
226
605eb8b3 227static void bfin_rtc_int_set(u16 rtc_int)
095b9d54
MF
228{
229 bfin_write_RTC_ISTAT(rtc_int);
230 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
231}
605eb8b3 232static void bfin_rtc_int_clear(u16 rtc_int)
095b9d54
MF
233{
234 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
235}
236static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
237{
238 /* Blackfin has different bits for whether the alarm is
239 * more than 24 hours away.
240 */
605eb8b3 241 bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
095b9d54 242}
8cc75c9a 243
16380c15
JS
244static int bfin_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
245{
246 struct bfin_rtc *rtc = dev_get_drvdata(dev);
247
248 dev_dbg_stamp(dev);
249 if (enabled)
250 bfin_rtc_int_set_alarm(rtc);
251 else
252 bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
8c122b96
MF
253
254 return 0;
16380c15
JS
255}
256
8cc75c9a
WB
257static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
258{
259 struct bfin_rtc *rtc = dev_get_drvdata(dev);
260
5438de44 261 dev_dbg_stamp(dev);
8cc75c9a 262
095b9d54
MF
263 if (rtc->rtc_wrote_regs & 0x1)
264 bfin_rtc_sync_pending(dev);
265
8cc75c9a 266 rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
8cc75c9a
WB
267
268 return 0;
269}
270
271static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
272{
273 struct bfin_rtc *rtc = dev_get_drvdata(dev);
274 int ret;
275 unsigned long now;
276
5438de44 277 dev_dbg_stamp(dev);
8cc75c9a 278
8cc75c9a
WB
279 ret = rtc_tm_to_time(tm, &now);
280 if (ret == 0) {
095b9d54
MF
281 if (rtc->rtc_wrote_regs & 0x1)
282 bfin_rtc_sync_pending(dev);
8cc75c9a 283 bfin_write_RTC_STAT(rtc_time_to_bfin(now));
095b9d54 284 rtc->rtc_wrote_regs = 0x1;
8cc75c9a
WB
285 }
286
8cc75c9a
WB
287 return ret;
288}
289
290static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
291{
292 struct bfin_rtc *rtc = dev_get_drvdata(dev);
5438de44 293 dev_dbg_stamp(dev);
48c1a56b 294 alrm->time = rtc->rtc_alarm;
095b9d54 295 bfin_rtc_sync_pending(dev);
68db3047 296 alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
8cc75c9a
WB
297 return 0;
298}
299
300static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
301{
302 struct bfin_rtc *rtc = dev_get_drvdata(dev);
095b9d54
MF
303 unsigned long rtc_alarm;
304
5438de44 305 dev_dbg_stamp(dev);
095b9d54
MF
306
307 if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
308 return -EINVAL;
309
68db3047 310 rtc->rtc_alarm = alrm->time;
095b9d54
MF
311
312 bfin_rtc_sync_pending(dev);
313 bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
314 if (alrm->enabled)
315 bfin_rtc_int_set_alarm(rtc);
316
8cc75c9a
WB
317 return 0;
318}
319
320static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
321{
64061160 322#define yesno(x) ((x) ? "yes" : "no")
8cc75c9a 323 u16 ictl = bfin_read_RTC_ICTL();
5438de44 324 dev_dbg_stamp(dev);
64061160
MF
325 seq_printf(seq,
326 "alarm_IRQ\t: %s\n"
327 "wkalarm_IRQ\t: %s\n"
26cb8bb2 328 "seconds_IRQ\t: %s\n",
64061160
MF
329 yesno(ictl & RTC_ISTAT_ALARM),
330 yesno(ictl & RTC_ISTAT_ALARM_DAY),
26cb8bb2 331 yesno(ictl & RTC_ISTAT_SEC));
8cc75c9a 332 return 0;
64061160 333#undef yesno
8cc75c9a
WB
334}
335
8cc75c9a 336static struct rtc_class_ops bfin_rtc_ops = {
8cc75c9a
WB
337 .read_time = bfin_rtc_read_time,
338 .set_time = bfin_rtc_set_time,
339 .read_alarm = bfin_rtc_read_alarm,
340 .set_alarm = bfin_rtc_set_alarm,
341 .proc = bfin_rtc_proc,
16380c15 342 .alarm_irq_enable = bfin_rtc_alarm_irq_enable,
8cc75c9a
WB
343};
344
5a167f45 345static int bfin_rtc_probe(struct platform_device *pdev)
8cc75c9a
WB
346{
347 struct bfin_rtc *rtc;
fe2e1cf8 348 struct device *dev = &pdev->dev;
8cc75c9a 349 int ret = 0;
9980060b 350 unsigned long timeout = jiffies + HZ;
8cc75c9a 351
fe2e1cf8 352 dev_dbg_stamp(dev);
8cc75c9a 353
fe2e1cf8 354 /* Allocate memory for our RTC struct */
87e7d520 355 rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
8cc75c9a
WB
356 if (unlikely(!rtc))
357 return -ENOMEM;
fe2e1cf8 358 platform_set_drvdata(pdev, rtc);
8c9166f7 359 device_init_wakeup(dev, 1);
8cc75c9a 360
9980060b 361 /* Register our RTC with the RTC framework */
87e7d520 362 rtc->rtc_dev = devm_rtc_device_register(dev, pdev->name, &bfin_rtc_ops,
9980060b
MF
363 THIS_MODULE);
364 if (unlikely(IS_ERR(rtc->rtc_dev))) {
365 ret = PTR_ERR(rtc->rtc_dev);
366 goto err;
367 }
368
fe2e1cf8 369 /* Grab the IRQ and init the hardware */
87e7d520
JH
370 ret = devm_request_irq(dev, IRQ_RTC, bfin_rtc_interrupt, 0,
371 pdev->name, dev);
fe2e1cf8 372 if (unlikely(ret))
87e7d520 373 goto err;
d0fd9378
MF
374 /* sometimes the bootloader touched things, but the write complete was not
375 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
376 */
d0fd9378
MF
377 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
378 if (time_after(jiffies, timeout))
379 break;
fe2e1cf8 380 bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
26cb8bb2 381 bfin_write_RTC_SWCNT(0);
8cc75c9a 382
8cc75c9a
WB
383 return 0;
384
9980060b 385err:
8cc75c9a
WB
386 return ret;
387}
388
5a167f45 389static int bfin_rtc_remove(struct platform_device *pdev)
8cc75c9a 390{
fe2e1cf8 391 struct device *dev = &pdev->dev;
8cc75c9a 392
fe2e1cf8 393 bfin_rtc_reset(dev, 0);
8cc75c9a 394 platform_set_drvdata(pdev, NULL);
8cc75c9a
WB
395
396 return 0;
397}
398
b4df8f6c
JH
399#ifdef CONFIG_PM_SLEEP
400static int bfin_rtc_suspend(struct device *dev)
5aeb776d 401{
d7c7ef90
MF
402 dev_dbg_stamp(dev);
403
404 if (device_may_wakeup(dev)) {
813006f4 405 enable_irq_wake(IRQ_RTC);
d7c7ef90 406 bfin_rtc_sync_pending(dev);
140fab14 407 } else
110b7e96 408 bfin_rtc_int_clear(0);
813006f4 409
5aeb776d
SZ
410 return 0;
411}
412
b4df8f6c 413static int bfin_rtc_resume(struct device *dev)
5aeb776d 414{
d7c7ef90
MF
415 dev_dbg_stamp(dev);
416
417 if (device_may_wakeup(dev))
813006f4 418 disable_irq_wake(IRQ_RTC);
b6de8606
MF
419
420 /*
421 * Since only some of the RTC bits are maintained externally in the
422 * Vbat domain, we need to wait for the RTC MMRs to be synced into
423 * the core after waking up. This happens every RTC 1HZ. Once that
424 * has happened, we can go ahead and re-enable the important write
425 * complete interrupt event.
426 */
427 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
428 continue;
429 bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
813006f4 430
5aeb776d
SZ
431 return 0;
432}
433#endif
434
b4df8f6c
JH
435static SIMPLE_DEV_PM_OPS(bfin_rtc_pm_ops, bfin_rtc_suspend, bfin_rtc_resume);
436
8cc75c9a
WB
437static struct platform_driver bfin_rtc_driver = {
438 .driver = {
439 .name = "rtc-bfin",
440 .owner = THIS_MODULE,
b4df8f6c 441 .pm = &bfin_rtc_pm_ops,
8cc75c9a
WB
442 },
443 .probe = bfin_rtc_probe,
5a167f45 444 .remove = bfin_rtc_remove,
8cc75c9a
WB
445};
446
0c4eae66 447module_platform_driver(bfin_rtc_driver);
8cc75c9a
WB
448
449MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
450MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
451MODULE_LICENSE("GPL");
ad28a07b 452MODULE_ALIAS("platform:rtc-bfin");