drivers/net/usb: fix sparse warnings: Should it be static?
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wan / z85230.c
CommitLineData
1da177e4
LT
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
9 *
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
12 *
13 * ChangeLog:
14 *
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
17 *
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
19 * boundary.
20 *
113aa838
AC
21 * Modified for SMP safety and SMP locking by Alan Cox
22 * <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
23 *
24 * Performance
25 *
26 * Z85230:
27 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28 * X.25 is not unrealistic on all machines. DMA mode can in theory
29 * handle T1/E1 quite nicely. In practice the limit seems to be about
30 * 512Kbit->1Mbit depending on motherboard.
31 *
32 * Z85C30:
33 * 64K will take DMA, 9600 baud X.25 should be ok.
34 *
35 * Z8530:
36 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
37 */
38
39#include <linux/module.h>
40#include <linux/kernel.h>
41#include <linux/mm.h>
42#include <linux/net.h>
43#include <linux/skbuff.h>
44#include <linux/netdevice.h>
45#include <linux/if_arp.h>
46#include <linux/delay.h>
52e8a6a2 47#include <linux/hdlc.h>
1da177e4
LT
48#include <linux/ioport.h>
49#include <linux/init.h>
50#include <asm/dma.h>
51#include <asm/io.h>
52#define RT_LOCK
53#define RT_UNLOCK
54#include <linux/spinlock.h>
55
1da177e4
LT
56#include "z85230.h"
57
58
59/**
60 * z8530_read_port - Architecture specific interface function
61 * @p: port to read
62 *
63 * Provided port access methods. The Comtrol SV11 requires no delays
64 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
65 *
66 * In the longer term this should become an architecture specific
67 * section so that this can become a generic driver interface for all
68 * platforms. For now we only handle PC I/O ports with or without the
69 * dread 5uS sanity delay.
70 *
71 * The caller must hold sufficient locks to avoid violating the horrible
72 * 5uS delay rule.
73 */
74
75static inline int z8530_read_port(unsigned long p)
76{
77 u8 r=inb(Z8530_PORT_OF(p));
78 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
79 udelay(5);
80 return r;
81}
82
83/**
84 * z8530_write_port - Architecture specific interface function
85 * @p: port to write
86 * @d: value to write
87 *
88 * Write a value to a port with delays if need be. Note that the
89 * caller must hold locks to avoid read/writes from other contexts
90 * violating the 5uS rule
91 *
92 * In the longer term this should become an architecture specific
93 * section so that this can become a generic driver interface for all
94 * platforms. For now we only handle PC I/O ports with or without the
95 * dread 5uS sanity delay.
96 */
97
98
99static inline void z8530_write_port(unsigned long p, u8 d)
100{
101 outb(d,Z8530_PORT_OF(p));
102 if(p&Z8530_PORT_SLEEP)
103 udelay(5);
104}
105
106
107
108static void z8530_rx_done(struct z8530_channel *c);
109static void z8530_tx_done(struct z8530_channel *c);
110
111
112/**
113 * read_zsreg - Read a register from a Z85230
114 * @c: Z8530 channel to read from (2 per chip)
115 * @reg: Register to read
116 * FIXME: Use a spinlock.
117 *
118 * Most of the Z8530 registers are indexed off the control registers.
119 * A read is done by writing to the control register and reading the
120 * register back. The caller must hold the lock
121 */
122
123static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
124{
125 if(reg)
126 z8530_write_port(c->ctrlio, reg);
127 return z8530_read_port(c->ctrlio);
128}
129
130/**
131 * read_zsdata - Read the data port of a Z8530 channel
132 * @c: The Z8530 channel to read the data port from
133 *
134 * The data port provides fast access to some things. We still
135 * have all the 5uS delays to worry about.
136 */
137
138static inline u8 read_zsdata(struct z8530_channel *c)
139{
140 u8 r;
141 r=z8530_read_port(c->dataio);
142 return r;
143}
144
145/**
146 * write_zsreg - Write to a Z8530 channel register
147 * @c: The Z8530 channel
148 * @reg: Register number
149 * @val: Value to write
150 *
151 * Write a value to an indexed register. The caller must hold the lock
152 * to honour the irritating delay rules. We know about register 0
153 * being fast to access.
154 *
155 * Assumes c->lock is held.
156 */
157static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
158{
159 if(reg)
160 z8530_write_port(c->ctrlio, reg);
161 z8530_write_port(c->ctrlio, val);
162
163}
164
165/**
166 * write_zsctrl - Write to a Z8530 control register
167 * @c: The Z8530 channel
168 * @val: Value to write
169 *
170 * Write directly to the control register on the Z8530
171 */
172
173static inline void write_zsctrl(struct z8530_channel *c, u8 val)
174{
175 z8530_write_port(c->ctrlio, val);
176}
177
178/**
179 * write_zsdata - Write to a Z8530 control register
180 * @c: The Z8530 channel
181 * @val: Value to write
182 *
183 * Write directly to the data register on the Z8530
184 */
185
186
187static inline void write_zsdata(struct z8530_channel *c, u8 val)
188{
189 z8530_write_port(c->dataio, val);
190}
191
192/*
193 * Register loading parameters for a dead port
194 */
195
196u8 z8530_dead_port[]=
197{
198 255
199};
200
201EXPORT_SYMBOL(z8530_dead_port);
202
203/*
204 * Register loading parameters for currently supported circuit types
205 */
206
207
208/*
209 * Data clocked by telco end. This is the correct data for the UK
210 * "kilostream" service, and most other similar services.
211 */
212
213u8 z8530_hdlc_kilostream[]=
214{
215 4, SYNC_ENAB|SDLC|X1CLK,
216 2, 0, /* No vector */
217 1, 0,
218 3, ENT_HM|RxCRC_ENAB|Rx8,
219 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
220 9, 0, /* Disable interrupts */
221 6, 0xFF,
222 7, FLAG,
223 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
224 11, TCTRxCP,
225 14, DISDPLL,
226 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
227 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
228 9, NV|MIE|NORESET,
229 255
230};
231
232EXPORT_SYMBOL(z8530_hdlc_kilostream);
233
234/*
235 * As above but for enhanced chips.
236 */
237
238u8 z8530_hdlc_kilostream_85230[]=
239{
240 4, SYNC_ENAB|SDLC|X1CLK,
241 2, 0, /* No vector */
242 1, 0,
243 3, ENT_HM|RxCRC_ENAB|Rx8,
244 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
245 9, 0, /* Disable interrupts */
246 6, 0xFF,
247 7, FLAG,
248 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
249 11, TCTRxCP,
250 14, DISDPLL,
251 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
252 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
253 9, NV|MIE|NORESET,
254 23, 3, /* Extended mode AUTO TX and EOM*/
255
256 255
257};
258
259EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
260
261/**
262 * z8530_flush_fifo - Flush on chip RX FIFO
263 * @c: Channel to flush
264 *
265 * Flush the receive FIFO. There is no specific option for this, we
266 * blindly read bytes and discard them. Reading when there is no data
267 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
268 *
269 * All locking is handled for the caller. On return data may still be
270 * present if it arrived during the flush.
271 */
272
273static void z8530_flush_fifo(struct z8530_channel *c)
274{
275 read_zsreg(c, R1);
276 read_zsreg(c, R1);
277 read_zsreg(c, R1);
278 read_zsreg(c, R1);
279 if(c->dev->type==Z85230)
280 {
281 read_zsreg(c, R1);
282 read_zsreg(c, R1);
283 read_zsreg(c, R1);
284 read_zsreg(c, R1);
285 }
286}
287
288/**
289 * z8530_rtsdtr - Control the outgoing DTS/RTS line
290 * @c: The Z8530 channel to control;
291 * @set: 1 to set, 0 to clear
292 *
293 * Sets or clears DTR/RTS on the requested line. All locking is handled
294 * by the caller. For now we assume all boards use the actual RTS/DTR
295 * on the chip. Apparently one or two don't. We'll scream about them
296 * later.
297 */
298
299static void z8530_rtsdtr(struct z8530_channel *c, int set)
300{
301 if (set)
302 c->regs[5] |= (RTS | DTR);
303 else
304 c->regs[5] &= ~(RTS | DTR);
305 write_zsreg(c, R5, c->regs[5]);
306}
307
308/**
309 * z8530_rx - Handle a PIO receive event
310 * @c: Z8530 channel to process
311 *
312 * Receive handler for receiving in PIO mode. This is much like the
313 * async one but not quite the same or as complex
314 *
315 * Note: Its intended that this handler can easily be separated from
316 * the main code to run realtime. That'll be needed for some machines
317 * (eg to ever clock 64kbits on a sparc ;)).
318 *
319 * The RT_LOCK macros don't do anything now. Keep the code covered
320 * by them as short as possible in all circumstances - clocks cost
321 * baud. The interrupt handler is assumed to be atomic w.r.t. to
322 * other code - this is true in the RT case too.
323 *
324 * We only cover the sync cases for this. If you want 2Mbit async
325 * do it yourself but consider medical assistance first. This non DMA
326 * synchronous mode is portable code. The DMA mode assumes PCI like
327 * ISA DMA
328 *
329 * Called with the device lock held
330 */
331
332static void z8530_rx(struct z8530_channel *c)
333{
334 u8 ch,stat;
45d3ac4e 335
1da177e4
LT
336 while(1)
337 {
338 /* FIFO empty ? */
339 if(!(read_zsreg(c, R0)&1))
340 break;
341 ch=read_zsdata(c);
342 stat=read_zsreg(c, R1);
343
344 /*
345 * Overrun ?
346 */
347 if(c->count < c->max)
348 {
349 *c->dptr++=ch;
350 c->count++;
351 }
352
353 if(stat&END_FR)
354 {
355
356 /*
357 * Error ?
358 */
359 if(stat&(Rx_OVR|CRC_ERR))
360 {
361 /* Rewind the buffer and return */
362 if(c->skb)
363 c->dptr=c->skb->data;
364 c->count=0;
365 if(stat&Rx_OVR)
366 {
367 printk(KERN_WARNING "%s: overrun\n", c->dev->name);
368 c->rx_overrun++;
369 }
370 if(stat&CRC_ERR)
371 {
372 c->rx_crc_err++;
373 /* printk("crc error\n"); */
374 }
375 /* Shove the frame upstream */
376 }
377 else
378 {
379 /*
380 * Drop the lock for RX processing, or
381 * there are deadlocks
382 */
383 z8530_rx_done(c);
384 write_zsctrl(c, RES_Rx_CRC);
385 }
386 }
387 }
388 /*
389 * Clear irq
390 */
391 write_zsctrl(c, ERR_RES);
392 write_zsctrl(c, RES_H_IUS);
1da177e4
LT
393}
394
395
396/**
397 * z8530_tx - Handle a PIO transmit event
398 * @c: Z8530 channel to process
399 *
400 * Z8530 transmit interrupt handler for the PIO mode. The basic
401 * idea is to attempt to keep the FIFO fed. We fill as many bytes
402 * in as possible, its quite possible that we won't keep up with the
403 * data rate otherwise.
404 */
405
406static void z8530_tx(struct z8530_channel *c)
407{
1da177e4
LT
408 while(c->txcount) {
409 /* FIFO full ? */
410 if(!(read_zsreg(c, R0)&4))
fe797455 411 return;
1da177e4
LT
412 c->txcount--;
413 /*
414 * Shovel out the byte
415 */
416 write_zsreg(c, R8, *c->tx_ptr++);
417 write_zsctrl(c, RES_H_IUS);
418 /* We are about to underflow */
419 if(c->txcount==0)
420 {
421 write_zsctrl(c, RES_EOM_L);
422 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
423 }
424 }
425
426
427 /*
428 * End of frame TX - fire another one
429 */
430
431 write_zsctrl(c, RES_Tx_P);
432
433 z8530_tx_done(c);
434 write_zsctrl(c, RES_H_IUS);
1da177e4
LT
435}
436
437/**
438 * z8530_status - Handle a PIO status exception
439 * @chan: Z8530 channel to process
440 *
441 * A status event occurred in PIO synchronous mode. There are several
442 * reasons the chip will bother us here. A transmit underrun means we
443 * failed to feed the chip fast enough and just broke a packet. A DCD
52e8a6a2 444 * change is a line up or down.
1da177e4
LT
445 */
446
447static void z8530_status(struct z8530_channel *chan)
448{
449 u8 status, altered;
450
52e8a6a2
KH
451 status = read_zsreg(chan, R0);
452 altered = chan->status ^ status;
453
454 chan->status = status;
455
456 if (status & TxEOM) {
1da177e4 457/* printk("%s: Tx underrun.\n", chan->dev->name); */
52e8a6a2 458 chan->netdevice->stats.tx_fifo_errors++;
1da177e4
LT
459 write_zsctrl(chan, ERR_RES);
460 z8530_tx_done(chan);
461 }
52e8a6a2
KH
462
463 if (altered & chan->dcdcheck)
1da177e4 464 {
52e8a6a2 465 if (status & chan->dcdcheck) {
1da177e4 466 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
52e8a6a2
KH
467 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
468 if (chan->netdevice)
469 netif_carrier_on(chan->netdevice);
470 } else {
1da177e4 471 printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
52e8a6a2 472 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
1da177e4 473 z8530_flush_fifo(chan);
52e8a6a2
KH
474 if (chan->netdevice)
475 netif_carrier_off(chan->netdevice);
1da177e4 476 }
52e8a6a2
KH
477
478 }
1da177e4
LT
479 write_zsctrl(chan, RES_EXT_INT);
480 write_zsctrl(chan, RES_H_IUS);
1da177e4
LT
481}
482
52e8a6a2 483struct z8530_irqhandler z8530_sync =
1da177e4
LT
484{
485 z8530_rx,
486 z8530_tx,
487 z8530_status
488};
489
490EXPORT_SYMBOL(z8530_sync);
491
492/**
493 * z8530_dma_rx - Handle a DMA RX event
494 * @chan: Channel to handle
495 *
496 * Non bus mastering DMA interfaces for the Z8x30 devices. This
497 * is really pretty PC specific. The DMA mode means that most receive
498 * events are handled by the DMA hardware. We get a kick here only if
499 * a frame ended.
500 */
501
502static void z8530_dma_rx(struct z8530_channel *chan)
503{
1da177e4
LT
504 if(chan->rxdma_on)
505 {
506 /* Special condition check only */
507 u8 status;
508
509 read_zsreg(chan, R7);
510 read_zsreg(chan, R6);
511
512 status=read_zsreg(chan, R1);
513
514 if(status&END_FR)
515 {
516 z8530_rx_done(chan); /* Fire up the next one */
517 }
518 write_zsctrl(chan, ERR_RES);
519 write_zsctrl(chan, RES_H_IUS);
520 }
521 else
522 {
523 /* DMA is off right now, drain the slow way */
524 z8530_rx(chan);
525 }
1da177e4
LT
526}
527
528/**
529 * z8530_dma_tx - Handle a DMA TX event
530 * @chan: The Z8530 channel to handle
531 *
532 * We have received an interrupt while doing DMA transmissions. It
533 * shouldn't happen. Scream loudly if it does.
534 */
535
536static void z8530_dma_tx(struct z8530_channel *chan)
537{
1da177e4
LT
538 if(!chan->dma_tx)
539 {
540 printk(KERN_WARNING "Hey who turned the DMA off?\n");
541 z8530_tx(chan);
542 return;
543 }
544 /* This shouldnt occur in DMA mode */
545 printk(KERN_ERR "DMA tx - bogus event!\n");
546 z8530_tx(chan);
1da177e4
LT
547}
548
549/**
550 * z8530_dma_status - Handle a DMA status exception
551 * @chan: Z8530 channel to process
552 *
553 * A status event occurred on the Z8530. We receive these for two reasons
554 * when in DMA mode. Firstly if we finished a packet transfer we get one
52e8a6a2 555 * and kick the next packet out. Secondly we may see a DCD change.
1da177e4
LT
556 *
557 */
558
559static void z8530_dma_status(struct z8530_channel *chan)
560{
561 u8 status, altered;
562
563 status=read_zsreg(chan, R0);
564 altered=chan->status^status;
565
566 chan->status=status;
567
568
569 if(chan->dma_tx)
570 {
571 if(status&TxEOM)
572 {
573 unsigned long flags;
574
575 flags=claim_dma_lock();
576 disable_dma(chan->txdma);
577 clear_dma_ff(chan->txdma);
578 chan->txdma_on=0;
579 release_dma_lock(flags);
580 z8530_tx_done(chan);
581 }
582 }
583
52e8a6a2 584 if (altered & chan->dcdcheck)
1da177e4 585 {
52e8a6a2 586 if (status & chan->dcdcheck) {
1da177e4 587 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
52e8a6a2
KH
588 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
589 if (chan->netdevice)
590 netif_carrier_on(chan->netdevice);
591 } else {
1da177e4 592 printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
52e8a6a2 593 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
1da177e4 594 z8530_flush_fifo(chan);
52e8a6a2
KH
595 if (chan->netdevice)
596 netif_carrier_off(chan->netdevice);
1da177e4 597 }
52e8a6a2 598 }
1da177e4
LT
599
600 write_zsctrl(chan, RES_EXT_INT);
601 write_zsctrl(chan, RES_H_IUS);
1da177e4
LT
602}
603
62c5345d 604static struct z8530_irqhandler z8530_dma_sync = {
1da177e4
LT
605 z8530_dma_rx,
606 z8530_dma_tx,
607 z8530_dma_status
608};
609
62c5345d 610static struct z8530_irqhandler z8530_txdma_sync = {
1da177e4
LT
611 z8530_rx,
612 z8530_dma_tx,
613 z8530_dma_status
614};
615
1da177e4
LT
616/**
617 * z8530_rx_clear - Handle RX events from a stopped chip
618 * @c: Z8530 channel to shut up
619 *
620 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
621 * For machines with PCI Z85x30 cards, or level triggered interrupts
622 * (eg the MacII) we must clear the interrupt cause or die.
623 */
624
625
626static void z8530_rx_clear(struct z8530_channel *c)
627{
628 /*
629 * Data and status bytes
630 */
631 u8 stat;
632
633 read_zsdata(c);
634 stat=read_zsreg(c, R1);
635
636 if(stat&END_FR)
637 write_zsctrl(c, RES_Rx_CRC);
638 /*
639 * Clear irq
640 */
641 write_zsctrl(c, ERR_RES);
642 write_zsctrl(c, RES_H_IUS);
643}
644
645/**
646 * z8530_tx_clear - Handle TX events from a stopped chip
647 * @c: Z8530 channel to shut up
648 *
649 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
650 * For machines with PCI Z85x30 cards, or level triggered interrupts
651 * (eg the MacII) we must clear the interrupt cause or die.
652 */
653
654static void z8530_tx_clear(struct z8530_channel *c)
655{
656 write_zsctrl(c, RES_Tx_P);
657 write_zsctrl(c, RES_H_IUS);
658}
659
660/**
661 * z8530_status_clear - Handle status events from a stopped chip
662 * @chan: Z8530 channel to shut up
663 *
664 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
665 * For machines with PCI Z85x30 cards, or level triggered interrupts
666 * (eg the MacII) we must clear the interrupt cause or die.
667 */
668
669static void z8530_status_clear(struct z8530_channel *chan)
670{
671 u8 status=read_zsreg(chan, R0);
672 if(status&TxEOM)
673 write_zsctrl(chan, ERR_RES);
674 write_zsctrl(chan, RES_EXT_INT);
675 write_zsctrl(chan, RES_H_IUS);
676}
677
678struct z8530_irqhandler z8530_nop=
679{
680 z8530_rx_clear,
681 z8530_tx_clear,
682 z8530_status_clear
683};
684
685
686EXPORT_SYMBOL(z8530_nop);
687
688/**
689 * z8530_interrupt - Handle an interrupt from a Z8530
690 * @irq: Interrupt number
691 * @dev_id: The Z8530 device that is interrupting.
1da177e4
LT
692 *
693 * A Z85[2]30 device has stuck its hand in the air for attention.
694 * We scan both the channels on the chip for events and then call
695 * the channel specific call backs for each channel that has events.
696 * We have to use callback functions because the two channels can be
697 * in different modes.
698 *
699 * Locking is done for the handlers. Note that locking is done
700 * at the chip level (the 5uS delay issue is per chip not per
701 * channel). c->lock for both channels points to dev->lock
702 */
703
7d12e780 704irqreturn_t z8530_interrupt(int irq, void *dev_id)
1da177e4
LT
705{
706 struct z8530_dev *dev=dev_id;
4174439e 707 u8 uninitialized_var(intr);
1da177e4
LT
708 static volatile int locker=0;
709 int work=0;
710 struct z8530_irqhandler *irqs;
711
712 if(locker)
713 {
714 printk(KERN_ERR "IRQ re-enter\n");
715 return IRQ_NONE;
716 }
717 locker=1;
718
719 spin_lock(&dev->lock);
720
721 while(++work<5000)
722 {
723
724 intr = read_zsreg(&dev->chanA, R3);
725 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
726 break;
727
728 /* This holds the IRQ status. On the 8530 you must read it from chan
729 A even though it applies to the whole chip */
730
731 /* Now walk the chip and see what it is wanting - it may be
732 an IRQ for someone else remember */
733
734 irqs=dev->chanA.irqs;
735
736 if(intr & (CHARxIP|CHATxIP|CHAEXT))
737 {
738 if(intr&CHARxIP)
739 irqs->rx(&dev->chanA);
740 if(intr&CHATxIP)
741 irqs->tx(&dev->chanA);
742 if(intr&CHAEXT)
743 irqs->status(&dev->chanA);
744 }
745
746 irqs=dev->chanB.irqs;
747
748 if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
749 {
750 if(intr&CHBRxIP)
751 irqs->rx(&dev->chanB);
752 if(intr&CHBTxIP)
753 irqs->tx(&dev->chanB);
754 if(intr&CHBEXT)
755 irqs->status(&dev->chanB);
756 }
757 }
758 spin_unlock(&dev->lock);
759 if(work==5000)
760 printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
761 /* Ok all done */
762 locker=0;
763 return IRQ_HANDLED;
764}
765
766EXPORT_SYMBOL(z8530_interrupt);
767
768static char reg_init[16]=
769{
770 0,0,0,0,
771 0,0,0,0,
772 0,0,0,0,
773 0x55,0,0,0
774};
775
776
777/**
778 * z8530_sync_open - Open a Z8530 channel for PIO
779 * @dev: The network interface we are using
780 * @c: The Z8530 channel to open in synchronous PIO mode
781 *
782 * Switch a Z8530 into synchronous mode without DMA assist. We
783 * raise the RTS/DTR and commence network operation.
784 */
785
786int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
787{
788 unsigned long flags;
789
790 spin_lock_irqsave(c->lock, flags);
791
792 c->sync = 1;
793 c->mtu = dev->mtu+64;
794 c->count = 0;
795 c->skb = NULL;
796 c->skb2 = NULL;
797 c->irqs = &z8530_sync;
798
799 /* This loads the double buffer up */
800 z8530_rx_done(c); /* Load the frame ring */
801 z8530_rx_done(c); /* Load the backup frame */
802 z8530_rtsdtr(c,1);
803 c->dma_tx = 0;
804 c->regs[R1]|=TxINT_ENAB;
805 write_zsreg(c, R1, c->regs[R1]);
806 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
807
808 spin_unlock_irqrestore(c->lock, flags);
809 return 0;
810}
811
812
813EXPORT_SYMBOL(z8530_sync_open);
814
815/**
816 * z8530_sync_close - Close a PIO Z8530 channel
817 * @dev: Network device to close
818 * @c: Z8530 channel to disassociate and move to idle
819 *
820 * Close down a Z8530 interface and switch its interrupt handlers
821 * to discard future events.
822 */
823
824int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
825{
826 u8 chk;
827 unsigned long flags;
828
829 spin_lock_irqsave(c->lock, flags);
830 c->irqs = &z8530_nop;
831 c->max = 0;
832 c->sync = 0;
833
834 chk=read_zsreg(c,R0);
835 write_zsreg(c, R3, c->regs[R3]);
836 z8530_rtsdtr(c,0);
837
838 spin_unlock_irqrestore(c->lock, flags);
839 return 0;
840}
841
842EXPORT_SYMBOL(z8530_sync_close);
843
844/**
845 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
846 * @dev: The network device to attach
847 * @c: The Z8530 channel to configure in sync DMA mode.
848 *
849 * Set up a Z85x30 device for synchronous DMA in both directions. Two
850 * ISA DMA channels must be available for this to work. We assume ISA
851 * DMA driven I/O and PC limits on access.
852 */
853
854int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
855{
856 unsigned long cflags, dflags;
857
858 c->sync = 1;
859 c->mtu = dev->mtu+64;
860 c->count = 0;
861 c->skb = NULL;
862 c->skb2 = NULL;
863 /*
864 * Load the DMA interfaces up
865 */
866 c->rxdma_on = 0;
867 c->txdma_on = 0;
868
869 /*
870 * Allocate the DMA flip buffers. Limit by page size.
871 * Everyone runs 1500 mtu or less on wan links so this
872 * should be fine.
873 */
874
875 if(c->mtu > PAGE_SIZE/2)
876 return -EMSGSIZE;
877
878 c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
879 if(c->rx_buf[0]==NULL)
880 return -ENOBUFS;
881 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
882
883 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
884 if(c->tx_dma_buf[0]==NULL)
885 {
886 free_page((unsigned long)c->rx_buf[0]);
887 c->rx_buf[0]=NULL;
888 return -ENOBUFS;
889 }
890 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
891
892 c->tx_dma_used=0;
893 c->dma_tx = 1;
894 c->dma_num=0;
895 c->dma_ready=1;
896
897 /*
898 * Enable DMA control mode
899 */
900
901 spin_lock_irqsave(c->lock, cflags);
902
903 /*
904 * TX DMA via DIR/REQ
905 */
906
907 c->regs[R14]|= DTRREQ;
908 write_zsreg(c, R14, c->regs[R14]);
909
910 c->regs[R1]&= ~TxINT_ENAB;
911 write_zsreg(c, R1, c->regs[R1]);
912
913 /*
914 * RX DMA via W/Req
915 */
916
917 c->regs[R1]|= WT_FN_RDYFN;
918 c->regs[R1]|= WT_RDY_RT;
919 c->regs[R1]|= INT_ERR_Rx;
920 c->regs[R1]&= ~TxINT_ENAB;
921 write_zsreg(c, R1, c->regs[R1]);
922 c->regs[R1]|= WT_RDY_ENAB;
923 write_zsreg(c, R1, c->regs[R1]);
924
925 /*
926 * DMA interrupts
927 */
928
929 /*
930 * Set up the DMA configuration
931 */
932
933 dflags=claim_dma_lock();
934
935 disable_dma(c->rxdma);
936 clear_dma_ff(c->rxdma);
937 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
938 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
939 set_dma_count(c->rxdma, c->mtu);
940 enable_dma(c->rxdma);
941
942 disable_dma(c->txdma);
943 clear_dma_ff(c->txdma);
944 set_dma_mode(c->txdma, DMA_MODE_WRITE);
945 disable_dma(c->txdma);
946
947 release_dma_lock(dflags);
948
949 /*
950 * Select the DMA interrupt handlers
951 */
952
953 c->rxdma_on = 1;
954 c->txdma_on = 1;
955 c->tx_dma_used = 1;
956
957 c->irqs = &z8530_dma_sync;
958 z8530_rtsdtr(c,1);
959 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
960
961 spin_unlock_irqrestore(c->lock, cflags);
962
963 return 0;
964}
965
966EXPORT_SYMBOL(z8530_sync_dma_open);
967
968/**
969 * z8530_sync_dma_close - Close down DMA I/O
970 * @dev: Network device to detach
971 * @c: Z8530 channel to move into discard mode
972 *
973 * Shut down a DMA mode synchronous interface. Halt the DMA, and
974 * free the buffers.
975 */
976
977int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
978{
979 u8 chk;
980 unsigned long flags;
981
982 c->irqs = &z8530_nop;
983 c->max = 0;
984 c->sync = 0;
985
986 /*
987 * Disable the PC DMA channels
988 */
989
990 flags=claim_dma_lock();
991 disable_dma(c->rxdma);
992 clear_dma_ff(c->rxdma);
993
994 c->rxdma_on = 0;
995
996 disable_dma(c->txdma);
997 clear_dma_ff(c->txdma);
998 release_dma_lock(flags);
999
1000 c->txdma_on = 0;
1001 c->tx_dma_used = 0;
1002
1003 spin_lock_irqsave(c->lock, flags);
1004
1005 /*
1006 * Disable DMA control mode
1007 */
1008
1009 c->regs[R1]&= ~WT_RDY_ENAB;
1010 write_zsreg(c, R1, c->regs[R1]);
1011 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1012 c->regs[R1]|= INT_ALL_Rx;
1013 write_zsreg(c, R1, c->regs[R1]);
1014 c->regs[R14]&= ~DTRREQ;
1015 write_zsreg(c, R14, c->regs[R14]);
1016
1017 if(c->rx_buf[0])
1018 {
1019 free_page((unsigned long)c->rx_buf[0]);
1020 c->rx_buf[0]=NULL;
1021 }
1022 if(c->tx_dma_buf[0])
1023 {
1024 free_page((unsigned long)c->tx_dma_buf[0]);
1025 c->tx_dma_buf[0]=NULL;
1026 }
1027 chk=read_zsreg(c,R0);
1028 write_zsreg(c, R3, c->regs[R3]);
1029 z8530_rtsdtr(c,0);
1030
1031 spin_unlock_irqrestore(c->lock, flags);
1032
1033 return 0;
1034}
1035
1036EXPORT_SYMBOL(z8530_sync_dma_close);
1037
1038/**
1039 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1040 * @dev: The network device to attach
1041 * @c: The Z8530 channel to configure in sync DMA mode.
1042 *
1043 * Set up a Z85x30 device for synchronous DMA tranmission. One
1044 * ISA DMA channel must be available for this to work. The receive
1045 * side is run in PIO mode, but then it has the bigger FIFO.
1046 */
1047
1048int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1049{
1050 unsigned long cflags, dflags;
1051
1052 printk("Opening sync interface for TX-DMA\n");
1053 c->sync = 1;
1054 c->mtu = dev->mtu+64;
1055 c->count = 0;
1056 c->skb = NULL;
1057 c->skb2 = NULL;
1058
1059 /*
1060 * Allocate the DMA flip buffers. Limit by page size.
1061 * Everyone runs 1500 mtu or less on wan links so this
1062 * should be fine.
1063 */
1064
1065 if(c->mtu > PAGE_SIZE/2)
1066 return -EMSGSIZE;
1067
1068 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1069 if(c->tx_dma_buf[0]==NULL)
1070 return -ENOBUFS;
1071
1072 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1073
1074
1075 spin_lock_irqsave(c->lock, cflags);
1076
1077 /*
1078 * Load the PIO receive ring
1079 */
1080
1081 z8530_rx_done(c);
1082 z8530_rx_done(c);
1083
1084 /*
1085 * Load the DMA interfaces up
1086 */
1087
1088 c->rxdma_on = 0;
1089 c->txdma_on = 0;
1090
1091 c->tx_dma_used=0;
1092 c->dma_num=0;
1093 c->dma_ready=1;
1094 c->dma_tx = 1;
1095
1096 /*
1097 * Enable DMA control mode
1098 */
1099
1100 /*
1101 * TX DMA via DIR/REQ
1102 */
1103 c->regs[R14]|= DTRREQ;
1104 write_zsreg(c, R14, c->regs[R14]);
1105
1106 c->regs[R1]&= ~TxINT_ENAB;
1107 write_zsreg(c, R1, c->regs[R1]);
1108
1109 /*
1110 * Set up the DMA configuration
1111 */
1112
1113 dflags = claim_dma_lock();
1114
1115 disable_dma(c->txdma);
1116 clear_dma_ff(c->txdma);
1117 set_dma_mode(c->txdma, DMA_MODE_WRITE);
1118 disable_dma(c->txdma);
1119
1120 release_dma_lock(dflags);
1121
1122 /*
1123 * Select the DMA interrupt handlers
1124 */
1125
1126 c->rxdma_on = 0;
1127 c->txdma_on = 1;
1128 c->tx_dma_used = 1;
1129
1130 c->irqs = &z8530_txdma_sync;
1131 z8530_rtsdtr(c,1);
1132 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1133 spin_unlock_irqrestore(c->lock, cflags);
1134
1135 return 0;
1136}
1137
1138EXPORT_SYMBOL(z8530_sync_txdma_open);
1139
1140/**
1141 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1142 * @dev: Network device to detach
1143 * @c: Z8530 channel to move into discard mode
1144 *
1145 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1146 * and free the buffers.
1147 */
1148
1149int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1150{
1151 unsigned long dflags, cflags;
1152 u8 chk;
1153
1154
1155 spin_lock_irqsave(c->lock, cflags);
1156
1157 c->irqs = &z8530_nop;
1158 c->max = 0;
1159 c->sync = 0;
1160
1161 /*
1162 * Disable the PC DMA channels
1163 */
1164
1165 dflags = claim_dma_lock();
1166
1167 disable_dma(c->txdma);
1168 clear_dma_ff(c->txdma);
1169 c->txdma_on = 0;
1170 c->tx_dma_used = 0;
1171
1172 release_dma_lock(dflags);
1173
1174 /*
1175 * Disable DMA control mode
1176 */
1177
1178 c->regs[R1]&= ~WT_RDY_ENAB;
1179 write_zsreg(c, R1, c->regs[R1]);
1180 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1181 c->regs[R1]|= INT_ALL_Rx;
1182 write_zsreg(c, R1, c->regs[R1]);
1183 c->regs[R14]&= ~DTRREQ;
1184 write_zsreg(c, R14, c->regs[R14]);
1185
1186 if(c->tx_dma_buf[0])
1187 {
1188 free_page((unsigned long)c->tx_dma_buf[0]);
1189 c->tx_dma_buf[0]=NULL;
1190 }
1191 chk=read_zsreg(c,R0);
1192 write_zsreg(c, R3, c->regs[R3]);
1193 z8530_rtsdtr(c,0);
1194
1195 spin_unlock_irqrestore(c->lock, cflags);
1196 return 0;
1197}
1198
1199
1200EXPORT_SYMBOL(z8530_sync_txdma_close);
1201
1202
1203/*
1204 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1205 * it exists...
1206 */
1207
1208static char *z8530_type_name[]={
1209 "Z8530",
1210 "Z85C30",
1211 "Z85230"
1212};
1213
1214/**
1215 * z8530_describe - Uniformly describe a Z8530 port
1216 * @dev: Z8530 device to describe
1217 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1218 * @io: the port value in question
1219 *
1220 * Describe a Z8530 in a standard format. We must pass the I/O as
1221 * the port offset isnt predictable. The main reason for this function
1222 * is to try and get a common format of report.
1223 */
1224
1225void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1226{
1227 printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1228 dev->name,
1229 z8530_type_name[dev->type],
1230 mapping,
1231 Z8530_PORT_OF(io),
1232 dev->irq);
1233}
1234
1235EXPORT_SYMBOL(z8530_describe);
1236
1237/*
1238 * Locked operation part of the z8530 init code
1239 */
1240
1241static inline int do_z8530_init(struct z8530_dev *dev)
1242{
1243 /* NOP the interrupt handlers first - we might get a
1244 floating IRQ transition when we reset the chip */
1245 dev->chanA.irqs=&z8530_nop;
1246 dev->chanB.irqs=&z8530_nop;
1247 dev->chanA.dcdcheck=DCD;
1248 dev->chanB.dcdcheck=DCD;
1249
1250 /* Reset the chip */
1251 write_zsreg(&dev->chanA, R9, 0xC0);
1252 udelay(200);
1253 /* Now check its valid */
1254 write_zsreg(&dev->chanA, R12, 0xAA);
1255 if(read_zsreg(&dev->chanA, R12)!=0xAA)
1256 return -ENODEV;
1257 write_zsreg(&dev->chanA, R12, 0x55);
1258 if(read_zsreg(&dev->chanA, R12)!=0x55)
1259 return -ENODEV;
1260
1261 dev->type=Z8530;
1262
1263 /*
1264 * See the application note.
1265 */
1266
1267 write_zsreg(&dev->chanA, R15, 0x01);
1268
1269 /*
1270 * If we can set the low bit of R15 then
1271 * the chip is enhanced.
1272 */
1273
1274 if(read_zsreg(&dev->chanA, R15)==0x01)
1275 {
1276 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1277 /* Put a char in the fifo */
1278 write_zsreg(&dev->chanA, R8, 0);
1279 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1280 dev->type = Z85230; /* Has a FIFO */
1281 else
1282 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
1283 }
1284
1285 /*
1286 * The code assumes R7' and friends are
1287 * off. Use write_zsext() for these and keep
1288 * this bit clear.
1289 */
1290
1291 write_zsreg(&dev->chanA, R15, 0);
1292
1293 /*
1294 * At this point it looks like the chip is behaving
1295 */
1296
1297 memcpy(dev->chanA.regs, reg_init, 16);
1298 memcpy(dev->chanB.regs, reg_init ,16);
1299
1300 return 0;
1301}
1302
1303/**
1304 * z8530_init - Initialise a Z8530 device
1305 * @dev: Z8530 device to initialise.
1306 *
1307 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1308 * is present, identify the type and then program it to hopefully
1309 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1310 * state will sometimes get into stupid modes generating 10Khz
1311 * interrupt streams and the like.
1312 *
1313 * We set the interrupt handler up to discard any events, in case
1314 * we get them during reset or setp.
1315 *
1316 * Return 0 for success, or a negative value indicating the problem
1317 * in errno form.
1318 */
1319
1320int z8530_init(struct z8530_dev *dev)
1321{
1322 unsigned long flags;
1323 int ret;
1324
1325 /* Set up the chip level lock */
1326 spin_lock_init(&dev->lock);
1327 dev->chanA.lock = &dev->lock;
1328 dev->chanB.lock = &dev->lock;
1329
1330 spin_lock_irqsave(&dev->lock, flags);
1331 ret = do_z8530_init(dev);
1332 spin_unlock_irqrestore(&dev->lock, flags);
1333
1334 return ret;
1335}
1336
1337
1338EXPORT_SYMBOL(z8530_init);
1339
1340/**
1341 * z8530_shutdown - Shutdown a Z8530 device
1342 * @dev: The Z8530 chip to shutdown
1343 *
1344 * We set the interrupt handlers to silence any interrupts. We then
1345 * reset the chip and wait 100uS to be sure the reset completed. Just
1346 * in case the caller then tries to do stuff.
1347 *
1348 * This is called without the lock held
1349 */
1350
1351int z8530_shutdown(struct z8530_dev *dev)
1352{
1353 unsigned long flags;
1354 /* Reset the chip */
1355
1356 spin_lock_irqsave(&dev->lock, flags);
1357 dev->chanA.irqs=&z8530_nop;
1358 dev->chanB.irqs=&z8530_nop;
1359 write_zsreg(&dev->chanA, R9, 0xC0);
1360 /* We must lock the udelay, the chip is offlimits here */
1361 udelay(100);
1362 spin_unlock_irqrestore(&dev->lock, flags);
1363 return 0;
1364}
1365
1366EXPORT_SYMBOL(z8530_shutdown);
1367
1368/**
1369 * z8530_channel_load - Load channel data
1370 * @c: Z8530 channel to configure
1371 * @rtable: table of register, value pairs
1372 * FIXME: ioctl to allow user uploaded tables
1373 *
1374 * Load a Z8530 channel up from the system data. We use +16 to
1375 * indicate the "prime" registers. The value 255 terminates the
1376 * table.
1377 */
1378
1379int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1380{
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(c->lock, flags);
1384
1385 while(*rtable!=255)
1386 {
1387 int reg=*rtable++;
1388 if(reg>0x0F)
1389 write_zsreg(c, R15, c->regs[15]|1);
1390 write_zsreg(c, reg&0x0F, *rtable);
1391 if(reg>0x0F)
1392 write_zsreg(c, R15, c->regs[15]&~1);
1393 c->regs[reg]=*rtable++;
1394 }
1395 c->rx_function=z8530_null_rx;
1396 c->skb=NULL;
1397 c->tx_skb=NULL;
1398 c->tx_next_skb=NULL;
1399 c->mtu=1500;
1400 c->max=0;
1401 c->count=0;
1402 c->status=read_zsreg(c, R0);
1403 c->sync=1;
1404 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1405
1406 spin_unlock_irqrestore(c->lock, flags);
1407 return 0;
1408}
1409
1410EXPORT_SYMBOL(z8530_channel_load);
1411
1412
1413/**
1414 * z8530_tx_begin - Begin packet transmission
1415 * @c: The Z8530 channel to kick
1416 *
1417 * This is the speed sensitive side of transmission. If we are called
1418 * and no buffer is being transmitted we commence the next buffer. If
1419 * nothing is queued we idle the sync.
1420 *
1421 * Note: We are handling this code path in the interrupt path, keep it
1422 * fast or bad things will happen.
1423 *
1424 * Called with the lock held.
1425 */
1426
1427static void z8530_tx_begin(struct z8530_channel *c)
1428{
1429 unsigned long flags;
1430 if(c->tx_skb)
1431 return;
1432
1433 c->tx_skb=c->tx_next_skb;
1434 c->tx_next_skb=NULL;
1435 c->tx_ptr=c->tx_next_ptr;
1436
1437 if(c->tx_skb==NULL)
1438 {
1439 /* Idle on */
1440 if(c->dma_tx)
1441 {
1442 flags=claim_dma_lock();
1443 disable_dma(c->txdma);
1444 /*
1445 * Check if we crapped out.
1446 */
52e8a6a2 1447 if (get_dma_residue(c->txdma))
1da177e4 1448 {
52e8a6a2
KH
1449 c->netdevice->stats.tx_dropped++;
1450 c->netdevice->stats.tx_fifo_errors++;
1da177e4
LT
1451 }
1452 release_dma_lock(flags);
1453 }
1454 c->txcount=0;
1455 }
1456 else
1457 {
1458 c->txcount=c->tx_skb->len;
1459
1460
1461 if(c->dma_tx)
1462 {
1463 /*
1464 * FIXME. DMA is broken for the original 8530,
1465 * on the older parts we need to set a flag and
1466 * wait for a further TX interrupt to fire this
1467 * stage off
1468 */
1469
1470 flags=claim_dma_lock();
1471 disable_dma(c->txdma);
1472
1473 /*
1474 * These two are needed by the 8530/85C30
1475 * and must be issued when idling.
1476 */
1477
1478 if(c->dev->type!=Z85230)
1479 {
1480 write_zsctrl(c, RES_Tx_CRC);
1481 write_zsctrl(c, RES_EOM_L);
1482 }
1483 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1484 clear_dma_ff(c->txdma);
1485 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1486 set_dma_count(c->txdma, c->txcount);
1487 enable_dma(c->txdma);
1488 release_dma_lock(flags);
1489 write_zsctrl(c, RES_EOM_L);
1490 write_zsreg(c, R5, c->regs[R5]|TxENAB);
1491 }
1492 else
1493 {
1494
1495 /* ABUNDER off */
1496 write_zsreg(c, R10, c->regs[10]);
1497 write_zsctrl(c, RES_Tx_CRC);
1498
1499 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1500 {
1501 write_zsreg(c, R8, *c->tx_ptr++);
1502 c->txcount--;
1503 }
1504
1505 }
1506 }
1507 /*
1508 * Since we emptied tx_skb we can ask for more
1509 */
1510 netif_wake_queue(c->netdevice);
1511}
1512
1513/**
1514 * z8530_tx_done - TX complete callback
1515 * @c: The channel that completed a transmit.
1516 *
1517 * This is called when we complete a packet send. We wake the queue,
1518 * start the next packet going and then free the buffer of the existing
1519 * packet. This code is fairly timing sensitive.
1520 *
1521 * Called with the register lock held.
52e8a6a2
KH
1522 */
1523
1da177e4
LT
1524static void z8530_tx_done(struct z8530_channel *c)
1525{
1526 struct sk_buff *skb;
1527
1528 /* Actually this can happen.*/
52e8a6a2 1529 if (c->tx_skb == NULL)
1da177e4
LT
1530 return;
1531
52e8a6a2
KH
1532 skb = c->tx_skb;
1533 c->tx_skb = NULL;
1da177e4 1534 z8530_tx_begin(c);
52e8a6a2
KH
1535 c->netdevice->stats.tx_packets++;
1536 c->netdevice->stats.tx_bytes += skb->len;
1da177e4
LT
1537 dev_kfree_skb_irq(skb);
1538}
1539
1540/**
1541 * z8530_null_rx - Discard a packet
1542 * @c: The channel the packet arrived on
1543 * @skb: The buffer
1544 *
1545 * We point the receive handler at this function when idle. Instead
52e8a6a2 1546 * of processing the frames we get to throw them away.
1da177e4
LT
1547 */
1548
1549void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1550{
1551 dev_kfree_skb_any(skb);
1552}
1553
1554EXPORT_SYMBOL(z8530_null_rx);
1555
1556/**
1557 * z8530_rx_done - Receive completion callback
1558 * @c: The channel that completed a receive
1559 *
1560 * A new packet is complete. Our goal here is to get back into receive
1561 * mode as fast as possible. On the Z85230 we could change to using
1562 * ESCC mode, but on the older chips we have no choice. We flip to the
1563 * new buffer immediately in DMA mode so that the DMA of the next
1564 * frame can occur while we are copying the previous buffer to an sk_buff
1565 *
1566 * Called with the lock held
1567 */
1568
1569static void z8530_rx_done(struct z8530_channel *c)
1570{
1571 struct sk_buff *skb;
1572 int ct;
1573
1574 /*
1575 * Is our receive engine in DMA mode
1576 */
1577
1578 if(c->rxdma_on)
1579 {
1580 /*
1581 * Save the ready state and the buffer currently
1582 * being used as the DMA target
1583 */
1584
1585 int ready=c->dma_ready;
1586 unsigned char *rxb=c->rx_buf[c->dma_num];
1587 unsigned long flags;
1588
1589 /*
1590 * Complete this DMA. Neccessary to find the length
1591 */
1592
1593 flags=claim_dma_lock();
1594
1595 disable_dma(c->rxdma);
1596 clear_dma_ff(c->rxdma);
1597 c->rxdma_on=0;
1598 ct=c->mtu-get_dma_residue(c->rxdma);
1599 if(ct<0)
1600 ct=2; /* Shit happens.. */
1601 c->dma_ready=0;
1602
1603 /*
1604 * Normal case: the other slot is free, start the next DMA
1605 * into it immediately.
1606 */
1607
1608 if(ready)
1609 {
1610 c->dma_num^=1;
1611 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1612 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1613 set_dma_count(c->rxdma, c->mtu);
1614 c->rxdma_on = 1;
1615 enable_dma(c->rxdma);
1616 /* Stop any frames that we missed the head of
1617 from passing */
1618 write_zsreg(c, R0, RES_Rx_CRC);
1619 }
1620 else
1621 /* Can't occur as we dont reenable the DMA irq until
1622 after the flip is done */
52e8a6a2
KH
1623 printk(KERN_WARNING "%s: DMA flip overrun!\n",
1624 c->netdevice->name);
1625
1da177e4 1626 release_dma_lock(flags);
52e8a6a2 1627
1da177e4
LT
1628 /*
1629 * Shove the old buffer into an sk_buff. We can't DMA
1630 * directly into one on a PC - it might be above the 16Mb
1631 * boundary. Optimisation - we could check to see if we
1632 * can avoid the copy. Optimisation 2 - make the memcpy
1633 * a copychecksum.
1634 */
52e8a6a2
KH
1635
1636 skb = dev_alloc_skb(ct);
1637 if (skb == NULL) {
1638 c->netdevice->stats.rx_dropped++;
1639 printk(KERN_WARNING "%s: Memory squeeze.\n",
1640 c->netdevice->name);
1641 } else {
1da177e4 1642 skb_put(skb, ct);
27d7ff46 1643 skb_copy_to_linear_data(skb, rxb, ct);
52e8a6a2
KH
1644 c->netdevice->stats.rx_packets++;
1645 c->netdevice->stats.rx_bytes += ct;
1da177e4 1646 }
52e8a6a2
KH
1647 c->dma_ready = 1;
1648 } else {
1649 RT_LOCK;
1650 skb = c->skb;
1651
1da177e4
LT
1652 /*
1653 * The game we play for non DMA is similar. We want to
1654 * get the controller set up for the next packet as fast
1655 * as possible. We potentially only have one byte + the
1656 * fifo length for this. Thus we want to flip to the new
1657 * buffer and then mess around copying and allocating
1658 * things. For the current case it doesn't matter but
1659 * if you build a system where the sync irq isnt blocked
1660 * by the kernel IRQ disable then you need only block the
1661 * sync IRQ for the RT_LOCK area.
52e8a6a2 1662 *
1da177e4
LT
1663 */
1664 ct=c->count;
52e8a6a2 1665
1da177e4
LT
1666 c->skb = c->skb2;
1667 c->count = 0;
1668 c->max = c->mtu;
52e8a6a2 1669 if (c->skb) {
1da177e4
LT
1670 c->dptr = c->skb->data;
1671 c->max = c->mtu;
52e8a6a2
KH
1672 } else {
1673 c->count = 0;
1da177e4
LT
1674 c->max = 0;
1675 }
1676 RT_UNLOCK;
1677
1678 c->skb2 = dev_alloc_skb(c->mtu);
52e8a6a2 1679 if (c->skb2 == NULL)
1da177e4 1680 printk(KERN_WARNING "%s: memory squeeze.\n",
52e8a6a2 1681 c->netdevice->name);
1da177e4 1682 else
52e8a6a2
KH
1683 skb_put(c->skb2, c->mtu);
1684 c->netdevice->stats.rx_packets++;
1685 c->netdevice->stats.rx_bytes += ct;
1da177e4
LT
1686 }
1687 /*
1688 * If we received a frame we must now process it.
1689 */
52e8a6a2 1690 if (skb) {
1da177e4 1691 skb_trim(skb, ct);
52e8a6a2
KH
1692 c->rx_function(c, skb);
1693 } else {
1694 c->netdevice->stats.rx_dropped++;
1da177e4
LT
1695 printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1696 }
1697}
1698
1699/**
1700 * spans_boundary - Check a packet can be ISA DMA'd
1701 * @skb: The buffer to check
1702 *
1703 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1704 * thing can only DMA within a 64K block not across the edges of it.
1705 */
52e8a6a2 1706
1da177e4
LT
1707static inline int spans_boundary(struct sk_buff *skb)
1708{
1709 unsigned long a=(unsigned long)skb->data;
1710 a^=(a+skb->len);
1711 if(a&0x00010000) /* If the 64K bit is different.. */
1712 return 1;
1713 return 0;
1714}
1715
1716/**
1717 * z8530_queue_xmit - Queue a packet
1718 * @c: The channel to use
1719 * @skb: The packet to kick down the channel
1720 *
1721 * Queue a packet for transmission. Because we have rather
1722 * hard to hit interrupt latencies for the Z85230 per packet
1723 * even in DMA mode we do the flip to DMA buffer if needed here
1724 * not in the IRQ.
1725 *
1726 * Called from the network code. The lock is not held at this
1727 * point.
1728 */
1729
1730int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1731{
1732 unsigned long flags;
1733
1734 netif_stop_queue(c->netdevice);
1735 if(c->tx_next_skb)
1736 {
1737 return 1;
1738 }
1739
1740 /* PC SPECIFIC - DMA limits */
1741
1742 /*
1743 * If we will DMA the transmit and its gone over the ISA bus
1744 * limit, then copy to the flip buffer
1745 */
1746
1747 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1748 {
1749 /*
1750 * Send the flip buffer, and flip the flippy bit.
1751 * We don't care which is used when just so long as
1752 * we never use the same buffer twice in a row. Since
1753 * only one buffer can be going out at a time the other
1754 * has to be safe.
1755 */
1756 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1757 c->tx_dma_used^=1; /* Flip temp buffer */
d626f62b 1758 skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1da177e4
LT
1759 }
1760 else
1761 c->tx_next_ptr=skb->data;
1762 RT_LOCK;
1763 c->tx_next_skb=skb;
1764 RT_UNLOCK;
1765
1766 spin_lock_irqsave(c->lock, flags);
1767 z8530_tx_begin(c);
1768 spin_unlock_irqrestore(c->lock, flags);
1769
1770 return 0;
1771}
1772
1773EXPORT_SYMBOL(z8530_queue_xmit);
1774
1da177e4
LT
1775/*
1776 * Module support
1777 */
1778static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1779
1780static int __init z85230_init_driver(void)
1781{
1782 printk(banner);
1783 return 0;
1784}
1785module_init(z85230_init_driver);
1786
1787static void __exit z85230_cleanup_driver(void)
1788{
1789}
1790module_exit(z85230_cleanup_driver);
1791
1792MODULE_AUTHOR("Red Hat Inc.");
1793MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1794MODULE_LICENSE("GPL");