IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / smc91x.c
CommitLineData
1da177e4
LT
1/*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 *
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
29 *
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
32 *
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
35 *
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@cam.org>
39 * Russell King <rmk@arm.linux.org.uk>
40 *
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
59 */
60static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>\n";
62
63/* Debugging level */
64#ifndef SMC_DEBUG
65#define SMC_DEBUG 0
66#endif
67
68
1da177e4
LT
69#include <linux/init.h>
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/sched.h>
73#include <linux/slab.h>
74#include <linux/delay.h>
75#include <linux/interrupt.h>
76#include <linux/errno.h>
77#include <linux/ioport.h>
78#include <linux/crc32.h>
d052d1be 79#include <linux/platform_device.h>
1da177e4
LT
80#include <linux/spinlock.h>
81#include <linux/ethtool.h>
82#include <linux/mii.h>
83#include <linux/workqueue.h>
84
85#include <linux/netdevice.h>
86#include <linux/etherdevice.h>
87#include <linux/skbuff.h>
88
89#include <asm/io.h>
1da177e4
LT
90
91#include "smc91x.h"
92
93#ifdef CONFIG_ISA
94/*
95 * the LAN91C111 can be at any of the following port addresses. To change,
96 * for a slightly different card, you can add it to the array. Keep in
97 * mind that the array must end in zero.
98 */
99static unsigned int smc_portlist[] __initdata = {
100 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0,
101 0x300, 0x320, 0x340, 0x360, 0x380, 0x3A0, 0x3C0, 0x3E0, 0
102};
103
104#ifndef SMC_IOADDR
105# define SMC_IOADDR -1
106#endif
107static unsigned long io = SMC_IOADDR;
108module_param(io, ulong, 0400);
109MODULE_PARM_DESC(io, "I/O base address");
110
111#ifndef SMC_IRQ
112# define SMC_IRQ -1
113#endif
114static int irq = SMC_IRQ;
115module_param(irq, int, 0400);
116MODULE_PARM_DESC(irq, "IRQ number");
117
118#endif /* CONFIG_ISA */
119
120#ifndef SMC_NOWAIT
121# define SMC_NOWAIT 0
122#endif
123static int nowait = SMC_NOWAIT;
124module_param(nowait, int, 0400);
125MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
126
127/*
128 * Transmit timeout, default 5 seconds.
129 */
ea937560 130static int watchdog = 1000;
1da177e4
LT
131module_param(watchdog, int, 0400);
132MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
133
134MODULE_LICENSE("GPL");
135
136/*
137 * The internal workings of the driver. If you are changing anything
138 * here with the SMC stuff, you should have the datasheet and know
139 * what you are doing.
140 */
141#define CARDNAME "smc91x"
142
143/*
144 * Use power-down feature of the chip
145 */
146#define POWER_DOWN 1
147
148/*
149 * Wait time for memory to be free. This probably shouldn't be
150 * tuned that much, as waiting for this means nothing else happens
151 * in the system
152 */
153#define MEMORY_WAIT_TIME 16
154
5d0571d9
NP
155/*
156 * The maximum number of processing loops allowed for each call to the
6aa20a22 157 * IRQ handler.
5d0571d9
NP
158 */
159#define MAX_IRQ_LOOPS 8
160
1da177e4
LT
161/*
162 * This selects whether TX packets are sent one by one to the SMC91x internal
163 * memory and throttled until transmission completes. This may prevent
164 * RX overruns a litle by keeping much of the memory free for RX packets
165 * but to the expense of reduced TX throughput and increased IRQ overhead.
166 * Note this is not a cure for a too slow data bus or too high IRQ latency.
167 */
168#define THROTTLE_TX_PKTS 0
169
170/*
171 * The MII clock high/low times. 2x this number gives the MII clock period
172 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
173 */
174#define MII_DELAY 1
175
176/* store this information for the driver.. */
177struct smc_local {
178 /*
179 * If I have to wait until memory is available to send a
180 * packet, I will store the skbuff here, until I get the
181 * desired memory. Then, I'll send it out and free it.
182 */
183 struct sk_buff *pending_tx_skb;
184 struct tasklet_struct tx_task;
185
186 /*
187 * these are things that the kernel wants me to keep, so users
188 * can find out semi-useless statistics of how well the card is
189 * performing
190 */
191 struct net_device_stats stats;
192
193 /* version/revision of the SMC91x chip */
194 int version;
195
196 /* Contains the current active transmission mode */
197 int tcr_cur_mode;
198
199 /* Contains the current active receive mode */
200 int rcr_cur_mode;
201
202 /* Contains the current active receive/phy mode */
203 int rpc_cur_mode;
204 int ctl_rfduplx;
205 int ctl_rspeed;
206
207 u32 msg_enable;
208 u32 phy_type;
209 struct mii_if_info mii;
210
211 /* work queue */
212 struct work_struct phy_configure;
213 int work_pending;
214
215 spinlock_t lock;
216
1da177e4
LT
217#ifdef SMC_USE_PXA_DMA
218 /* DMA needs the physical address of the chip */
219 u_long physaddr;
220#endif
221 void __iomem *base;
09779c6d 222 void __iomem *datacs;
1da177e4
LT
223};
224
225#if SMC_DEBUG > 0
226#define DBG(n, args...) \
227 do { \
228 if (SMC_DEBUG >= (n)) \
229 printk(args); \
230 } while (0)
231
232#define PRINTK(args...) printk(args)
233#else
234#define DBG(n, args...) do { } while(0)
235#define PRINTK(args...) printk(KERN_DEBUG args)
236#endif
237
238#if SMC_DEBUG > 3
239static void PRINT_PKT(u_char *buf, int length)
240{
241 int i;
242 int remainder;
243 int lines;
244
245 lines = length / 16;
246 remainder = length % 16;
247
248 for (i = 0; i < lines ; i ++) {
249 int cur;
250 for (cur = 0; cur < 8; cur++) {
251 u_char a, b;
252 a = *buf++;
253 b = *buf++;
254 printk("%02x%02x ", a, b);
255 }
256 printk("\n");
257 }
258 for (i = 0; i < remainder/2 ; i++) {
259 u_char a, b;
260 a = *buf++;
261 b = *buf++;
262 printk("%02x%02x ", a, b);
263 }
264 printk("\n");
265}
266#else
267#define PRINT_PKT(x...) do { } while(0)
268#endif
269
270
271/* this enables an interrupt in the interrupt mask register */
272#define SMC_ENABLE_INT(x) do { \
273 unsigned char mask; \
274 spin_lock_irq(&lp->lock); \
275 mask = SMC_GET_INT_MASK(); \
276 mask |= (x); \
277 SMC_SET_INT_MASK(mask); \
278 spin_unlock_irq(&lp->lock); \
279} while (0)
280
281/* this disables an interrupt from the interrupt mask register */
282#define SMC_DISABLE_INT(x) do { \
283 unsigned char mask; \
284 spin_lock_irq(&lp->lock); \
285 mask = SMC_GET_INT_MASK(); \
286 mask &= ~(x); \
287 SMC_SET_INT_MASK(mask); \
288 spin_unlock_irq(&lp->lock); \
289} while (0)
290
291/*
292 * Wait while MMU is busy. This is usually in the order of a few nanosecs
293 * if at all, but let's avoid deadlocking the system if the hardware
294 * decides to go south.
295 */
296#define SMC_WAIT_MMU_BUSY() do { \
297 if (unlikely(SMC_GET_MMU_CMD() & MC_BUSY)) { \
298 unsigned long timeout = jiffies + 2; \
299 while (SMC_GET_MMU_CMD() & MC_BUSY) { \
300 if (time_after(jiffies, timeout)) { \
301 printk("%s: timeout %s line %d\n", \
302 dev->name, __FILE__, __LINE__); \
303 break; \
304 } \
305 cpu_relax(); \
306 } \
307 } \
308} while (0)
309
310
311/*
312 * this does a soft reset on the device
313 */
314static void smc_reset(struct net_device *dev)
315{
316 struct smc_local *lp = netdev_priv(dev);
317 void __iomem *ioaddr = lp->base;
318 unsigned int ctl, cfg;
be83668a 319 struct sk_buff *pending_skb;
1da177e4
LT
320
321 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
322
be83668a 323 /* Disable all interrupts, block TX tasklet */
76cb4fe7 324 spin_lock_irq(&lp->lock);
1da177e4
LT
325 SMC_SELECT_BANK(2);
326 SMC_SET_INT_MASK(0);
be83668a
NP
327 pending_skb = lp->pending_tx_skb;
328 lp->pending_tx_skb = NULL;
76cb4fe7 329 spin_unlock_irq(&lp->lock);
1da177e4 330
be83668a
NP
331 /* free any pending tx skb */
332 if (pending_skb) {
333 dev_kfree_skb(pending_skb);
334 lp->stats.tx_errors++;
335 lp->stats.tx_aborted_errors++;
336 }
337
1da177e4
LT
338 /*
339 * This resets the registers mostly to defaults, but doesn't
340 * affect EEPROM. That seems unnecessary
341 */
342 SMC_SELECT_BANK(0);
343 SMC_SET_RCR(RCR_SOFTRST);
344
345 /*
346 * Setup the Configuration Register
347 * This is necessary because the CONFIG_REG is not affected
348 * by a soft reset
349 */
350 SMC_SELECT_BANK(1);
351
352 cfg = CONFIG_DEFAULT;
353
354 /*
355 * Setup for fast accesses if requested. If the card/system
356 * can't handle it then there will be no recovery except for
357 * a hard reset or power cycle
358 */
359 if (nowait)
360 cfg |= CONFIG_NO_WAIT;
361
362 /*
363 * Release from possible power-down state
364 * Configuration register is not affected by Soft Reset
365 */
366 cfg |= CONFIG_EPH_POWER_EN;
367
368 SMC_SET_CONFIG(cfg);
369
370 /* this should pause enough for the chip to be happy */
371 /*
372 * elaborate? What does the chip _need_? --jgarzik
373 *
374 * This seems to be undocumented, but something the original
375 * driver(s) have always done. Suspect undocumented timing
376 * info/determined empirically. --rmk
377 */
378 udelay(1);
379
380 /* Disable transmit and receive functionality */
381 SMC_SELECT_BANK(0);
382 SMC_SET_RCR(RCR_CLEAR);
383 SMC_SET_TCR(TCR_CLEAR);
384
385 SMC_SELECT_BANK(1);
386 ctl = SMC_GET_CTL() | CTL_LE_ENABLE;
387
388 /*
389 * Set the control register to automatically release successfully
390 * transmitted packets, to make the best use out of our limited
391 * memory
392 */
393 if(!THROTTLE_TX_PKTS)
394 ctl |= CTL_AUTO_RELEASE;
395 else
396 ctl &= ~CTL_AUTO_RELEASE;
397 SMC_SET_CTL(ctl);
398
399 /* Reset the MMU */
400 SMC_SELECT_BANK(2);
401 SMC_SET_MMU_CMD(MC_RESET);
402 SMC_WAIT_MMU_BUSY();
1da177e4
LT
403}
404
405/*
406 * Enable Interrupts, Receive, and Transmit
407 */
408static void smc_enable(struct net_device *dev)
409{
410 struct smc_local *lp = netdev_priv(dev);
411 void __iomem *ioaddr = lp->base;
412 int mask;
413
414 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
415
416 /* see the header file for options in TCR/RCR DEFAULT */
417 SMC_SELECT_BANK(0);
418 SMC_SET_TCR(lp->tcr_cur_mode);
419 SMC_SET_RCR(lp->rcr_cur_mode);
420
421 SMC_SELECT_BANK(1);
422 SMC_SET_MAC_ADDR(dev->dev_addr);
423
424 /* now, enable interrupts */
425 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
426 if (lp->version >= (CHIP_91100 << 4))
427 mask |= IM_MDINT;
428 SMC_SELECT_BANK(2);
429 SMC_SET_INT_MASK(mask);
430
431 /*
432 * From this point the register bank must _NOT_ be switched away
433 * to something else than bank 2 without proper locking against
434 * races with any tasklet or interrupt handlers until smc_shutdown()
435 * or smc_reset() is called.
436 */
437}
438
439/*
440 * this puts the device in an inactive state
441 */
442static void smc_shutdown(struct net_device *dev)
443{
444 struct smc_local *lp = netdev_priv(dev);
445 void __iomem *ioaddr = lp->base;
be83668a 446 struct sk_buff *pending_skb;
1da177e4
LT
447
448 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
449
450 /* no more interrupts for me */
76cb4fe7 451 spin_lock_irq(&lp->lock);
1da177e4
LT
452 SMC_SELECT_BANK(2);
453 SMC_SET_INT_MASK(0);
be83668a
NP
454 pending_skb = lp->pending_tx_skb;
455 lp->pending_tx_skb = NULL;
76cb4fe7 456 spin_unlock_irq(&lp->lock);
be83668a
NP
457 if (pending_skb)
458 dev_kfree_skb(pending_skb);
1da177e4
LT
459
460 /* and tell the card to stay away from that nasty outside world */
461 SMC_SELECT_BANK(0);
462 SMC_SET_RCR(RCR_CLEAR);
463 SMC_SET_TCR(TCR_CLEAR);
464
465#ifdef POWER_DOWN
466 /* finally, shut the chip down */
467 SMC_SELECT_BANK(1);
468 SMC_SET_CONFIG(SMC_GET_CONFIG() & ~CONFIG_EPH_POWER_EN);
469#endif
470}
471
472/*
473 * This is the procedure to handle the receipt of a packet.
474 */
475static inline void smc_rcv(struct net_device *dev)
476{
477 struct smc_local *lp = netdev_priv(dev);
478 void __iomem *ioaddr = lp->base;
479 unsigned int packet_number, status, packet_len;
480
481 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
482
483 packet_number = SMC_GET_RXFIFO();
484 if (unlikely(packet_number & RXFIFO_REMPTY)) {
485 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
486 return;
487 }
488
489 /* read from start of packet */
490 SMC_SET_PTR(PTR_READ | PTR_RCV | PTR_AUTOINC);
491
492 /* First two words are status and packet length */
493 SMC_GET_PKT_HDR(status, packet_len);
494 packet_len &= 0x07ff; /* mask off top bits */
495 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
496 dev->name, packet_number, status,
497 packet_len, packet_len);
498
499 back:
500 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
501 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
502 /* accept VLAN packets */
503 status &= ~RS_TOOLONG;
504 goto back;
505 }
506 if (packet_len < 6) {
507 /* bloody hardware */
508 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
509 dev->name, packet_len, status);
510 status |= RS_TOOSHORT;
511 }
512 SMC_WAIT_MMU_BUSY();
513 SMC_SET_MMU_CMD(MC_RELEASE);
514 lp->stats.rx_errors++;
515 if (status & RS_ALGNERR)
516 lp->stats.rx_frame_errors++;
517 if (status & (RS_TOOSHORT | RS_TOOLONG))
518 lp->stats.rx_length_errors++;
519 if (status & RS_BADCRC)
520 lp->stats.rx_crc_errors++;
521 } else {
522 struct sk_buff *skb;
523 unsigned char *data;
524 unsigned int data_len;
525
526 /* set multicast stats */
527 if (status & RS_MULTICAST)
528 lp->stats.multicast++;
529
530 /*
531 * Actual payload is packet_len - 6 (or 5 if odd byte).
532 * We want skb_reserve(2) and the final ctrl word
533 * (2 bytes, possibly containing the payload odd byte).
534 * Furthermore, we add 2 bytes to allow rounding up to
535 * multiple of 4 bytes on 32 bit buses.
536 * Hence packet_len - 6 + 2 + 2 + 2.
537 */
538 skb = dev_alloc_skb(packet_len);
539 if (unlikely(skb == NULL)) {
540 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
541 dev->name);
542 SMC_WAIT_MMU_BUSY();
543 SMC_SET_MMU_CMD(MC_RELEASE);
544 lp->stats.rx_dropped++;
545 return;
546 }
547
548 /* Align IP header to 32 bits */
549 skb_reserve(skb, 2);
550
551 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
552 if (lp->version == 0x90)
553 status |= RS_ODDFRAME;
554
555 /*
556 * If odd length: packet_len - 5,
557 * otherwise packet_len - 6.
558 * With the trailing ctrl byte it's packet_len - 4.
559 */
560 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
561 data = skb_put(skb, data_len);
562 SMC_PULL_DATA(data, packet_len - 4);
563
564 SMC_WAIT_MMU_BUSY();
565 SMC_SET_MMU_CMD(MC_RELEASE);
566
567 PRINT_PKT(data, packet_len - 4);
568
569 dev->last_rx = jiffies;
570 skb->dev = dev;
571 skb->protocol = eth_type_trans(skb, dev);
572 netif_rx(skb);
573 lp->stats.rx_packets++;
574 lp->stats.rx_bytes += data_len;
575 }
576}
577
578#ifdef CONFIG_SMP
579/*
580 * On SMP we have the following problem:
581 *
582 * A = smc_hardware_send_pkt()
583 * B = smc_hard_start_xmit()
584 * C = smc_interrupt()
585 *
586 * A and B can never be executed simultaneously. However, at least on UP,
587 * it is possible (and even desirable) for C to interrupt execution of
588 * A or B in order to have better RX reliability and avoid overruns.
589 * C, just like A and B, must have exclusive access to the chip and
590 * each of them must lock against any other concurrent access.
591 * Unfortunately this is not possible to have C suspend execution of A or
592 * B taking place on another CPU. On UP this is no an issue since A and B
593 * are run from softirq context and C from hard IRQ context, and there is
594 * no other CPU where concurrent access can happen.
595 * If ever there is a way to force at least B and C to always be executed
596 * on the same CPU then we could use read/write locks to protect against
597 * any other concurrent access and C would always interrupt B. But life
598 * isn't that easy in a SMP world...
599 */
600#define smc_special_trylock(lock) \
601({ \
602 int __ret; \
603 local_irq_disable(); \
604 __ret = spin_trylock(lock); \
605 if (!__ret) \
606 local_irq_enable(); \
607 __ret; \
608})
609#define smc_special_lock(lock) spin_lock_irq(lock)
610#define smc_special_unlock(lock) spin_unlock_irq(lock)
611#else
612#define smc_special_trylock(lock) (1)
613#define smc_special_lock(lock) do { } while (0)
614#define smc_special_unlock(lock) do { } while (0)
615#endif
616
617/*
618 * This is called to actually send a packet to the chip.
619 */
620static void smc_hardware_send_pkt(unsigned long data)
621{
622 struct net_device *dev = (struct net_device *)data;
623 struct smc_local *lp = netdev_priv(dev);
624 void __iomem *ioaddr = lp->base;
625 struct sk_buff *skb;
626 unsigned int packet_no, len;
627 unsigned char *buf;
628
629 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
630
631 if (!smc_special_trylock(&lp->lock)) {
632 netif_stop_queue(dev);
633 tasklet_schedule(&lp->tx_task);
634 return;
635 }
636
637 skb = lp->pending_tx_skb;
be83668a
NP
638 if (unlikely(!skb)) {
639 smc_special_unlock(&lp->lock);
640 return;
641 }
1da177e4 642 lp->pending_tx_skb = NULL;
be83668a 643
1da177e4
LT
644 packet_no = SMC_GET_AR();
645 if (unlikely(packet_no & AR_FAILED)) {
646 printk("%s: Memory allocation failed.\n", dev->name);
647 lp->stats.tx_errors++;
648 lp->stats.tx_fifo_errors++;
649 smc_special_unlock(&lp->lock);
650 goto done;
651 }
652
653 /* point to the beginning of the packet */
654 SMC_SET_PN(packet_no);
655 SMC_SET_PTR(PTR_AUTOINC);
656
657 buf = skb->data;
658 len = skb->len;
659 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
660 dev->name, packet_no, len, len, buf);
661 PRINT_PKT(buf, len);
662
663 /*
664 * Send the packet length (+6 for status words, length, and ctl.
665 * The card will pad to 64 bytes with zeroes if packet is too small.
666 */
667 SMC_PUT_PKT_HDR(0, len + 6);
668
669 /* send the actual data */
670 SMC_PUSH_DATA(buf, len & ~1);
671
672 /* Send final ctl word with the last byte if there is one */
673 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG);
674
675 /*
ea937560
NP
676 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
677 * have the effect of having at most one packet queued for TX
678 * in the chip's memory at all time.
679 *
680 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
681 * when memory allocation (MC_ALLOC) does not succeed right away.
1da177e4 682 */
ea937560 683 if (THROTTLE_TX_PKTS)
1da177e4
LT
684 netif_stop_queue(dev);
685
686 /* queue the packet for TX */
687 SMC_SET_MMU_CMD(MC_ENQUEUE);
1da177e4
LT
688 smc_special_unlock(&lp->lock);
689
690 dev->trans_start = jiffies;
691 lp->stats.tx_packets++;
692 lp->stats.tx_bytes += len;
693
694 SMC_ENABLE_INT(IM_TX_INT | IM_TX_EMPTY_INT);
695
696done: if (!THROTTLE_TX_PKTS)
697 netif_wake_queue(dev);
698
699 dev_kfree_skb(skb);
700}
701
702/*
703 * Since I am not sure if I will have enough room in the chip's ram
704 * to store the packet, I call this routine which either sends it
705 * now, or set the card to generates an interrupt when ready
706 * for the packet.
707 */
708static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
709{
710 struct smc_local *lp = netdev_priv(dev);
711 void __iomem *ioaddr = lp->base;
712 unsigned int numPages, poll_count, status;
713
714 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
715
716 BUG_ON(lp->pending_tx_skb != NULL);
1da177e4
LT
717
718 /*
719 * The MMU wants the number of pages to be the number of 256 bytes
720 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
721 *
722 * The 91C111 ignores the size bits, but earlier models don't.
723 *
724 * Pkt size for allocating is data length +6 (for additional status
725 * words, length and ctl)
726 *
727 * If odd size then last byte is included in ctl word.
728 */
729 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
730 if (unlikely(numPages > 7)) {
731 printk("%s: Far too big packet error.\n", dev->name);
1da177e4
LT
732 lp->stats.tx_errors++;
733 lp->stats.tx_dropped++;
734 dev_kfree_skb(skb);
735 return 0;
736 }
737
738 smc_special_lock(&lp->lock);
739
740 /* now, try to allocate the memory */
741 SMC_SET_MMU_CMD(MC_ALLOC | numPages);
742
743 /*
744 * Poll the chip for a short amount of time in case the
745 * allocation succeeds quickly.
746 */
747 poll_count = MEMORY_WAIT_TIME;
748 do {
749 status = SMC_GET_INT();
750 if (status & IM_ALLOC_INT) {
751 SMC_ACK_INT(IM_ALLOC_INT);
752 break;
753 }
754 } while (--poll_count);
755
756 smc_special_unlock(&lp->lock);
757
be83668a 758 lp->pending_tx_skb = skb;
1da177e4
LT
759 if (!poll_count) {
760 /* oh well, wait until the chip finds memory later */
761 netif_stop_queue(dev);
762 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
763 SMC_ENABLE_INT(IM_ALLOC_INT);
764 } else {
765 /*
766 * Allocation succeeded: push packet to the chip's own memory
767 * immediately.
6aa20a22 768 */
1da177e4
LT
769 smc_hardware_send_pkt((unsigned long)dev);
770 }
771
772 return 0;
773}
774
775/*
776 * This handles a TX interrupt, which is only called when:
777 * - a TX error occurred, or
778 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
779 */
780static void smc_tx(struct net_device *dev)
781{
782 struct smc_local *lp = netdev_priv(dev);
783 void __iomem *ioaddr = lp->base;
784 unsigned int saved_packet, packet_no, tx_status, pkt_len;
785
786 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
787
788 /* If the TX FIFO is empty then nothing to do */
789 packet_no = SMC_GET_TXFIFO();
790 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
791 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
792 return;
793 }
794
795 /* select packet to read from */
796 saved_packet = SMC_GET_PN();
797 SMC_SET_PN(packet_no);
798
799 /* read the first word (status word) from this packet */
800 SMC_SET_PTR(PTR_AUTOINC | PTR_READ);
801 SMC_GET_PKT_HDR(tx_status, pkt_len);
802 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
803 dev->name, tx_status, packet_no);
804
8de90115 805 if (!(tx_status & ES_TX_SUC))
1da177e4 806 lp->stats.tx_errors++;
8de90115
NP
807
808 if (tx_status & ES_LOSTCARR)
1da177e4
LT
809 lp->stats.tx_carrier_errors++;
810
8de90115
NP
811 if (tx_status & (ES_LATCOL | ES_16COL)) {
812 PRINTK("%s: %s occurred on last xmit\n", dev->name,
813 (tx_status & ES_LATCOL) ?
814 "late collision" : "too many collisions");
1da177e4
LT
815 lp->stats.tx_window_errors++;
816 if (!(lp->stats.tx_window_errors & 63) && net_ratelimit()) {
8de90115
NP
817 printk(KERN_INFO "%s: unexpectedly large number of "
818 "bad collisions. Please check duplex "
1da177e4
LT
819 "setting.\n", dev->name);
820 }
821 }
822
823 /* kill the packet */
824 SMC_WAIT_MMU_BUSY();
825 SMC_SET_MMU_CMD(MC_FREEPKT);
826
827 /* Don't restore Packet Number Reg until busy bit is cleared */
828 SMC_WAIT_MMU_BUSY();
829 SMC_SET_PN(saved_packet);
830
831 /* re-enable transmit */
832 SMC_SELECT_BANK(0);
833 SMC_SET_TCR(lp->tcr_cur_mode);
834 SMC_SELECT_BANK(2);
835}
836
837
838/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
839
840static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
841{
842 struct smc_local *lp = netdev_priv(dev);
843 void __iomem *ioaddr = lp->base;
844 unsigned int mii_reg, mask;
845
846 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
847 mii_reg |= MII_MDOE;
848
849 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
850 if (val & mask)
851 mii_reg |= MII_MDO;
852 else
853 mii_reg &= ~MII_MDO;
854
855 SMC_SET_MII(mii_reg);
856 udelay(MII_DELAY);
857 SMC_SET_MII(mii_reg | MII_MCLK);
858 udelay(MII_DELAY);
859 }
860}
861
862static unsigned int smc_mii_in(struct net_device *dev, int bits)
863{
864 struct smc_local *lp = netdev_priv(dev);
865 void __iomem *ioaddr = lp->base;
866 unsigned int mii_reg, mask, val;
867
868 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
869 SMC_SET_MII(mii_reg);
870
871 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
872 if (SMC_GET_MII() & MII_MDI)
873 val |= mask;
874
875 SMC_SET_MII(mii_reg);
876 udelay(MII_DELAY);
877 SMC_SET_MII(mii_reg | MII_MCLK);
878 udelay(MII_DELAY);
879 }
880
881 return val;
882}
883
884/*
885 * Reads a register from the MII Management serial interface
886 */
887static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
888{
889 struct smc_local *lp = netdev_priv(dev);
890 void __iomem *ioaddr = lp->base;
891 unsigned int phydata;
892
893 SMC_SELECT_BANK(3);
894
895 /* Idle - 32 ones */
896 smc_mii_out(dev, 0xffffffff, 32);
897
898 /* Start code (01) + read (10) + phyaddr + phyreg */
899 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
900
901 /* Turnaround (2bits) + phydata */
902 phydata = smc_mii_in(dev, 18);
903
904 /* Return to idle state */
905 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
906
907 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
908 __FUNCTION__, phyaddr, phyreg, phydata);
909
910 SMC_SELECT_BANK(2);
911 return phydata;
912}
913
914/*
915 * Writes a register to the MII Management serial interface
916 */
917static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
918 int phydata)
919{
920 struct smc_local *lp = netdev_priv(dev);
921 void __iomem *ioaddr = lp->base;
922
923 SMC_SELECT_BANK(3);
924
925 /* Idle - 32 ones */
926 smc_mii_out(dev, 0xffffffff, 32);
927
928 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
929 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
930
931 /* Return to idle state */
932 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
933
934 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
935 __FUNCTION__, phyaddr, phyreg, phydata);
936
937 SMC_SELECT_BANK(2);
938}
939
940/*
941 * Finds and reports the PHY address
942 */
943static void smc_phy_detect(struct net_device *dev)
944{
945 struct smc_local *lp = netdev_priv(dev);
946 int phyaddr;
947
948 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
949
950 lp->phy_type = 0;
951
952 /*
953 * Scan all 32 PHY addresses if necessary, starting at
954 * PHY#1 to PHY#31, and then PHY#0 last.
955 */
956 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
957 unsigned int id1, id2;
958
959 /* Read the PHY identifiers */
960 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
961 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
962
963 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
964 dev->name, id1, id2);
965
966 /* Make sure it is a valid identifier */
967 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
968 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
969 /* Save the PHY's address */
970 lp->mii.phy_id = phyaddr & 31;
971 lp->phy_type = id1 << 16 | id2;
972 break;
973 }
974 }
975}
976
977/*
978 * Sets the PHY to a configuration as determined by the user
979 */
980static int smc_phy_fixed(struct net_device *dev)
981{
982 struct smc_local *lp = netdev_priv(dev);
983 void __iomem *ioaddr = lp->base;
984 int phyaddr = lp->mii.phy_id;
985 int bmcr, cfg1;
986
987 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
988
989 /* Enter Link Disable state */
990 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
991 cfg1 |= PHY_CFG1_LNKDIS;
992 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
993
994 /*
995 * Set our fixed capabilities
996 * Disable auto-negotiation
997 */
998 bmcr = 0;
999
1000 if (lp->ctl_rfduplx)
1001 bmcr |= BMCR_FULLDPLX;
1002
1003 if (lp->ctl_rspeed == 100)
1004 bmcr |= BMCR_SPEED100;
1005
1006 /* Write our capabilities to the phy control register */
1007 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
1008
1009 /* Re-Configure the Receive/Phy Control register */
1010 SMC_SELECT_BANK(0);
1011 SMC_SET_RPC(lp->rpc_cur_mode);
1012 SMC_SELECT_BANK(2);
1013
1014 return 1;
1015}
1016
1017/*
1018 * smc_phy_reset - reset the phy
1019 * @dev: net device
1020 * @phy: phy address
1021 *
1022 * Issue a software reset for the specified PHY and
1023 * wait up to 100ms for the reset to complete. We should
1024 * not access the PHY for 50ms after issuing the reset.
1025 *
1026 * The time to wait appears to be dependent on the PHY.
1027 *
1028 * Must be called with lp->lock locked.
1029 */
1030static int smc_phy_reset(struct net_device *dev, int phy)
1031{
1032 struct smc_local *lp = netdev_priv(dev);
1033 unsigned int bmcr;
1034 int timeout;
1035
1036 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
1037
1038 for (timeout = 2; timeout; timeout--) {
1039 spin_unlock_irq(&lp->lock);
1040 msleep(50);
1041 spin_lock_irq(&lp->lock);
1042
1043 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1044 if (!(bmcr & BMCR_RESET))
1045 break;
1046 }
1047
1048 return bmcr & BMCR_RESET;
1049}
1050
1051/*
1052 * smc_phy_powerdown - powerdown phy
1053 * @dev: net device
1054 *
1055 * Power down the specified PHY
1056 */
1057static void smc_phy_powerdown(struct net_device *dev)
1058{
1059 struct smc_local *lp = netdev_priv(dev);
1060 unsigned int bmcr;
1061 int phy = lp->mii.phy_id;
1062
1063 if (lp->phy_type == 0)
1064 return;
1065
1066 /* We need to ensure that no calls to smc_phy_configure are
1067 pending.
1068
1069 flush_scheduled_work() cannot be called because we are
1070 running with the netlink semaphore held (from
1071 devinet_ioctl()) and the pending work queue contains
1072 linkwatch_event() (scheduled by netif_carrier_off()
1073 above). linkwatch_event() also wants the netlink semaphore.
1074 */
1075 while(lp->work_pending)
be83668a 1076 yield();
1da177e4
LT
1077
1078 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1079 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1080}
1081
1082/*
1083 * smc_phy_check_media - check the media status and adjust TCR
1084 * @dev: net device
1085 * @init: set true for initialisation
1086 *
1087 * Select duplex mode depending on negotiation state. This
1088 * also updates our carrier state.
1089 */
1090static void smc_phy_check_media(struct net_device *dev, int init)
1091{
1092 struct smc_local *lp = netdev_priv(dev);
1093 void __iomem *ioaddr = lp->base;
1094
1095 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1096 /* duplex state has changed */
1097 if (lp->mii.full_duplex) {
1098 lp->tcr_cur_mode |= TCR_SWFDUP;
1099 } else {
1100 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1101 }
1102
1103 SMC_SELECT_BANK(0);
1104 SMC_SET_TCR(lp->tcr_cur_mode);
1105 }
1106}
1107
1108/*
1109 * Configures the specified PHY through the MII management interface
1110 * using Autonegotiation.
1111 * Calls smc_phy_fixed() if the user has requested a certain config.
1112 * If RPC ANEG bit is set, the media selection is dependent purely on
1113 * the selection by the MII (either in the MII BMCR reg or the result
1114 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1115 * is controlled by the RPC SPEED and RPC DPLX bits.
1116 */
1117static void smc_phy_configure(void *data)
1118{
1119 struct net_device *dev = data;
1120 struct smc_local *lp = netdev_priv(dev);
1121 void __iomem *ioaddr = lp->base;
1122 int phyaddr = lp->mii.phy_id;
1123 int my_phy_caps; /* My PHY capabilities */
1124 int my_ad_caps; /* My Advertised capabilities */
1125 int status;
1126
1127 DBG(3, "%s:smc_program_phy()\n", dev->name);
1128
1129 spin_lock_irq(&lp->lock);
1130
1131 /*
1132 * We should not be called if phy_type is zero.
1133 */
1134 if (lp->phy_type == 0)
1135 goto smc_phy_configure_exit;
1136
1137 if (smc_phy_reset(dev, phyaddr)) {
1138 printk("%s: PHY reset timed out\n", dev->name);
1139 goto smc_phy_configure_exit;
1140 }
1141
1142 /*
1143 * Enable PHY Interrupts (for register 18)
1144 * Interrupts listed here are disabled
1145 */
1146 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1147 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1148 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1149 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1150
1151 /* Configure the Receive/Phy Control register */
1152 SMC_SELECT_BANK(0);
1153 SMC_SET_RPC(lp->rpc_cur_mode);
1154
1155 /* If the user requested no auto neg, then go set his request */
1156 if (lp->mii.force_media) {
1157 smc_phy_fixed(dev);
1158 goto smc_phy_configure_exit;
1159 }
1160
1161 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1162 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1163
1164 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1165 printk(KERN_INFO "Auto negotiation NOT supported\n");
1166 smc_phy_fixed(dev);
1167 goto smc_phy_configure_exit;
1168 }
1169
1170 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1171
1172 if (my_phy_caps & BMSR_100BASE4)
1173 my_ad_caps |= ADVERTISE_100BASE4;
1174 if (my_phy_caps & BMSR_100FULL)
1175 my_ad_caps |= ADVERTISE_100FULL;
1176 if (my_phy_caps & BMSR_100HALF)
1177 my_ad_caps |= ADVERTISE_100HALF;
1178 if (my_phy_caps & BMSR_10FULL)
1179 my_ad_caps |= ADVERTISE_10FULL;
1180 if (my_phy_caps & BMSR_10HALF)
1181 my_ad_caps |= ADVERTISE_10HALF;
1182
1183 /* Disable capabilities not selected by our user */
1184 if (lp->ctl_rspeed != 100)
1185 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1186
1187 if (!lp->ctl_rfduplx)
1188 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1189
1190 /* Update our Auto-Neg Advertisement Register */
1191 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1192 lp->mii.advertising = my_ad_caps;
1193
1194 /*
1195 * Read the register back. Without this, it appears that when
1196 * auto-negotiation is restarted, sometimes it isn't ready and
1197 * the link does not come up.
1198 */
1199 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1200
1201 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1202 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1203
1204 /* Restart auto-negotiation process in order to advertise my caps */
1205 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1206
1207 smc_phy_check_media(dev, 1);
1208
1209smc_phy_configure_exit:
e5254244 1210 SMC_SELECT_BANK(2);
1da177e4
LT
1211 spin_unlock_irq(&lp->lock);
1212 lp->work_pending = 0;
1213}
1214
1215/*
1216 * smc_phy_interrupt
1217 *
1218 * Purpose: Handle interrupts relating to PHY register 18. This is
1219 * called from the "hard" interrupt handler under our private spinlock.
1220 */
1221static void smc_phy_interrupt(struct net_device *dev)
1222{
1223 struct smc_local *lp = netdev_priv(dev);
1224 int phyaddr = lp->mii.phy_id;
1225 int phy18;
1226
1227 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1228
1229 if (lp->phy_type == 0)
1230 return;
1231
1232 for(;;) {
1233 smc_phy_check_media(dev, 0);
1234
1235 /* Read PHY Register 18, Status Output */
1236 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1237 if ((phy18 & PHY_INT_INT) == 0)
1238 break;
1239 }
1240}
1241
1242/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1243
1244static void smc_10bt_check_media(struct net_device *dev, int init)
1245{
1246 struct smc_local *lp = netdev_priv(dev);
1247 void __iomem *ioaddr = lp->base;
1248 unsigned int old_carrier, new_carrier;
1249
1250 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1251
1252 SMC_SELECT_BANK(0);
8de90115 1253 new_carrier = (SMC_GET_EPH_STATUS() & ES_LINK_OK) ? 1 : 0;
1da177e4
LT
1254 SMC_SELECT_BANK(2);
1255
1256 if (init || (old_carrier != new_carrier)) {
1257 if (!new_carrier) {
1258 netif_carrier_off(dev);
1259 } else {
1260 netif_carrier_on(dev);
1261 }
1262 if (netif_msg_link(lp))
1263 printk(KERN_INFO "%s: link %s\n", dev->name,
1264 new_carrier ? "up" : "down");
1265 }
1266}
1267
1268static void smc_eph_interrupt(struct net_device *dev)
1269{
1270 struct smc_local *lp = netdev_priv(dev);
1271 void __iomem *ioaddr = lp->base;
1272 unsigned int ctl;
1273
1274 smc_10bt_check_media(dev, 0);
1275
1276 SMC_SELECT_BANK(1);
1277 ctl = SMC_GET_CTL();
1278 SMC_SET_CTL(ctl & ~CTL_LE_ENABLE);
1279 SMC_SET_CTL(ctl);
1280 SMC_SELECT_BANK(2);
1281}
1282
1283/*
1284 * This is the main routine of the driver, to handle the device when
1285 * it needs some attention.
1286 */
7d12e780 1287static irqreturn_t smc_interrupt(int irq, void *dev_id)
1da177e4
LT
1288{
1289 struct net_device *dev = dev_id;
1290 struct smc_local *lp = netdev_priv(dev);
1291 void __iomem *ioaddr = lp->base;
1292 int status, mask, timeout, card_stats;
1293 int saved_pointer;
1294
1295 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
1296
1297 spin_lock(&lp->lock);
1298
1299 /* A preamble may be used when there is a potential race
1300 * between the interruptible transmit functions and this
1301 * ISR. */
1302 SMC_INTERRUPT_PREAMBLE;
1303
1304 saved_pointer = SMC_GET_PTR();
1305 mask = SMC_GET_INT_MASK();
1306 SMC_SET_INT_MASK(0);
1307
1308 /* set a timeout value, so I don't stay here forever */
5d0571d9 1309 timeout = MAX_IRQ_LOOPS;
1da177e4
LT
1310
1311 do {
1312 status = SMC_GET_INT();
1313
1314 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1315 dev->name, status, mask,
1316 ({ int meminfo; SMC_SELECT_BANK(0);
1317 meminfo = SMC_GET_MIR();
1318 SMC_SELECT_BANK(2); meminfo; }),
1319 SMC_GET_FIFO());
1320
1321 status &= mask;
1322 if (!status)
1323 break;
1324
ea937560
NP
1325 if (status & IM_TX_INT) {
1326 /* do this before RX as it will free memory quickly */
1da177e4
LT
1327 DBG(3, "%s: TX int\n", dev->name);
1328 smc_tx(dev);
1329 SMC_ACK_INT(IM_TX_INT);
1330 if (THROTTLE_TX_PKTS)
1331 netif_wake_queue(dev);
ea937560
NP
1332 } else if (status & IM_RCV_INT) {
1333 DBG(3, "%s: RX irq\n", dev->name);
1334 smc_rcv(dev);
1da177e4
LT
1335 } else if (status & IM_ALLOC_INT) {
1336 DBG(3, "%s: Allocation irq\n", dev->name);
1337 tasklet_hi_schedule(&lp->tx_task);
1338 mask &= ~IM_ALLOC_INT;
1339 } else if (status & IM_TX_EMPTY_INT) {
1340 DBG(3, "%s: TX empty\n", dev->name);
1341 mask &= ~IM_TX_EMPTY_INT;
1342
1343 /* update stats */
1344 SMC_SELECT_BANK(0);
1345 card_stats = SMC_GET_COUNTER();
1346 SMC_SELECT_BANK(2);
1347
1348 /* single collisions */
1349 lp->stats.collisions += card_stats & 0xF;
1350 card_stats >>= 4;
1351
1352 /* multiple collisions */
1353 lp->stats.collisions += card_stats & 0xF;
1354 } else if (status & IM_RX_OVRN_INT) {
8de90115
NP
1355 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1356 ({ int eph_st; SMC_SELECT_BANK(0);
1357 eph_st = SMC_GET_EPH_STATUS();
1358 SMC_SELECT_BANK(2); eph_st; }) );
1da177e4
LT
1359 SMC_ACK_INT(IM_RX_OVRN_INT);
1360 lp->stats.rx_errors++;
1361 lp->stats.rx_fifo_errors++;
1362 } else if (status & IM_EPH_INT) {
1363 smc_eph_interrupt(dev);
1364 } else if (status & IM_MDINT) {
1365 SMC_ACK_INT(IM_MDINT);
1366 smc_phy_interrupt(dev);
1367 } else if (status & IM_ERCV_INT) {
1368 SMC_ACK_INT(IM_ERCV_INT);
1369 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1370 }
1371 } while (--timeout);
1372
1373 /* restore register states */
1374 SMC_SET_PTR(saved_pointer);
1375 SMC_SET_INT_MASK(mask);
1da177e4
LT
1376 spin_unlock(&lp->lock);
1377
5d0571d9
NP
1378 if (timeout == MAX_IRQ_LOOPS)
1379 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1380 dev->name, mask);
1381 DBG(3, "%s: Interrupt done (%d loops)\n",
1382 dev->name, MAX_IRQ_LOOPS - timeout);
1da177e4
LT
1383
1384 /*
1385 * We return IRQ_HANDLED unconditionally here even if there was
1386 * nothing to do. There is a possibility that a packet might
1387 * get enqueued into the chip right after TX_EMPTY_INT is raised
1388 * but just before the CPU acknowledges the IRQ.
1389 * Better take an unneeded IRQ in some occasions than complexifying
1390 * the code for all cases.
1391 */
1392 return IRQ_HANDLED;
1393}
1394
1395#ifdef CONFIG_NET_POLL_CONTROLLER
1396/*
1397 * Polling receive - used by netconsole and other diagnostic tools
1398 * to allow network i/o with interrupts disabled.
1399 */
1400static void smc_poll_controller(struct net_device *dev)
1401{
1402 disable_irq(dev->irq);
1403 smc_interrupt(dev->irq, dev, NULL);
1404 enable_irq(dev->irq);
1405}
1406#endif
1407
1408/* Our watchdog timed out. Called by the networking layer */
1409static void smc_timeout(struct net_device *dev)
1410{
1411 struct smc_local *lp = netdev_priv(dev);
1412 void __iomem *ioaddr = lp->base;
8de90115 1413 int status, mask, eph_st, meminfo, fifo;
1da177e4
LT
1414
1415 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1416
1417 spin_lock_irq(&lp->lock);
1418 status = SMC_GET_INT();
1419 mask = SMC_GET_INT_MASK();
1420 fifo = SMC_GET_FIFO();
1421 SMC_SELECT_BANK(0);
8de90115 1422 eph_st = SMC_GET_EPH_STATUS();
1da177e4
LT
1423 meminfo = SMC_GET_MIR();
1424 SMC_SELECT_BANK(2);
1425 spin_unlock_irq(&lp->lock);
8de90115
NP
1426 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1427 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1428 dev->name, status, mask, meminfo, fifo, eph_st );
1da177e4
LT
1429
1430 smc_reset(dev);
1431 smc_enable(dev);
1432
1433 /*
1434 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1435 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1436 * which calls schedule(). Hence we use a work queue.
1437 */
1438 if (lp->phy_type != 0) {
1439 if (schedule_work(&lp->phy_configure)) {
1440 lp->work_pending = 1;
1441 }
1442 }
1443
1444 /* We can accept TX packets again */
1445 dev->trans_start = jiffies;
1446 netif_wake_queue(dev);
1447}
1448
1449/*
1450 * This routine will, depending on the values passed to it,
1451 * either make it accept multicast packets, go into
1452 * promiscuous mode (for TCPDUMP and cousins) or accept
1453 * a select set of multicast packets
1454 */
1455static void smc_set_multicast_list(struct net_device *dev)
1456{
1457 struct smc_local *lp = netdev_priv(dev);
1458 void __iomem *ioaddr = lp->base;
1459 unsigned char multicast_table[8];
1460 int update_multicast = 0;
1461
1462 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1463
1464 if (dev->flags & IFF_PROMISC) {
1465 DBG(2, "%s: RCR_PRMS\n", dev->name);
1466 lp->rcr_cur_mode |= RCR_PRMS;
1467 }
1468
1469/* BUG? I never disable promiscuous mode if multicasting was turned on.
1470 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1471 when promiscuous mode is turned on.
1472*/
1473
1474 /*
1475 * Here, I am setting this to accept all multicast packets.
1476 * I don't need to zero the multicast table, because the flag is
1477 * checked before the table is
1478 */
1479 else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1480 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1481 lp->rcr_cur_mode |= RCR_ALMUL;
1482 }
1483
1484 /*
1485 * This sets the internal hardware table to filter out unwanted
1486 * multicast packets before they take up memory.
1487 *
1488 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1489 * address are the offset into the table. If that bit is 1, then the
1490 * multicast packet is accepted. Otherwise, it's dropped silently.
1491 *
1492 * To use the 6 bits as an offset into the table, the high 3 bits are
1493 * the number of the 8 bit register, while the low 3 bits are the bit
1494 * within that register.
1495 */
1496 else if (dev->mc_count) {
1497 int i;
1498 struct dev_mc_list *cur_addr;
1499
1500 /* table for flipping the order of 3 bits */
1501 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1502
1503 /* start with a table of all zeros: reject all */
1504 memset(multicast_table, 0, sizeof(multicast_table));
1505
1506 cur_addr = dev->mc_list;
1507 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1508 int position;
1509
1510 /* do we have a pointer here? */
1511 if (!cur_addr)
1512 break;
1513 /* make sure this is a multicast address -
1514 shouldn't this be a given if we have it here ? */
1515 if (!(*cur_addr->dmi_addr & 1))
1516 continue;
1517
1518 /* only use the low order bits */
1519 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1520
1521 /* do some messy swapping to put the bit in the right spot */
1522 multicast_table[invert3[position&7]] |=
1523 (1<<invert3[(position>>3)&7]);
1524 }
1525
1526 /* be sure I get rid of flags I might have set */
1527 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1528
1529 /* now, the table can be loaded into the chipset */
1530 update_multicast = 1;
1531 } else {
1532 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1533 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1534
1535 /*
1536 * since I'm disabling all multicast entirely, I need to
1537 * clear the multicast list
1538 */
1539 memset(multicast_table, 0, sizeof(multicast_table));
1540 update_multicast = 1;
1541 }
1542
1543 spin_lock_irq(&lp->lock);
1544 SMC_SELECT_BANK(0);
1545 SMC_SET_RCR(lp->rcr_cur_mode);
1546 if (update_multicast) {
1547 SMC_SELECT_BANK(3);
1548 SMC_SET_MCAST(multicast_table);
1549 }
1550 SMC_SELECT_BANK(2);
1551 spin_unlock_irq(&lp->lock);
1552}
1553
1554
1555/*
1556 * Open and Initialize the board
1557 *
1558 * Set up everything, reset the card, etc..
1559 */
1560static int
1561smc_open(struct net_device *dev)
1562{
1563 struct smc_local *lp = netdev_priv(dev);
1564
1565 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1566
1567 /*
1568 * Check that the address is valid. If its not, refuse
1569 * to bring the device up. The user must specify an
1570 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1571 */
1572 if (!is_valid_ether_addr(dev->dev_addr)) {
1573 PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
1574 return -EINVAL;
1575 }
1576
1577 /* Setup the default Register Modes */
1578 lp->tcr_cur_mode = TCR_DEFAULT;
1579 lp->rcr_cur_mode = RCR_DEFAULT;
1580 lp->rpc_cur_mode = RPC_DEFAULT;
1581
1582 /*
1583 * If we are not using a MII interface, we need to
1584 * monitor our own carrier signal to detect faults.
1585 */
1586 if (lp->phy_type == 0)
1587 lp->tcr_cur_mode |= TCR_MON_CSN;
1588
1589 /* reset the hardware */
1590 smc_reset(dev);
1591 smc_enable(dev);
1592
1593 /* Configure the PHY, initialize the link state */
1594 if (lp->phy_type != 0)
1595 smc_phy_configure(dev);
1596 else {
1597 spin_lock_irq(&lp->lock);
1598 smc_10bt_check_media(dev, 1);
1599 spin_unlock_irq(&lp->lock);
1600 }
1601
1602 netif_start_queue(dev);
1603 return 0;
1604}
1605
1606/*
1607 * smc_close
1608 *
1609 * this makes the board clean up everything that it can
1610 * and not talk to the outside world. Caused by
1611 * an 'ifconfig ethX down'
1612 */
1613static int smc_close(struct net_device *dev)
1614{
1615 struct smc_local *lp = netdev_priv(dev);
1616
1617 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1618
1619 netif_stop_queue(dev);
1620 netif_carrier_off(dev);
1621
1622 /* clear everything */
1623 smc_shutdown(dev);
be83668a 1624 tasklet_kill(&lp->tx_task);
1da177e4 1625 smc_phy_powerdown(dev);
1da177e4
LT
1626 return 0;
1627}
1628
1629/*
1630 * Get the current statistics.
1631 * This may be called with the card open or closed.
1632 */
1633static struct net_device_stats *smc_query_statistics(struct net_device *dev)
1634{
1635 struct smc_local *lp = netdev_priv(dev);
1636
1637 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1638
1639 return &lp->stats;
1640}
1641
1642/*
1643 * Ethtool support
1644 */
1645static int
1646smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1647{
1648 struct smc_local *lp = netdev_priv(dev);
1649 int ret;
1650
1651 cmd->maxtxpkt = 1;
1652 cmd->maxrxpkt = 1;
1653
1654 if (lp->phy_type != 0) {
1655 spin_lock_irq(&lp->lock);
1656 ret = mii_ethtool_gset(&lp->mii, cmd);
1657 spin_unlock_irq(&lp->lock);
1658 } else {
1659 cmd->supported = SUPPORTED_10baseT_Half |
1660 SUPPORTED_10baseT_Full |
1661 SUPPORTED_TP | SUPPORTED_AUI;
1662
1663 if (lp->ctl_rspeed == 10)
1664 cmd->speed = SPEED_10;
1665 else if (lp->ctl_rspeed == 100)
1666 cmd->speed = SPEED_100;
1667
1668 cmd->autoneg = AUTONEG_DISABLE;
1669 cmd->transceiver = XCVR_INTERNAL;
1670 cmd->port = 0;
1671 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1672
1673 ret = 0;
1674 }
1675
1676 return ret;
1677}
1678
1679static int
1680smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1681{
1682 struct smc_local *lp = netdev_priv(dev);
1683 int ret;
1684
1685 if (lp->phy_type != 0) {
1686 spin_lock_irq(&lp->lock);
1687 ret = mii_ethtool_sset(&lp->mii, cmd);
1688 spin_unlock_irq(&lp->lock);
1689 } else {
1690 if (cmd->autoneg != AUTONEG_DISABLE ||
1691 cmd->speed != SPEED_10 ||
1692 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1693 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1694 return -EINVAL;
1695
1696// lp->port = cmd->port;
1697 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1698
1699// if (netif_running(dev))
1700// smc_set_port(dev);
1701
1702 ret = 0;
1703 }
1704
1705 return ret;
1706}
1707
1708static void
1709smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1710{
1711 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1712 strncpy(info->version, version, sizeof(info->version));
1713 strncpy(info->bus_info, dev->class_dev.dev->bus_id, sizeof(info->bus_info));
1714}
1715
1716static int smc_ethtool_nwayreset(struct net_device *dev)
1717{
1718 struct smc_local *lp = netdev_priv(dev);
1719 int ret = -EINVAL;
1720
1721 if (lp->phy_type != 0) {
1722 spin_lock_irq(&lp->lock);
1723 ret = mii_nway_restart(&lp->mii);
1724 spin_unlock_irq(&lp->lock);
1725 }
1726
1727 return ret;
1728}
1729
1730static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1731{
1732 struct smc_local *lp = netdev_priv(dev);
1733 return lp->msg_enable;
1734}
1735
1736static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1737{
1738 struct smc_local *lp = netdev_priv(dev);
1739 lp->msg_enable = level;
1740}
1741
7282d491 1742static const struct ethtool_ops smc_ethtool_ops = {
1da177e4
LT
1743 .get_settings = smc_ethtool_getsettings,
1744 .set_settings = smc_ethtool_setsettings,
1745 .get_drvinfo = smc_ethtool_getdrvinfo,
1746
1747 .get_msglevel = smc_ethtool_getmsglevel,
1748 .set_msglevel = smc_ethtool_setmsglevel,
1749 .nway_reset = smc_ethtool_nwayreset,
1750 .get_link = ethtool_op_get_link,
1751// .get_eeprom = smc_ethtool_geteeprom,
1752// .set_eeprom = smc_ethtool_seteeprom,
1753};
1754
1755/*
1756 * smc_findirq
1757 *
1758 * This routine has a simple purpose -- make the SMC chip generate an
1759 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1760 */
1761/*
1762 * does this still work?
1763 *
1764 * I just deleted auto_irq.c, since it was never built...
1765 * --jgarzik
1766 */
1767static int __init smc_findirq(void __iomem *ioaddr)
1768{
1769 int timeout = 20;
1770 unsigned long cookie;
1771
1772 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1773
1774 cookie = probe_irq_on();
1775
1776 /*
1777 * What I try to do here is trigger an ALLOC_INT. This is done
1778 * by allocating a small chunk of memory, which will give an interrupt
1779 * when done.
1780 */
1781 /* enable ALLOCation interrupts ONLY */
1782 SMC_SELECT_BANK(2);
1783 SMC_SET_INT_MASK(IM_ALLOC_INT);
1784
1785 /*
1786 * Allocate 512 bytes of memory. Note that the chip was just
1787 * reset so all the memory is available
1788 */
1789 SMC_SET_MMU_CMD(MC_ALLOC | 1);
1790
1791 /*
1792 * Wait until positive that the interrupt has been generated
1793 */
1794 do {
1795 int int_status;
1796 udelay(10);
1797 int_status = SMC_GET_INT();
1798 if (int_status & IM_ALLOC_INT)
1799 break; /* got the interrupt */
1800 } while (--timeout);
1801
1802 /*
1803 * there is really nothing that I can do here if timeout fails,
1804 * as autoirq_report will return a 0 anyway, which is what I
1805 * want in this case. Plus, the clean up is needed in both
1806 * cases.
1807 */
1808
1809 /* and disable all interrupts again */
1810 SMC_SET_INT_MASK(0);
1811
1812 /* and return what I found */
1813 return probe_irq_off(cookie);
1814}
1815
1816/*
1817 * Function: smc_probe(unsigned long ioaddr)
1818 *
1819 * Purpose:
1820 * Tests to see if a given ioaddr points to an SMC91x chip.
1821 * Returns a 0 on success
1822 *
1823 * Algorithm:
1824 * (1) see if the high byte of BANK_SELECT is 0x33
1825 * (2) compare the ioaddr with the base register's address
1826 * (3) see if I recognize the chip ID in the appropriate register
1827 *
1828 * Here I do typical initialization tasks.
1829 *
1830 * o Initialize the structure if needed
1831 * o print out my vanity message if not done so already
1832 * o print out what type of hardware is detected
1833 * o print out the ethernet address
1834 * o find the IRQ
1835 * o set up my private data
1836 * o configure the dev structure with my subroutines
1837 * o actually GRAB the irq.
1838 * o GRAB the region
1839 */
1840static int __init smc_probe(struct net_device *dev, void __iomem *ioaddr)
1841{
1842 struct smc_local *lp = netdev_priv(dev);
1843 static int version_printed = 0;
1844 int i, retval;
1845 unsigned int val, revision_register;
1846 const char *version_string;
1847
1848 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1849
1850 /* First, see if the high byte is 0x33 */
1851 val = SMC_CURRENT_BANK();
1852 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1853 if ((val & 0xFF00) != 0x3300) {
1854 if ((val & 0xFF) == 0x33) {
1855 printk(KERN_WARNING
1856 "%s: Detected possible byte-swapped interface"
1857 " at IOADDR %p\n", CARDNAME, ioaddr);
1858 }
1859 retval = -ENODEV;
1860 goto err_out;
1861 }
1862
1863 /*
1864 * The above MIGHT indicate a device, but I need to write to
1865 * further test this.
1866 */
1867 SMC_SELECT_BANK(0);
1868 val = SMC_CURRENT_BANK();
1869 if ((val & 0xFF00) != 0x3300) {
1870 retval = -ENODEV;
1871 goto err_out;
1872 }
1873
1874 /*
1875 * well, we've already written once, so hopefully another
1876 * time won't hurt. This time, I need to switch the bank
1877 * register to bank 1, so I can access the base address
1878 * register
1879 */
1880 SMC_SELECT_BANK(1);
1881 val = SMC_GET_BASE();
1882 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
53155109 1883 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1da177e4
LT
1884 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1885 CARDNAME, ioaddr, val);
1886 }
1887
1888 /*
1889 * check if the revision register is something that I
1890 * recognize. These might need to be added to later,
1891 * as future revisions could be added.
1892 */
1893 SMC_SELECT_BANK(3);
1894 revision_register = SMC_GET_REV();
1895 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1896 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1897 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1898 /* I don't recognize this chip, so... */
1899 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1900 ", Contact author.\n", CARDNAME,
1901 ioaddr, revision_register);
1902
1903 retval = -ENODEV;
1904 goto err_out;
1905 }
1906
1907 /* At this point I'll assume that the chip is an SMC91x. */
1908 if (version_printed++ == 0)
1909 printk("%s", version);
1910
1911 /* fill in some of the fields */
1912 dev->base_addr = (unsigned long)ioaddr;
1913 lp->base = ioaddr;
1914 lp->version = revision_register & 0xff;
1915 spin_lock_init(&lp->lock);
1916
1917 /* Get the MAC address */
1918 SMC_SELECT_BANK(1);
1919 SMC_GET_MAC_ADDR(dev->dev_addr);
1920
1921 /* now, reset the chip, and put it into a known state */
1922 smc_reset(dev);
1923
1924 /*
1925 * If dev->irq is 0, then the device has to be banged on to see
1926 * what the IRQ is.
1927 *
1928 * This banging doesn't always detect the IRQ, for unknown reasons.
1929 * a workaround is to reset the chip and try again.
1930 *
1931 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1932 * be what is requested on the command line. I don't do that, mostly
1933 * because the card that I have uses a non-standard method of accessing
1934 * the IRQs, and because this _should_ work in most configurations.
1935 *
1936 * Specifying an IRQ is done with the assumption that the user knows
1937 * what (s)he is doing. No checking is done!!!!
1938 */
1939 if (dev->irq < 1) {
1940 int trials;
1941
1942 trials = 3;
1943 while (trials--) {
1944 dev->irq = smc_findirq(ioaddr);
1945 if (dev->irq)
1946 break;
1947 /* kick the card and try again */
1948 smc_reset(dev);
1949 }
1950 }
1951 if (dev->irq == 0) {
1952 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1953 dev->name);
1954 retval = -ENODEV;
1955 goto err_out;
1956 }
1957 dev->irq = irq_canonicalize(dev->irq);
1958
1959 /* Fill in the fields of the device structure with ethernet values. */
1960 ether_setup(dev);
1961
1962 dev->open = smc_open;
1963 dev->stop = smc_close;
1964 dev->hard_start_xmit = smc_hard_start_xmit;
1965 dev->tx_timeout = smc_timeout;
1966 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1967 dev->get_stats = smc_query_statistics;
1968 dev->set_multicast_list = smc_set_multicast_list;
1969 dev->ethtool_ops = &smc_ethtool_ops;
1970#ifdef CONFIG_NET_POLL_CONTROLLER
1971 dev->poll_controller = smc_poll_controller;
1972#endif
1973
1974 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1975 INIT_WORK(&lp->phy_configure, smc_phy_configure, dev);
1976 lp->mii.phy_id_mask = 0x1f;
1977 lp->mii.reg_num_mask = 0x1f;
1978 lp->mii.force_media = 0;
1979 lp->mii.full_duplex = 0;
1980 lp->mii.dev = dev;
1981 lp->mii.mdio_read = smc_phy_read;
1982 lp->mii.mdio_write = smc_phy_write;
1983
1984 /*
1985 * Locate the phy, if any.
1986 */
1987 if (lp->version >= (CHIP_91100 << 4))
1988 smc_phy_detect(dev);
1989
99e1baf8
NP
1990 /* then shut everything down to save power */
1991 smc_shutdown(dev);
1992 smc_phy_powerdown(dev);
1993
1da177e4
LT
1994 /* Set default parameters */
1995 lp->msg_enable = NETIF_MSG_LINK;
1996 lp->ctl_rfduplx = 0;
1997 lp->ctl_rspeed = 10;
1998
1999 if (lp->version >= (CHIP_91100 << 4)) {
2000 lp->ctl_rfduplx = 1;
2001 lp->ctl_rspeed = 100;
2002 }
2003
2004 /* Grab the IRQ */
9ded96f2 2005 retval = request_irq(dev->irq, &smc_interrupt, SMC_IRQ_FLAGS, dev->name, dev);
1da177e4
LT
2006 if (retval)
2007 goto err_out;
2008
1da177e4
LT
2009#ifdef SMC_USE_PXA_DMA
2010 {
2011 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2012 smc_pxa_dma_irq, NULL);
2013 if (dma >= 0)
2014 dev->dma = dma;
2015 }
2016#endif
2017
2018 retval = register_netdev(dev);
2019 if (retval == 0) {
2020 /* now, print out the card info, in a short format.. */
2021 printk("%s: %s (rev %d) at %p IRQ %d",
2022 dev->name, version_string, revision_register & 0x0f,
2023 lp->base, dev->irq);
2024
2025 if (dev->dma != (unsigned char)-1)
2026 printk(" DMA %d", dev->dma);
2027
2028 printk("%s%s\n", nowait ? " [nowait]" : "",
2029 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2030
2031 if (!is_valid_ether_addr(dev->dev_addr)) {
2032 printk("%s: Invalid ethernet MAC address. Please "
2033 "set using ifconfig\n", dev->name);
2034 } else {
2035 /* Print the Ethernet address */
2036 printk("%s: Ethernet addr: ", dev->name);
2037 for (i = 0; i < 5; i++)
2038 printk("%2.2x:", dev->dev_addr[i]);
2039 printk("%2.2x\n", dev->dev_addr[5]);
2040 }
2041
2042 if (lp->phy_type == 0) {
2043 PRINTK("%s: No PHY found\n", dev->name);
2044 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2045 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2046 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2047 PRINTK("%s: PHY LAN83C180\n", dev->name);
2048 }
2049 }
2050
2051err_out:
2052#ifdef SMC_USE_PXA_DMA
2053 if (retval && dev->dma != (unsigned char)-1)
2054 pxa_free_dma(dev->dma);
2055#endif
2056 return retval;
2057}
2058
2059static int smc_enable_device(struct platform_device *pdev)
2060{
2061 unsigned long flags;
2062 unsigned char ecor, ecsr;
2063 void __iomem *addr;
2064 struct resource * res;
2065
2066 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2067 if (!res)
2068 return 0;
2069
2070 /*
2071 * Map the attribute space. This is overkill, but clean.
2072 */
2073 addr = ioremap(res->start, ATTRIB_SIZE);
2074 if (!addr)
2075 return -ENOMEM;
2076
2077 /*
2078 * Reset the device. We must disable IRQs around this
2079 * since a reset causes the IRQ line become active.
2080 */
2081 local_irq_save(flags);
2082 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2083 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2084 readb(addr + (ECOR << SMC_IO_SHIFT));
2085
2086 /*
2087 * Wait 100us for the chip to reset.
2088 */
2089 udelay(100);
2090
2091 /*
2092 * The device will ignore all writes to the enable bit while
2093 * reset is asserted, even if the reset bit is cleared in the
2094 * same write. Must clear reset first, then enable the device.
2095 */
2096 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2097 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2098
2099 /*
2100 * Set the appropriate byte/word mode.
2101 */
2102 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
09779c6d
NP
2103 if (!SMC_CAN_USE_16BIT)
2104 ecsr |= ECSR_IOIS8;
1da177e4
LT
2105 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2106 local_irq_restore(flags);
2107
2108 iounmap(addr);
2109
2110 /*
2111 * Wait for the chip to wake up. We could poll the control
2112 * register in the main register space, but that isn't mapped
2113 * yet. We know this is going to take 750us.
2114 */
2115 msleep(1);
2116
2117 return 0;
2118}
2119
2120static int smc_request_attrib(struct platform_device *pdev)
2121{
2122 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2123
2124 if (!res)
2125 return 0;
2126
2127 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2128 return -EBUSY;
2129
2130 return 0;
2131}
2132
2133static void smc_release_attrib(struct platform_device *pdev)
2134{
2135 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2136
2137 if (res)
2138 release_mem_region(res->start, ATTRIB_SIZE);
2139}
2140
09779c6d 2141static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
1da177e4 2142{
09779c6d
NP
2143 if (SMC_CAN_USE_DATACS) {
2144 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2145 struct smc_local *lp = netdev_priv(ndev);
1da177e4 2146
09779c6d
NP
2147 if (!res)
2148 return;
1da177e4 2149
09779c6d
NP
2150 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2151 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2152 return;
2153 }
1da177e4 2154
09779c6d
NP
2155 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2156 }
1da177e4
LT
2157}
2158
2159static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2160{
09779c6d
NP
2161 if (SMC_CAN_USE_DATACS) {
2162 struct smc_local *lp = netdev_priv(ndev);
2163 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
1da177e4 2164
09779c6d
NP
2165 if (lp->datacs)
2166 iounmap(lp->datacs);
1da177e4 2167
09779c6d 2168 lp->datacs = NULL;
1da177e4 2169
09779c6d
NP
2170 if (res)
2171 release_mem_region(res->start, SMC_DATA_EXTENT);
2172 }
1da177e4 2173}
1da177e4
LT
2174
2175/*
2176 * smc_init(void)
2177 * Input parameters:
2178 * dev->base_addr == 0, try to find all possible locations
2179 * dev->base_addr > 0x1ff, this is the address to check
2180 * dev->base_addr == <anything else>, return failure code
2181 *
2182 * Output:
2183 * 0 --> there is a device
2184 * anything else, error
2185 */
3ae5eaec 2186static int smc_drv_probe(struct platform_device *pdev)
1da177e4 2187{
1da177e4
LT
2188 struct net_device *ndev;
2189 struct resource *res;
2190 unsigned int __iomem *addr;
2191 int ret;
2192
2193 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2194 if (!res)
2195 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2196 if (!res) {
2197 ret = -ENODEV;
2198 goto out;
2199 }
2200
2201
2202 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2203 ret = -EBUSY;
2204 goto out;
2205 }
2206
2207 ndev = alloc_etherdev(sizeof(struct smc_local));
2208 if (!ndev) {
2209 printk("%s: could not allocate device.\n", CARDNAME);
2210 ret = -ENOMEM;
2211 goto out_release_io;
2212 }
2213 SET_MODULE_OWNER(ndev);
3ae5eaec 2214 SET_NETDEV_DEV(ndev, &pdev->dev);
1da177e4
LT
2215
2216 ndev->dma = (unsigned char)-1;
2217 ndev->irq = platform_get_irq(pdev, 0);
48944738
DV
2218 if (ndev->irq < 0) {
2219 ret = -ENODEV;
2220 goto out_free_netdev;
2221 }
1da177e4
LT
2222
2223 ret = smc_request_attrib(pdev);
2224 if (ret)
2225 goto out_free_netdev;
2226#if defined(CONFIG_SA1100_ASSABET)
2227 NCR_0 |= NCR_ENET_OSC_EN;
2228#endif
2229 ret = smc_enable_device(pdev);
2230 if (ret)
2231 goto out_release_attrib;
2232
2233 addr = ioremap(res->start, SMC_IO_EXTENT);
2234 if (!addr) {
2235 ret = -ENOMEM;
2236 goto out_release_attrib;
2237 }
2238
3ae5eaec 2239 platform_set_drvdata(pdev, ndev);
1da177e4
LT
2240 ret = smc_probe(ndev, addr);
2241 if (ret != 0)
2242 goto out_iounmap;
2243#ifdef SMC_USE_PXA_DMA
2244 else {
2245 struct smc_local *lp = netdev_priv(ndev);
2246 lp->physaddr = res->start;
2247 }
2248#endif
2249
2250 smc_request_datacs(pdev, ndev);
2251
2252 return 0;
2253
2254 out_iounmap:
3ae5eaec 2255 platform_set_drvdata(pdev, NULL);
1da177e4
LT
2256 iounmap(addr);
2257 out_release_attrib:
2258 smc_release_attrib(pdev);
2259 out_free_netdev:
2260 free_netdev(ndev);
2261 out_release_io:
2262 release_mem_region(res->start, SMC_IO_EXTENT);
2263 out:
2264 printk("%s: not found (%d).\n", CARDNAME, ret);
2265
2266 return ret;
2267}
2268
3ae5eaec 2269static int smc_drv_remove(struct platform_device *pdev)
1da177e4 2270{
3ae5eaec 2271 struct net_device *ndev = platform_get_drvdata(pdev);
1da177e4
LT
2272 struct smc_local *lp = netdev_priv(ndev);
2273 struct resource *res;
2274
3ae5eaec 2275 platform_set_drvdata(pdev, NULL);
1da177e4
LT
2276
2277 unregister_netdev(ndev);
2278
2279 free_irq(ndev->irq, ndev);
2280
2281#ifdef SMC_USE_PXA_DMA
2282 if (ndev->dma != (unsigned char)-1)
2283 pxa_free_dma(ndev->dma);
2284#endif
2285 iounmap(lp->base);
2286
2287 smc_release_datacs(pdev,ndev);
2288 smc_release_attrib(pdev);
2289
2290 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2291 if (!res)
2292 platform_get_resource(pdev, IORESOURCE_MEM, 0);
2293 release_mem_region(res->start, SMC_IO_EXTENT);
2294
2295 free_netdev(ndev);
2296
2297 return 0;
2298}
2299
3ae5eaec 2300static int smc_drv_suspend(struct platform_device *dev, pm_message_t state)
1da177e4 2301{
3ae5eaec 2302 struct net_device *ndev = platform_get_drvdata(dev);
1da177e4 2303
9480e307 2304 if (ndev) {
1da177e4
LT
2305 if (netif_running(ndev)) {
2306 netif_device_detach(ndev);
2307 smc_shutdown(ndev);
2308 smc_phy_powerdown(ndev);
2309 }
2310 }
2311 return 0;
2312}
2313
3ae5eaec 2314static int smc_drv_resume(struct platform_device *dev)
1da177e4 2315{
3ae5eaec 2316 struct net_device *ndev = platform_get_drvdata(dev);
1da177e4 2317
9480e307 2318 if (ndev) {
1da177e4 2319 struct smc_local *lp = netdev_priv(ndev);
3ae5eaec 2320 smc_enable_device(dev);
1da177e4
LT
2321 if (netif_running(ndev)) {
2322 smc_reset(ndev);
2323 smc_enable(ndev);
2324 if (lp->phy_type != 0)
2325 smc_phy_configure(ndev);
2326 netif_device_attach(ndev);
2327 }
2328 }
2329 return 0;
2330}
2331
3ae5eaec 2332static struct platform_driver smc_driver = {
1da177e4
LT
2333 .probe = smc_drv_probe,
2334 .remove = smc_drv_remove,
2335 .suspend = smc_drv_suspend,
2336 .resume = smc_drv_resume,
3ae5eaec
RK
2337 .driver = {
2338 .name = CARDNAME,
2339 },
1da177e4
LT
2340};
2341
2342static int __init smc_init(void)
2343{
2344#ifdef MODULE
2345#ifdef CONFIG_ISA
2346 if (io == -1)
6aa20a22 2347 printk(KERN_WARNING
1da177e4
LT
2348 "%s: You shouldn't use auto-probing with insmod!\n",
2349 CARDNAME);
2350#endif
2351#endif
2352
3ae5eaec 2353 return platform_driver_register(&smc_driver);
1da177e4
LT
2354}
2355
2356static void __exit smc_cleanup(void)
2357{
3ae5eaec 2358 platform_driver_unregister(&smc_driver);
1da177e4
LT
2359}
2360
2361module_init(smc_init);
2362module_exit(smc_cleanup);