include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ksz884x.c
CommitLineData
8ca86fd8
TH
1/**
2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/version.h>
21#include <linux/ioport.h>
22#include <linux/pci.h>
23#include <linux/proc_fs.h>
24#include <linux/mii.h>
25#include <linux/platform_device.h>
26#include <linux/ethtool.h>
27#include <linux/etherdevice.h>
28#include <linux/in.h>
29#include <linux/ip.h>
30#include <linux/if_vlan.h>
31#include <linux/crc32.h>
32#include <linux/sched.h>
5a0e3ad6 33#include <linux/slab.h>
8ca86fd8
TH
34
35
36/* DMA Registers */
37
38#define KS_DMA_TX_CTRL 0x0000
39#define DMA_TX_ENABLE 0x00000001
40#define DMA_TX_CRC_ENABLE 0x00000002
41#define DMA_TX_PAD_ENABLE 0x00000004
42#define DMA_TX_LOOPBACK 0x00000100
43#define DMA_TX_FLOW_ENABLE 0x00000200
44#define DMA_TX_CSUM_IP 0x00010000
45#define DMA_TX_CSUM_TCP 0x00020000
46#define DMA_TX_CSUM_UDP 0x00040000
47#define DMA_TX_BURST_SIZE 0x3F000000
48
49#define KS_DMA_RX_CTRL 0x0004
50#define DMA_RX_ENABLE 0x00000001
51#define KS884X_DMA_RX_MULTICAST 0x00000002
52#define DMA_RX_PROMISCUOUS 0x00000004
53#define DMA_RX_ERROR 0x00000008
54#define DMA_RX_UNICAST 0x00000010
55#define DMA_RX_ALL_MULTICAST 0x00000020
56#define DMA_RX_BROADCAST 0x00000040
57#define DMA_RX_FLOW_ENABLE 0x00000200
58#define DMA_RX_CSUM_IP 0x00010000
59#define DMA_RX_CSUM_TCP 0x00020000
60#define DMA_RX_CSUM_UDP 0x00040000
61#define DMA_RX_BURST_SIZE 0x3F000000
62
63#define DMA_BURST_SHIFT 24
64#define DMA_BURST_DEFAULT 8
65
66#define KS_DMA_TX_START 0x0008
67#define KS_DMA_RX_START 0x000C
68#define DMA_START 0x00000001
69
70#define KS_DMA_TX_ADDR 0x0010
71#define KS_DMA_RX_ADDR 0x0014
72
73#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
74#define DMA_ADDR_LIST_SHIFT 2
75
76/* MTR0 */
77#define KS884X_MULTICAST_0_OFFSET 0x0020
78#define KS884X_MULTICAST_1_OFFSET 0x0021
79#define KS884X_MULTICAST_2_OFFSET 0x0022
80#define KS884x_MULTICAST_3_OFFSET 0x0023
81/* MTR1 */
82#define KS884X_MULTICAST_4_OFFSET 0x0024
83#define KS884X_MULTICAST_5_OFFSET 0x0025
84#define KS884X_MULTICAST_6_OFFSET 0x0026
85#define KS884X_MULTICAST_7_OFFSET 0x0027
86
87/* Interrupt Registers */
88
89/* INTEN */
90#define KS884X_INTERRUPTS_ENABLE 0x0028
91/* INTST */
92#define KS884X_INTERRUPTS_STATUS 0x002C
93
94#define KS884X_INT_RX_STOPPED 0x02000000
95#define KS884X_INT_TX_STOPPED 0x04000000
96#define KS884X_INT_RX_OVERRUN 0x08000000
97#define KS884X_INT_TX_EMPTY 0x10000000
98#define KS884X_INT_RX 0x20000000
99#define KS884X_INT_TX 0x40000000
100#define KS884X_INT_PHY 0x80000000
101
102#define KS884X_INT_RX_MASK \
103 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
104#define KS884X_INT_TX_MASK \
105 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
106#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
107
108/* MAC Additional Station Address */
109
110/* MAAL0 */
111#define KS_ADD_ADDR_0_LO 0x0080
112/* MAAH0 */
113#define KS_ADD_ADDR_0_HI 0x0084
114/* MAAL1 */
115#define KS_ADD_ADDR_1_LO 0x0088
116/* MAAH1 */
117#define KS_ADD_ADDR_1_HI 0x008C
118/* MAAL2 */
119#define KS_ADD_ADDR_2_LO 0x0090
120/* MAAH2 */
121#define KS_ADD_ADDR_2_HI 0x0094
122/* MAAL3 */
123#define KS_ADD_ADDR_3_LO 0x0098
124/* MAAH3 */
125#define KS_ADD_ADDR_3_HI 0x009C
126/* MAAL4 */
127#define KS_ADD_ADDR_4_LO 0x00A0
128/* MAAH4 */
129#define KS_ADD_ADDR_4_HI 0x00A4
130/* MAAL5 */
131#define KS_ADD_ADDR_5_LO 0x00A8
132/* MAAH5 */
133#define KS_ADD_ADDR_5_HI 0x00AC
134/* MAAL6 */
135#define KS_ADD_ADDR_6_LO 0x00B0
136/* MAAH6 */
137#define KS_ADD_ADDR_6_HI 0x00B4
138/* MAAL7 */
139#define KS_ADD_ADDR_7_LO 0x00B8
140/* MAAH7 */
141#define KS_ADD_ADDR_7_HI 0x00BC
142/* MAAL8 */
143#define KS_ADD_ADDR_8_LO 0x00C0
144/* MAAH8 */
145#define KS_ADD_ADDR_8_HI 0x00C4
146/* MAAL9 */
147#define KS_ADD_ADDR_9_LO 0x00C8
148/* MAAH9 */
149#define KS_ADD_ADDR_9_HI 0x00CC
150/* MAAL10 */
151#define KS_ADD_ADDR_A_LO 0x00D0
152/* MAAH10 */
153#define KS_ADD_ADDR_A_HI 0x00D4
154/* MAAL11 */
155#define KS_ADD_ADDR_B_LO 0x00D8
156/* MAAH11 */
157#define KS_ADD_ADDR_B_HI 0x00DC
158/* MAAL12 */
159#define KS_ADD_ADDR_C_LO 0x00E0
160/* MAAH12 */
161#define KS_ADD_ADDR_C_HI 0x00E4
162/* MAAL13 */
163#define KS_ADD_ADDR_D_LO 0x00E8
164/* MAAH13 */
165#define KS_ADD_ADDR_D_HI 0x00EC
166/* MAAL14 */
167#define KS_ADD_ADDR_E_LO 0x00F0
168/* MAAH14 */
169#define KS_ADD_ADDR_E_HI 0x00F4
170/* MAAL15 */
171#define KS_ADD_ADDR_F_LO 0x00F8
172/* MAAH15 */
173#define KS_ADD_ADDR_F_HI 0x00FC
174
175#define ADD_ADDR_HI_MASK 0x0000FFFF
176#define ADD_ADDR_ENABLE 0x80000000
177#define ADD_ADDR_INCR 8
178
179/* Miscellaneous Registers */
180
181/* MARL */
182#define KS884X_ADDR_0_OFFSET 0x0200
183#define KS884X_ADDR_1_OFFSET 0x0201
184/* MARM */
185#define KS884X_ADDR_2_OFFSET 0x0202
186#define KS884X_ADDR_3_OFFSET 0x0203
187/* MARH */
188#define KS884X_ADDR_4_OFFSET 0x0204
189#define KS884X_ADDR_5_OFFSET 0x0205
190
191/* OBCR */
192#define KS884X_BUS_CTRL_OFFSET 0x0210
193
194#define BUS_SPEED_125_MHZ 0x0000
195#define BUS_SPEED_62_5_MHZ 0x0001
196#define BUS_SPEED_41_66_MHZ 0x0002
197#define BUS_SPEED_25_MHZ 0x0003
198
199/* EEPCR */
200#define KS884X_EEPROM_CTRL_OFFSET 0x0212
201
202#define EEPROM_CHIP_SELECT 0x0001
203#define EEPROM_SERIAL_CLOCK 0x0002
204#define EEPROM_DATA_OUT 0x0004
205#define EEPROM_DATA_IN 0x0008
206#define EEPROM_ACCESS_ENABLE 0x0010
207
208/* MBIR */
209#define KS884X_MEM_INFO_OFFSET 0x0214
210
211#define RX_MEM_TEST_FAILED 0x0008
212#define RX_MEM_TEST_FINISHED 0x0010
213#define TX_MEM_TEST_FAILED 0x0800
214#define TX_MEM_TEST_FINISHED 0x1000
215
216/* GCR */
217#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
218#define GLOBAL_SOFTWARE_RESET 0x0001
219
220#define KS8841_POWER_MANAGE_OFFSET 0x0218
221
222/* WFCR */
223#define KS8841_WOL_CTRL_OFFSET 0x021A
224#define KS8841_WOL_MAGIC_ENABLE 0x0080
225#define KS8841_WOL_FRAME3_ENABLE 0x0008
226#define KS8841_WOL_FRAME2_ENABLE 0x0004
227#define KS8841_WOL_FRAME1_ENABLE 0x0002
228#define KS8841_WOL_FRAME0_ENABLE 0x0001
229
230/* WF0 */
231#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
232#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
233#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
234
235/* IACR */
236#define KS884X_IACR_P 0x04A0
237#define KS884X_IACR_OFFSET KS884X_IACR_P
238
239/* IADR1 */
240#define KS884X_IADR1_P 0x04A2
241#define KS884X_IADR2_P 0x04A4
242#define KS884X_IADR3_P 0x04A6
243#define KS884X_IADR4_P 0x04A8
244#define KS884X_IADR5_P 0x04AA
245
246#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
247#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
248
249#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
250#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
251#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
252#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
253#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
254#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
255#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
256#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
257#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
258
259/* P1MBCR */
260#define KS884X_P1MBCR_P 0x04D0
261#define KS884X_P1MBSR_P 0x04D2
262#define KS884X_PHY1ILR_P 0x04D4
263#define KS884X_PHY1IHR_P 0x04D6
264#define KS884X_P1ANAR_P 0x04D8
265#define KS884X_P1ANLPR_P 0x04DA
266
267/* P2MBCR */
268#define KS884X_P2MBCR_P 0x04E0
269#define KS884X_P2MBSR_P 0x04E2
270#define KS884X_PHY2ILR_P 0x04E4
271#define KS884X_PHY2IHR_P 0x04E6
272#define KS884X_P2ANAR_P 0x04E8
273#define KS884X_P2ANLPR_P 0x04EA
274
275#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
276#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
277
278#define KS884X_PHY_CTRL_OFFSET 0x00
279
280/* Mode Control Register */
281#define PHY_REG_CTRL 0
282
283#define PHY_RESET 0x8000
284#define PHY_LOOPBACK 0x4000
285#define PHY_SPEED_100MBIT 0x2000
286#define PHY_AUTO_NEG_ENABLE 0x1000
287#define PHY_POWER_DOWN 0x0800
288#define PHY_MII_DISABLE 0x0400
289#define PHY_AUTO_NEG_RESTART 0x0200
290#define PHY_FULL_DUPLEX 0x0100
291#define PHY_COLLISION_TEST 0x0080
292#define PHY_HP_MDIX 0x0020
293#define PHY_FORCE_MDIX 0x0010
294#define PHY_AUTO_MDIX_DISABLE 0x0008
295#define PHY_REMOTE_FAULT_DISABLE 0x0004
296#define PHY_TRANSMIT_DISABLE 0x0002
297#define PHY_LED_DISABLE 0x0001
298
299#define KS884X_PHY_STATUS_OFFSET 0x02
300
301/* Mode Status Register */
302#define PHY_REG_STATUS 1
303
304#define PHY_100BT4_CAPABLE 0x8000
305#define PHY_100BTX_FD_CAPABLE 0x4000
306#define PHY_100BTX_CAPABLE 0x2000
307#define PHY_10BT_FD_CAPABLE 0x1000
308#define PHY_10BT_CAPABLE 0x0800
309#define PHY_MII_SUPPRESS_CAPABLE 0x0040
310#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
311#define PHY_REMOTE_FAULT 0x0010
312#define PHY_AUTO_NEG_CAPABLE 0x0008
313#define PHY_LINK_STATUS 0x0004
314#define PHY_JABBER_DETECT 0x0002
315#define PHY_EXTENDED_CAPABILITY 0x0001
316
317#define KS884X_PHY_ID_1_OFFSET 0x04
318#define KS884X_PHY_ID_2_OFFSET 0x06
319
320/* PHY Identifier Registers */
321#define PHY_REG_ID_1 2
322#define PHY_REG_ID_2 3
323
324#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
325
326/* Auto-Negotiation Advertisement Register */
327#define PHY_REG_AUTO_NEGOTIATION 4
328
329#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
330#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
331/* Not supported. */
332#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
333#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
334#define PHY_AUTO_NEG_100BT4 0x0200
335#define PHY_AUTO_NEG_100BTX_FD 0x0100
336#define PHY_AUTO_NEG_100BTX 0x0080
337#define PHY_AUTO_NEG_10BT_FD 0x0040
338#define PHY_AUTO_NEG_10BT 0x0020
339#define PHY_AUTO_NEG_SELECTOR 0x001F
340#define PHY_AUTO_NEG_802_3 0x0001
341
342#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
343
344#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
345
346/* Auto-Negotiation Link Partner Ability Register */
347#define PHY_REG_REMOTE_CAPABILITY 5
348
349#define PHY_REMOTE_NEXT_PAGE 0x8000
350#define PHY_REMOTE_ACKNOWLEDGE 0x4000
351#define PHY_REMOTE_REMOTE_FAULT 0x2000
352#define PHY_REMOTE_SYM_PAUSE 0x0400
353#define PHY_REMOTE_100BTX_FD 0x0100
354#define PHY_REMOTE_100BTX 0x0080
355#define PHY_REMOTE_10BT_FD 0x0040
356#define PHY_REMOTE_10BT 0x0020
357
358/* P1VCT */
359#define KS884X_P1VCT_P 0x04F0
360#define KS884X_P1PHYCTRL_P 0x04F2
361
362/* P2VCT */
363#define KS884X_P2VCT_P 0x04F4
364#define KS884X_P2PHYCTRL_P 0x04F6
365
366#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
367#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
368
369#define KS884X_PHY_LINK_MD_OFFSET 0x00
370
371#define PHY_START_CABLE_DIAG 0x8000
372#define PHY_CABLE_DIAG_RESULT 0x6000
373#define PHY_CABLE_STAT_NORMAL 0x0000
374#define PHY_CABLE_STAT_OPEN 0x2000
375#define PHY_CABLE_STAT_SHORT 0x4000
376#define PHY_CABLE_STAT_FAILED 0x6000
377#define PHY_CABLE_10M_SHORT 0x1000
378#define PHY_CABLE_FAULT_COUNTER 0x01FF
379
380#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
381
382#define PHY_STAT_REVERSED_POLARITY 0x0020
383#define PHY_STAT_MDIX 0x0010
384#define PHY_FORCE_LINK 0x0008
385#define PHY_POWER_SAVING_DISABLE 0x0004
386#define PHY_REMOTE_LOOPBACK 0x0002
387
388/* SIDER */
389#define KS884X_SIDER_P 0x0400
390#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
391#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
392
393#define REG_FAMILY_ID 0x88
394
395#define REG_CHIP_ID_41 0x8810
396#define REG_CHIP_ID_42 0x8800
397
398#define KS884X_CHIP_ID_MASK_41 0xFF10
399#define KS884X_CHIP_ID_MASK 0xFFF0
400#define KS884X_CHIP_ID_SHIFT 4
401#define KS884X_REVISION_MASK 0x000E
402#define KS884X_REVISION_SHIFT 1
403#define KS8842_START 0x0001
404
405#define CHIP_IP_41_M 0x8810
406#define CHIP_IP_42_M 0x8800
407#define CHIP_IP_61_M 0x8890
408#define CHIP_IP_62_M 0x8880
409
410#define CHIP_IP_41_P 0x8850
411#define CHIP_IP_42_P 0x8840
412#define CHIP_IP_61_P 0x88D0
413#define CHIP_IP_62_P 0x88C0
414
415/* SGCR1 */
416#define KS8842_SGCR1_P 0x0402
417#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
418
419#define SWITCH_PASS_ALL 0x8000
420#define SWITCH_TX_FLOW_CTRL 0x2000
421#define SWITCH_RX_FLOW_CTRL 0x1000
422#define SWITCH_CHECK_LENGTH 0x0800
423#define SWITCH_AGING_ENABLE 0x0400
424#define SWITCH_FAST_AGING 0x0200
425#define SWITCH_AGGR_BACKOFF 0x0100
426#define SWITCH_PASS_PAUSE 0x0008
427#define SWITCH_LINK_AUTO_AGING 0x0001
428
429/* SGCR2 */
430#define KS8842_SGCR2_P 0x0404
431#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
432
433#define SWITCH_VLAN_ENABLE 0x8000
434#define SWITCH_IGMP_SNOOP 0x4000
435#define IPV6_MLD_SNOOP_ENABLE 0x2000
436#define IPV6_MLD_SNOOP_OPTION 0x1000
437#define PRIORITY_SCHEME_SELECT 0x0800
438#define SWITCH_MIRROR_RX_TX 0x0100
439#define UNICAST_VLAN_BOUNDARY 0x0080
440#define MULTICAST_STORM_DISABLE 0x0040
441#define SWITCH_BACK_PRESSURE 0x0020
442#define FAIR_FLOW_CTRL 0x0010
443#define NO_EXC_COLLISION_DROP 0x0008
444#define SWITCH_HUGE_PACKET 0x0004
445#define SWITCH_LEGAL_PACKET 0x0002
446#define SWITCH_BUF_RESERVE 0x0001
447
448/* SGCR3 */
449#define KS8842_SGCR3_P 0x0406
450#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
451
452#define BROADCAST_STORM_RATE_LO 0xFF00
453#define SWITCH_REPEATER 0x0080
454#define SWITCH_HALF_DUPLEX 0x0040
455#define SWITCH_FLOW_CTRL 0x0020
456#define SWITCH_10_MBIT 0x0010
457#define SWITCH_REPLACE_NULL_VID 0x0008
458#define BROADCAST_STORM_RATE_HI 0x0007
459
460#define BROADCAST_STORM_RATE 0x07FF
461
462/* SGCR4 */
463#define KS8842_SGCR4_P 0x0408
464
465/* SGCR5 */
466#define KS8842_SGCR5_P 0x040A
467#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
468
469#define LED_MODE 0x8200
470#define LED_SPEED_DUPLEX_ACT 0x0000
471#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
472#define LED_DUPLEX_10_100 0x0200
473
474/* SGCR6 */
475#define KS8842_SGCR6_P 0x0410
476#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
477
478#define KS8842_PRIORITY_MASK 3
479#define KS8842_PRIORITY_SHIFT 2
480
481/* SGCR7 */
482#define KS8842_SGCR7_P 0x0412
483#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
484
485#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
486#define SWITCH_UNK_DEF_PORT_3 0x0004
487#define SWITCH_UNK_DEF_PORT_2 0x0002
488#define SWITCH_UNK_DEF_PORT_1 0x0001
489
490/* MACAR1 */
491#define KS8842_MACAR1_P 0x0470
492#define KS8842_MACAR2_P 0x0472
493#define KS8842_MACAR3_P 0x0474
494#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
495#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
496#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
497#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
498#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
499#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
500
501/* TOSR1 */
502#define KS8842_TOSR1_P 0x0480
503#define KS8842_TOSR2_P 0x0482
504#define KS8842_TOSR3_P 0x0484
505#define KS8842_TOSR4_P 0x0486
506#define KS8842_TOSR5_P 0x0488
507#define KS8842_TOSR6_P 0x048A
508#define KS8842_TOSR7_P 0x0490
509#define KS8842_TOSR8_P 0x0492
510#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
511#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
512#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
513#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
514#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
515#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
516
517#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
518#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
519
520/* P1CR1 */
521#define KS8842_P1CR1_P 0x0500
522#define KS8842_P1CR2_P 0x0502
523#define KS8842_P1VIDR_P 0x0504
524#define KS8842_P1CR3_P 0x0506
525#define KS8842_P1IRCR_P 0x0508
526#define KS8842_P1ERCR_P 0x050A
527#define KS884X_P1SCSLMD_P 0x0510
528#define KS884X_P1CR4_P 0x0512
529#define KS884X_P1SR_P 0x0514
530
531/* P2CR1 */
532#define KS8842_P2CR1_P 0x0520
533#define KS8842_P2CR2_P 0x0522
534#define KS8842_P2VIDR_P 0x0524
535#define KS8842_P2CR3_P 0x0526
536#define KS8842_P2IRCR_P 0x0528
537#define KS8842_P2ERCR_P 0x052A
538#define KS884X_P2SCSLMD_P 0x0530
539#define KS884X_P2CR4_P 0x0532
540#define KS884X_P2SR_P 0x0534
541
542/* P3CR1 */
543#define KS8842_P3CR1_P 0x0540
544#define KS8842_P3CR2_P 0x0542
545#define KS8842_P3VIDR_P 0x0544
546#define KS8842_P3CR3_P 0x0546
547#define KS8842_P3IRCR_P 0x0548
548#define KS8842_P3ERCR_P 0x054A
549
550#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
551#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
552#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
553
554#define PORT_CTRL_ADDR(port, addr) \
555 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
556 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
557
558#define KS8842_PORT_CTRL_1_OFFSET 0x00
559
560#define PORT_BROADCAST_STORM 0x0080
561#define PORT_DIFFSERV_ENABLE 0x0040
562#define PORT_802_1P_ENABLE 0x0020
563#define PORT_BASED_PRIORITY_MASK 0x0018
564#define PORT_BASED_PRIORITY_BASE 0x0003
565#define PORT_BASED_PRIORITY_SHIFT 3
566#define PORT_BASED_PRIORITY_0 0x0000
567#define PORT_BASED_PRIORITY_1 0x0008
568#define PORT_BASED_PRIORITY_2 0x0010
569#define PORT_BASED_PRIORITY_3 0x0018
570#define PORT_INSERT_TAG 0x0004
571#define PORT_REMOVE_TAG 0x0002
572#define PORT_PRIO_QUEUE_ENABLE 0x0001
573
574#define KS8842_PORT_CTRL_2_OFFSET 0x02
575
576#define PORT_INGRESS_VLAN_FILTER 0x4000
577#define PORT_DISCARD_NON_VID 0x2000
578#define PORT_FORCE_FLOW_CTRL 0x1000
579#define PORT_BACK_PRESSURE 0x0800
580#define PORT_TX_ENABLE 0x0400
581#define PORT_RX_ENABLE 0x0200
582#define PORT_LEARN_DISABLE 0x0100
583#define PORT_MIRROR_SNIFFER 0x0080
584#define PORT_MIRROR_RX 0x0040
585#define PORT_MIRROR_TX 0x0020
586#define PORT_USER_PRIORITY_CEILING 0x0008
587#define PORT_VLAN_MEMBERSHIP 0x0007
588
589#define KS8842_PORT_CTRL_VID_OFFSET 0x04
590
591#define PORT_DEFAULT_VID 0x0001
592
593#define KS8842_PORT_CTRL_3_OFFSET 0x06
594
595#define PORT_INGRESS_LIMIT_MODE 0x000C
596#define PORT_INGRESS_ALL 0x0000
597#define PORT_INGRESS_UNICAST 0x0004
598#define PORT_INGRESS_MULTICAST 0x0008
599#define PORT_INGRESS_BROADCAST 0x000C
600#define PORT_COUNT_IFG 0x0002
601#define PORT_COUNT_PREAMBLE 0x0001
602
603#define KS8842_PORT_IN_RATE_OFFSET 0x08
604#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
605
606#define PORT_PRIORITY_RATE 0x0F
607#define PORT_PRIORITY_RATE_SHIFT 4
608
609#define KS884X_PORT_LINK_MD 0x10
610
611#define PORT_CABLE_10M_SHORT 0x8000
612#define PORT_CABLE_DIAG_RESULT 0x6000
613#define PORT_CABLE_STAT_NORMAL 0x0000
614#define PORT_CABLE_STAT_OPEN 0x2000
615#define PORT_CABLE_STAT_SHORT 0x4000
616#define PORT_CABLE_STAT_FAILED 0x6000
617#define PORT_START_CABLE_DIAG 0x1000
618#define PORT_FORCE_LINK 0x0800
619#define PORT_POWER_SAVING_DISABLE 0x0400
620#define PORT_PHY_REMOTE_LOOPBACK 0x0200
621#define PORT_CABLE_FAULT_COUNTER 0x01FF
622
623#define KS884X_PORT_CTRL_4_OFFSET 0x12
624
625#define PORT_LED_OFF 0x8000
626#define PORT_TX_DISABLE 0x4000
627#define PORT_AUTO_NEG_RESTART 0x2000
628#define PORT_REMOTE_FAULT_DISABLE 0x1000
629#define PORT_POWER_DOWN 0x0800
630#define PORT_AUTO_MDIX_DISABLE 0x0400
631#define PORT_FORCE_MDIX 0x0200
632#define PORT_LOOPBACK 0x0100
633#define PORT_AUTO_NEG_ENABLE 0x0080
634#define PORT_FORCE_100_MBIT 0x0040
635#define PORT_FORCE_FULL_DUPLEX 0x0020
636#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
637#define PORT_AUTO_NEG_100BTX_FD 0x0008
638#define PORT_AUTO_NEG_100BTX 0x0004
639#define PORT_AUTO_NEG_10BT_FD 0x0002
640#define PORT_AUTO_NEG_10BT 0x0001
641
642#define KS884X_PORT_STATUS_OFFSET 0x14
643
644#define PORT_HP_MDIX 0x8000
645#define PORT_REVERSED_POLARITY 0x2000
646#define PORT_RX_FLOW_CTRL 0x0800
647#define PORT_TX_FLOW_CTRL 0x1000
648#define PORT_STATUS_SPEED_100MBIT 0x0400
649#define PORT_STATUS_FULL_DUPLEX 0x0200
650#define PORT_REMOTE_FAULT 0x0100
651#define PORT_MDIX_STATUS 0x0080
652#define PORT_AUTO_NEG_COMPLETE 0x0040
653#define PORT_STATUS_LINK_GOOD 0x0020
654#define PORT_REMOTE_SYM_PAUSE 0x0010
655#define PORT_REMOTE_100BTX_FD 0x0008
656#define PORT_REMOTE_100BTX 0x0004
657#define PORT_REMOTE_10BT_FD 0x0002
658#define PORT_REMOTE_10BT 0x0001
659
660/*
661#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
662#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
663#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
664#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
665#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
666#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
667*/
668
669#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
670#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
671#define STATIC_MAC_TABLE_VALID 0x00080000
672#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
673#define STATIC_MAC_TABLE_USE_FID 0x00200000
674#define STATIC_MAC_TABLE_FID 0x03C00000
675
676#define STATIC_MAC_FWD_PORTS_SHIFT 16
677#define STATIC_MAC_FID_SHIFT 22
678
679/*
680#define VLAN_TABLE_VID 00-00000000-00000FFF
681#define VLAN_TABLE_FID 00-00000000-0000F000
682#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
683#define VLAN_TABLE_VALID 00-00000000-00080000
684*/
685
686#define VLAN_TABLE_VID 0x00000FFF
687#define VLAN_TABLE_FID 0x0000F000
688#define VLAN_TABLE_MEMBERSHIP 0x00070000
689#define VLAN_TABLE_VALID 0x00080000
690
691#define VLAN_TABLE_FID_SHIFT 12
692#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
693
694/*
695#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
696#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
697#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
698#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
699#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
700#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
701#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
702#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
703*/
704
705#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
706#define DYNAMIC_MAC_TABLE_FID 0x000F0000
707#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
708#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
709#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
710
711#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
712#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
713#define DYNAMIC_MAC_TABLE_RESERVED 0x78
714#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
715
716#define DYNAMIC_MAC_FID_SHIFT 16
717#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
718#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
719#define DYNAMIC_MAC_ENTRIES_SHIFT 24
720#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
721
722/*
723#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
724#define MIB_COUNTER_VALID 00-00000000-40000000
725#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
726*/
727
728#define MIB_COUNTER_VALUE 0x3FFFFFFF
729#define MIB_COUNTER_VALID 0x40000000
730#define MIB_COUNTER_OVERFLOW 0x80000000
731
732#define MIB_PACKET_DROPPED 0x0000FFFF
733
734#define KS_MIB_PACKET_DROPPED_TX_0 0x100
735#define KS_MIB_PACKET_DROPPED_TX_1 0x101
736#define KS_MIB_PACKET_DROPPED_TX 0x102
737#define KS_MIB_PACKET_DROPPED_RX_0 0x103
738#define KS_MIB_PACKET_DROPPED_RX_1 0x104
739#define KS_MIB_PACKET_DROPPED_RX 0x105
740
741/* Change default LED mode. */
742#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
743
744#define MAC_ADDR_LEN 6
745#define MAC_ADDR_ORDER(i) (MAC_ADDR_LEN - 1 - (i))
746
747#define MAX_ETHERNET_BODY_SIZE 1500
748#define ETHERNET_HEADER_SIZE 14
749
750#define MAX_ETHERNET_PACKET_SIZE \
751 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
752
753#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
754#define MAX_RX_BUF_SIZE (1912 + 4)
755
756#define ADDITIONAL_ENTRIES 16
757#define MAX_MULTICAST_LIST 32
758
759#define HW_MULTICAST_SIZE 8
760
761#define HW_TO_DEV_PORT(port) (port - 1)
762
763enum {
764 media_connected,
765 media_disconnected
766};
767
768enum {
769 OID_COUNTER_UNKOWN,
770
771 OID_COUNTER_FIRST,
772
773 /* total transmit errors */
774 OID_COUNTER_XMIT_ERROR,
775
776 /* total receive errors */
777 OID_COUNTER_RCV_ERROR,
778
779 OID_COUNTER_LAST
780};
781
782/*
783 * Hardware descriptor definitions
784 */
785
786#define DESC_ALIGNMENT 16
787#define BUFFER_ALIGNMENT 8
788
789#define NUM_OF_RX_DESC 64
790#define NUM_OF_TX_DESC 64
791
792#define KS_DESC_RX_FRAME_LEN 0x000007FF
793#define KS_DESC_RX_FRAME_TYPE 0x00008000
794#define KS_DESC_RX_ERROR_CRC 0x00010000
795#define KS_DESC_RX_ERROR_RUNT 0x00020000
796#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
797#define KS_DESC_RX_ERROR_PHY 0x00080000
798#define KS884X_DESC_RX_PORT_MASK 0x00300000
799#define KS_DESC_RX_MULTICAST 0x01000000
800#define KS_DESC_RX_ERROR 0x02000000
801#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
802#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
803#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
804#define KS_DESC_RX_LAST 0x20000000
805#define KS_DESC_RX_FIRST 0x40000000
806#define KS_DESC_RX_ERROR_COND \
807 (KS_DESC_RX_ERROR_CRC | \
808 KS_DESC_RX_ERROR_RUNT | \
809 KS_DESC_RX_ERROR_PHY | \
810 KS_DESC_RX_ERROR_TOO_LONG)
811
812#define KS_DESC_HW_OWNED 0x80000000
813
814#define KS_DESC_BUF_SIZE 0x000007FF
815#define KS884X_DESC_TX_PORT_MASK 0x00300000
816#define KS_DESC_END_OF_RING 0x02000000
817#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
818#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
819#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
820#define KS_DESC_TX_LAST 0x20000000
821#define KS_DESC_TX_FIRST 0x40000000
822#define KS_DESC_TX_INTERRUPT 0x80000000
823
824#define KS_DESC_PORT_SHIFT 20
825
826#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
827
828#define KS_DESC_TX_MASK \
829 (KS_DESC_TX_INTERRUPT | \
830 KS_DESC_TX_FIRST | \
831 KS_DESC_TX_LAST | \
832 KS_DESC_TX_CSUM_GEN_IP | \
833 KS_DESC_TX_CSUM_GEN_TCP | \
834 KS_DESC_TX_CSUM_GEN_UDP | \
835 KS_DESC_BUF_SIZE)
836
837struct ksz_desc_rx_stat {
838#ifdef __BIG_ENDIAN_BITFIELD
839 u32 hw_owned:1;
840 u32 first_desc:1;
841 u32 last_desc:1;
842 u32 csum_err_ip:1;
843 u32 csum_err_tcp:1;
844 u32 csum_err_udp:1;
845 u32 error:1;
846 u32 multicast:1;
847 u32 src_port:4;
848 u32 err_phy:1;
849 u32 err_too_long:1;
850 u32 err_runt:1;
851 u32 err_crc:1;
852 u32 frame_type:1;
853 u32 reserved1:4;
854 u32 frame_len:11;
855#else
856 u32 frame_len:11;
857 u32 reserved1:4;
858 u32 frame_type:1;
859 u32 err_crc:1;
860 u32 err_runt:1;
861 u32 err_too_long:1;
862 u32 err_phy:1;
863 u32 src_port:4;
864 u32 multicast:1;
865 u32 error:1;
866 u32 csum_err_udp:1;
867 u32 csum_err_tcp:1;
868 u32 csum_err_ip:1;
869 u32 last_desc:1;
870 u32 first_desc:1;
871 u32 hw_owned:1;
872#endif
873};
874
875struct ksz_desc_tx_stat {
876#ifdef __BIG_ENDIAN_BITFIELD
877 u32 hw_owned:1;
878 u32 reserved1:31;
879#else
880 u32 reserved1:31;
881 u32 hw_owned:1;
882#endif
883};
884
885struct ksz_desc_rx_buf {
886#ifdef __BIG_ENDIAN_BITFIELD
887 u32 reserved4:6;
888 u32 end_of_ring:1;
889 u32 reserved3:14;
890 u32 buf_size:11;
891#else
892 u32 buf_size:11;
893 u32 reserved3:14;
894 u32 end_of_ring:1;
895 u32 reserved4:6;
896#endif
897};
898
899struct ksz_desc_tx_buf {
900#ifdef __BIG_ENDIAN_BITFIELD
901 u32 intr:1;
902 u32 first_seg:1;
903 u32 last_seg:1;
904 u32 csum_gen_ip:1;
905 u32 csum_gen_tcp:1;
906 u32 csum_gen_udp:1;
907 u32 end_of_ring:1;
908 u32 reserved4:1;
909 u32 dest_port:4;
910 u32 reserved3:9;
911 u32 buf_size:11;
912#else
913 u32 buf_size:11;
914 u32 reserved3:9;
915 u32 dest_port:4;
916 u32 reserved4:1;
917 u32 end_of_ring:1;
918 u32 csum_gen_udp:1;
919 u32 csum_gen_tcp:1;
920 u32 csum_gen_ip:1;
921 u32 last_seg:1;
922 u32 first_seg:1;
923 u32 intr:1;
924#endif
925};
926
927union desc_stat {
928 struct ksz_desc_rx_stat rx;
929 struct ksz_desc_tx_stat tx;
930 u32 data;
931};
932
933union desc_buf {
934 struct ksz_desc_rx_buf rx;
935 struct ksz_desc_tx_buf tx;
936 u32 data;
937};
938
939/**
940 * struct ksz_hw_desc - Hardware descriptor data structure
941 * @ctrl: Descriptor control value.
942 * @buf: Descriptor buffer value.
943 * @addr: Physical address of memory buffer.
944 * @next: Pointer to next hardware descriptor.
945 */
946struct ksz_hw_desc {
947 union desc_stat ctrl;
948 union desc_buf buf;
949 u32 addr;
950 u32 next;
951};
952
953/**
954 * struct ksz_sw_desc - Software descriptor data structure
955 * @ctrl: Descriptor control value.
956 * @buf: Descriptor buffer value.
957 * @buf_size: Current buffers size value in hardware descriptor.
958 */
959struct ksz_sw_desc {
960 union desc_stat ctrl;
961 union desc_buf buf;
962 u32 buf_size;
963};
964
965/**
966 * struct ksz_dma_buf - OS dependent DMA buffer data structure
967 * @skb: Associated socket buffer.
968 * @dma: Associated physical DMA address.
969 * len: Actual len used.
970 */
971struct ksz_dma_buf {
972 struct sk_buff *skb;
973 dma_addr_t dma;
974 int len;
975};
976
977/**
978 * struct ksz_desc - Descriptor structure
979 * @phw: Hardware descriptor pointer to uncached physical memory.
980 * @sw: Cached memory to hold hardware descriptor values for
981 * manipulation.
982 * @dma_buf: Operating system dependent data structure to hold physical
983 * memory buffer allocation information.
984 */
985struct ksz_desc {
986 struct ksz_hw_desc *phw;
987 struct ksz_sw_desc sw;
988 struct ksz_dma_buf dma_buf;
989};
990
991#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
992
993/**
994 * struct ksz_desc_info - Descriptor information data structure
995 * @ring: First descriptor in the ring.
996 * @cur: Current descriptor being manipulated.
997 * @ring_virt: First hardware descriptor in the ring.
998 * @ring_phys: The physical address of the first descriptor of the ring.
999 * @size: Size of hardware descriptor.
1000 * @alloc: Number of descriptors allocated.
1001 * @avail: Number of descriptors available for use.
1002 * @last: Index for last descriptor released to hardware.
1003 * @next: Index for next descriptor available for use.
1004 * @mask: Mask for index wrapping.
1005 */
1006struct ksz_desc_info {
1007 struct ksz_desc *ring;
1008 struct ksz_desc *cur;
1009 struct ksz_hw_desc *ring_virt;
1010 u32 ring_phys;
1011 int size;
1012 int alloc;
1013 int avail;
1014 int last;
1015 int next;
1016 int mask;
1017};
1018
1019/*
1020 * KSZ8842 switch definitions
1021 */
1022
1023enum {
1024 TABLE_STATIC_MAC = 0,
1025 TABLE_VLAN,
1026 TABLE_DYNAMIC_MAC,
1027 TABLE_MIB
1028};
1029
1030#define LEARNED_MAC_TABLE_ENTRIES 1024
1031#define STATIC_MAC_TABLE_ENTRIES 8
1032
1033/**
1034 * struct ksz_mac_table - Static MAC table data structure
1035 * @mac_addr: MAC address to filter.
1036 * @vid: VID value.
1037 * @fid: FID value.
1038 * @ports: Port membership.
1039 * @override: Override setting.
1040 * @use_fid: FID use setting.
1041 * @valid: Valid setting indicating the entry is being used.
1042 */
1043struct ksz_mac_table {
1044 u8 mac_addr[MAC_ADDR_LEN];
1045 u16 vid;
1046 u8 fid;
1047 u8 ports;
1048 u8 override:1;
1049 u8 use_fid:1;
1050 u8 valid:1;
1051};
1052
1053#define VLAN_TABLE_ENTRIES 16
1054
1055/**
1056 * struct ksz_vlan_table - VLAN table data structure
1057 * @vid: VID value.
1058 * @fid: FID value.
1059 * @member: Port membership.
1060 */
1061struct ksz_vlan_table {
1062 u16 vid;
1063 u8 fid;
1064 u8 member;
1065};
1066
1067#define DIFFSERV_ENTRIES 64
1068#define PRIO_802_1P_ENTRIES 8
1069#define PRIO_QUEUES 4
1070
1071#define SWITCH_PORT_NUM 2
1072#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1073#define HOST_MASK (1 << SWITCH_PORT_NUM)
1074#define PORT_MASK 7
1075
1076#define MAIN_PORT 0
1077#define OTHER_PORT 1
1078#define HOST_PORT SWITCH_PORT_NUM
1079
1080#define PORT_COUNTER_NUM 0x20
1081#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1082
1083#define MIB_COUNTER_RX_LO_PRIORITY 0x00
1084#define MIB_COUNTER_RX_HI_PRIORITY 0x01
1085#define MIB_COUNTER_RX_UNDERSIZE 0x02
1086#define MIB_COUNTER_RX_FRAGMENT 0x03
1087#define MIB_COUNTER_RX_OVERSIZE 0x04
1088#define MIB_COUNTER_RX_JABBER 0x05
1089#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1090#define MIB_COUNTER_RX_CRC_ERR 0x07
1091#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1092#define MIB_COUNTER_RX_CTRL_8808 0x09
1093#define MIB_COUNTER_RX_PAUSE 0x0A
1094#define MIB_COUNTER_RX_BROADCAST 0x0B
1095#define MIB_COUNTER_RX_MULTICAST 0x0C
1096#define MIB_COUNTER_RX_UNICAST 0x0D
1097#define MIB_COUNTER_RX_OCTET_64 0x0E
1098#define MIB_COUNTER_RX_OCTET_65_127 0x0F
1099#define MIB_COUNTER_RX_OCTET_128_255 0x10
1100#define MIB_COUNTER_RX_OCTET_256_511 0x11
1101#define MIB_COUNTER_RX_OCTET_512_1023 0x12
1102#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1103#define MIB_COUNTER_TX_LO_PRIORITY 0x14
1104#define MIB_COUNTER_TX_HI_PRIORITY 0x15
1105#define MIB_COUNTER_TX_LATE_COLLISION 0x16
1106#define MIB_COUNTER_TX_PAUSE 0x17
1107#define MIB_COUNTER_TX_BROADCAST 0x18
1108#define MIB_COUNTER_TX_MULTICAST 0x19
1109#define MIB_COUNTER_TX_UNICAST 0x1A
1110#define MIB_COUNTER_TX_DEFERRED 0x1B
1111#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1112#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1113#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1114#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1115
1116#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1117#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1118
1119/**
1120 * struct ksz_port_mib - Port MIB data structure
1121 * @cnt_ptr: Current pointer to MIB counter index.
1122 * @link_down: Indication the link has just gone down.
1123 * @state: Connection status of the port.
1124 * @mib_start: The starting counter index. Some ports do not start at 0.
1125 * @counter: 64-bit MIB counter value.
1126 * @dropped: Temporary buffer to remember last read packet dropped values.
1127 *
1128 * MIB counters needs to be read periodically so that counters do not get
1129 * overflowed and give incorrect values. A right balance is needed to
1130 * satisfy this condition and not waste too much CPU time.
1131 *
1132 * It is pointless to read MIB counters when the port is disconnected. The
1133 * @state provides the connection status so that MIB counters are read only
1134 * when the port is connected. The @link_down indicates the port is just
1135 * disconnected so that all MIB counters are read one last time to update the
1136 * information.
1137 */
1138struct ksz_port_mib {
1139 u8 cnt_ptr;
1140 u8 link_down;
1141 u8 state;
1142 u8 mib_start;
1143
1144 u64 counter[TOTAL_PORT_COUNTER_NUM];
1145 u32 dropped[2];
1146};
1147
1148/**
1149 * struct ksz_port_cfg - Port configuration data structure
1150 * @vid: VID value.
1151 * @member: Port membership.
1152 * @port_prio: Port priority.
1153 * @rx_rate: Receive priority rate.
1154 * @tx_rate: Transmit priority rate.
1155 * @stp_state: Current Spanning Tree Protocol state.
1156 */
1157struct ksz_port_cfg {
1158 u16 vid;
1159 u8 member;
1160 u8 port_prio;
1161 u32 rx_rate[PRIO_QUEUES];
1162 u32 tx_rate[PRIO_QUEUES];
1163 int stp_state;
1164};
1165
1166/**
1167 * struct ksz_switch - KSZ8842 switch data structure
1168 * @mac_table: MAC table entries information.
1169 * @vlan_table: VLAN table entries information.
1170 * @port_cfg: Port configuration information.
1171 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1172 * (bit7 ~ bit2) field.
1173 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1174 * Tag priority field.
1175 * @br_addr: Bridge address. Used for STP.
1176 * @other_addr: Other MAC address. Used for multiple network device mode.
1177 * @broad_per: Broadcast storm percentage.
1178 * @member: Current port membership. Used for STP.
1179 */
1180struct ksz_switch {
1181 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1182 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1183 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1184
1185 u8 diffserv[DIFFSERV_ENTRIES];
1186 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1187
1188 u8 br_addr[MAC_ADDR_LEN];
1189 u8 other_addr[MAC_ADDR_LEN];
1190
1191 u8 broad_per;
1192 u8 member;
1193};
1194
1195#define TX_RATE_UNIT 10000
1196
1197/**
1198 * struct ksz_port_info - Port information data structure
1199 * @state: Connection status of the port.
1200 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1201 * @duplex: Duplex mode.
1202 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1203 * @partner: Auto-negotiation partner setting. Used to determine link.
1204 * @port_id: Port index to access actual hardware register.
1205 * @pdev: Pointer to OS dependent network device.
1206 */
1207struct ksz_port_info {
1208 uint state;
1209 uint tx_rate;
1210 u8 duplex;
1211 u8 advertised;
1212 u8 partner;
1213 u8 port_id;
1214 void *pdev;
1215};
1216
1217#define MAX_TX_HELD_SIZE 52000
1218
1219/* Hardware features and bug fixes. */
1220#define LINK_INT_WORKING (1 << 0)
1221#define SMALL_PACKET_TX_BUG (1 << 1)
1222#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1223#define IPV6_CSUM_GEN_HACK (1 << 3)
1224#define RX_HUGE_FRAME (1 << 4)
1225#define STP_SUPPORT (1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL (1 << 0)
1229#define FAST_AGING (1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io: Virtual address assigned.
1234 * @ksz_switch: Pointer to KSZ8842 switch.
1235 * @port_info: Port information.
1236 * @port_mib: Port MIB information.
1237 * @dev_count: Number of network devices this hardware supports.
1238 * @dst_ports: Destination ports in switch for transmission.
1239 * @id: Hardware ID. Used for display only.
1240 * @mib_cnt: Number of MIB counters this hardware has.
1241 * @mib_port_cnt: Number of ports with MIB counters.
1242 * @tx_cfg: Cached transmit control settings.
1243 * @rx_cfg: Cached receive control settings.
1244 * @intr_mask: Current interrupt mask.
1245 * @intr_set: Current interrup set.
1246 * @intr_blocked: Interrupt blocked.
1247 * @rx_desc_info: Receive descriptor information.
1248 * @tx_desc_info: Transmit descriptor information.
1249 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1250 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1251 * @tx_size: Transmit data size. Used for TX optimization.
1252 * The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr: Permanent MAC address.
1254 * @override_addr: Overrided MAC address.
1255 * @address: Additional MAC address entries.
1256 * @addr_list_size: Additional MAC address list size.
1257 * @mac_override: Indication of MAC address overrided.
1258 * @promiscuous: Counter to keep track of promiscuous mode set.
1259 * @all_multi: Counter to keep track of all multicast mode set.
1260 * @multi_list: Multicast address entries.
1261 * @multi_bits: Cached multicast hash table settings.
1262 * @multi_list_size: Multicast address list size.
1263 * @enabled: Indication of hardware enabled.
1264 * @rx_stop: Indication of receive process stop.
1265 * @features: Hardware features to enable.
1266 * @overrides: Hardware features to override.
1267 * @parent: Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270 void __iomem *io;
1271
1272 struct ksz_switch *ksz_switch;
1273 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 int dev_count;
1276 int dst_ports;
1277 int id;
1278 int mib_cnt;
1279 int mib_port_cnt;
1280
1281 u32 tx_cfg;
1282 u32 rx_cfg;
1283 u32 intr_mask;
1284 u32 intr_set;
1285 uint intr_blocked;
1286
1287 struct ksz_desc_info rx_desc_info;
1288 struct ksz_desc_info tx_desc_info;
1289
1290 int tx_int_cnt;
1291 int tx_int_mask;
1292 int tx_size;
1293
1294 u8 perm_addr[MAC_ADDR_LEN];
1295 u8 override_addr[MAC_ADDR_LEN];
1296 u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1297 u8 addr_list_size;
1298 u8 mac_override;
1299 u8 promiscuous;
1300 u8 all_multi;
1301 u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1302 u8 multi_bits[HW_MULTICAST_SIZE];
1303 u8 multi_list_size;
1304
1305 u8 enabled;
1306 u8 rx_stop;
1307 u8 reserved2[1];
1308
1309 uint features;
1310 uint overrides;
1311
1312 void *parent;
1313};
1314
1315enum {
1316 PHY_NO_FLOW_CTRL,
1317 PHY_FLOW_CTRL,
1318 PHY_TX_ONLY,
1319 PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1325 * duplex, and 0 for auto, which normally results in full
1326 * duplex.
1327 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 0 for auto, which normally results in 100 Mbit.
1329 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1330 * force.
1331 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1332 * control, and PHY_FLOW_CTRL for flow control.
1333 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * Mbit PHY.
1335 * @first_port: Index of first port this port supports.
1336 * @mib_port_cnt: Number of ports with MIB counters.
1337 * @port_cnt: Number of ports this port supports.
1338 * @counter: Port statistics counter.
1339 * @hw: Pointer to hardware structure.
1340 * @linked: Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343 u8 duplex;
1344 u8 speed;
1345 u8 force_link;
1346 u8 flow_ctrl;
1347
1348 int first_port;
1349 int mib_port_cnt;
1350 int port_cnt;
1351 u64 counter[OID_COUNTER_LAST];
1352
1353 struct ksz_hw *hw;
1354 struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer: Kernel timer.
1360 * @cnt: Running timer counter.
1361 * @max: Number of times to run timer; -1 for infinity.
1362 * @period: Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365 struct timer_list timer;
1366 int cnt;
1367 int max;
1368 int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr: Physical DMA address allocated.
1374 * @alloc_size: Allocation size.
1375 * @phys: Actual physical address used.
1376 * @alloc_virt: Virtual address allocated.
1377 * @virt: Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380 dma_addr_t dma_addr;
1381 uint alloc_size;
1382 uint phys;
1383 u8 *alloc_virt;
1384 u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter: Wait queue to wakeup after counters are read.
1390 * @time: Next time in jiffies to read counter.
1391 * @read: Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394 wait_queue_head_t counter;
1395 unsigned long time;
1396 int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev: Pointer to network device.
1402 * @pdev: Pointer to PCI device.
1403 * @hw: Hardware structure.
1404 * @desc_pool: Physical memory used for descriptor pool.
1405 * @hwlock: Spinlock to prevent hardware from accessing.
1406 * @lock: Mutex lock to prevent device from accessing.
1407 * @dev_rcv: Receive process function used.
1408 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index: Buffer index for receiving fragments.
1410 * @skb_len: Buffer length for receiving fragments.
1411 * @mib_read: Workqueue to read MIB counters.
1412 * @mib_timer_info: Timer to read MIB counters.
1413 * @counter: Used for MIB reading.
1414 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1415 * the maximum is MAX_RX_BUF_SIZE.
1416 * @opened: Counter to keep track of device open.
1417 * @rx_tasklet: Receive processing tasklet.
1418 * @tx_tasklet: Transmit processing tasklet.
1419 * @wol_enable: Wake-on-LAN enable set by ethtool.
1420 * @wol_support: Wake-on-LAN support used by ethtool.
1421 * @pme_wait: Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424 struct net_device *dev;
1425 struct pci_dev *pdev;
1426
1427 struct ksz_hw hw;
1428 struct ksz_shared_mem desc_pool;
1429
1430 spinlock_t hwlock;
1431 struct mutex lock;
1432
1433 int (*dev_rcv)(struct dev_info *);
1434
1435 struct sk_buff *last_skb;
1436 int skb_index;
1437 int skb_len;
1438
1439 struct work_struct mib_read;
1440 struct ksz_timer_info mib_timer_info;
1441 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443 int mtu;
1444 int opened;
1445
1446 struct tasklet_struct rx_tasklet;
1447 struct tasklet_struct tx_tasklet;
1448
1449 int wol_enable;
1450 int wol_support;
1451 unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter: Adapter device information.
1457 * @port: Port information.
1458 * @monitor_time_info: Timer to monitor ports.
1459 * @stats: Network statistics.
1460 * @proc_sem: Semaphore for proc accessing.
1461 * @id: Device ID.
1462 * @mii_if: MII interface information.
1463 * @advertising: Temporary variable to store advertised settings.
1464 * @msg_enable: The message flags controlling driver output.
1465 * @media_state: The connection status of the device.
1466 * @multicast: The all multicast state of the device.
1467 * @promiscuous: The promiscuous state of the device.
1468 */
1469struct dev_priv {
1470 struct dev_info *adapter;
1471 struct ksz_port port;
1472 struct ksz_timer_info monitor_timer_info;
1473 struct net_device_stats stats;
1474
1475 struct semaphore proc_sem;
1476 int id;
1477
1478 struct mii_if_info mii_if;
1479 u32 advertising;
1480
1481 u32 msg_enable;
1482 int media_state;
1483 int multicast;
1484 int promiscuous;
1485};
1486
1487#define ks_info(_ks, _msg...) dev_info(&(_ks)->pdev->dev, _msg)
1488#define ks_warn(_ks, _msg...) dev_warn(&(_ks)->pdev->dev, _msg)
1489#define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->pdev->dev, _msg)
1490#define ks_err(_ks, _msg...) dev_err(&(_ks)->pdev->dev, _msg)
1491
1492#define DRV_NAME "KSZ884X PCI"
1493#define DEVICE_NAME "KSZ884x PCI"
1494#define DRV_VERSION "1.0.0"
1495#define DRV_RELDATE "Feb 8, 2010"
1496
1497static char version[] __devinitdata =
1498 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1499
1500static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1501
1502/*
1503 * Interrupt processing primary routines
1504 */
1505
1506static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1507{
1508 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1509}
1510
1511static inline void hw_dis_intr(struct ksz_hw *hw)
1512{
1513 hw->intr_blocked = hw->intr_mask;
1514 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1515 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1516}
1517
1518static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1519{
1520 hw->intr_set = interrupt;
1521 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1522}
1523
1524static inline void hw_ena_intr(struct ksz_hw *hw)
1525{
1526 hw->intr_blocked = 0;
1527 hw_set_intr(hw, hw->intr_mask);
1528}
1529
1530static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1531{
1532 hw->intr_mask &= ~(bit);
1533}
1534
1535static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1536{
1537 u32 read_intr;
1538
1539 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1540 hw->intr_set = read_intr & ~interrupt;
1541 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1542 hw_dis_intr_bit(hw, interrupt);
1543}
1544
1545/**
1546 * hw_turn_on_intr - turn on specified interrupts
1547 * @hw: The hardware instance.
1548 * @bit: The interrupt bits to be on.
1549 *
1550 * This routine turns on the specified interrupts in the interrupt mask so that
1551 * those interrupts will be enabled.
1552 */
1553static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1554{
1555 hw->intr_mask |= bit;
1556
1557 if (!hw->intr_blocked)
1558 hw_set_intr(hw, hw->intr_mask);
1559}
1560
1561static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1562{
1563 u32 read_intr;
1564
1565 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1566 hw->intr_set = read_intr | interrupt;
1567 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1568}
1569
1570static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1571{
1572 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1573 *status = *status & hw->intr_set;
1574}
1575
1576static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1577{
1578 if (interrupt)
1579 hw_ena_intr(hw);
1580}
1581
1582/**
1583 * hw_block_intr - block hardware interrupts
1584 *
1585 * This function blocks all interrupts of the hardware and returns the current
1586 * interrupt enable mask so that interrupts can be restored later.
1587 *
1588 * Return the current interrupt enable mask.
1589 */
1590static uint hw_block_intr(struct ksz_hw *hw)
1591{
1592 uint interrupt = 0;
1593
1594 if (!hw->intr_blocked) {
1595 hw_dis_intr(hw);
1596 interrupt = hw->intr_blocked;
1597 }
1598 return interrupt;
1599}
1600
1601/*
1602 * Hardware descriptor routines
1603 */
1604
1605static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1606{
1607 status.rx.hw_owned = 0;
1608 desc->phw->ctrl.data = cpu_to_le32(status.data);
1609}
1610
1611static inline void release_desc(struct ksz_desc *desc)
1612{
1613 desc->sw.ctrl.tx.hw_owned = 1;
1614 if (desc->sw.buf_size != desc->sw.buf.data) {
1615 desc->sw.buf_size = desc->sw.buf.data;
1616 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1617 }
1618 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1619}
1620
1621static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1622{
1623 *desc = &info->ring[info->last];
1624 info->last++;
1625 info->last &= info->mask;
1626 info->avail--;
1627 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1628}
1629
1630static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1631{
1632 desc->phw->addr = cpu_to_le32(addr);
1633}
1634
1635static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1636{
1637 desc->sw.buf.rx.buf_size = len;
1638}
1639
1640static inline void get_tx_pkt(struct ksz_desc_info *info,
1641 struct ksz_desc **desc)
1642{
1643 *desc = &info->ring[info->next];
1644 info->next++;
1645 info->next &= info->mask;
1646 info->avail--;
1647 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1648}
1649
1650static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1651{
1652 desc->phw->addr = cpu_to_le32(addr);
1653}
1654
1655static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1656{
1657 desc->sw.buf.tx.buf_size = len;
1658}
1659
1660/* Switch functions */
1661
1662#define TABLE_READ 0x10
1663#define TABLE_SEL_SHIFT 2
1664
1665#define HW_DELAY(hw, reg) \
1666 do { \
1667 u16 dummy; \
1668 dummy = readw(hw->io + reg); \
1669 } while (0)
1670
1671/**
1672 * sw_r_table - read 4 bytes of data from switch table
1673 * @hw: The hardware instance.
1674 * @table: The table selector.
1675 * @addr: The address of the table entry.
1676 * @data: Buffer to store the read data.
1677 *
1678 * This routine reads 4 bytes of data from the table of the switch.
1679 * Hardware interrupts are disabled to minimize corruption of read data.
1680 */
1681static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1682{
1683 u16 ctrl_addr;
1684 uint interrupt;
1685
1686 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1687
1688 interrupt = hw_block_intr(hw);
1689
1690 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1691 HW_DELAY(hw, KS884X_IACR_OFFSET);
1692 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1693
1694 hw_restore_intr(hw, interrupt);
1695}
1696
1697/**
1698 * sw_w_table_64 - write 8 bytes of data to the switch table
1699 * @hw: The hardware instance.
1700 * @table: The table selector.
1701 * @addr: The address of the table entry.
1702 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1703 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1704 *
1705 * This routine writes 8 bytes of data to the table of the switch.
1706 * Hardware interrupts are disabled to minimize corruption of written data.
1707 */
1708static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1709 u32 data_lo)
1710{
1711 u16 ctrl_addr;
1712 uint interrupt;
1713
1714 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1715
1716 interrupt = hw_block_intr(hw);
1717
1718 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1719 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1720
1721 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1722 HW_DELAY(hw, KS884X_IACR_OFFSET);
1723
1724 hw_restore_intr(hw, interrupt);
1725}
1726
1727/**
1728 * sw_w_sta_mac_table - write to the static MAC table
1729 * @hw: The hardware instance.
1730 * @addr: The address of the table entry.
1731 * @mac_addr: The MAC address.
1732 * @ports: The port members.
1733 * @override: The flag to override the port receive/transmit settings.
1734 * @valid: The flag to indicate entry is valid.
1735 * @use_fid: The flag to indicate the FID is valid.
1736 * @fid: The FID value.
1737 *
1738 * This routine writes an entry of the static MAC table of the switch. It
1739 * calls sw_w_table_64() to write the data.
1740 */
1741static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1742 u8 ports, int override, int valid, int use_fid, u8 fid)
1743{
1744 u32 data_hi;
1745 u32 data_lo;
1746
1747 data_lo = ((u32) mac_addr[2] << 24) |
1748 ((u32) mac_addr[3] << 16) |
1749 ((u32) mac_addr[4] << 8) | mac_addr[5];
1750 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1751 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1752
1753 if (override)
1754 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1755 if (use_fid) {
1756 data_hi |= STATIC_MAC_TABLE_USE_FID;
1757 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1758 }
1759 if (valid)
1760 data_hi |= STATIC_MAC_TABLE_VALID;
1761
1762 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1763}
1764
1765/**
1766 * sw_r_vlan_table - read from the VLAN table
1767 * @hw: The hardware instance.
1768 * @addr: The address of the table entry.
1769 * @vid: Buffer to store the VID.
1770 * @fid: Buffer to store the VID.
1771 * @member: Buffer to store the port membership.
1772 *
1773 * This function reads an entry of the VLAN table of the switch. It calls
1774 * sw_r_table() to get the data.
1775 *
1776 * Return 0 if the entry is valid; otherwise -1.
1777 */
1778static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1779 u8 *member)
1780{
1781 u32 data;
1782
1783 sw_r_table(hw, TABLE_VLAN, addr, &data);
1784 if (data & VLAN_TABLE_VALID) {
1785 *vid = (u16)(data & VLAN_TABLE_VID);
1786 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1787 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1788 VLAN_TABLE_MEMBERSHIP_SHIFT);
1789 return 0;
1790 }
1791 return -1;
1792}
1793
1794/**
1795 * port_r_mib_cnt - read MIB counter
1796 * @hw: The hardware instance.
1797 * @port: The port index.
1798 * @addr: The address of the counter.
1799 * @cnt: Buffer to store the counter.
1800 *
1801 * This routine reads a MIB counter of the port.
1802 * Hardware interrupts are disabled to minimize corruption of read data.
1803 */
1804static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1805{
1806 u32 data;
1807 u16 ctrl_addr;
1808 uint interrupt;
1809 int timeout;
1810
1811 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1812
1813 interrupt = hw_block_intr(hw);
1814
1815 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1816 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1817 HW_DELAY(hw, KS884X_IACR_OFFSET);
1818
1819 for (timeout = 100; timeout > 0; timeout--) {
1820 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1821
1822 if (data & MIB_COUNTER_VALID) {
1823 if (data & MIB_COUNTER_OVERFLOW)
1824 *cnt += MIB_COUNTER_VALUE + 1;
1825 *cnt += data & MIB_COUNTER_VALUE;
1826 break;
1827 }
1828 }
1829
1830 hw_restore_intr(hw, interrupt);
1831}
1832
1833/**
1834 * port_r_mib_pkt - read dropped packet counts
1835 * @hw: The hardware instance.
1836 * @port: The port index.
1837 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1838 *
1839 * This routine reads the dropped packet counts of the port.
1840 * Hardware interrupts are disabled to minimize corruption of read data.
1841 */
1842static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1843{
1844 u32 cur;
1845 u32 data;
1846 u16 ctrl_addr;
1847 uint interrupt;
1848 int index;
1849
1850 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1851 do {
1852 interrupt = hw_block_intr(hw);
1853
1854 ctrl_addr = (u16) index;
1855 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1856 << 8);
1857 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1858 HW_DELAY(hw, KS884X_IACR_OFFSET);
1859 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1860
1861 hw_restore_intr(hw, interrupt);
1862
1863 data &= MIB_PACKET_DROPPED;
1864 cur = *last;
1865 if (data != cur) {
1866 *last = data;
1867 if (data < cur)
1868 data += MIB_PACKET_DROPPED + 1;
1869 data -= cur;
1870 *cnt += data;
1871 }
1872 ++last;
1873 ++cnt;
1874 index -= KS_MIB_PACKET_DROPPED_TX -
1875 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1876 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1877}
1878
1879/**
1880 * port_r_cnt - read MIB counters periodically
1881 * @hw: The hardware instance.
1882 * @port: The port index.
1883 *
1884 * This routine is used to read the counters of the port periodically to avoid
1885 * counter overflow. The hardware should be acquired first before calling this
1886 * routine.
1887 *
1888 * Return non-zero when not all counters not read.
1889 */
1890static int port_r_cnt(struct ksz_hw *hw, int port)
1891{
1892 struct ksz_port_mib *mib = &hw->port_mib[port];
1893
1894 if (mib->mib_start < PORT_COUNTER_NUM)
1895 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1896 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1897 &mib->counter[mib->cnt_ptr]);
1898 ++mib->cnt_ptr;
1899 }
1900 if (hw->mib_cnt > PORT_COUNTER_NUM)
1901 port_r_mib_pkt(hw, port, mib->dropped,
1902 &mib->counter[PORT_COUNTER_NUM]);
1903 mib->cnt_ptr = 0;
1904 return 0;
1905}
1906
1907/**
1908 * port_init_cnt - initialize MIB counter values
1909 * @hw: The hardware instance.
1910 * @port: The port index.
1911 *
1912 * This routine is used to initialize all counters to zero if the hardware
1913 * cannot do it after reset.
1914 */
1915static void port_init_cnt(struct ksz_hw *hw, int port)
1916{
1917 struct ksz_port_mib *mib = &hw->port_mib[port];
1918
1919 mib->cnt_ptr = 0;
1920 if (mib->mib_start < PORT_COUNTER_NUM)
1921 do {
1922 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1923 &mib->counter[mib->cnt_ptr]);
1924 ++mib->cnt_ptr;
1925 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1926 if (hw->mib_cnt > PORT_COUNTER_NUM)
1927 port_r_mib_pkt(hw, port, mib->dropped,
1928 &mib->counter[PORT_COUNTER_NUM]);
1929 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1930 mib->cnt_ptr = 0;
1931}
1932
1933/*
1934 * Port functions
1935 */
1936
1937/**
1938 * port_chk - check port register bits
1939 * @hw: The hardware instance.
1940 * @port: The port index.
1941 * @offset: The offset of the port register.
1942 * @bits: The data bits to check.
1943 *
1944 * This function checks whether the specified bits of the port register are set
1945 * or not.
1946 *
1947 * Return 0 if the bits are not set.
1948 */
1949static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1950{
1951 u32 addr;
1952 u16 data;
1953
1954 PORT_CTRL_ADDR(port, addr);
1955 addr += offset;
1956 data = readw(hw->io + addr);
1957 return (data & bits) == bits;
1958}
1959
1960/**
1961 * port_cfg - set port register bits
1962 * @hw: The hardware instance.
1963 * @port: The port index.
1964 * @offset: The offset of the port register.
1965 * @bits: The data bits to set.
1966 * @set: The flag indicating whether the bits are to be set or not.
1967 *
1968 * This routine sets or resets the specified bits of the port register.
1969 */
1970static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1971 int set)
1972{
1973 u32 addr;
1974 u16 data;
1975
1976 PORT_CTRL_ADDR(port, addr);
1977 addr += offset;
1978 data = readw(hw->io + addr);
1979 if (set)
1980 data |= bits;
1981 else
1982 data &= ~bits;
1983 writew(data, hw->io + addr);
1984}
1985
1986/**
1987 * port_chk_shift - check port bit
1988 * @hw: The hardware instance.
1989 * @port: The port index.
1990 * @offset: The offset of the register.
1991 * @shift: Number of bits to shift.
1992 *
1993 * This function checks whether the specified port is set in the register or
1994 * not.
1995 *
1996 * Return 0 if the port is not set.
1997 */
1998static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1999{
2000 u16 data;
2001 u16 bit = 1 << port;
2002
2003 data = readw(hw->io + addr);
2004 data >>= shift;
2005 return (data & bit) == bit;
2006}
2007
2008/**
2009 * port_cfg_shift - set port bit
2010 * @hw: The hardware instance.
2011 * @port: The port index.
2012 * @offset: The offset of the register.
2013 * @shift: Number of bits to shift.
2014 * @set: The flag indicating whether the port is to be set or not.
2015 *
2016 * This routine sets or resets the specified port in the register.
2017 */
2018static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2019 int set)
2020{
2021 u16 data;
2022 u16 bits = 1 << port;
2023
2024 data = readw(hw->io + addr);
2025 bits <<= shift;
2026 if (set)
2027 data |= bits;
2028 else
2029 data &= ~bits;
2030 writew(data, hw->io + addr);
2031}
2032
2033/**
2034 * port_r8 - read byte from port register
2035 * @hw: The hardware instance.
2036 * @port: The port index.
2037 * @offset: The offset of the port register.
2038 * @data: Buffer to store the data.
2039 *
2040 * This routine reads a byte from the port register.
2041 */
2042static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2043{
2044 u32 addr;
2045
2046 PORT_CTRL_ADDR(port, addr);
2047 addr += offset;
2048 *data = readb(hw->io + addr);
2049}
2050
2051/**
2052 * port_r16 - read word from port register.
2053 * @hw: The hardware instance.
2054 * @port: The port index.
2055 * @offset: The offset of the port register.
2056 * @data: Buffer to store the data.
2057 *
2058 * This routine reads a word from the port register.
2059 */
2060static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2061{
2062 u32 addr;
2063
2064 PORT_CTRL_ADDR(port, addr);
2065 addr += offset;
2066 *data = readw(hw->io + addr);
2067}
2068
2069/**
2070 * port_w16 - write word to port register.
2071 * @hw: The hardware instance.
2072 * @port: The port index.
2073 * @offset: The offset of the port register.
2074 * @data: Data to write.
2075 *
2076 * This routine writes a word to the port register.
2077 */
2078static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2079{
2080 u32 addr;
2081
2082 PORT_CTRL_ADDR(port, addr);
2083 addr += offset;
2084 writew(data, hw->io + addr);
2085}
2086
2087/**
2088 * sw_chk - check switch register bits
2089 * @hw: The hardware instance.
2090 * @addr: The address of the switch register.
2091 * @bits: The data bits to check.
2092 *
2093 * This function checks whether the specified bits of the switch register are
2094 * set or not.
2095 *
2096 * Return 0 if the bits are not set.
2097 */
2098static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2099{
2100 u16 data;
2101
2102 data = readw(hw->io + addr);
2103 return (data & bits) == bits;
2104}
2105
2106/**
2107 * sw_cfg - set switch register bits
2108 * @hw: The hardware instance.
2109 * @addr: The address of the switch register.
2110 * @bits: The data bits to set.
2111 * @set: The flag indicating whether the bits are to be set or not.
2112 *
2113 * This function sets or resets the specified bits of the switch register.
2114 */
2115static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2116{
2117 u16 data;
2118
2119 data = readw(hw->io + addr);
2120 if (set)
2121 data |= bits;
2122 else
2123 data &= ~bits;
2124 writew(data, hw->io + addr);
2125}
2126
2127/* Bandwidth */
2128
2129static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2130{
2131 port_cfg(hw, p,
2132 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2133}
2134
2135static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2136{
2137 return port_chk(hw, p,
2138 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2139}
2140
2141/* Driver set switch broadcast storm protection at 10% rate. */
2142#define BROADCAST_STORM_PROTECTION_RATE 10
2143
2144/* 148,800 frames * 67 ms / 100 */
2145#define BROADCAST_STORM_VALUE 9969
2146
2147/**
2148 * sw_cfg_broad_storm - configure broadcast storm threshold
2149 * @hw: The hardware instance.
2150 * @percent: Broadcast storm threshold in percent of transmit rate.
2151 *
2152 * This routine configures the broadcast storm threshold of the switch.
2153 */
2154static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2155{
2156 u16 data;
2157 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2158
2159 if (value > BROADCAST_STORM_RATE)
2160 value = BROADCAST_STORM_RATE;
2161
2162 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2163 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2164 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2165 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2166}
2167
2168/**
2169 * sw_get_board_storm - get broadcast storm threshold
2170 * @hw: The hardware instance.
2171 * @percent: Buffer to store the broadcast storm threshold percentage.
2172 *
2173 * This routine retrieves the broadcast storm threshold of the switch.
2174 */
2175static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2176{
2177 int num;
2178 u16 data;
2179
2180 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2181 num = (data & BROADCAST_STORM_RATE_HI);
2182 num <<= 8;
2183 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2184 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2185 *percent = (u8) num;
2186}
2187
2188/**
2189 * sw_dis_broad_storm - disable broadstorm
2190 * @hw: The hardware instance.
2191 * @port: The port index.
2192 *
2193 * This routine disables the broadcast storm limit function of the switch.
2194 */
2195static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2196{
2197 port_cfg_broad_storm(hw, port, 0);
2198}
2199
2200/**
2201 * sw_ena_broad_storm - enable broadcast storm
2202 * @hw: The hardware instance.
2203 * @port: The port index.
2204 *
2205 * This routine enables the broadcast storm limit function of the switch.
2206 */
2207static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2208{
2209 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2210 port_cfg_broad_storm(hw, port, 1);
2211}
2212
2213/**
2214 * sw_init_broad_storm - initialize broadcast storm
2215 * @hw: The hardware instance.
2216 *
2217 * This routine initializes the broadcast storm limit function of the switch.
2218 */
2219static void sw_init_broad_storm(struct ksz_hw *hw)
2220{
2221 int port;
2222
2223 hw->ksz_switch->broad_per = 1;
2224 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2225 for (port = 0; port < TOTAL_PORT_NUM; port++)
2226 sw_dis_broad_storm(hw, port);
2227 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2228}
2229
2230/**
2231 * hw_cfg_broad_storm - configure broadcast storm
2232 * @hw: The hardware instance.
2233 * @percent: Broadcast storm threshold in percent of transmit rate.
2234 *
2235 * This routine configures the broadcast storm threshold of the switch.
2236 * It is called by user functions. The hardware should be acquired first.
2237 */
2238static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2239{
2240 if (percent > 100)
2241 percent = 100;
2242
2243 sw_cfg_broad_storm(hw, percent);
2244 sw_get_broad_storm(hw, &percent);
2245 hw->ksz_switch->broad_per = percent;
2246}
2247
2248/**
2249 * sw_dis_prio_rate - disable switch priority rate
2250 * @hw: The hardware instance.
2251 * @port: The port index.
2252 *
2253 * This routine disables the priority rate function of the switch.
2254 */
2255static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2256{
2257 u32 addr;
2258
2259 PORT_CTRL_ADDR(port, addr);
2260 addr += KS8842_PORT_IN_RATE_OFFSET;
2261 writel(0, hw->io + addr);
2262}
2263
2264/**
2265 * sw_init_prio_rate - initialize switch prioirty rate
2266 * @hw: The hardware instance.
2267 *
2268 * This routine initializes the priority rate function of the switch.
2269 */
2270static void sw_init_prio_rate(struct ksz_hw *hw)
2271{
2272 int port;
2273 int prio;
2274 struct ksz_switch *sw = hw->ksz_switch;
2275
2276 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2277 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2278 sw->port_cfg[port].rx_rate[prio] =
2279 sw->port_cfg[port].tx_rate[prio] = 0;
2280 }
2281 sw_dis_prio_rate(hw, port);
2282 }
2283}
2284
2285/* Communication */
2286
2287static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2288{
2289 port_cfg(hw, p,
2290 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2291}
2292
2293static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2294{
2295 port_cfg(hw, p,
2296 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2297}
2298
2299static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2300{
2301 return port_chk(hw, p,
2302 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2303}
2304
2305static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2306{
2307 return port_chk(hw, p,
2308 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2309}
2310
2311/* Spanning Tree */
2312
2313static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2314{
2315 port_cfg(hw, p,
2316 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2317}
2318
2319static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2320{
2321 port_cfg(hw, p,
2322 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2323}
2324
2325static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2326{
2327 port_cfg(hw, p,
2328 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2329}
2330
2331static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2332{
2333 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2334}
2335
2336static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2337{
2338 if (!(hw->overrides & FAST_AGING)) {
2339 sw_cfg_fast_aging(hw, 1);
2340 mdelay(1);
2341 sw_cfg_fast_aging(hw, 0);
2342 }
2343}
2344
2345/* VLAN */
2346
2347static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2348{
2349 port_cfg(hw, p,
2350 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2351}
2352
2353static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2354{
2355 port_cfg(hw, p,
2356 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2357}
2358
2359static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2360{
2361 return port_chk(hw, p,
2362 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2363}
2364
2365static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2366{
2367 return port_chk(hw, p,
2368 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2369}
2370
2371static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2372{
2373 port_cfg(hw, p,
2374 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2375}
2376
2377static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2378{
2379 port_cfg(hw, p,
2380 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2381}
2382
2383static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2384{
2385 return port_chk(hw, p,
2386 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2387}
2388
2389static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2390{
2391 return port_chk(hw, p,
2392 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2393}
2394
2395/* Mirroring */
2396
2397static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2398{
2399 port_cfg(hw, p,
2400 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2401}
2402
2403static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2404{
2405 port_cfg(hw, p,
2406 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2407}
2408
2409static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2410{
2411 port_cfg(hw, p,
2412 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2413}
2414
2415static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2416{
2417 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2418}
2419
2420static void sw_init_mirror(struct ksz_hw *hw)
2421{
2422 int port;
2423
2424 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2425 port_cfg_mirror_sniffer(hw, port, 0);
2426 port_cfg_mirror_rx(hw, port, 0);
2427 port_cfg_mirror_tx(hw, port, 0);
2428 }
2429 sw_cfg_mirror_rx_tx(hw, 0);
2430}
2431
2432static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2433{
2434 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2435 SWITCH_UNK_DEF_PORT_ENABLE, set);
2436}
2437
2438static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2439{
2440 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2441 SWITCH_UNK_DEF_PORT_ENABLE);
2442}
2443
2444static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2445{
2446 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2447}
2448
2449static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2450{
2451 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2452}
2453
2454/* Priority */
2455
2456static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2457{
2458 port_cfg(hw, p,
2459 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2460}
2461
2462static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2463{
2464 port_cfg(hw, p,
2465 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2466}
2467
2468static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2469{
2470 port_cfg(hw, p,
2471 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2472}
2473
2474static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2475{
2476 port_cfg(hw, p,
2477 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2478}
2479
2480static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2481{
2482 return port_chk(hw, p,
2483 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2484}
2485
2486static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2487{
2488 return port_chk(hw, p,
2489 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2490}
2491
2492static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2493{
2494 return port_chk(hw, p,
2495 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2496}
2497
2498static inline int port_chk_prio(struct ksz_hw *hw, int p)
2499{
2500 return port_chk(hw, p,
2501 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2502}
2503
2504/**
2505 * sw_dis_diffserv - disable switch DiffServ priority
2506 * @hw: The hardware instance.
2507 * @port: The port index.
2508 *
2509 * This routine disables the DiffServ priority function of the switch.
2510 */
2511static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2512{
2513 port_cfg_diffserv(hw, port, 0);
2514}
2515
2516/**
2517 * sw_dis_802_1p - disable switch 802.1p priority
2518 * @hw: The hardware instance.
2519 * @port: The port index.
2520 *
2521 * This routine disables the 802.1p priority function of the switch.
2522 */
2523static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2524{
2525 port_cfg_802_1p(hw, port, 0);
2526}
2527
2528/**
2529 * sw_cfg_replace_null_vid -
2530 * @hw: The hardware instance.
2531 * @set: The flag to disable or enable.
2532 *
2533 */
2534static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2535{
2536 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2537}
2538
2539/**
2540 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2541 * @hw: The hardware instance.
2542 * @port: The port index.
2543 * @set: The flag to disable or enable.
2544 *
2545 * This routine enables the 802.1p priority re-mapping function of the switch.
2546 * That allows 802.1p priority field to be replaced with the port's default
2547 * tag's priority value if the ingress packet's 802.1p priority has a higher
2548 * priority than port's default tag's priority.
2549 */
2550static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2551{
2552 port_cfg_replace_vid(hw, port, set);
2553}
2554
2555/**
2556 * sw_cfg_port_based - configure switch port based priority
2557 * @hw: The hardware instance.
2558 * @port: The port index.
2559 * @prio: The priority to set.
2560 *
2561 * This routine configures the port based priority of the switch.
2562 */
2563static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2564{
2565 u16 data;
2566
2567 if (prio > PORT_BASED_PRIORITY_BASE)
2568 prio = PORT_BASED_PRIORITY_BASE;
2569
2570 hw->ksz_switch->port_cfg[port].port_prio = prio;
2571
2572 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2573 data &= ~PORT_BASED_PRIORITY_MASK;
2574 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2575 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2576}
2577
2578/**
2579 * sw_dis_multi_queue - disable transmit multiple queues
2580 * @hw: The hardware instance.
2581 * @port: The port index.
2582 *
2583 * This routine disables the transmit multiple queues selection of the switch
2584 * port. Only single transmit queue on the port.
2585 */
2586static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2587{
2588 port_cfg_prio(hw, port, 0);
2589}
2590
2591/**
2592 * sw_init_prio - initialize switch priority
2593 * @hw: The hardware instance.
2594 *
2595 * This routine initializes the switch QoS priority functions.
2596 */
2597static void sw_init_prio(struct ksz_hw *hw)
2598{
2599 int port;
2600 int tos;
2601 struct ksz_switch *sw = hw->ksz_switch;
2602
2603 /*
2604 * Init all the 802.1p tag priority value to be assigned to different
2605 * priority queue.
2606 */
2607 sw->p_802_1p[0] = 0;
2608 sw->p_802_1p[1] = 0;
2609 sw->p_802_1p[2] = 1;
2610 sw->p_802_1p[3] = 1;
2611 sw->p_802_1p[4] = 2;
2612 sw->p_802_1p[5] = 2;
2613 sw->p_802_1p[6] = 3;
2614 sw->p_802_1p[7] = 3;
2615
2616 /*
2617 * Init all the DiffServ priority value to be assigned to priority
2618 * queue 0.
2619 */
2620 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2621 sw->diffserv[tos] = 0;
2622
2623 /* All QoS functions disabled. */
2624 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2625 sw_dis_multi_queue(hw, port);
2626 sw_dis_diffserv(hw, port);
2627 sw_dis_802_1p(hw, port);
2628 sw_cfg_replace_vid(hw, port, 0);
2629
2630 sw->port_cfg[port].port_prio = 0;
2631 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2632 }
2633 sw_cfg_replace_null_vid(hw, 0);
2634}
2635
2636/**
2637 * port_get_def_vid - get port default VID.
2638 * @hw: The hardware instance.
2639 * @port: The port index.
2640 * @vid: Buffer to store the VID.
2641 *
2642 * This routine retrieves the default VID of the port.
2643 */
2644static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2645{
2646 u32 addr;
2647
2648 PORT_CTRL_ADDR(port, addr);
2649 addr += KS8842_PORT_CTRL_VID_OFFSET;
2650 *vid = readw(hw->io + addr);
2651}
2652
2653/**
2654 * sw_init_vlan - initialize switch VLAN
2655 * @hw: The hardware instance.
2656 *
2657 * This routine initializes the VLAN function of the switch.
2658 */
2659static void sw_init_vlan(struct ksz_hw *hw)
2660{
2661 int port;
2662 int entry;
2663 struct ksz_switch *sw = hw->ksz_switch;
2664
2665 /* Read 16 VLAN entries from device's VLAN table. */
2666 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2667 sw_r_vlan_table(hw, entry,
2668 &sw->vlan_table[entry].vid,
2669 &sw->vlan_table[entry].fid,
2670 &sw->vlan_table[entry].member);
2671 }
2672
2673 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2674 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2675 sw->port_cfg[port].member = PORT_MASK;
2676 }
2677}
2678
2679/**
2680 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2681 * @hw: The hardware instance.
2682 * @port: The port index.
2683 * @member: The port-based VLAN membership.
2684 *
2685 * This routine configures the port-based VLAN membership of the port.
2686 */
2687static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2688{
2689 u32 addr;
2690 u8 data;
2691
2692 PORT_CTRL_ADDR(port, addr);
2693 addr += KS8842_PORT_CTRL_2_OFFSET;
2694
2695 data = readb(hw->io + addr);
2696 data &= ~PORT_VLAN_MEMBERSHIP;
2697 data |= (member & PORT_MASK);
2698 writeb(data, hw->io + addr);
2699
2700 hw->ksz_switch->port_cfg[port].member = member;
2701}
2702
2703/**
2704 * sw_get_addr - get the switch MAC address.
2705 * @hw: The hardware instance.
2706 * @mac_addr: Buffer to store the MAC address.
2707 *
2708 * This function retrieves the MAC address of the switch.
2709 */
2710static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2711{
2712 int i;
2713
2714 for (i = 0; i < 6; i += 2) {
2715 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2716 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2717 }
2718}
2719
2720/**
2721 * sw_set_addr - configure switch MAC address
2722 * @hw: The hardware instance.
2723 * @mac_addr: The MAC address.
2724 *
2725 * This function configures the MAC address of the switch.
2726 */
2727static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2728{
2729 int i;
2730
2731 for (i = 0; i < 6; i += 2) {
2732 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2733 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2734 }
2735}
2736
2737/**
2738 * sw_set_global_ctrl - set switch global control
2739 * @hw: The hardware instance.
2740 *
2741 * This routine sets the global control of the switch function.
2742 */
2743static void sw_set_global_ctrl(struct ksz_hw *hw)
2744{
2745 u16 data;
2746
2747 /* Enable switch MII flow control. */
2748 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2749 data |= SWITCH_FLOW_CTRL;
2750 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2751
2752 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754 /* Enable aggressive back off algorithm in half duplex mode. */
2755 data |= SWITCH_AGGR_BACKOFF;
2756
2757 /* Enable automatic fast aging when link changed detected. */
2758 data |= SWITCH_AGING_ENABLE;
2759 data |= SWITCH_LINK_AUTO_AGING;
2760
2761 if (hw->overrides & FAST_AGING)
2762 data |= SWITCH_FAST_AGING;
2763 else
2764 data &= ~SWITCH_FAST_AGING;
2765 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2766
2767 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2768
2769 /* Enable no excessive collision drop. */
2770 data |= NO_EXC_COLLISION_DROP;
2771 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2772}
2773
2774enum {
2775 STP_STATE_DISABLED = 0,
2776 STP_STATE_LISTENING,
2777 STP_STATE_LEARNING,
2778 STP_STATE_FORWARDING,
2779 STP_STATE_BLOCKED,
2780 STP_STATE_SIMPLE
2781};
2782
2783/**
2784 * port_set_stp_state - configure port spanning tree state
2785 * @hw: The hardware instance.
2786 * @port: The port index.
2787 * @state: The spanning tree state.
2788 *
2789 * This routine configures the spanning tree state of the port.
2790 */
2791static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2792{
2793 u16 data;
2794
2795 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2796 switch (state) {
2797 case STP_STATE_DISABLED:
2798 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2799 data |= PORT_LEARN_DISABLE;
2800 break;
2801 case STP_STATE_LISTENING:
2802/*
2803 * No need to turn on transmit because of port direct mode.
2804 * Turning on receive is required if static MAC table is not setup.
2805 */
2806 data &= ~PORT_TX_ENABLE;
2807 data |= PORT_RX_ENABLE;
2808 data |= PORT_LEARN_DISABLE;
2809 break;
2810 case STP_STATE_LEARNING:
2811 data &= ~PORT_TX_ENABLE;
2812 data |= PORT_RX_ENABLE;
2813 data &= ~PORT_LEARN_DISABLE;
2814 break;
2815 case STP_STATE_FORWARDING:
2816 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2817 data &= ~PORT_LEARN_DISABLE;
2818 break;
2819 case STP_STATE_BLOCKED:
2820/*
2821 * Need to setup static MAC table with override to keep receiving BPDU
2822 * messages. See sw_init_stp routine.
2823 */
2824 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2825 data |= PORT_LEARN_DISABLE;
2826 break;
2827 case STP_STATE_SIMPLE:
2828 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2829 data |= PORT_LEARN_DISABLE;
2830 break;
2831 }
2832 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2833 hw->ksz_switch->port_cfg[port].stp_state = state;
2834}
2835
2836#define STP_ENTRY 0
2837#define BROADCAST_ENTRY 1
2838#define BRIDGE_ADDR_ENTRY 2
2839#define IPV6_ADDR_ENTRY 3
2840
2841/**
2842 * sw_clr_sta_mac_table - clear static MAC table
2843 * @hw: The hardware instance.
2844 *
2845 * This routine clears the static MAC table.
2846 */
2847static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2848{
2849 struct ksz_mac_table *entry;
2850 int i;
2851
2852 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2853 entry = &hw->ksz_switch->mac_table[i];
2854 sw_w_sta_mac_table(hw, i,
2855 entry->mac_addr, entry->ports,
2856 entry->override, 0,
2857 entry->use_fid, entry->fid);
2858 }
2859}
2860
2861/**
2862 * sw_init_stp - initialize switch spanning tree support
2863 * @hw: The hardware instance.
2864 *
2865 * This routine initializes the spanning tree support of the switch.
2866 */
2867static void sw_init_stp(struct ksz_hw *hw)
2868{
2869 struct ksz_mac_table *entry;
2870
2871 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2872 entry->mac_addr[0] = 0x01;
2873 entry->mac_addr[1] = 0x80;
2874 entry->mac_addr[2] = 0xC2;
2875 entry->mac_addr[3] = 0x00;
2876 entry->mac_addr[4] = 0x00;
2877 entry->mac_addr[5] = 0x00;
2878 entry->ports = HOST_MASK;
2879 entry->override = 1;
2880 entry->valid = 1;
2881 sw_w_sta_mac_table(hw, STP_ENTRY,
2882 entry->mac_addr, entry->ports,
2883 entry->override, entry->valid,
2884 entry->use_fid, entry->fid);
2885}
2886
2887/**
2888 * sw_block_addr - block certain packets from the host port
2889 * @hw: The hardware instance.
2890 *
2891 * This routine blocks certain packets from reaching to the host port.
2892 */
2893static void sw_block_addr(struct ksz_hw *hw)
2894{
2895 struct ksz_mac_table *entry;
2896 int i;
2897
2898 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2899 entry = &hw->ksz_switch->mac_table[i];
2900 entry->valid = 0;
2901 sw_w_sta_mac_table(hw, i,
2902 entry->mac_addr, entry->ports,
2903 entry->override, entry->valid,
2904 entry->use_fid, entry->fid);
2905 }
2906}
2907
2908#define PHY_LINK_SUPPORT \
2909 (PHY_AUTO_NEG_ASYM_PAUSE | \
2910 PHY_AUTO_NEG_SYM_PAUSE | \
2911 PHY_AUTO_NEG_100BT4 | \
2912 PHY_AUTO_NEG_100BTX_FD | \
2913 PHY_AUTO_NEG_100BTX | \
2914 PHY_AUTO_NEG_10BT_FD | \
2915 PHY_AUTO_NEG_10BT)
2916
2917static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2918{
2919 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2920}
2921
2922static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2923{
2924 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2925}
2926
2927static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2928{
2929 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2930}
2931
2932static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2933{
2934 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2935}
2936
2937static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2938{
2939 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2940}
2941
2942static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2943{
2944 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2945}
2946
2947static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2948{
2949 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2950}
2951
2952static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2953{
2954 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2955}
2956
2957static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2958{
2959 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2960}
2961
2962static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2963{
2964 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2965}
2966
2967static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2968{
2969 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2970}
2971
2972static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2973{
2974 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2975}
2976
2977/**
2978 * hw_r_phy - read data from PHY register
2979 * @hw: The hardware instance.
2980 * @port: Port to read.
2981 * @reg: PHY register to read.
2982 * @val: Buffer to store the read data.
2983 *
2984 * This routine reads data from the PHY register.
2985 */
2986static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2987{
2988 int phy;
2989
2990 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2991 *val = readw(hw->io + phy);
2992}
2993
2994/**
2995 * port_w_phy - write data to PHY register
2996 * @hw: The hardware instance.
2997 * @port: Port to write.
2998 * @reg: PHY register to write.
2999 * @val: Word data to write.
3000 *
3001 * This routine writes data to the PHY register.
3002 */
3003static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
3004{
3005 int phy;
3006
3007 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3008 writew(val, hw->io + phy);
3009}
3010
3011/*
3012 * EEPROM access functions
3013 */
3014
3015#define AT93C_CODE 0
3016#define AT93C_WR_OFF 0x00
3017#define AT93C_WR_ALL 0x10
3018#define AT93C_ER_ALL 0x20
3019#define AT93C_WR_ON 0x30
3020
3021#define AT93C_WRITE 1
3022#define AT93C_READ 2
3023#define AT93C_ERASE 3
3024
3025#define EEPROM_DELAY 4
3026
3027static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3028{
3029 u16 data;
3030
3031 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3032 data &= ~gpio;
3033 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3034}
3035
3036static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3037{
3038 u16 data;
3039
3040 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3041 data |= gpio;
3042 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3043}
3044
3045static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3046{
3047 u16 data;
3048
3049 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3050 return (u8)(data & gpio);
3051}
3052
3053static void eeprom_clk(struct ksz_hw *hw)
3054{
3055 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3056 udelay(EEPROM_DELAY);
3057 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3058 udelay(EEPROM_DELAY);
3059}
3060
3061static u16 spi_r(struct ksz_hw *hw)
3062{
3063 int i;
3064 u16 temp = 0;
3065
3066 for (i = 15; i >= 0; i--) {
3067 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3068 udelay(EEPROM_DELAY);
3069
3070 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3071
3072 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3073 udelay(EEPROM_DELAY);
3074 }
3075 return temp;
3076}
3077
3078static void spi_w(struct ksz_hw *hw, u16 data)
3079{
3080 int i;
3081
3082 for (i = 15; i >= 0; i--) {
3083 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3084 drop_gpio(hw, EEPROM_DATA_OUT);
3085 eeprom_clk(hw);
3086 }
3087}
3088
3089static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3090{
3091 int i;
3092
3093 /* Initial start bit */
3094 raise_gpio(hw, EEPROM_DATA_OUT);
3095 eeprom_clk(hw);
3096
3097 /* AT93C operation */
3098 for (i = 1; i >= 0; i--) {
3099 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3100 drop_gpio(hw, EEPROM_DATA_OUT);
3101 eeprom_clk(hw);
3102 }
3103
3104 /* Address location */
3105 for (i = 5; i >= 0; i--) {
3106 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3107 drop_gpio(hw, EEPROM_DATA_OUT);
3108 eeprom_clk(hw);
3109 }
3110}
3111
3112#define EEPROM_DATA_RESERVED 0
3113#define EEPROM_DATA_MAC_ADDR_0 1
3114#define EEPROM_DATA_MAC_ADDR_1 2
3115#define EEPROM_DATA_MAC_ADDR_2 3
3116#define EEPROM_DATA_SUBSYS_ID 4
3117#define EEPROM_DATA_SUBSYS_VEN_ID 5
3118#define EEPROM_DATA_PM_CAP 6
3119
3120/* User defined EEPROM data */
3121#define EEPROM_DATA_OTHER_MAC_ADDR 9
3122
3123/**
3124 * eeprom_read - read from AT93C46 EEPROM
3125 * @hw: The hardware instance.
3126 * @reg: The register offset.
3127 *
3128 * This function reads a word from the AT93C46 EEPROM.
3129 *
3130 * Return the data value.
3131 */
3132static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3133{
3134 u16 data;
3135
3136 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3137
3138 spi_reg(hw, AT93C_READ, reg);
3139 data = spi_r(hw);
3140
3141 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3142
3143 return data;
3144}
3145
3146/**
3147 * eeprom_write - write to AT93C46 EEPROM
3148 * @hw: The hardware instance.
3149 * @reg: The register offset.
3150 * @data: The data value.
3151 *
3152 * This procedure writes a word to the AT93C46 EEPROM.
3153 */
3154static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3155{
3156 int timeout;
3157
3158 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3159
3160 /* Enable write. */
3161 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3162 drop_gpio(hw, EEPROM_CHIP_SELECT);
3163 udelay(1);
3164
3165 /* Erase the register. */
3166 raise_gpio(hw, EEPROM_CHIP_SELECT);
3167 spi_reg(hw, AT93C_ERASE, reg);
3168 drop_gpio(hw, EEPROM_CHIP_SELECT);
3169 udelay(1);
3170
3171 /* Check operation complete. */
3172 raise_gpio(hw, EEPROM_CHIP_SELECT);
3173 timeout = 8;
3174 mdelay(2);
3175 do {
3176 mdelay(1);
3177 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3178 drop_gpio(hw, EEPROM_CHIP_SELECT);
3179 udelay(1);
3180
3181 /* Write the register. */
3182 raise_gpio(hw, EEPROM_CHIP_SELECT);
3183 spi_reg(hw, AT93C_WRITE, reg);
3184 spi_w(hw, data);
3185 drop_gpio(hw, EEPROM_CHIP_SELECT);
3186 udelay(1);
3187
3188 /* Check operation complete. */
3189 raise_gpio(hw, EEPROM_CHIP_SELECT);
3190 timeout = 8;
3191 mdelay(2);
3192 do {
3193 mdelay(1);
3194 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3195 drop_gpio(hw, EEPROM_CHIP_SELECT);
3196 udelay(1);
3197
3198 /* Disable write. */
3199 raise_gpio(hw, EEPROM_CHIP_SELECT);
3200 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3201
3202 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3203}
3204
3205/*
3206 * Link detection routines
3207 */
3208
3209static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3210{
3211 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3212 switch (port->flow_ctrl) {
3213 case PHY_FLOW_CTRL:
3214 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3215 break;
3216 /* Not supported. */
3217 case PHY_TX_ONLY:
3218 case PHY_RX_ONLY:
3219 default:
3220 break;
3221 }
3222 return ctrl;
3223}
3224
3225static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3226{
3227 u32 rx_cfg;
3228 u32 tx_cfg;
3229
3230 rx_cfg = hw->rx_cfg;
3231 tx_cfg = hw->tx_cfg;
3232 if (rx)
3233 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3234 else
3235 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3236 if (tx)
3237 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3238 else
3239 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3240 if (hw->enabled) {
3241 if (rx_cfg != hw->rx_cfg)
3242 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3243 if (tx_cfg != hw->tx_cfg)
3244 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3245 }
3246}
3247
3248static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3249 u16 local, u16 remote)
3250{
3251 int rx;
3252 int tx;
3253
3254 if (hw->overrides & PAUSE_FLOW_CTRL)
3255 return;
3256
3257 rx = tx = 0;
3258 if (port->force_link)
3259 rx = tx = 1;
3260 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3261 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3262 rx = tx = 1;
3263 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3264 (local & PHY_AUTO_NEG_PAUSE) ==
3265 PHY_AUTO_NEG_ASYM_PAUSE) {
3266 tx = 1;
3267 }
3268 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3269 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3270 rx = 1;
3271 }
3272 if (!hw->ksz_switch)
3273 set_flow_ctrl(hw, rx, tx);
3274}
3275
3276static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3277 struct ksz_port_info *info, u16 link_status)
3278{
3279 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3280 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3281 u32 cfg = hw->tx_cfg;
3282
3283 /* Disable flow control in the half duplex mode. */
3284 if (1 == info->duplex)
3285 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3286 if (hw->enabled && cfg != hw->tx_cfg)
3287 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3288 }
3289}
3290
3291/**
3292 * port_get_link_speed - get current link status
3293 * @port: The port instance.
3294 *
3295 * This routine reads PHY registers to determine the current link status of the
3296 * switch ports.
3297 */
3298static void port_get_link_speed(struct ksz_port *port)
3299{
3300 uint interrupt;
3301 struct ksz_port_info *info;
3302 struct ksz_port_info *linked = NULL;
3303 struct ksz_hw *hw = port->hw;
3304 u16 data;
3305 u16 status;
3306 u8 local;
3307 u8 remote;
3308 int i;
3309 int p;
3310 int change = 0;
3311
3312 interrupt = hw_block_intr(hw);
3313
3314 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3315 info = &hw->port_info[p];
3316 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3317 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3318
3319 /*
3320 * Link status is changing all the time even when there is no
3321 * cable connection!
3322 */
3323 remote = status & (PORT_AUTO_NEG_COMPLETE |
3324 PORT_STATUS_LINK_GOOD);
3325 local = (u8) data;
3326
3327 /* No change to status. */
3328 if (local == info->advertised && remote == info->partner)
3329 continue;
3330
3331 info->advertised = local;
3332 info->partner = remote;
3333 if (status & PORT_STATUS_LINK_GOOD) {
3334
3335 /* Remember the first linked port. */
3336 if (!linked)
3337 linked = info;
3338
3339 info->tx_rate = 10 * TX_RATE_UNIT;
3340 if (status & PORT_STATUS_SPEED_100MBIT)
3341 info->tx_rate = 100 * TX_RATE_UNIT;
3342
3343 info->duplex = 1;
3344 if (status & PORT_STATUS_FULL_DUPLEX)
3345 info->duplex = 2;
3346
3347 if (media_connected != info->state) {
3348 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3349 &data);
3350 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3351 &status);
3352 determine_flow_ctrl(hw, port, data, status);
3353 if (hw->ksz_switch) {
3354 port_cfg_back_pressure(hw, p,
3355 (1 == info->duplex));
3356 }
3357 change |= 1 << i;
3358 port_cfg_change(hw, port, info, status);
3359 }
3360 info->state = media_connected;
3361 } else {
3362 if (media_disconnected != info->state) {
3363 change |= 1 << i;
3364
3365 /* Indicate the link just goes down. */
3366 hw->port_mib[p].link_down = 1;
3367 }
3368 info->state = media_disconnected;
3369 }
3370 hw->port_mib[p].state = (u8) info->state;
3371 }
3372
3373 if (linked && media_disconnected == port->linked->state)
3374 port->linked = linked;
3375
3376 hw_restore_intr(hw, interrupt);
3377}
3378
3379#define PHY_RESET_TIMEOUT 10
3380
3381/**
3382 * port_set_link_speed - set port speed
3383 * @port: The port instance.
3384 *
3385 * This routine sets the link speed of the switch ports.
3386 */
3387static void port_set_link_speed(struct ksz_port *port)
3388{
3389 struct ksz_port_info *info;
3390 struct ksz_hw *hw = port->hw;
3391 u16 data;
3392 u16 cfg;
3393 u8 status;
3394 int i;
3395 int p;
3396
3397 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3398 info = &hw->port_info[p];
3399
3400 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3401 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3402
3403 cfg = 0;
3404 if (status & PORT_STATUS_LINK_GOOD)
3405 cfg = data;
3406
3407 data |= PORT_AUTO_NEG_ENABLE;
3408 data = advertised_flow_ctrl(port, data);
3409
3410 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3411 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3412
3413 /* Check if manual configuration is specified by the user. */
3414 if (port->speed || port->duplex) {
3415 if (10 == port->speed)
3416 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3417 PORT_AUTO_NEG_100BTX);
3418 else if (100 == port->speed)
3419 data &= ~(PORT_AUTO_NEG_10BT_FD |
3420 PORT_AUTO_NEG_10BT);
3421 if (1 == port->duplex)
3422 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3423 PORT_AUTO_NEG_10BT_FD);
3424 else if (2 == port->duplex)
3425 data &= ~(PORT_AUTO_NEG_100BTX |
3426 PORT_AUTO_NEG_10BT);
3427 }
3428 if (data != cfg) {
3429 data |= PORT_AUTO_NEG_RESTART;
3430 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3431 }
3432 }
3433}
3434
3435/**
3436 * port_force_link_speed - force port speed
3437 * @port: The port instance.
3438 *
3439 * This routine forces the link speed of the switch ports.
3440 */
3441static void port_force_link_speed(struct ksz_port *port)
3442{
3443 struct ksz_hw *hw = port->hw;
3444 u16 data;
3445 int i;
3446 int phy;
3447 int p;
3448
3449 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3450 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3451 hw_r_phy_ctrl(hw, phy, &data);
3452
3453 data &= ~PHY_AUTO_NEG_ENABLE;
3454
3455 if (10 == port->speed)
3456 data &= ~PHY_SPEED_100MBIT;
3457 else if (100 == port->speed)
3458 data |= PHY_SPEED_100MBIT;
3459 if (1 == port->duplex)
3460 data &= ~PHY_FULL_DUPLEX;
3461 else if (2 == port->duplex)
3462 data |= PHY_FULL_DUPLEX;
3463 hw_w_phy_ctrl(hw, phy, data);
3464 }
3465}
3466
3467static void port_set_power_saving(struct ksz_port *port, int enable)
3468{
3469 struct ksz_hw *hw = port->hw;
3470 int i;
3471 int p;
3472
3473 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3474 port_cfg(hw, p,
3475 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3476}
3477
3478/*
3479 * KSZ8841 power management functions
3480 */
3481
3482/**
3483 * hw_chk_wol_pme_status - check PMEN pin
3484 * @hw: The hardware instance.
3485 *
3486 * This function is used to check PMEN pin is asserted.
3487 *
3488 * Return 1 if PMEN pin is asserted; otherwise, 0.
3489 */
3490static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3491{
3492 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3493 struct pci_dev *pdev = hw_priv->pdev;
3494 u16 data;
3495
3496 if (!pdev->pm_cap)
3497 return 0;
3498 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3499 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3500}
3501
3502/**
3503 * hw_clr_wol_pme_status - clear PMEN pin
3504 * @hw: The hardware instance.
3505 *
3506 * This routine is used to clear PME_Status to deassert PMEN pin.
3507 */
3508static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3509{
3510 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3511 struct pci_dev *pdev = hw_priv->pdev;
3512 u16 data;
3513
3514 if (!pdev->pm_cap)
3515 return;
3516
3517 /* Clear PME_Status to deassert PMEN pin. */
3518 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3519 data |= PCI_PM_CTRL_PME_STATUS;
3520 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3521}
3522
3523/**
3524 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3525 * @hw: The hardware instance.
3526 * @set: The flag indicating whether to enable or disable.
3527 *
3528 * This routine is used to enable or disable Wake-on-LAN.
3529 */
3530static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3531{
3532 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3533 struct pci_dev *pdev = hw_priv->pdev;
3534 u16 data;
3535
3536 if (!pdev->pm_cap)
3537 return;
3538 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3539 data &= ~PCI_PM_CTRL_STATE_MASK;
3540 if (set)
3541 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3542 else
3543 data &= ~PCI_PM_CTRL_PME_ENABLE;
3544 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3545}
3546
3547/**
3548 * hw_cfg_wol - configure Wake-on-LAN features
3549 * @hw: The hardware instance.
3550 * @frame: The pattern frame bit.
3551 * @set: The flag indicating whether to enable or disable.
3552 *
3553 * This routine is used to enable or disable certain Wake-on-LAN features.
3554 */
3555static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3556{
3557 u16 data;
3558
3559 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3560 if (set)
3561 data |= frame;
3562 else
3563 data &= ~frame;
3564 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3565}
3566
3567/**
3568 * hw_set_wol_frame - program Wake-on-LAN pattern
3569 * @hw: The hardware instance.
3570 * @i: The frame index.
3571 * @mask_size: The size of the mask.
3572 * @mask: Mask to ignore certain bytes in the pattern.
3573 * @frame_size: The size of the frame.
3574 * @pattern: The frame data.
3575 *
3576 * This routine is used to program Wake-on-LAN pattern.
3577 */
3578static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3579 u8 *mask, uint frame_size, u8 *pattern)
3580{
3581 int bits;
3582 int from;
3583 int len;
3584 int to;
3585 u32 crc;
3586 u8 data[64];
3587 u8 val = 0;
3588
3589 if (frame_size > mask_size * 8)
3590 frame_size = mask_size * 8;
3591 if (frame_size > 64)
3592 frame_size = 64;
3593
3594 i *= 0x10;
3595 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3596 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3597
3598 bits = len = from = to = 0;
3599 do {
3600 if (bits) {
3601 if ((val & 1))
3602 data[to++] = pattern[from];
3603 val >>= 1;
3604 ++from;
3605 --bits;
3606 } else {
3607 val = mask[len];
3608 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3609 + len);
3610 ++len;
3611 if (val)
3612 bits = 8;
3613 else
3614 from += 8;
3615 }
3616 } while (from < (int) frame_size);
3617 if (val) {
3618 bits = mask[len - 1];
3619 val <<= (from % 8);
3620 bits &= ~val;
3621 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3622 1);
3623 }
3624 crc = ether_crc(to, data);
3625 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3626}
3627
3628/**
3629 * hw_add_wol_arp - add ARP pattern
3630 * @hw: The hardware instance.
3631 * @ip_addr: The IPv4 address assigned to the device.
3632 *
3633 * This routine is used to add ARP pattern for waking up the host.
3634 */
3635static void hw_add_wol_arp(struct ksz_hw *hw, u8 *ip_addr)
3636{
3637 u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3638 u8 pattern[42] = {
3639 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3640 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3641 0x08, 0x06,
3642 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3643 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3644 0x00, 0x00, 0x00, 0x00,
3645 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3646 0x00, 0x00, 0x00, 0x00 };
3647
3648 memcpy(&pattern[38], ip_addr, 4);
3649 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3650}
3651
3652/**
3653 * hw_add_wol_bcast - add broadcast pattern
3654 * @hw: The hardware instance.
3655 *
3656 * This routine is used to add broadcast pattern for waking up the host.
3657 */
3658static void hw_add_wol_bcast(struct ksz_hw *hw)
3659{
3660 u8 mask[] = { 0x3F };
3661 u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3662
3663 hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3664}
3665
3666/**
3667 * hw_add_wol_mcast - add multicast pattern
3668 * @hw: The hardware instance.
3669 *
3670 * This routine is used to add multicast pattern for waking up the host.
3671 *
3672 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3673 * by IPv6 ping command. Note that multicast packets are filtred through the
3674 * multicast hash table, so not all multicast packets can wake up the host.
3675 */
3676static void hw_add_wol_mcast(struct ksz_hw *hw)
3677{
3678 u8 mask[] = { 0x3F };
3679 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3680
3681 memcpy(&pattern[3], &hw->override_addr[3], 3);
3682 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3683}
3684
3685/**
3686 * hw_add_wol_ucast - add unicast pattern
3687 * @hw: The hardware instance.
3688 *
3689 * This routine is used to add unicast pattern to wakeup the host.
3690 *
3691 * It is assumed the unicast packet is directed to the device, as the hardware
3692 * can only receive them in normal case.
3693 */
3694static void hw_add_wol_ucast(struct ksz_hw *hw)
3695{
3696 u8 mask[] = { 0x3F };
3697
3698 hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3699}
3700
3701/**
3702 * hw_enable_wol - enable Wake-on-LAN
3703 * @hw: The hardware instance.
3704 * @wol_enable: The Wake-on-LAN settings.
3705 * @net_addr: The IPv4 address assigned to the device.
3706 *
3707 * This routine is used to enable Wake-on-LAN depending on driver settings.
3708 */
3709static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, u8 *net_addr)
3710{
3711 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3712 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3713 hw_add_wol_ucast(hw);
3714 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3715 hw_add_wol_mcast(hw);
3716 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3717 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3718 hw_add_wol_arp(hw, net_addr);
3719}
3720
3721/**
3722 * hw_init - check driver is correct for the hardware
3723 * @hw: The hardware instance.
3724 *
3725 * This function checks the hardware is correct for this driver and sets the
3726 * hardware up for proper initialization.
3727 *
3728 * Return number of ports or 0 if not right.
3729 */
3730static int hw_init(struct ksz_hw *hw)
3731{
3732 int rc = 0;
3733 u16 data;
3734 u16 revision;
3735
3736 /* Set bus speed to 125MHz. */
3737 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3738
3739 /* Check KSZ884x chip ID. */
3740 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3741
3742 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3743 data &= KS884X_CHIP_ID_MASK_41;
3744 if (REG_CHIP_ID_41 == data)
3745 rc = 1;
3746 else if (REG_CHIP_ID_42 == data)
3747 rc = 2;
3748 else
3749 return 0;
3750
3751 /* Setup hardware features or bug workarounds. */
3752 if (revision <= 1) {
3753 hw->features |= SMALL_PACKET_TX_BUG;
3754 if (1 == rc)
3755 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3756 }
3757 hw->features |= IPV6_CSUM_GEN_HACK;
3758 return rc;
3759}
3760
3761/**
3762 * hw_reset - reset the hardware
3763 * @hw: The hardware instance.
3764 *
3765 * This routine resets the hardware.
3766 */
3767static void hw_reset(struct ksz_hw *hw)
3768{
3769 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3770
3771 /* Wait for device to reset. */
3772 mdelay(10);
3773
3774 /* Write 0 to clear device reset. */
3775 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3776}
3777
3778/**
3779 * hw_setup - setup the hardware
3780 * @hw: The hardware instance.
3781 *
3782 * This routine setup the hardware for proper operation.
3783 */
3784static void hw_setup(struct ksz_hw *hw)
3785{
3786#if SET_DEFAULT_LED
3787 u16 data;
3788
3789 /* Change default LED mode. */
3790 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3791 data &= ~LED_MODE;
3792 data |= SET_DEFAULT_LED;
3793 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3794#endif
3795
3796 /* Setup transmit control. */
3797 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3798 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3799
3800 /* Setup receive control. */
3801 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3802 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3803 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3804
3805 /* Hardware cannot handle UDP packet in IP fragments. */
3806 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3807
3808 if (hw->all_multi)
3809 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3810 if (hw->promiscuous)
3811 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3812}
3813
3814/**
3815 * hw_setup_intr - setup interrupt mask
3816 * @hw: The hardware instance.
3817 *
3818 * This routine setup the interrupt mask for proper operation.
3819 */
3820static void hw_setup_intr(struct ksz_hw *hw)
3821{
3822 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3823}
3824
3825static void ksz_check_desc_num(struct ksz_desc_info *info)
3826{
3827#define MIN_DESC_SHIFT 2
3828
3829 int alloc = info->alloc;
3830 int shift;
3831
3832 shift = 0;
3833 while (!(alloc & 1)) {
3834 shift++;
3835 alloc >>= 1;
3836 }
3837 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3838 printk(KERN_ALERT "Hardware descriptor numbers not right!\n");
3839 while (alloc) {
3840 shift++;
3841 alloc >>= 1;
3842 }
3843 if (shift < MIN_DESC_SHIFT)
3844 shift = MIN_DESC_SHIFT;
3845 alloc = 1 << shift;
3846 info->alloc = alloc;
3847 }
3848 info->mask = info->alloc - 1;
3849}
3850
3851static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3852{
3853 int i;
3854 u32 phys = desc_info->ring_phys;
3855 struct ksz_hw_desc *desc = desc_info->ring_virt;
3856 struct ksz_desc *cur = desc_info->ring;
3857 struct ksz_desc *previous = NULL;
3858
3859 for (i = 0; i < desc_info->alloc; i++) {
3860 cur->phw = desc++;
3861 phys += desc_info->size;
3862 previous = cur++;
3863 previous->phw->next = cpu_to_le32(phys);
3864 }
3865 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3866 previous->sw.buf.rx.end_of_ring = 1;
3867 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3868
3869 desc_info->avail = desc_info->alloc;
3870 desc_info->last = desc_info->next = 0;
3871
3872 desc_info->cur = desc_info->ring;
3873}
3874
3875/**
3876 * hw_set_desc_base - set descriptor base addresses
3877 * @hw: The hardware instance.
3878 * @tx_addr: The transmit descriptor base.
3879 * @rx_addr: The receive descriptor base.
3880 *
3881 * This routine programs the descriptor base addresses after reset.
3882 */
3883static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3884{
3885 /* Set base address of Tx/Rx descriptors. */
3886 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3887 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3888}
3889
3890static void hw_reset_pkts(struct ksz_desc_info *info)
3891{
3892 info->cur = info->ring;
3893 info->avail = info->alloc;
3894 info->last = info->next = 0;
3895}
3896
3897static inline void hw_resume_rx(struct ksz_hw *hw)
3898{
3899 writel(DMA_START, hw->io + KS_DMA_RX_START);
3900}
3901
3902/**
3903 * hw_start_rx - start receiving
3904 * @hw: The hardware instance.
3905 *
3906 * This routine starts the receive function of the hardware.
3907 */
3908static void hw_start_rx(struct ksz_hw *hw)
3909{
3910 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3911
3912 /* Notify when the receive stops. */
3913 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3914
3915 writel(DMA_START, hw->io + KS_DMA_RX_START);
3916 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3917 hw->rx_stop++;
3918
3919 /* Variable overflows. */
3920 if (0 == hw->rx_stop)
3921 hw->rx_stop = 2;
3922}
3923
3924/*
3925 * hw_stop_rx - stop receiving
3926 * @hw: The hardware instance.
3927 *
3928 * This routine stops the receive function of the hardware.
3929 */
3930static void hw_stop_rx(struct ksz_hw *hw)
3931{
3932 hw->rx_stop = 0;
3933 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3934 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3935}
3936
3937/**
3938 * hw_start_tx - start transmitting
3939 * @hw: The hardware instance.
3940 *
3941 * This routine starts the transmit function of the hardware.
3942 */
3943static void hw_start_tx(struct ksz_hw *hw)
3944{
3945 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3946}
3947
3948/**
3949 * hw_stop_tx - stop transmitting
3950 * @hw: The hardware instance.
3951 *
3952 * This routine stops the transmit function of the hardware.
3953 */
3954static void hw_stop_tx(struct ksz_hw *hw)
3955{
3956 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3957}
3958
3959/**
3960 * hw_disable - disable hardware
3961 * @hw: The hardware instance.
3962 *
3963 * This routine disables the hardware.
3964 */
3965static void hw_disable(struct ksz_hw *hw)
3966{
3967 hw_stop_rx(hw);
3968 hw_stop_tx(hw);
3969 hw->enabled = 0;
3970}
3971
3972/**
3973 * hw_enable - enable hardware
3974 * @hw: The hardware instance.
3975 *
3976 * This routine enables the hardware.
3977 */
3978static void hw_enable(struct ksz_hw *hw)
3979{
3980 hw_start_tx(hw);
3981 hw_start_rx(hw);
3982 hw->enabled = 1;
3983}
3984
3985/**
3986 * hw_alloc_pkt - allocate enough descriptors for transmission
3987 * @hw: The hardware instance.
3988 * @length: The length of the packet.
3989 * @physical: Number of descriptors required.
3990 *
3991 * This function allocates descriptors for transmission.
3992 *
3993 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3994 */
3995static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3996{
3997 /* Always leave one descriptor free. */
3998 if (hw->tx_desc_info.avail <= 1)
3999 return 0;
4000
4001 /* Allocate a descriptor for transmission and mark it current. */
4002 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
4003 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
4004
4005 /* Keep track of number of transmit descriptors used so far. */
4006 ++hw->tx_int_cnt;
4007 hw->tx_size += length;
4008
4009 /* Cannot hold on too much data. */
4010 if (hw->tx_size >= MAX_TX_HELD_SIZE)
4011 hw->tx_int_cnt = hw->tx_int_mask + 1;
4012
4013 if (physical > hw->tx_desc_info.avail)
4014 return 1;
4015
4016 return hw->tx_desc_info.avail;
4017}
4018
4019/**
4020 * hw_send_pkt - mark packet for transmission
4021 * @hw: The hardware instance.
4022 *
4023 * This routine marks the packet for transmission in PCI version.
4024 */
4025static void hw_send_pkt(struct ksz_hw *hw)
4026{
4027 struct ksz_desc *cur = hw->tx_desc_info.cur;
4028
4029 cur->sw.buf.tx.last_seg = 1;
4030
4031 /* Interrupt only after specified number of descriptors used. */
4032 if (hw->tx_int_cnt > hw->tx_int_mask) {
4033 cur->sw.buf.tx.intr = 1;
4034 hw->tx_int_cnt = 0;
4035 hw->tx_size = 0;
4036 }
4037
4038 /* KSZ8842 supports port directed transmission. */
4039 cur->sw.buf.tx.dest_port = hw->dst_ports;
4040
4041 release_desc(cur);
4042
4043 writel(0, hw->io + KS_DMA_TX_START);
4044}
4045
4046static int empty_addr(u8 *addr)
4047{
4048 u32 *addr1 = (u32 *) addr;
4049 u16 *addr2 = (u16 *) &addr[4];
4050
4051 return 0 == *addr1 && 0 == *addr2;
4052}
4053
4054/**
4055 * hw_set_addr - set MAC address
4056 * @hw: The hardware instance.
4057 *
4058 * This routine programs the MAC address of the hardware when the address is
4059 * overrided.
4060 */
4061static void hw_set_addr(struct ksz_hw *hw)
4062{
4063 int i;
4064
4065 for (i = 0; i < MAC_ADDR_LEN; i++)
4066 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4067 hw->io + KS884X_ADDR_0_OFFSET + i);
4068
4069 sw_set_addr(hw, hw->override_addr);
4070}
4071
4072/**
4073 * hw_read_addr - read MAC address
4074 * @hw: The hardware instance.
4075 *
4076 * This routine retrieves the MAC address of the hardware.
4077 */
4078static void hw_read_addr(struct ksz_hw *hw)
4079{
4080 int i;
4081
4082 for (i = 0; i < MAC_ADDR_LEN; i++)
4083 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4084 KS884X_ADDR_0_OFFSET + i);
4085
4086 if (!hw->mac_override) {
4087 memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4088 if (empty_addr(hw->override_addr)) {
4089 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4090 MAC_ADDR_LEN);
4091 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4092 MAC_ADDR_LEN);
4093 hw->override_addr[5] += hw->id;
4094 hw_set_addr(hw);
4095 }
4096 }
4097}
4098
4099static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4100{
4101 int i;
4102 u32 mac_addr_lo;
4103 u32 mac_addr_hi;
4104
4105 mac_addr_hi = 0;
4106 for (i = 0; i < 2; i++) {
4107 mac_addr_hi <<= 8;
4108 mac_addr_hi |= mac_addr[i];
4109 }
4110 mac_addr_hi |= ADD_ADDR_ENABLE;
4111 mac_addr_lo = 0;
4112 for (i = 2; i < 6; i++) {
4113 mac_addr_lo <<= 8;
4114 mac_addr_lo |= mac_addr[i];
4115 }
4116 index *= ADD_ADDR_INCR;
4117
4118 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4119 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4120}
4121
4122static void hw_set_add_addr(struct ksz_hw *hw)
4123{
4124 int i;
4125
4126 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4127 if (empty_addr(hw->address[i]))
4128 writel(0, hw->io + ADD_ADDR_INCR * i +
4129 KS_ADD_ADDR_0_HI);
4130 else
4131 hw_ena_add_addr(hw, i, hw->address[i]);
4132 }
4133}
4134
4135static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4136{
4137 int i;
4138 int j = ADDITIONAL_ENTRIES;
4139
4140 if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4141 return 0;
4142 for (i = 0; i < hw->addr_list_size; i++) {
4143 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4144 return 0;
4145 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4146 j = i;
4147 }
4148 if (j < ADDITIONAL_ENTRIES) {
4149 memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4150 hw_ena_add_addr(hw, j, hw->address[j]);
4151 return 0;
4152 }
4153 return -1;
4154}
4155
4156static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4157{
4158 int i;
4159
4160 for (i = 0; i < hw->addr_list_size; i++) {
4161 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4162 memset(hw->address[i], 0, MAC_ADDR_LEN);
4163 writel(0, hw->io + ADD_ADDR_INCR * i +
4164 KS_ADD_ADDR_0_HI);
4165 return 0;
4166 }
4167 }
4168 return -1;
4169}
4170
4171/**
4172 * hw_clr_multicast - clear multicast addresses
4173 * @hw: The hardware instance.
4174 *
4175 * This routine removes all multicast addresses set in the hardware.
4176 */
4177static void hw_clr_multicast(struct ksz_hw *hw)
4178{
4179 int i;
4180
4181 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4182 hw->multi_bits[i] = 0;
4183
4184 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4185 }
4186}
4187
4188/**
4189 * hw_set_grp_addr - set multicast addresses
4190 * @hw: The hardware instance.
4191 *
4192 * This routine programs multicast addresses for the hardware to accept those
4193 * addresses.
4194 */
4195static void hw_set_grp_addr(struct ksz_hw *hw)
4196{
4197 int i;
4198 int index;
4199 int position;
4200 int value;
4201
4202 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4203
4204 for (i = 0; i < hw->multi_list_size; i++) {
4205 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4206 index = position >> 3;
4207 value = 1 << (position & 7);
4208 hw->multi_bits[index] |= (u8) value;
4209 }
4210
4211 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4212 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4213 i);
4214}
4215
4216/**
4217 * hw_set_multicast - enable or disable all multicast receiving
4218 * @hw: The hardware instance.
4219 * @multicast: To turn on or off the all multicast feature.
4220 *
4221 * This routine enables/disables the hardware to accept all multicast packets.
4222 */
4223static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4224{
4225 /* Stop receiving for reconfiguration. */
4226 hw_stop_rx(hw);
4227
4228 if (multicast)
4229 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4230 else
4231 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4232
4233 if (hw->enabled)
4234 hw_start_rx(hw);
4235}
4236
4237/**
4238 * hw_set_promiscuous - enable or disable promiscuous receiving
4239 * @hw: The hardware instance.
4240 * @prom: To turn on or off the promiscuous feature.
4241 *
4242 * This routine enables/disables the hardware to accept all packets.
4243 */
4244static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4245{
4246 /* Stop receiving for reconfiguration. */
4247 hw_stop_rx(hw);
4248
4249 if (prom)
4250 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4251 else
4252 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4253
4254 if (hw->enabled)
4255 hw_start_rx(hw);
4256}
4257
4258/**
4259 * sw_enable - enable the switch
4260 * @hw: The hardware instance.
4261 * @enable: The flag to enable or disable the switch
4262 *
4263 * This routine is used to enable/disable the switch in KSZ8842.
4264 */
4265static void sw_enable(struct ksz_hw *hw, int enable)
4266{
4267 int port;
4268
4269 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4270 if (hw->dev_count > 1) {
4271 /* Set port-base vlan membership with host port. */
4272 sw_cfg_port_base_vlan(hw, port,
4273 HOST_MASK | (1 << port));
4274 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4275 } else {
4276 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4277 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4278 }
4279 }
4280 if (hw->dev_count > 1)
4281 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4282 else
4283 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4284
4285 if (enable)
4286 enable = KS8842_START;
4287 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4288}
4289
4290/**
4291 * sw_setup - setup the switch
4292 * @hw: The hardware instance.
4293 *
4294 * This routine setup the hardware switch engine for default operation.
4295 */
4296static void sw_setup(struct ksz_hw *hw)
4297{
4298 int port;
4299
4300 sw_set_global_ctrl(hw);
4301
4302 /* Enable switch broadcast storm protection at 10% percent rate. */
4303 sw_init_broad_storm(hw);
4304 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4305 for (port = 0; port < SWITCH_PORT_NUM; port++)
4306 sw_ena_broad_storm(hw, port);
4307
4308 sw_init_prio(hw);
4309
4310 sw_init_mirror(hw);
4311
4312 sw_init_prio_rate(hw);
4313
4314 sw_init_vlan(hw);
4315
4316 if (hw->features & STP_SUPPORT)
4317 sw_init_stp(hw);
4318 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4319 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4320 hw->overrides |= PAUSE_FLOW_CTRL;
4321 sw_enable(hw, 1);
4322}
4323
4324/**
4325 * ksz_start_timer - start kernel timer
4326 * @info: Kernel timer information.
4327 * @time: The time tick.
4328 *
4329 * This routine starts the kernel timer after the specified time tick.
4330 */
4331static void ksz_start_timer(struct ksz_timer_info *info, int time)
4332{
4333 info->cnt = 0;
4334 info->timer.expires = jiffies + time;
4335 add_timer(&info->timer);
4336
4337 /* infinity */
4338 info->max = -1;
4339}
4340
4341/**
4342 * ksz_stop_timer - stop kernel timer
4343 * @info: Kernel timer information.
4344 *
4345 * This routine stops the kernel timer.
4346 */
4347static void ksz_stop_timer(struct ksz_timer_info *info)
4348{
4349 if (info->max) {
4350 info->max = 0;
4351 del_timer_sync(&info->timer);
4352 }
4353}
4354
4355static void ksz_init_timer(struct ksz_timer_info *info, int period,
4356 void (*function)(unsigned long), void *data)
4357{
4358 info->max = 0;
4359 info->period = period;
4360 init_timer(&info->timer);
4361 info->timer.function = function;
4362 info->timer.data = (unsigned long) data;
4363}
4364
4365static void ksz_update_timer(struct ksz_timer_info *info)
4366{
4367 ++info->cnt;
4368 if (info->max > 0) {
4369 if (info->cnt < info->max) {
4370 info->timer.expires = jiffies + info->period;
4371 add_timer(&info->timer);
4372 } else
4373 info->max = 0;
4374 } else if (info->max < 0) {
4375 info->timer.expires = jiffies + info->period;
4376 add_timer(&info->timer);
4377 }
4378}
4379
4380/**
4381 * ksz_alloc_soft_desc - allocate software descriptors
4382 * @desc_info: Descriptor information structure.
4383 * @transmit: Indication that descriptors are for transmit.
4384 *
4385 * This local function allocates software descriptors for manipulation in
4386 * memory.
4387 *
4388 * Return 0 if successful.
4389 */
4390static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4391{
4392 desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4393 GFP_KERNEL);
4394 if (!desc_info->ring)
4395 return 1;
4396 memset((void *) desc_info->ring, 0,
4397 sizeof(struct ksz_desc) * desc_info->alloc);
4398 hw_init_desc(desc_info, transmit);
4399 return 0;
4400}
4401
4402/**
4403 * ksz_alloc_desc - allocate hardware descriptors
4404 * @adapter: Adapter information structure.
4405 *
4406 * This local function allocates hardware descriptors for receiving and
4407 * transmitting.
4408 *
4409 * Return 0 if successful.
4410 */
4411static int ksz_alloc_desc(struct dev_info *adapter)
4412{
4413 struct ksz_hw *hw = &adapter->hw;
4414 int offset;
4415
4416 /* Allocate memory for RX & TX descriptors. */
4417 adapter->desc_pool.alloc_size =
4418 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4419 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4420 DESC_ALIGNMENT;
4421
4422 adapter->desc_pool.alloc_virt =
4423 pci_alloc_consistent(
4424 adapter->pdev, adapter->desc_pool.alloc_size,
4425 &adapter->desc_pool.dma_addr);
4426 if (adapter->desc_pool.alloc_virt == NULL) {
4427 adapter->desc_pool.alloc_size = 0;
4428 return 1;
4429 }
4430 memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4431
4432 /* Align to the next cache line boundary. */
4433 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4434 (DESC_ALIGNMENT -
4435 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4436 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4437 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4438
4439 /* Allocate receive/transmit descriptors. */
4440 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4441 adapter->desc_pool.virt;
4442 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4443 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4444 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4445 (adapter->desc_pool.virt + offset);
4446 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4447
4448 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4449 return 1;
4450 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4451 return 1;
4452
4453 return 0;
4454}
4455
4456/**
4457 * free_dma_buf - release DMA buffer resources
4458 * @adapter: Adapter information structure.
4459 *
4460 * This routine is just a helper function to release the DMA buffer resources.
4461 */
4462static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4463 int direction)
4464{
4465 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4466 dev_kfree_skb(dma_buf->skb);
4467 dma_buf->skb = NULL;
4468 dma_buf->dma = 0;
4469}
4470
4471/**
4472 * ksz_init_rx_buffers - initialize receive descriptors
4473 * @adapter: Adapter information structure.
4474 *
4475 * This routine initializes DMA buffers for receiving.
4476 */
4477static void ksz_init_rx_buffers(struct dev_info *adapter)
4478{
4479 int i;
4480 struct ksz_desc *desc;
4481 struct ksz_dma_buf *dma_buf;
4482 struct ksz_hw *hw = &adapter->hw;
4483 struct ksz_desc_info *info = &hw->rx_desc_info;
4484
4485 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4486 get_rx_pkt(info, &desc);
4487
4488 dma_buf = DMA_BUFFER(desc);
4489 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4490 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4491 dma_buf->len = adapter->mtu;
4492 if (!dma_buf->skb)
4493 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4494 if (dma_buf->skb && !dma_buf->dma) {
4495 dma_buf->skb->dev = adapter->dev;
4496 dma_buf->dma = pci_map_single(
4497 adapter->pdev,
4498 skb_tail_pointer(dma_buf->skb),
4499 dma_buf->len,
4500 PCI_DMA_FROMDEVICE);
4501 }
4502
4503 /* Set descriptor. */
4504 set_rx_buf(desc, dma_buf->dma);
4505 set_rx_len(desc, dma_buf->len);
4506 release_desc(desc);
4507 }
4508}
4509
4510/**
4511 * ksz_alloc_mem - allocate memory for hardware descriptors
4512 * @adapter: Adapter information structure.
4513 *
4514 * This function allocates memory for use by hardware descriptors for receiving
4515 * and transmitting.
4516 *
4517 * Return 0 if successful.
4518 */
4519static int ksz_alloc_mem(struct dev_info *adapter)
4520{
4521 struct ksz_hw *hw = &adapter->hw;
4522
4523 /* Determine the number of receive and transmit descriptors. */
4524 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4525 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4526
4527 /* Determine how many descriptors to skip transmit interrupt. */
4528 hw->tx_int_cnt = 0;
4529 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4530 if (hw->tx_int_mask > 8)
4531 hw->tx_int_mask = 8;
4532 while (hw->tx_int_mask) {
4533 hw->tx_int_cnt++;
4534 hw->tx_int_mask >>= 1;
4535 }
4536 if (hw->tx_int_cnt) {
4537 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4538 hw->tx_int_cnt = 0;
4539 }
4540
4541 /* Determine the descriptor size. */
4542 hw->rx_desc_info.size =
4543 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4544 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4545 hw->tx_desc_info.size =
4546 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4547 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4548 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4549 printk(KERN_ALERT
4550 "Hardware descriptor size not right!\n");
4551 ksz_check_desc_num(&hw->rx_desc_info);
4552 ksz_check_desc_num(&hw->tx_desc_info);
4553
4554 /* Allocate descriptors. */
4555 if (ksz_alloc_desc(adapter))
4556 return 1;
4557
4558 return 0;
4559}
4560
4561/**
4562 * ksz_free_desc - free software and hardware descriptors
4563 * @adapter: Adapter information structure.
4564 *
4565 * This local routine frees the software and hardware descriptors allocated by
4566 * ksz_alloc_desc().
4567 */
4568static void ksz_free_desc(struct dev_info *adapter)
4569{
4570 struct ksz_hw *hw = &adapter->hw;
4571
4572 /* Reset descriptor. */
4573 hw->rx_desc_info.ring_virt = NULL;
4574 hw->tx_desc_info.ring_virt = NULL;
4575 hw->rx_desc_info.ring_phys = 0;
4576 hw->tx_desc_info.ring_phys = 0;
4577
4578 /* Free memory. */
4579 if (adapter->desc_pool.alloc_virt)
4580 pci_free_consistent(
4581 adapter->pdev,
4582 adapter->desc_pool.alloc_size,
4583 adapter->desc_pool.alloc_virt,
4584 adapter->desc_pool.dma_addr);
4585
4586 /* Reset resource pool. */
4587 adapter->desc_pool.alloc_size = 0;
4588 adapter->desc_pool.alloc_virt = NULL;
4589
4590 kfree(hw->rx_desc_info.ring);
4591 hw->rx_desc_info.ring = NULL;
4592 kfree(hw->tx_desc_info.ring);
4593 hw->tx_desc_info.ring = NULL;
4594}
4595
4596/**
4597 * ksz_free_buffers - free buffers used in the descriptors
4598 * @adapter: Adapter information structure.
4599 * @desc_info: Descriptor information structure.
4600 *
4601 * This local routine frees buffers used in the DMA buffers.
4602 */
4603static void ksz_free_buffers(struct dev_info *adapter,
4604 struct ksz_desc_info *desc_info, int direction)
4605{
4606 int i;
4607 struct ksz_dma_buf *dma_buf;
4608 struct ksz_desc *desc = desc_info->ring;
4609
4610 for (i = 0; i < desc_info->alloc; i++) {
4611 dma_buf = DMA_BUFFER(desc);
4612 if (dma_buf->skb)
4613 free_dma_buf(adapter, dma_buf, direction);
4614 desc++;
4615 }
4616}
4617
4618/**
4619 * ksz_free_mem - free all resources used by descriptors
4620 * @adapter: Adapter information structure.
4621 *
4622 * This local routine frees all the resources allocated by ksz_alloc_mem().
4623 */
4624static void ksz_free_mem(struct dev_info *adapter)
4625{
4626 /* Free transmit buffers. */
4627 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4628 PCI_DMA_TODEVICE);
4629
4630 /* Free receive buffers. */
4631 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4632 PCI_DMA_FROMDEVICE);
4633
4634 /* Free descriptors. */
4635 ksz_free_desc(adapter);
4636}
4637
4638static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4639 u64 *counter)
4640{
4641 int i;
4642 int mib;
4643 int port;
4644 struct ksz_port_mib *port_mib;
4645
4646 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4647 for (i = 0, port = first; i < cnt; i++, port++) {
4648 port_mib = &hw->port_mib[port];
4649 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4650 counter[mib] += port_mib->counter[mib];
4651 }
4652}
4653
4654/**
4655 * send_packet - send packet
4656 * @skb: Socket buffer.
4657 * @dev: Network device.
4658 *
4659 * This routine is used to send a packet out to the network.
4660 */
4661static void send_packet(struct sk_buff *skb, struct net_device *dev)
4662{
4663 struct ksz_desc *desc;
4664 struct ksz_desc *first;
4665 struct dev_priv *priv = netdev_priv(dev);
4666 struct dev_info *hw_priv = priv->adapter;
4667 struct ksz_hw *hw = &hw_priv->hw;
4668 struct ksz_desc_info *info = &hw->tx_desc_info;
4669 struct ksz_dma_buf *dma_buf;
4670 int len;
4671 int last_frag = skb_shinfo(skb)->nr_frags;
4672
4673 /*
4674 * KSZ8842 with multiple device interfaces needs to be told which port
4675 * to send.
4676 */
4677 if (hw->dev_count > 1)
4678 hw->dst_ports = 1 << priv->port.first_port;
4679
4680 /* Hardware will pad the length to 60. */
4681 len = skb->len;
4682
4683 /* Remember the very first descriptor. */
4684 first = info->cur;
4685 desc = first;
4686
4687 dma_buf = DMA_BUFFER(desc);
4688 if (last_frag) {
4689 int frag;
4690 skb_frag_t *this_frag;
4691
4692 dma_buf->len = skb->len - skb->data_len;
4693
4694 dma_buf->dma = pci_map_single(
4695 hw_priv->pdev, skb->data, dma_buf->len,
4696 PCI_DMA_TODEVICE);
4697 set_tx_buf(desc, dma_buf->dma);
4698 set_tx_len(desc, dma_buf->len);
4699
4700 frag = 0;
4701 do {
4702 this_frag = &skb_shinfo(skb)->frags[frag];
4703
4704 /* Get a new descriptor. */
4705 get_tx_pkt(info, &desc);
4706
4707 /* Keep track of descriptors used so far. */
4708 ++hw->tx_int_cnt;
4709
4710 dma_buf = DMA_BUFFER(desc);
4711 dma_buf->len = this_frag->size;
4712
4713 dma_buf->dma = pci_map_single(
4714 hw_priv->pdev,
4715 page_address(this_frag->page) +
4716 this_frag->page_offset,
4717 dma_buf->len,
4718 PCI_DMA_TODEVICE);
4719 set_tx_buf(desc, dma_buf->dma);
4720 set_tx_len(desc, dma_buf->len);
4721
4722 frag++;
4723 if (frag == last_frag)
4724 break;
4725
4726 /* Do not release the last descriptor here. */
4727 release_desc(desc);
4728 } while (1);
4729
4730 /* current points to the last descriptor. */
4731 info->cur = desc;
4732
4733 /* Release the first descriptor. */
4734 release_desc(first);
4735 } else {
4736 dma_buf->len = len;
4737
4738 dma_buf->dma = pci_map_single(
4739 hw_priv->pdev, skb->data, dma_buf->len,
4740 PCI_DMA_TODEVICE);
4741 set_tx_buf(desc, dma_buf->dma);
4742 set_tx_len(desc, dma_buf->len);
4743 }
4744
4745 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4746 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4747 (desc)->sw.buf.tx.csum_gen_udp = 1;
4748 }
4749
4750 /*
4751 * The last descriptor holds the packet so that it can be returned to
4752 * network subsystem after all descriptors are transmitted.
4753 */
4754 dma_buf->skb = skb;
4755
4756 hw_send_pkt(hw);
4757
4758 /* Update transmit statistics. */
4759 priv->stats.tx_packets++;
4760 priv->stats.tx_bytes += len;
4761}
4762
4763/**
4764 * transmit_cleanup - clean up transmit descriptors
4765 * @dev: Network device.
4766 *
4767 * This routine is called to clean up the transmitted buffers.
4768 */
4769static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4770{
4771 int last;
4772 union desc_stat status;
4773 struct ksz_hw *hw = &hw_priv->hw;
4774 struct ksz_desc_info *info = &hw->tx_desc_info;
4775 struct ksz_desc *desc;
4776 struct ksz_dma_buf *dma_buf;
4777 struct net_device *dev = NULL;
4778
4779 spin_lock(&hw_priv->hwlock);
4780 last = info->last;
4781
4782 while (info->avail < info->alloc) {
4783 /* Get next descriptor which is not hardware owned. */
4784 desc = &info->ring[last];
4785 status.data = le32_to_cpu(desc->phw->ctrl.data);
4786 if (status.tx.hw_owned) {
4787 if (normal)
4788 break;
4789 else
4790 reset_desc(desc, status);
4791 }
4792
4793 dma_buf = DMA_BUFFER(desc);
4794 pci_unmap_single(
4795 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4796 PCI_DMA_TODEVICE);
4797
4798 /* This descriptor contains the last buffer in the packet. */
4799 if (dma_buf->skb) {
4800 dev = dma_buf->skb->dev;
4801
4802 /* Release the packet back to network subsystem. */
4803 dev_kfree_skb_irq(dma_buf->skb);
4804 dma_buf->skb = NULL;
4805 }
4806
4807 /* Free the transmitted descriptor. */
4808 last++;
4809 last &= info->mask;
4810 info->avail++;
4811 }
4812 info->last = last;
4813 spin_unlock(&hw_priv->hwlock);
4814
4815 /* Notify the network subsystem that the packet has been sent. */
4816 if (dev)
4817 dev->trans_start = jiffies;
4818}
4819
4820/**
4821 * transmit_done - transmit done processing
4822 * @dev: Network device.
4823 *
4824 * This routine is called when the transmit interrupt is triggered, indicating
4825 * either a packet is sent successfully or there are transmit errors.
4826 */
4827static void tx_done(struct dev_info *hw_priv)
4828{
4829 struct ksz_hw *hw = &hw_priv->hw;
4830 int port;
4831
4832 transmit_cleanup(hw_priv, 1);
4833
4834 for (port = 0; port < hw->dev_count; port++) {
4835 struct net_device *dev = hw->port_info[port].pdev;
4836
4837 if (netif_running(dev) && netif_queue_stopped(dev))
4838 netif_wake_queue(dev);
4839 }
4840}
4841
4842static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4843{
4844 skb->dev = old->dev;
4845 skb->protocol = old->protocol;
4846 skb->ip_summed = old->ip_summed;
4847 skb->csum = old->csum;
4848 skb_set_network_header(skb, ETH_HLEN);
4849
4850 dev_kfree_skb(old);
4851}
4852
4853/**
4854 * netdev_tx - send out packet
4855 * @skb: Socket buffer.
4856 * @dev: Network device.
4857 *
4858 * This function is used by the upper network layer to send out a packet.
4859 *
4860 * Return 0 if successful; otherwise an error code indicating failure.
4861 */
4862static int netdev_tx(struct sk_buff *skb, struct net_device *dev)
4863{
4864 struct dev_priv *priv = netdev_priv(dev);
4865 struct dev_info *hw_priv = priv->adapter;
4866 struct ksz_hw *hw = &hw_priv->hw;
4867 int left;
4868 int num = 1;
4869 int rc = 0;
4870
4871 if (hw->features & SMALL_PACKET_TX_BUG) {
4872 struct sk_buff *org_skb = skb;
4873
4874 if (skb->len <= 48) {
4875 if (skb_end_pointer(skb) - skb->data >= 50) {
4876 memset(&skb->data[skb->len], 0, 50 - skb->len);
4877 skb->len = 50;
4878 } else {
4879 skb = dev_alloc_skb(50);
4880 if (!skb)
4881 return NETDEV_TX_BUSY;
4882 memcpy(skb->data, org_skb->data, org_skb->len);
4883 memset(&skb->data[org_skb->len], 0,
4884 50 - org_skb->len);
4885 skb->len = 50;
4886 copy_old_skb(org_skb, skb);
4887 }
4888 }
4889 }
4890
4891 spin_lock_irq(&hw_priv->hwlock);
4892
4893 num = skb_shinfo(skb)->nr_frags + 1;
4894 left = hw_alloc_pkt(hw, skb->len, num);
4895 if (left) {
4896 if (left < num ||
4897 ((hw->features & IPV6_CSUM_GEN_HACK) &&
4898 (CHECKSUM_PARTIAL == skb->ip_summed) &&
4899 (ETH_P_IPV6 == htons(skb->protocol)))) {
4900 struct sk_buff *org_skb = skb;
4901
4902 skb = dev_alloc_skb(org_skb->len);
edee3932
JS
4903 if (!skb) {
4904 rc = NETDEV_TX_BUSY;
4905 goto unlock;
4906 }
8ca86fd8
TH
4907 skb_copy_and_csum_dev(org_skb, skb->data);
4908 org_skb->ip_summed = 0;
4909 skb->len = org_skb->len;
4910 copy_old_skb(org_skb, skb);
4911 }
4912 send_packet(skb, dev);
4913 if (left <= num)
4914 netif_stop_queue(dev);
4915 } else {
4916 /* Stop the transmit queue until packet is allocated. */
4917 netif_stop_queue(dev);
4918 rc = NETDEV_TX_BUSY;
4919 }
edee3932 4920unlock:
8ca86fd8
TH
4921 spin_unlock_irq(&hw_priv->hwlock);
4922
4923 return rc;
4924}
4925
4926/**
4927 * netdev_tx_timeout - transmit timeout processing
4928 * @dev: Network device.
4929 *
4930 * This routine is called when the transmit timer expires. That indicates the
4931 * hardware is not running correctly because transmit interrupts are not
4932 * triggered to free up resources so that the transmit routine can continue
4933 * sending out packets. The hardware is reset to correct the problem.
4934 */
4935static void netdev_tx_timeout(struct net_device *dev)
4936{
4937 static unsigned long last_reset;
4938
4939 struct dev_priv *priv = netdev_priv(dev);
4940 struct dev_info *hw_priv = priv->adapter;
4941 struct ksz_hw *hw = &hw_priv->hw;
4942 int port;
4943
4944 if (hw->dev_count > 1) {
4945 /*
4946 * Only reset the hardware if time between calls is long
4947 * enough.
4948 */
4949 if (jiffies - last_reset <= dev->watchdog_timeo)
4950 hw_priv = NULL;
4951 }
4952
4953 last_reset = jiffies;
4954 if (hw_priv) {
4955 hw_dis_intr(hw);
4956 hw_disable(hw);
4957
4958 transmit_cleanup(hw_priv, 0);
4959 hw_reset_pkts(&hw->rx_desc_info);
4960 hw_reset_pkts(&hw->tx_desc_info);
4961 ksz_init_rx_buffers(hw_priv);
4962
4963 hw_reset(hw);
4964
4965 hw_set_desc_base(hw,
4966 hw->tx_desc_info.ring_phys,
4967 hw->rx_desc_info.ring_phys);
4968 hw_set_addr(hw);
4969 if (hw->all_multi)
4970 hw_set_multicast(hw, hw->all_multi);
4971 else if (hw->multi_list_size)
4972 hw_set_grp_addr(hw);
4973
4974 if (hw->dev_count > 1) {
4975 hw_set_add_addr(hw);
4976 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4977 struct net_device *port_dev;
4978
4979 port_set_stp_state(hw, port,
4980 STP_STATE_DISABLED);
4981
4982 port_dev = hw->port_info[port].pdev;
4983 if (netif_running(port_dev))
4984 port_set_stp_state(hw, port,
4985 STP_STATE_SIMPLE);
4986 }
4987 }
4988
4989 hw_enable(hw);
4990 hw_ena_intr(hw);
4991 }
4992
4993 dev->trans_start = jiffies;
4994 netif_wake_queue(dev);
4995}
4996
4997static inline void csum_verified(struct sk_buff *skb)
4998{
4999 unsigned short protocol;
5000 struct iphdr *iph;
5001
5002 protocol = skb->protocol;
5003 skb_reset_network_header(skb);
5004 iph = (struct iphdr *) skb_network_header(skb);
5005 if (protocol == htons(ETH_P_8021Q)) {
5006 protocol = iph->tot_len;
5007 skb_set_network_header(skb, VLAN_HLEN);
5008 iph = (struct iphdr *) skb_network_header(skb);
5009 }
5010 if (protocol == htons(ETH_P_IP)) {
5011 if (iph->protocol == IPPROTO_TCP)
5012 skb->ip_summed = CHECKSUM_UNNECESSARY;
5013 }
5014}
5015
5016static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5017 struct ksz_desc *desc, union desc_stat status)
5018{
5019 int packet_len;
5020 struct dev_priv *priv = netdev_priv(dev);
5021 struct dev_info *hw_priv = priv->adapter;
5022 struct ksz_dma_buf *dma_buf;
5023 struct sk_buff *skb;
5024 int rx_status;
5025
5026 /* Received length includes 4-byte CRC. */
5027 packet_len = status.rx.frame_len - 4;
5028
5029 dma_buf = DMA_BUFFER(desc);
5030 pci_dma_sync_single_for_cpu(
5031 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5032 PCI_DMA_FROMDEVICE);
5033
5034 do {
5035 /* skb->data != skb->head */
5036 skb = dev_alloc_skb(packet_len + 2);
5037 if (!skb) {
5038 priv->stats.rx_dropped++;
5039 return -ENOMEM;
5040 }
5041
5042 /*
5043 * Align socket buffer in 4-byte boundary for better
5044 * performance.
5045 */
5046 skb_reserve(skb, 2);
5047
5048 memcpy(skb_put(skb, packet_len),
5049 dma_buf->skb->data, packet_len);
5050 } while (0);
5051
5052 skb->dev = dev;
5053
5054 skb->protocol = eth_type_trans(skb, dev);
5055
5056 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5057 csum_verified(skb);
5058
5059 /* Update receive statistics. */
5060 priv->stats.rx_packets++;
5061 priv->stats.rx_bytes += packet_len;
5062
5063 /* Notify upper layer for received packet. */
5064 dev->last_rx = jiffies;
5065
5066 rx_status = netif_rx(skb);
5067
5068 return 0;
5069}
5070
5071static int dev_rcv_packets(struct dev_info *hw_priv)
5072{
5073 int next;
5074 union desc_stat status;
5075 struct ksz_hw *hw = &hw_priv->hw;
5076 struct net_device *dev = hw->port_info[0].pdev;
5077 struct ksz_desc_info *info = &hw->rx_desc_info;
5078 int left = info->alloc;
5079 struct ksz_desc *desc;
5080 int received = 0;
5081
5082 next = info->next;
5083 while (left--) {
5084 /* Get next descriptor which is not hardware owned. */
5085 desc = &info->ring[next];
5086 status.data = le32_to_cpu(desc->phw->ctrl.data);
5087 if (status.rx.hw_owned)
5088 break;
5089
5090 /* Status valid only when last descriptor bit is set. */
5091 if (status.rx.last_desc && status.rx.first_desc) {
5092 if (rx_proc(dev, hw, desc, status))
5093 goto release_packet;
5094 received++;
5095 }
5096
5097release_packet:
5098 release_desc(desc);
5099 next++;
5100 next &= info->mask;
5101 }
5102 info->next = next;
5103
5104 return received;
5105}
5106
5107static int port_rcv_packets(struct dev_info *hw_priv)
5108{
5109 int next;
5110 union desc_stat status;
5111 struct ksz_hw *hw = &hw_priv->hw;
5112 struct net_device *dev = hw->port_info[0].pdev;
5113 struct ksz_desc_info *info = &hw->rx_desc_info;
5114 int left = info->alloc;
5115 struct ksz_desc *desc;
5116 int received = 0;
5117
5118 next = info->next;
5119 while (left--) {
5120 /* Get next descriptor which is not hardware owned. */
5121 desc = &info->ring[next];
5122 status.data = le32_to_cpu(desc->phw->ctrl.data);
5123 if (status.rx.hw_owned)
5124 break;
5125
5126 if (hw->dev_count > 1) {
5127 /* Get received port number. */
5128 int p = HW_TO_DEV_PORT(status.rx.src_port);
5129
5130 dev = hw->port_info[p].pdev;
5131 if (!netif_running(dev))
5132 goto release_packet;
5133 }
5134
5135 /* Status valid only when last descriptor bit is set. */
5136 if (status.rx.last_desc && status.rx.first_desc) {
5137 if (rx_proc(dev, hw, desc, status))
5138 goto release_packet;
5139 received++;
5140 }
5141
5142release_packet:
5143 release_desc(desc);
5144 next++;
5145 next &= info->mask;
5146 }
5147 info->next = next;
5148
5149 return received;
5150}
5151
5152static int dev_rcv_special(struct dev_info *hw_priv)
5153{
5154 int next;
5155 union desc_stat status;
5156 struct ksz_hw *hw = &hw_priv->hw;
5157 struct net_device *dev = hw->port_info[0].pdev;
5158 struct ksz_desc_info *info = &hw->rx_desc_info;
5159 int left = info->alloc;
5160 struct ksz_desc *desc;
5161 int received = 0;
5162
5163 next = info->next;
5164 while (left--) {
5165 /* Get next descriptor which is not hardware owned. */
5166 desc = &info->ring[next];
5167 status.data = le32_to_cpu(desc->phw->ctrl.data);
5168 if (status.rx.hw_owned)
5169 break;
5170
5171 if (hw->dev_count > 1) {
5172 /* Get received port number. */
5173 int p = HW_TO_DEV_PORT(status.rx.src_port);
5174
5175 dev = hw->port_info[p].pdev;
5176 if (!netif_running(dev))
5177 goto release_packet;
5178 }
5179
5180 /* Status valid only when last descriptor bit is set. */
5181 if (status.rx.last_desc && status.rx.first_desc) {
5182 /*
5183 * Receive without error. With receive errors
5184 * disabled, packets with receive errors will be
5185 * dropped, so no need to check the error bit.
5186 */
5187 if (!status.rx.error || (status.data &
5188 KS_DESC_RX_ERROR_COND) ==
5189 KS_DESC_RX_ERROR_TOO_LONG) {
5190 if (rx_proc(dev, hw, desc, status))
5191 goto release_packet;
5192 received++;
5193 } else {
5194 struct dev_priv *priv = netdev_priv(dev);
5195
5196 /* Update receive error statistics. */
5197 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5198 }
5199 }
5200
5201release_packet:
5202 release_desc(desc);
5203 next++;
5204 next &= info->mask;
5205 }
5206 info->next = next;
5207
5208 return received;
5209}
5210
5211static void rx_proc_task(unsigned long data)
5212{
5213 struct dev_info *hw_priv = (struct dev_info *) data;
5214 struct ksz_hw *hw = &hw_priv->hw;
5215
5216 if (!hw->enabled)
5217 return;
5218 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5219
5220 /* In case receive process is suspended because of overrun. */
5221 hw_resume_rx(hw);
5222
5223 /* tasklets are interruptible. */
5224 spin_lock_irq(&hw_priv->hwlock);
5225 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5226 spin_unlock_irq(&hw_priv->hwlock);
5227 } else {
5228 hw_ack_intr(hw, KS884X_INT_RX);
5229 tasklet_schedule(&hw_priv->rx_tasklet);
5230 }
5231}
5232
5233static void tx_proc_task(unsigned long data)
5234{
5235 struct dev_info *hw_priv = (struct dev_info *) data;
5236 struct ksz_hw *hw = &hw_priv->hw;
5237
5238 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5239
5240 tx_done(hw_priv);
5241
5242 /* tasklets are interruptible. */
5243 spin_lock_irq(&hw_priv->hwlock);
5244 hw_turn_on_intr(hw, KS884X_INT_TX);
5245 spin_unlock_irq(&hw_priv->hwlock);
5246}
5247
5248static inline void handle_rx_stop(struct ksz_hw *hw)
5249{
5250 /* Receive just has been stopped. */
5251 if (0 == hw->rx_stop)
5252 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5253 else if (hw->rx_stop > 1) {
5254 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5255 hw_start_rx(hw);
5256 } else {
5257 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5258 hw->rx_stop = 0;
5259 }
5260 } else
5261 /* Receive just has been started. */
5262 hw->rx_stop++;
5263}
5264
5265/**
5266 * netdev_intr - interrupt handling
5267 * @irq: Interrupt number.
5268 * @dev_id: Network device.
5269 *
5270 * This function is called by upper network layer to signal interrupt.
5271 *
5272 * Return IRQ_HANDLED if interrupt is handled.
5273 */
5274static irqreturn_t netdev_intr(int irq, void *dev_id)
5275{
5276 uint int_enable = 0;
5277 struct net_device *dev = (struct net_device *) dev_id;
5278 struct dev_priv *priv = netdev_priv(dev);
5279 struct dev_info *hw_priv = priv->adapter;
5280 struct ksz_hw *hw = &hw_priv->hw;
5281
5282 hw_read_intr(hw, &int_enable);
5283
5284 /* Not our interrupt! */
5285 if (!int_enable)
5286 return IRQ_NONE;
5287
5288 do {
5289 hw_ack_intr(hw, int_enable);
5290 int_enable &= hw->intr_mask;
5291
5292 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5293 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5294 tasklet_schedule(&hw_priv->tx_tasklet);
5295 }
5296
5297 if (likely(int_enable & KS884X_INT_RX)) {
5298 hw_dis_intr_bit(hw, KS884X_INT_RX);
5299 tasklet_schedule(&hw_priv->rx_tasklet);
5300 }
5301
5302 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5303 priv->stats.rx_fifo_errors++;
5304 hw_resume_rx(hw);
5305 }
5306
5307 if (unlikely(int_enable & KS884X_INT_PHY)) {
5308 struct ksz_port *port = &priv->port;
5309
5310 hw->features |= LINK_INT_WORKING;
5311 port_get_link_speed(port);
5312 }
5313
5314 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5315 handle_rx_stop(hw);
5316 break;
5317 }
5318
5319 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5320 u32 data;
5321
5322 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5323 printk(KERN_INFO "Tx stopped\n");
5324 data = readl(hw->io + KS_DMA_TX_CTRL);
5325 if (!(data & DMA_TX_ENABLE))
5326 printk(KERN_INFO "Tx disabled\n");
5327 break;
5328 }
5329 } while (0);
5330
5331 hw_ena_intr(hw);
5332
5333 return IRQ_HANDLED;
5334}
5335
5336/*
5337 * Linux network device functions
5338 */
5339
5340static unsigned long next_jiffies;
5341
5342#ifdef CONFIG_NET_POLL_CONTROLLER
5343static void netdev_netpoll(struct net_device *dev)
5344{
5345 struct dev_priv *priv = netdev_priv(dev);
5346 struct dev_info *hw_priv = priv->adapter;
5347
5348 hw_dis_intr(&hw_priv->hw);
5349 netdev_intr(dev->irq, dev);
5350}
5351#endif
5352
5353static void bridge_change(struct ksz_hw *hw)
5354{
5355 int port;
5356 u8 member;
5357 struct ksz_switch *sw = hw->ksz_switch;
5358
5359 /* No ports in forwarding state. */
5360 if (!sw->member) {
5361 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5362 sw_block_addr(hw);
5363 }
5364 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5365 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5366 member = HOST_MASK | sw->member;
5367 else
5368 member = HOST_MASK | (1 << port);
5369 if (member != sw->port_cfg[port].member)
5370 sw_cfg_port_base_vlan(hw, port, member);
5371 }
5372}
5373
5374/**
5375 * netdev_close - close network device
5376 * @dev: Network device.
5377 *
5378 * This function process the close operation of network device. This is caused
5379 * by the user command "ifconfig ethX down."
5380 *
5381 * Return 0 if successful; otherwise an error code indicating failure.
5382 */
5383static int netdev_close(struct net_device *dev)
5384{
5385 struct dev_priv *priv = netdev_priv(dev);
5386 struct dev_info *hw_priv = priv->adapter;
5387 struct ksz_port *port = &priv->port;
5388 struct ksz_hw *hw = &hw_priv->hw;
5389 int pi;
5390
5391 netif_stop_queue(dev);
5392
5393 ksz_stop_timer(&priv->monitor_timer_info);
5394
5395 /* Need to shut the port manually in multiple device interfaces mode. */
5396 if (hw->dev_count > 1) {
5397 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5398
5399 /* Port is closed. Need to change bridge setting. */
5400 if (hw->features & STP_SUPPORT) {
5401 pi = 1 << port->first_port;
5402 if (hw->ksz_switch->member & pi) {
5403 hw->ksz_switch->member &= ~pi;
5404 bridge_change(hw);
5405 }
5406 }
5407 }
5408 if (port->first_port > 0)
5409 hw_del_addr(hw, dev->dev_addr);
5410 if (!hw_priv->wol_enable)
5411 port_set_power_saving(port, true);
5412
5413 if (priv->multicast)
5414 --hw->all_multi;
5415 if (priv->promiscuous)
5416 --hw->promiscuous;
5417
5418 hw_priv->opened--;
5419 if (!(hw_priv->opened)) {
5420 ksz_stop_timer(&hw_priv->mib_timer_info);
5421 flush_work(&hw_priv->mib_read);
5422
5423 hw_dis_intr(hw);
5424 hw_disable(hw);
5425 hw_clr_multicast(hw);
5426
5427 /* Delay for receive task to stop scheduling itself. */
5428 msleep(2000 / HZ);
5429
5430 tasklet_disable(&hw_priv->rx_tasklet);
5431 tasklet_disable(&hw_priv->tx_tasklet);
5432 free_irq(dev->irq, hw_priv->dev);
5433
5434 transmit_cleanup(hw_priv, 0);
5435 hw_reset_pkts(&hw->rx_desc_info);
5436 hw_reset_pkts(&hw->tx_desc_info);
5437
5438 /* Clean out static MAC table when the switch is shutdown. */
5439 if (hw->features & STP_SUPPORT)
5440 sw_clr_sta_mac_table(hw);
5441 }
5442
5443 return 0;
5444}
5445
5446static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5447{
5448 if (hw->ksz_switch) {
5449 u32 data;
5450
5451 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5452 if (hw->features & RX_HUGE_FRAME)
5453 data |= SWITCH_HUGE_PACKET;
5454 else
5455 data &= ~SWITCH_HUGE_PACKET;
5456 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5457 }
5458 if (hw->features & RX_HUGE_FRAME) {
5459 hw->rx_cfg |= DMA_RX_ERROR;
5460 hw_priv->dev_rcv = dev_rcv_special;
5461 } else {
5462 hw->rx_cfg &= ~DMA_RX_ERROR;
5463 if (hw->dev_count > 1)
5464 hw_priv->dev_rcv = port_rcv_packets;
5465 else
5466 hw_priv->dev_rcv = dev_rcv_packets;
5467 }
5468}
5469
5470static int prepare_hardware(struct net_device *dev)
5471{
5472 struct dev_priv *priv = netdev_priv(dev);
5473 struct dev_info *hw_priv = priv->adapter;
5474 struct ksz_hw *hw = &hw_priv->hw;
5475 int rc = 0;
5476
5477 /* Remember the network device that requests interrupts. */
5478 hw_priv->dev = dev;
5479 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5480 if (rc)
5481 return rc;
5482 tasklet_enable(&hw_priv->rx_tasklet);
5483 tasklet_enable(&hw_priv->tx_tasklet);
5484
5485 hw->promiscuous = 0;
5486 hw->all_multi = 0;
5487 hw->multi_list_size = 0;
5488
5489 hw_reset(hw);
5490
5491 hw_set_desc_base(hw,
5492 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5493 hw_set_addr(hw);
5494 hw_cfg_huge_frame(hw_priv, hw);
5495 ksz_init_rx_buffers(hw_priv);
5496 return 0;
5497}
5498
5499/**
5500 * netdev_open - open network device
5501 * @dev: Network device.
5502 *
5503 * This function process the open operation of network device. This is caused
5504 * by the user command "ifconfig ethX up."
5505 *
5506 * Return 0 if successful; otherwise an error code indicating failure.
5507 */
5508static int netdev_open(struct net_device *dev)
5509{
5510 struct dev_priv *priv = netdev_priv(dev);
5511 struct dev_info *hw_priv = priv->adapter;
5512 struct ksz_hw *hw = &hw_priv->hw;
5513 struct ksz_port *port = &priv->port;
5514 int i;
5515 int p;
5516 int rc = 0;
5517
5518 priv->multicast = 0;
5519 priv->promiscuous = 0;
5520
5521 /* Reset device statistics. */
5522 memset(&priv->stats, 0, sizeof(struct net_device_stats));
5523 memset((void *) port->counter, 0,
5524 (sizeof(u64) * OID_COUNTER_LAST));
5525
5526 if (!(hw_priv->opened)) {
5527 rc = prepare_hardware(dev);
5528 if (rc)
5529 return rc;
5530 for (i = 0; i < hw->mib_port_cnt; i++) {
5531 if (next_jiffies < jiffies)
5532 next_jiffies = jiffies + HZ * 2;
5533 else
5534 next_jiffies += HZ * 1;
5535 hw_priv->counter[i].time = next_jiffies;
5536 hw->port_mib[i].state = media_disconnected;
5537 port_init_cnt(hw, i);
5538 }
5539 if (hw->ksz_switch)
5540 hw->port_mib[HOST_PORT].state = media_connected;
5541 else {
5542 hw_add_wol_bcast(hw);
5543 hw_cfg_wol_pme(hw, 0);
5544 hw_clr_wol_pme_status(&hw_priv->hw);
5545 }
5546 }
5547 port_set_power_saving(port, false);
5548
5549 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5550 /*
5551 * Initialize to invalid value so that link detection
5552 * is done.
5553 */
5554 hw->port_info[p].partner = 0xFF;
5555 hw->port_info[p].state = media_disconnected;
5556 }
5557
5558 /* Need to open the port in multiple device interfaces mode. */
5559 if (hw->dev_count > 1) {
5560 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5561 if (port->first_port > 0)
5562 hw_add_addr(hw, dev->dev_addr);
5563 }
5564
5565 port_get_link_speed(port);
5566 if (port->force_link)
5567 port_force_link_speed(port);
5568 else
5569 port_set_link_speed(port);
5570
5571 if (!(hw_priv->opened)) {
5572 hw_setup_intr(hw);
5573 hw_enable(hw);
5574 hw_ena_intr(hw);
5575
5576 if (hw->mib_port_cnt)
5577 ksz_start_timer(&hw_priv->mib_timer_info,
5578 hw_priv->mib_timer_info.period);
5579 }
5580
5581 hw_priv->opened++;
5582
5583 ksz_start_timer(&priv->monitor_timer_info,
5584 priv->monitor_timer_info.period);
5585
5586 priv->media_state = port->linked->state;
5587
5588 if (media_connected == priv->media_state)
5589 netif_carrier_on(dev);
5590 else
5591 netif_carrier_off(dev);
5592 if (netif_msg_link(priv))
5593 printk(KERN_INFO "%s link %s\n", dev->name,
5594 (media_connected == priv->media_state ?
5595 "on" : "off"));
5596
5597 netif_start_queue(dev);
5598
5599 return 0;
5600}
5601
5602/* RX errors = rx_errors */
5603/* RX dropped = rx_dropped */
5604/* RX overruns = rx_fifo_errors */
5605/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5606/* TX errors = tx_errors */
5607/* TX dropped = tx_dropped */
5608/* TX overruns = tx_fifo_errors */
5609/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5610/* collisions = collisions */
5611
5612/**
5613 * netdev_query_statistics - query network device statistics
5614 * @dev: Network device.
5615 *
5616 * This function returns the statistics of the network device. The device
5617 * needs not be opened.
5618 *
5619 * Return network device statistics.
5620 */
5621static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5622{
5623 struct dev_priv *priv = netdev_priv(dev);
5624 struct ksz_port *port = &priv->port;
5625 struct ksz_hw *hw = &priv->adapter->hw;
5626 struct ksz_port_mib *mib;
5627 int i;
5628 int p;
5629
5630 priv->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5631 priv->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5632
5633 /* Reset to zero to add count later. */
5634 priv->stats.multicast = 0;
5635 priv->stats.collisions = 0;
5636 priv->stats.rx_length_errors = 0;
5637 priv->stats.rx_crc_errors = 0;
5638 priv->stats.rx_frame_errors = 0;
5639 priv->stats.tx_window_errors = 0;
5640
5641 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5642 mib = &hw->port_mib[p];
5643
5644 priv->stats.multicast += (unsigned long)
5645 mib->counter[MIB_COUNTER_RX_MULTICAST];
5646
5647 priv->stats.collisions += (unsigned long)
5648 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5649
5650 priv->stats.rx_length_errors += (unsigned long)(
5651 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5652 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5653 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5654 mib->counter[MIB_COUNTER_RX_JABBER]);
5655 priv->stats.rx_crc_errors += (unsigned long)
5656 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5657 priv->stats.rx_frame_errors += (unsigned long)(
5658 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5659 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5660
5661 priv->stats.tx_window_errors += (unsigned long)
5662 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5663 }
5664
5665 return &priv->stats;
5666}
5667
5668/**
5669 * netdev_set_mac_address - set network device MAC address
5670 * @dev: Network device.
5671 * @addr: Buffer of MAC address.
5672 *
5673 * This function is used to set the MAC address of the network device.
5674 *
5675 * Return 0 to indicate success.
5676 */
5677static int netdev_set_mac_address(struct net_device *dev, void *addr)
5678{
5679 struct dev_priv *priv = netdev_priv(dev);
5680 struct dev_info *hw_priv = priv->adapter;
5681 struct ksz_hw *hw = &hw_priv->hw;
5682 struct sockaddr *mac = addr;
5683 uint interrupt;
5684
5685 if (priv->port.first_port > 0)
5686 hw_del_addr(hw, dev->dev_addr);
5687 else {
5688 hw->mac_override = 1;
5689 memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5690 }
5691
5692 memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5693
5694 interrupt = hw_block_intr(hw);
5695
5696 if (priv->port.first_port > 0)
5697 hw_add_addr(hw, dev->dev_addr);
5698 else
5699 hw_set_addr(hw);
5700 hw_restore_intr(hw, interrupt);
5701
5702 return 0;
5703}
5704
5705static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5706 struct ksz_hw *hw, int promiscuous)
5707{
5708 if (promiscuous != priv->promiscuous) {
5709 u8 prev_state = hw->promiscuous;
5710
5711 if (promiscuous)
5712 ++hw->promiscuous;
5713 else
5714 --hw->promiscuous;
5715 priv->promiscuous = promiscuous;
5716
5717 /* Turn on/off promiscuous mode. */
5718 if (hw->promiscuous <= 1 && prev_state <= 1)
5719 hw_set_promiscuous(hw, hw->promiscuous);
5720
5721 /*
5722 * Port is not in promiscuous mode, meaning it is released
5723 * from the bridge.
5724 */
5725 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5726 dev->br_port) {
5727 struct ksz_switch *sw = hw->ksz_switch;
5728 int port = priv->port.first_port;
5729
5730 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5731 port = 1 << port;
5732 if (sw->member & port) {
5733 sw->member &= ~port;
5734 bridge_change(hw);
5735 }
5736 }
5737 }
5738}
5739
5740static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5741 int multicast)
5742{
5743 if (multicast != priv->multicast) {
5744 u8 all_multi = hw->all_multi;
5745
5746 if (multicast)
5747 ++hw->all_multi;
5748 else
5749 --hw->all_multi;
5750 priv->multicast = multicast;
5751
5752 /* Turn on/off all multicast mode. */
5753 if (hw->all_multi <= 1 && all_multi <= 1)
5754 hw_set_multicast(hw, hw->all_multi);
5755 }
5756}
5757
5758/**
5759 * netdev_set_rx_mode
5760 * @dev: Network device.
5761 *
5762 * This routine is used to set multicast addresses or put the network device
5763 * into promiscuous mode.
5764 */
5765static void netdev_set_rx_mode(struct net_device *dev)
5766{
5767 struct dev_priv *priv = netdev_priv(dev);
5768 struct dev_info *hw_priv = priv->adapter;
5769 struct ksz_hw *hw = &hw_priv->hw;
5770 struct dev_mc_list *mc_ptr;
5771 int multicast = (dev->flags & IFF_ALLMULTI);
5772
5773 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5774
5775 if (hw_priv->hw.dev_count > 1)
5776 multicast |= (dev->flags & IFF_MULTICAST);
5777 dev_set_multicast(priv, hw, multicast);
5778
5779 /* Cannot use different hashes in multiple device interfaces mode. */
5780 if (hw_priv->hw.dev_count > 1)
5781 return;
5782
f9dcbcc9 5783 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
8ca86fd8
TH
5784 int i = 0;
5785
5786 /* List too big to support so turn on all multicast mode. */
5787 if (dev->mc_count > MAX_MULTICAST_LIST) {
5788 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5789 hw->multi_list_size = MAX_MULTICAST_LIST;
5790 ++hw->all_multi;
5791 hw_set_multicast(hw, hw->all_multi);
5792 }
5793 return;
5794 }
5795
f9dcbcc9 5796 netdev_for_each_mc_addr(mc_ptr, dev) {
8ca86fd8
TH
5797 if (!(*mc_ptr->dmi_addr & 1))
5798 continue;
5799 if (i >= MAX_MULTICAST_LIST)
5800 break;
5801 memcpy(hw->multi_list[i++], mc_ptr->dmi_addr,
5802 MAC_ADDR_LEN);
5803 }
5804 hw->multi_list_size = (u8) i;
5805 hw_set_grp_addr(hw);
5806 } else {
5807 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5808 --hw->all_multi;
5809 hw_set_multicast(hw, hw->all_multi);
5810 }
5811 hw->multi_list_size = 0;
5812 hw_clr_multicast(hw);
5813 }
5814}
5815
5816static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5817{
5818 struct dev_priv *priv = netdev_priv(dev);
5819 struct dev_info *hw_priv = priv->adapter;
5820 struct ksz_hw *hw = &hw_priv->hw;
5821 int hw_mtu;
5822
5823 if (netif_running(dev))
5824 return -EBUSY;
5825
5826 /* Cannot use different MTU in multiple device interfaces mode. */
5827 if (hw->dev_count > 1)
5828 if (dev != hw_priv->dev)
5829 return 0;
5830 if (new_mtu < 60)
5831 return -EINVAL;
5832
5833 if (dev->mtu != new_mtu) {
5834 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5835 if (hw_mtu > MAX_RX_BUF_SIZE)
5836 return -EINVAL;
5837 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5838 hw->features |= RX_HUGE_FRAME;
5839 hw_mtu = MAX_RX_BUF_SIZE;
5840 } else {
5841 hw->features &= ~RX_HUGE_FRAME;
5842 hw_mtu = REGULAR_RX_BUF_SIZE;
5843 }
5844 hw_mtu = (hw_mtu + 3) & ~3;
5845 hw_priv->mtu = hw_mtu;
5846 dev->mtu = new_mtu;
5847 }
5848 return 0;
5849}
5850
5851/**
5852 * netdev_ioctl - I/O control processing
5853 * @dev: Network device.
5854 * @ifr: Interface request structure.
5855 * @cmd: I/O control code.
5856 *
5857 * This function is used to process I/O control calls.
5858 *
5859 * Return 0 to indicate success.
5860 */
5861static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5862{
5863 struct dev_priv *priv = netdev_priv(dev);
5864 struct dev_info *hw_priv = priv->adapter;
5865 struct ksz_hw *hw = &hw_priv->hw;
5866 struct ksz_port *port = &priv->port;
5867 int rc;
5868 int result = 0;
5869 struct mii_ioctl_data *data = if_mii(ifr);
5870
5871 if (down_interruptible(&priv->proc_sem))
5872 return -ERESTARTSYS;
5873
5874 /* assume success */
5875 rc = 0;
5876 switch (cmd) {
5877 /* Get address of MII PHY in use. */
5878 case SIOCGMIIPHY:
5879 data->phy_id = priv->id;
5880
5881 /* Fallthrough... */
5882
5883 /* Read MII PHY register. */
5884 case SIOCGMIIREG:
5885 if (data->phy_id != priv->id || data->reg_num >= 6)
5886 result = -EIO;
5887 else
5888 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5889 &data->val_out);
5890 break;
5891
5892 /* Write MII PHY register. */
5893 case SIOCSMIIREG:
5894 if (!capable(CAP_NET_ADMIN))
5895 result = -EPERM;
5896 else if (data->phy_id != priv->id || data->reg_num >= 6)
5897 result = -EIO;
5898 else
5899 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5900 data->val_in);
5901 break;
5902
5903 default:
5904 result = -EOPNOTSUPP;
5905 }
5906
5907 up(&priv->proc_sem);
5908
5909 return result;
5910}
5911
5912/*
5913 * MII support
5914 */
5915
5916/**
5917 * mdio_read - read PHY register
5918 * @dev: Network device.
5919 * @phy_id: The PHY id.
5920 * @reg_num: The register number.
5921 *
5922 * This function returns the PHY register value.
5923 *
5924 * Return the register value.
5925 */
5926static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5927{
5928 struct dev_priv *priv = netdev_priv(dev);
5929 struct ksz_port *port = &priv->port;
5930 struct ksz_hw *hw = port->hw;
5931 u16 val_out;
5932
5933 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5934 return val_out;
5935}
5936
5937/**
5938 * mdio_write - set PHY register
5939 * @dev: Network device.
5940 * @phy_id: The PHY id.
5941 * @reg_num: The register number.
5942 * @val: The register value.
5943 *
5944 * This procedure sets the PHY register value.
5945 */
5946static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5947{
5948 struct dev_priv *priv = netdev_priv(dev);
5949 struct ksz_port *port = &priv->port;
5950 struct ksz_hw *hw = port->hw;
5951 int i;
5952 int pi;
5953
5954 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5955 hw_w_phy(hw, pi, reg_num << 1, val);
5956}
5957
5958/*
5959 * ethtool support
5960 */
5961
5962#define EEPROM_SIZE 0x40
5963
5964static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5965
5966#define ADVERTISED_ALL \
5967 (ADVERTISED_10baseT_Half | \
5968 ADVERTISED_10baseT_Full | \
5969 ADVERTISED_100baseT_Half | \
5970 ADVERTISED_100baseT_Full)
5971
5972/* These functions use the MII functions in mii.c. */
5973
5974/**
5975 * netdev_get_settings - get network device settings
5976 * @dev: Network device.
5977 * @cmd: Ethtool command.
5978 *
5979 * This function queries the PHY and returns its state in the ethtool command.
5980 *
5981 * Return 0 if successful; otherwise an error code.
5982 */
5983static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5984{
5985 struct dev_priv *priv = netdev_priv(dev);
5986 struct dev_info *hw_priv = priv->adapter;
5987
5988 mutex_lock(&hw_priv->lock);
5989 mii_ethtool_gset(&priv->mii_if, cmd);
5990 cmd->advertising |= SUPPORTED_TP;
5991 mutex_unlock(&hw_priv->lock);
5992
5993 /* Save advertised settings for workaround in next function. */
5994 priv->advertising = cmd->advertising;
5995 return 0;
5996}
5997
5998/**
5999 * netdev_set_settings - set network device settings
6000 * @dev: Network device.
6001 * @cmd: Ethtool command.
6002 *
6003 * This function sets the PHY according to the ethtool command.
6004 *
6005 * Return 0 if successful; otherwise an error code.
6006 */
6007static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6008{
6009 struct dev_priv *priv = netdev_priv(dev);
6010 struct dev_info *hw_priv = priv->adapter;
6011 struct ksz_port *port = &priv->port;
6012 int rc;
6013
6014 /*
6015 * ethtool utility does not change advertised setting if auto
6016 * negotiation is not specified explicitly.
6017 */
6018 if (cmd->autoneg && priv->advertising == cmd->advertising) {
6019 cmd->advertising |= ADVERTISED_ALL;
6020 if (10 == cmd->speed)
6021 cmd->advertising &=
6022 ~(ADVERTISED_100baseT_Full |
6023 ADVERTISED_100baseT_Half);
6024 else if (100 == cmd->speed)
6025 cmd->advertising &=
6026 ~(ADVERTISED_10baseT_Full |
6027 ADVERTISED_10baseT_Half);
6028 if (0 == cmd->duplex)
6029 cmd->advertising &=
6030 ~(ADVERTISED_100baseT_Full |
6031 ADVERTISED_10baseT_Full);
6032 else if (1 == cmd->duplex)
6033 cmd->advertising &=
6034 ~(ADVERTISED_100baseT_Half |
6035 ADVERTISED_10baseT_Half);
6036 }
6037 mutex_lock(&hw_priv->lock);
6038 if (cmd->autoneg &&
6039 (cmd->advertising & ADVERTISED_ALL) ==
6040 ADVERTISED_ALL) {
6041 port->duplex = 0;
6042 port->speed = 0;
6043 port->force_link = 0;
6044 } else {
6045 port->duplex = cmd->duplex + 1;
6046 if (cmd->speed != 1000)
6047 port->speed = cmd->speed;
6048 if (cmd->autoneg)
6049 port->force_link = 0;
6050 else
6051 port->force_link = 1;
6052 }
6053 rc = mii_ethtool_sset(&priv->mii_if, cmd);
6054 mutex_unlock(&hw_priv->lock);
6055 return rc;
6056}
6057
6058/**
6059 * netdev_nway_reset - restart auto-negotiation
6060 * @dev: Network device.
6061 *
6062 * This function restarts the PHY for auto-negotiation.
6063 *
6064 * Return 0 if successful; otherwise an error code.
6065 */
6066static int netdev_nway_reset(struct net_device *dev)
6067{
6068 struct dev_priv *priv = netdev_priv(dev);
6069 struct dev_info *hw_priv = priv->adapter;
6070 int rc;
6071
6072 mutex_lock(&hw_priv->lock);
6073 rc = mii_nway_restart(&priv->mii_if);
6074 mutex_unlock(&hw_priv->lock);
6075 return rc;
6076}
6077
6078/**
6079 * netdev_get_link - get network device link status
6080 * @dev: Network device.
6081 *
6082 * This function gets the link status from the PHY.
6083 *
6084 * Return true if PHY is linked and false otherwise.
6085 */
6086static u32 netdev_get_link(struct net_device *dev)
6087{
6088 struct dev_priv *priv = netdev_priv(dev);
6089 int rc;
6090
6091 rc = mii_link_ok(&priv->mii_if);
6092 return rc;
6093}
6094
6095/**
6096 * netdev_get_drvinfo - get network driver information
6097 * @dev: Network device.
6098 * @info: Ethtool driver info data structure.
6099 *
6100 * This procedure returns the driver information.
6101 */
6102static void netdev_get_drvinfo(struct net_device *dev,
6103 struct ethtool_drvinfo *info)
6104{
6105 struct dev_priv *priv = netdev_priv(dev);
6106 struct dev_info *hw_priv = priv->adapter;
6107
6108 strcpy(info->driver, DRV_NAME);
6109 strcpy(info->version, DRV_VERSION);
6110 strcpy(info->bus_info, pci_name(hw_priv->pdev));
6111}
6112
6113/**
6114 * netdev_get_regs_len - get length of register dump
6115 * @dev: Network device.
6116 *
6117 * This function returns the length of the register dump.
6118 *
6119 * Return length of the register dump.
6120 */
6121static struct hw_regs {
6122 int start;
6123 int end;
6124} hw_regs_range[] = {
6125 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6126 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6127 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6128 { KS884X_SIDER_P, KS8842_SGCR7_P },
6129 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6130 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6131 { 0, 0 }
6132};
6133
6134static int netdev_get_regs_len(struct net_device *dev)
6135{
6136 struct hw_regs *range = hw_regs_range;
6137 int regs_len = 0x10 * sizeof(u32);
6138
6139 while (range->end > range->start) {
6140 regs_len += (range->end - range->start + 3) / 4 * 4;
6141 range++;
6142 }
6143 return regs_len;
6144}
6145
6146/**
6147 * netdev_get_regs - get register dump
6148 * @dev: Network device.
6149 * @regs: Ethtool registers data structure.
6150 * @ptr: Buffer to store the register values.
6151 *
6152 * This procedure dumps the register values in the provided buffer.
6153 */
6154static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6155 void *ptr)
6156{
6157 struct dev_priv *priv = netdev_priv(dev);
6158 struct dev_info *hw_priv = priv->adapter;
6159 struct ksz_hw *hw = &hw_priv->hw;
6160 int *buf = (int *) ptr;
6161 struct hw_regs *range = hw_regs_range;
6162 int len;
6163
6164 mutex_lock(&hw_priv->lock);
6165 regs->version = 0;
6166 for (len = 0; len < 0x40; len += 4) {
6167 pci_read_config_dword(hw_priv->pdev, len, buf);
6168 buf++;
6169 }
6170 while (range->end > range->start) {
6171 for (len = range->start; len < range->end; len += 4) {
6172 *buf = readl(hw->io + len);
6173 buf++;
6174 }
6175 range++;
6176 }
6177 mutex_unlock(&hw_priv->lock);
6178}
6179
6180#define WOL_SUPPORT \
6181 (WAKE_PHY | WAKE_MAGIC | \
6182 WAKE_UCAST | WAKE_MCAST | \
6183 WAKE_BCAST | WAKE_ARP)
6184
6185/**
6186 * netdev_get_wol - get Wake-on-LAN support
6187 * @dev: Network device.
6188 * @wol: Ethtool Wake-on-LAN data structure.
6189 *
6190 * This procedure returns Wake-on-LAN support.
6191 */
6192static void netdev_get_wol(struct net_device *dev,
6193 struct ethtool_wolinfo *wol)
6194{
6195 struct dev_priv *priv = netdev_priv(dev);
6196 struct dev_info *hw_priv = priv->adapter;
6197
6198 wol->supported = hw_priv->wol_support;
6199 wol->wolopts = hw_priv->wol_enable;
6200 memset(&wol->sopass, 0, sizeof(wol->sopass));
6201}
6202
6203/**
6204 * netdev_set_wol - set Wake-on-LAN support
6205 * @dev: Network device.
6206 * @wol: Ethtool Wake-on-LAN data structure.
6207 *
6208 * This function sets Wake-on-LAN support.
6209 *
6210 * Return 0 if successful; otherwise an error code.
6211 */
6212static int netdev_set_wol(struct net_device *dev,
6213 struct ethtool_wolinfo *wol)
6214{
6215 struct dev_priv *priv = netdev_priv(dev);
6216 struct dev_info *hw_priv = priv->adapter;
6217
6218 /* Need to find a way to retrieve the device IP address. */
6219 u8 net_addr[] = { 192, 168, 1, 1 };
6220
6221 if (wol->wolopts & ~hw_priv->wol_support)
6222 return -EINVAL;
6223
6224 hw_priv->wol_enable = wol->wolopts;
6225
6226 /* Link wakeup cannot really be disabled. */
6227 if (wol->wolopts)
6228 hw_priv->wol_enable |= WAKE_PHY;
6229 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6230 return 0;
6231}
6232
6233/**
6234 * netdev_get_msglevel - get debug message level
6235 * @dev: Network device.
6236 *
6237 * This function returns current debug message level.
6238 *
6239 * Return current debug message flags.
6240 */
6241static u32 netdev_get_msglevel(struct net_device *dev)
6242{
6243 struct dev_priv *priv = netdev_priv(dev);
6244
6245 return priv->msg_enable;
6246}
6247
6248/**
6249 * netdev_set_msglevel - set debug message level
6250 * @dev: Network device.
6251 * @value: Debug message flags.
6252 *
6253 * This procedure sets debug message level.
6254 */
6255static void netdev_set_msglevel(struct net_device *dev, u32 value)
6256{
6257 struct dev_priv *priv = netdev_priv(dev);
6258
6259 priv->msg_enable = value;
6260}
6261
6262/**
6263 * netdev_get_eeprom_len - get EEPROM length
6264 * @dev: Network device.
6265 *
6266 * This function returns the length of the EEPROM.
6267 *
6268 * Return length of the EEPROM.
6269 */
6270static int netdev_get_eeprom_len(struct net_device *dev)
6271{
6272 return EEPROM_SIZE * 2;
6273}
6274
6275/**
6276 * netdev_get_eeprom - get EEPROM data
6277 * @dev: Network device.
6278 * @eeprom: Ethtool EEPROM data structure.
6279 * @data: Buffer to store the EEPROM data.
6280 *
6281 * This function dumps the EEPROM data in the provided buffer.
6282 *
6283 * Return 0 if successful; otherwise an error code.
6284 */
6285#define EEPROM_MAGIC 0x10A18842
6286
6287static int netdev_get_eeprom(struct net_device *dev,
6288 struct ethtool_eeprom *eeprom, u8 *data)
6289{
6290 struct dev_priv *priv = netdev_priv(dev);
6291 struct dev_info *hw_priv = priv->adapter;
6292 u8 *eeprom_byte = (u8 *) eeprom_data;
6293 int i;
6294 int len;
6295
6296 len = (eeprom->offset + eeprom->len + 1) / 2;
6297 for (i = eeprom->offset / 2; i < len; i++)
6298 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6299 eeprom->magic = EEPROM_MAGIC;
6300 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6301
6302 return 0;
6303}
6304
6305/**
6306 * netdev_set_eeprom - write EEPROM data
6307 * @dev: Network device.
6308 * @eeprom: Ethtool EEPROM data structure.
6309 * @data: Data buffer.
6310 *
6311 * This function modifies the EEPROM data one byte at a time.
6312 *
6313 * Return 0 if successful; otherwise an error code.
6314 */
6315static int netdev_set_eeprom(struct net_device *dev,
6316 struct ethtool_eeprom *eeprom, u8 *data)
6317{
6318 struct dev_priv *priv = netdev_priv(dev);
6319 struct dev_info *hw_priv = priv->adapter;
6320 u16 eeprom_word[EEPROM_SIZE];
6321 u8 *eeprom_byte = (u8 *) eeprom_word;
6322 int i;
6323 int len;
6324
6325 if (eeprom->magic != EEPROM_MAGIC)
4881a4f8 6326 return -EINVAL;
8ca86fd8
TH
6327
6328 len = (eeprom->offset + eeprom->len + 1) / 2;
6329 for (i = eeprom->offset / 2; i < len; i++)
6330 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6331 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6332 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6333 for (i = 0; i < EEPROM_SIZE; i++)
6334 if (eeprom_word[i] != eeprom_data[i]) {
6335 eeprom_data[i] = eeprom_word[i];
6336 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6337 }
6338
6339 return 0;
6340}
6341
6342/**
6343 * netdev_get_pauseparam - get flow control parameters
6344 * @dev: Network device.
6345 * @pause: Ethtool PAUSE settings data structure.
6346 *
6347 * This procedure returns the PAUSE control flow settings.
6348 */
6349static void netdev_get_pauseparam(struct net_device *dev,
6350 struct ethtool_pauseparam *pause)
6351{
6352 struct dev_priv *priv = netdev_priv(dev);
6353 struct dev_info *hw_priv = priv->adapter;
6354 struct ksz_hw *hw = &hw_priv->hw;
6355
6356 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6357 if (!hw->ksz_switch) {
6358 pause->rx_pause =
6359 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6360 pause->tx_pause =
6361 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6362 } else {
6363 pause->rx_pause =
6364 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6365 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6366 pause->tx_pause =
6367 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6368 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6369 }
6370}
6371
6372/**
6373 * netdev_set_pauseparam - set flow control parameters
6374 * @dev: Network device.
6375 * @pause: Ethtool PAUSE settings data structure.
6376 *
6377 * This function sets the PAUSE control flow settings.
6378 * Not implemented yet.
6379 *
6380 * Return 0 if successful; otherwise an error code.
6381 */
6382static int netdev_set_pauseparam(struct net_device *dev,
6383 struct ethtool_pauseparam *pause)
6384{
6385 struct dev_priv *priv = netdev_priv(dev);
6386 struct dev_info *hw_priv = priv->adapter;
6387 struct ksz_hw *hw = &hw_priv->hw;
6388 struct ksz_port *port = &priv->port;
6389
6390 mutex_lock(&hw_priv->lock);
6391 if (pause->autoneg) {
6392 if (!pause->rx_pause && !pause->tx_pause)
6393 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6394 else
6395 port->flow_ctrl = PHY_FLOW_CTRL;
6396 hw->overrides &= ~PAUSE_FLOW_CTRL;
6397 port->force_link = 0;
6398 if (hw->ksz_switch) {
6399 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6400 SWITCH_RX_FLOW_CTRL, 1);
6401 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6402 SWITCH_TX_FLOW_CTRL, 1);
6403 }
6404 port_set_link_speed(port);
6405 } else {
6406 hw->overrides |= PAUSE_FLOW_CTRL;
6407 if (hw->ksz_switch) {
6408 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6409 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6410 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6411 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6412 } else
6413 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6414 }
6415 mutex_unlock(&hw_priv->lock);
6416
6417 return 0;
6418}
6419
6420/**
6421 * netdev_get_ringparam - get tx/rx ring parameters
6422 * @dev: Network device.
6423 * @pause: Ethtool RING settings data structure.
6424 *
6425 * This procedure returns the TX/RX ring settings.
6426 */
6427static void netdev_get_ringparam(struct net_device *dev,
6428 struct ethtool_ringparam *ring)
6429{
6430 struct dev_priv *priv = netdev_priv(dev);
6431 struct dev_info *hw_priv = priv->adapter;
6432 struct ksz_hw *hw = &hw_priv->hw;
6433
6434 ring->tx_max_pending = (1 << 9);
6435 ring->tx_pending = hw->tx_desc_info.alloc;
6436 ring->rx_max_pending = (1 << 9);
6437 ring->rx_pending = hw->rx_desc_info.alloc;
6438}
6439
6440#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6441
6442static struct {
6443 char string[ETH_GSTRING_LEN];
6444} ethtool_stats_keys[STATS_LEN] = {
6445 { "rx_lo_priority_octets" },
6446 { "rx_hi_priority_octets" },
6447 { "rx_undersize_packets" },
6448 { "rx_fragments" },
6449 { "rx_oversize_packets" },
6450 { "rx_jabbers" },
6451 { "rx_symbol_errors" },
6452 { "rx_crc_errors" },
6453 { "rx_align_errors" },
6454 { "rx_mac_ctrl_packets" },
6455 { "rx_pause_packets" },
6456 { "rx_bcast_packets" },
6457 { "rx_mcast_packets" },
6458 { "rx_ucast_packets" },
6459 { "rx_64_or_less_octet_packets" },
6460 { "rx_65_to_127_octet_packets" },
6461 { "rx_128_to_255_octet_packets" },
6462 { "rx_256_to_511_octet_packets" },
6463 { "rx_512_to_1023_octet_packets" },
6464 { "rx_1024_to_1522_octet_packets" },
6465
6466 { "tx_lo_priority_octets" },
6467 { "tx_hi_priority_octets" },
6468 { "tx_late_collisions" },
6469 { "tx_pause_packets" },
6470 { "tx_bcast_packets" },
6471 { "tx_mcast_packets" },
6472 { "tx_ucast_packets" },
6473 { "tx_deferred" },
6474 { "tx_total_collisions" },
6475 { "tx_excessive_collisions" },
6476 { "tx_single_collisions" },
6477 { "tx_mult_collisions" },
6478
6479 { "rx_discards" },
6480 { "tx_discards" },
6481};
6482
6483/**
6484 * netdev_get_strings - get statistics identity strings
6485 * @dev: Network device.
6486 * @stringset: String set identifier.
6487 * @buf: Buffer to store the strings.
6488 *
6489 * This procedure returns the strings used to identify the statistics.
6490 */
6491static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6492{
6493 struct dev_priv *priv = netdev_priv(dev);
6494 struct dev_info *hw_priv = priv->adapter;
6495 struct ksz_hw *hw = &hw_priv->hw;
6496
6497 if (ETH_SS_STATS == stringset)
6498 memcpy(buf, &ethtool_stats_keys,
6499 ETH_GSTRING_LEN * hw->mib_cnt);
6500}
6501
6502/**
6503 * netdev_get_sset_count - get statistics size
6504 * @dev: Network device.
6505 * @sset: The statistics set number.
6506 *
6507 * This function returns the size of the statistics to be reported.
6508 *
6509 * Return size of the statistics to be reported.
6510 */
6511static int netdev_get_sset_count(struct net_device *dev, int sset)
6512{
6513 struct dev_priv *priv = netdev_priv(dev);
6514 struct dev_info *hw_priv = priv->adapter;
6515 struct ksz_hw *hw = &hw_priv->hw;
6516
6517 switch (sset) {
6518 case ETH_SS_STATS:
6519 return hw->mib_cnt;
6520 default:
6521 return -EOPNOTSUPP;
6522 }
6523}
6524
6525/**
6526 * netdev_get_ethtool_stats - get network device statistics
6527 * @dev: Network device.
6528 * @stats: Ethtool statistics data structure.
6529 * @data: Buffer to store the statistics.
6530 *
6531 * This procedure returns the statistics.
6532 */
6533static void netdev_get_ethtool_stats(struct net_device *dev,
6534 struct ethtool_stats *stats, u64 *data)
6535{
6536 struct dev_priv *priv = netdev_priv(dev);
6537 struct dev_info *hw_priv = priv->adapter;
6538 struct ksz_hw *hw = &hw_priv->hw;
6539 struct ksz_port *port = &priv->port;
6540 int n_stats = stats->n_stats;
6541 int i;
6542 int n;
6543 int p;
6544 int rc;
6545 u64 counter[TOTAL_PORT_COUNTER_NUM];
6546
6547 mutex_lock(&hw_priv->lock);
6548 n = SWITCH_PORT_NUM;
6549 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6550 if (media_connected == hw->port_mib[p].state) {
6551 hw_priv->counter[p].read = 1;
6552
6553 /* Remember first port that requests read. */
6554 if (n == SWITCH_PORT_NUM)
6555 n = p;
6556 }
6557 }
6558 mutex_unlock(&hw_priv->lock);
6559
6560 if (n < SWITCH_PORT_NUM)
6561 schedule_work(&hw_priv->mib_read);
6562
6563 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6564 p = n;
6565 rc = wait_event_interruptible_timeout(
6566 hw_priv->counter[p].counter,
6567 2 == hw_priv->counter[p].read,
6568 HZ * 1);
6569 } else
6570 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6571 if (0 == i) {
6572 rc = wait_event_interruptible_timeout(
6573 hw_priv->counter[p].counter,
6574 2 == hw_priv->counter[p].read,
6575 HZ * 2);
6576 } else if (hw->port_mib[p].cnt_ptr) {
6577 rc = wait_event_interruptible_timeout(
6578 hw_priv->counter[p].counter,
6579 2 == hw_priv->counter[p].read,
6580 HZ * 1);
6581 }
6582 }
6583
6584 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6585 n = hw->mib_cnt;
6586 if (n > n_stats)
6587 n = n_stats;
6588 n_stats -= n;
6589 for (i = 0; i < n; i++)
6590 *data++ = counter[i];
6591}
6592
6593/**
6594 * netdev_get_rx_csum - get receive checksum support
6595 * @dev: Network device.
6596 *
6597 * This function gets receive checksum support setting.
6598 *
6599 * Return true if receive checksum is enabled; false otherwise.
6600 */
6601static u32 netdev_get_rx_csum(struct net_device *dev)
6602{
6603 struct dev_priv *priv = netdev_priv(dev);
6604 struct dev_info *hw_priv = priv->adapter;
6605 struct ksz_hw *hw = &hw_priv->hw;
6606
6607 return hw->rx_cfg &
6608 (DMA_RX_CSUM_UDP |
6609 DMA_RX_CSUM_TCP |
6610 DMA_RX_CSUM_IP);
6611}
6612
6613/**
6614 * netdev_set_rx_csum - set receive checksum support
6615 * @dev: Network device.
6616 * @data: Zero to disable receive checksum support.
6617 *
6618 * This function sets receive checksum support setting.
6619 *
6620 * Return 0 if successful; otherwise an error code.
6621 */
6622static int netdev_set_rx_csum(struct net_device *dev, u32 data)
6623{
6624 struct dev_priv *priv = netdev_priv(dev);
6625 struct dev_info *hw_priv = priv->adapter;
6626 struct ksz_hw *hw = &hw_priv->hw;
6627 u32 new_setting = hw->rx_cfg;
6628
6629 if (data)
6630 new_setting |=
6631 (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6632 DMA_RX_CSUM_IP);
6633 else
6634 new_setting &=
6635 ~(DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6636 DMA_RX_CSUM_IP);
6637 new_setting &= ~DMA_RX_CSUM_UDP;
6638 mutex_lock(&hw_priv->lock);
6639 if (new_setting != hw->rx_cfg) {
6640 hw->rx_cfg = new_setting;
6641 if (hw->enabled)
6642 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6643 }
6644 mutex_unlock(&hw_priv->lock);
6645 return 0;
6646}
6647
6648static struct ethtool_ops netdev_ethtool_ops = {
6649 .get_settings = netdev_get_settings,
6650 .set_settings = netdev_set_settings,
6651 .nway_reset = netdev_nway_reset,
6652 .get_link = netdev_get_link,
6653 .get_drvinfo = netdev_get_drvinfo,
6654 .get_regs_len = netdev_get_regs_len,
6655 .get_regs = netdev_get_regs,
6656 .get_wol = netdev_get_wol,
6657 .set_wol = netdev_set_wol,
6658 .get_msglevel = netdev_get_msglevel,
6659 .set_msglevel = netdev_set_msglevel,
6660 .get_eeprom_len = netdev_get_eeprom_len,
6661 .get_eeprom = netdev_get_eeprom,
6662 .set_eeprom = netdev_set_eeprom,
6663 .get_pauseparam = netdev_get_pauseparam,
6664 .set_pauseparam = netdev_set_pauseparam,
6665 .get_ringparam = netdev_get_ringparam,
6666 .get_strings = netdev_get_strings,
6667 .get_sset_count = netdev_get_sset_count,
6668 .get_ethtool_stats = netdev_get_ethtool_stats,
6669 .get_rx_csum = netdev_get_rx_csum,
6670 .set_rx_csum = netdev_set_rx_csum,
6671 .get_tx_csum = ethtool_op_get_tx_csum,
6672 .set_tx_csum = ethtool_op_set_tx_csum,
6673 .get_sg = ethtool_op_get_sg,
6674 .set_sg = ethtool_op_set_sg,
6675};
6676
6677/*
6678 * Hardware monitoring
6679 */
6680
6681static void update_link(struct net_device *dev, struct dev_priv *priv,
6682 struct ksz_port *port)
6683{
6684 if (priv->media_state != port->linked->state) {
6685 priv->media_state = port->linked->state;
6686 if (netif_running(dev)) {
6687 if (media_connected == priv->media_state)
6688 netif_carrier_on(dev);
6689 else
6690 netif_carrier_off(dev);
6691 if (netif_msg_link(priv))
6692 printk(KERN_INFO "%s link %s\n", dev->name,
6693 (media_connected == priv->media_state ?
6694 "on" : "off"));
6695 }
6696 }
6697}
6698
6699static void mib_read_work(struct work_struct *work)
6700{
6701 struct dev_info *hw_priv =
6702 container_of(work, struct dev_info, mib_read);
6703 struct ksz_hw *hw = &hw_priv->hw;
6704 struct ksz_port_mib *mib;
6705 int i;
6706
6707 next_jiffies = jiffies;
6708 for (i = 0; i < hw->mib_port_cnt; i++) {
6709 mib = &hw->port_mib[i];
6710
6711 /* Reading MIB counters or requested to read. */
6712 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6713
6714 /* Need to process receive interrupt. */
6715 if (port_r_cnt(hw, i))
6716 break;
6717 hw_priv->counter[i].read = 0;
6718
6719 /* Finish reading counters. */
6720 if (0 == mib->cnt_ptr) {
6721 hw_priv->counter[i].read = 2;
6722 wake_up_interruptible(
6723 &hw_priv->counter[i].counter);
6724 }
6725 } else if (jiffies >= hw_priv->counter[i].time) {
6726 /* Only read MIB counters when the port is connected. */
6727 if (media_connected == mib->state)
6728 hw_priv->counter[i].read = 1;
6729 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6730 hw_priv->counter[i].time = next_jiffies;
6731
6732 /* Port is just disconnected. */
6733 } else if (mib->link_down) {
6734 mib->link_down = 0;
6735
6736 /* Read counters one last time after link is lost. */
6737 hw_priv->counter[i].read = 1;
6738 }
6739 }
6740}
6741
6742static void mib_monitor(unsigned long ptr)
6743{
6744 struct dev_info *hw_priv = (struct dev_info *) ptr;
6745
6746 mib_read_work(&hw_priv->mib_read);
6747
6748 /* This is used to verify Wake-on-LAN is working. */
6749 if (hw_priv->pme_wait) {
6750 if (hw_priv->pme_wait <= jiffies) {
6751 hw_clr_wol_pme_status(&hw_priv->hw);
6752 hw_priv->pme_wait = 0;
6753 }
6754 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6755
6756 /* PME is asserted. Wait 2 seconds to clear it. */
6757 hw_priv->pme_wait = jiffies + HZ * 2;
6758 }
6759
6760 ksz_update_timer(&hw_priv->mib_timer_info);
6761}
6762
6763/**
6764 * dev_monitor - periodic monitoring
6765 * @ptr: Network device pointer.
6766 *
6767 * This routine is run in a kernel timer to monitor the network device.
6768 */
6769static void dev_monitor(unsigned long ptr)
6770{
6771 struct net_device *dev = (struct net_device *) ptr;
6772 struct dev_priv *priv = netdev_priv(dev);
6773 struct dev_info *hw_priv = priv->adapter;
6774 struct ksz_hw *hw = &hw_priv->hw;
6775 struct ksz_port *port = &priv->port;
6776
6777 if (!(hw->features & LINK_INT_WORKING))
6778 port_get_link_speed(port);
6779 update_link(dev, priv, port);
6780
6781 ksz_update_timer(&priv->monitor_timer_info);
6782}
6783
6784/*
6785 * Linux network device interface functions
6786 */
6787
6788/* Driver exported variables */
6789
6790static int msg_enable;
6791
6792static char *macaddr = ":";
6793static char *mac1addr = ":";
6794
6795/*
6796 * This enables multiple network device mode for KSZ8842, which contains a
6797 * switch with two physical ports. Some users like to take control of the
6798 * ports for running Spanning Tree Protocol. The driver will create an
6799 * additional eth? device for the other port.
6800 *
6801 * Some limitations are the network devices cannot have different MTU and
6802 * multicast hash tables.
6803 */
6804static int multi_dev;
6805
6806/*
6807 * As most users select multiple network device mode to use Spanning Tree
6808 * Protocol, this enables a feature in which most unicast and multicast packets
6809 * are forwarded inside the switch and not passed to the host. Only packets
6810 * that need the host's attention are passed to it. This prevents the host
6811 * wasting CPU time to examine each and every incoming packets and do the
6812 * forwarding itself.
6813 *
6814 * As the hack requires the private bridge header, the driver cannot compile
6815 * with just the kernel headers.
6816 *
6817 * Enabling STP support also turns on multiple network device mode.
6818 */
6819static int stp;
6820
6821/*
6822 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6823 * needs that. However, fast aging is used to flush the dynamic MAC table when
6824 * STP suport is enabled.
6825 */
6826static int fast_aging;
6827
6828/**
6829 * netdev_init - initalize network device.
6830 * @dev: Network device.
6831 *
6832 * This function initializes the network device.
6833 *
6834 * Return 0 if successful; otherwise an error code indicating failure.
6835 */
6836static int __init netdev_init(struct net_device *dev)
6837{
6838 struct dev_priv *priv = netdev_priv(dev);
6839
6840 /* 500 ms timeout */
6841 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6842 dev_monitor, dev);
6843
6844 /* 500 ms timeout */
6845 dev->watchdog_timeo = HZ / 2;
6846
6847 dev->features |= NETIF_F_IP_CSUM;
6848
6849 /*
6850 * Hardware does not really support IPv6 checksum generation, but
6851 * driver actually runs faster with this on. Refer IPV6_CSUM_GEN_HACK.
6852 */
6853 dev->features |= NETIF_F_IPV6_CSUM;
6854 dev->features |= NETIF_F_SG;
6855
6856 sema_init(&priv->proc_sem, 1);
6857
6858 priv->mii_if.phy_id_mask = 0x1;
6859 priv->mii_if.reg_num_mask = 0x7;
6860 priv->mii_if.dev = dev;
6861 priv->mii_if.mdio_read = mdio_read;
6862 priv->mii_if.mdio_write = mdio_write;
6863 priv->mii_if.phy_id = priv->port.first_port + 1;
6864
6865 priv->msg_enable = netif_msg_init(msg_enable,
6866 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6867
6868 return 0;
6869}
6870
6871static const struct net_device_ops netdev_ops = {
6872 .ndo_init = netdev_init,
6873 .ndo_open = netdev_open,
6874 .ndo_stop = netdev_close,
6875 .ndo_get_stats = netdev_query_statistics,
6876 .ndo_start_xmit = netdev_tx,
6877 .ndo_tx_timeout = netdev_tx_timeout,
6878 .ndo_change_mtu = netdev_change_mtu,
6879 .ndo_set_mac_address = netdev_set_mac_address,
6880 .ndo_do_ioctl = netdev_ioctl,
6881 .ndo_set_rx_mode = netdev_set_rx_mode,
6882#ifdef CONFIG_NET_POLL_CONTROLLER
6883 .ndo_poll_controller = netdev_netpoll,
6884#endif
6885};
6886
6887static void netdev_free(struct net_device *dev)
6888{
6889 if (dev->watchdog_timeo)
6890 unregister_netdev(dev);
6891
6892 free_netdev(dev);
6893}
6894
6895struct platform_info {
6896 struct dev_info dev_info;
6897 struct net_device *netdev[SWITCH_PORT_NUM];
6898};
6899
6900static int net_device_present;
6901
6902static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6903{
6904 int i;
6905 int j;
6906 int got_num;
6907 int num;
6908
6909 i = j = num = got_num = 0;
6910 while (j < MAC_ADDR_LEN) {
6911 if (macaddr[i]) {
6912 got_num = 1;
6913 if ('0' <= macaddr[i] && macaddr[i] <= '9')
6914 num = num * 16 + macaddr[i] - '0';
6915 else if ('A' <= macaddr[i] && macaddr[i] <= 'F')
6916 num = num * 16 + 10 + macaddr[i] - 'A';
6917 else if ('a' <= macaddr[i] && macaddr[i] <= 'f')
6918 num = num * 16 + 10 + macaddr[i] - 'a';
6919 else if (':' == macaddr[i])
6920 got_num = 2;
6921 else
6922 break;
6923 } else if (got_num)
6924 got_num = 2;
6925 else
6926 break;
6927 if (2 == got_num) {
6928 if (MAIN_PORT == port) {
6929 hw_priv->hw.override_addr[j++] = (u8) num;
6930 hw_priv->hw.override_addr[5] +=
6931 hw_priv->hw.id;
6932 } else {
6933 hw_priv->hw.ksz_switch->other_addr[j++] =
6934 (u8) num;
6935 hw_priv->hw.ksz_switch->other_addr[5] +=
6936 hw_priv->hw.id;
6937 }
6938 num = got_num = 0;
6939 }
6940 i++;
6941 }
6942 if (MAC_ADDR_LEN == j) {
6943 if (MAIN_PORT == port)
6944 hw_priv->hw.mac_override = 1;
6945 }
6946}
6947
6948#define KS884X_DMA_MASK (~0x0UL)
6949
6950static void read_other_addr(struct ksz_hw *hw)
6951{
6952 int i;
6953 u16 data[3];
6954 struct ksz_switch *sw = hw->ksz_switch;
6955
6956 for (i = 0; i < 3; i++)
6957 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6958 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6959 sw->other_addr[5] = (u8) data[0];
6960 sw->other_addr[4] = (u8)(data[0] >> 8);
6961 sw->other_addr[3] = (u8) data[1];
6962 sw->other_addr[2] = (u8)(data[1] >> 8);
6963 sw->other_addr[1] = (u8) data[2];
6964 sw->other_addr[0] = (u8)(data[2] >> 8);
6965 }
6966}
6967
6968#ifndef PCI_VENDOR_ID_MICREL_KS
6969#define PCI_VENDOR_ID_MICREL_KS 0x16c6
6970#endif
6971
6972static int __init pcidev_init(struct pci_dev *pdev,
6973 const struct pci_device_id *id)
6974{
6975 struct net_device *dev;
6976 struct dev_priv *priv;
6977 struct dev_info *hw_priv;
6978 struct ksz_hw *hw;
6979 struct platform_info *info;
6980 struct ksz_port *port;
6981 unsigned long reg_base;
6982 unsigned long reg_len;
6983 int cnt;
6984 int i;
6985 int mib_port_count;
6986 int pi;
6987 int port_count;
6988 int result;
6989 char banner[80];
6990 struct ksz_switch *sw = NULL;
6991
6992 result = pci_enable_device(pdev);
6993 if (result)
6994 return result;
6995
6996 result = -ENODEV;
6997
6998 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6999 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
7000 return result;
7001
7002 reg_base = pci_resource_start(pdev, 0);
7003 reg_len = pci_resource_len(pdev, 0);
7004 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
7005 return result;
7006
7007 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
7008 return result;
7009 pci_set_master(pdev);
7010
7011 result = -ENOMEM;
7012
7013 info = kmalloc(sizeof(struct platform_info), GFP_KERNEL);
7014 if (!info)
7015 goto pcidev_init_dev_err;
7016 memset(info, 0, sizeof(struct platform_info));
7017
7018 hw_priv = &info->dev_info;
7019 hw_priv->pdev = pdev;
7020
7021 hw = &hw_priv->hw;
7022
7023 hw->io = ioremap(reg_base, reg_len);
7024 if (!hw->io)
7025 goto pcidev_init_io_err;
7026
7027 cnt = hw_init(hw);
7028 if (!cnt) {
7029 if (msg_enable & NETIF_MSG_PROBE)
7030 printk(KERN_ALERT "chip not detected\n");
7031 result = -ENODEV;
7032 goto pcidev_init_alloc_err;
7033 }
7034
7035 sprintf(banner, "%s\n", version);
7036 banner[13] = cnt + '0';
7037 ks_info(hw_priv, "%s", banner);
7038 ks_dbg(hw_priv, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
7039
7040 /* Assume device is KSZ8841. */
7041 hw->dev_count = 1;
7042 port_count = 1;
7043 mib_port_count = 1;
7044 hw->addr_list_size = 0;
7045 hw->mib_cnt = PORT_COUNTER_NUM;
7046 hw->mib_port_cnt = 1;
7047
7048 /* KSZ8842 has a switch with multiple ports. */
7049 if (2 == cnt) {
7050 if (fast_aging)
7051 hw->overrides |= FAST_AGING;
7052
7053 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7054
7055 /* Multiple network device interfaces are required. */
7056 if (multi_dev) {
7057 hw->dev_count = SWITCH_PORT_NUM;
7058 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7059 }
7060
7061 /* Single network device has multiple ports. */
7062 if (1 == hw->dev_count) {
7063 port_count = SWITCH_PORT_NUM;
7064 mib_port_count = SWITCH_PORT_NUM;
7065 }
7066 hw->mib_port_cnt = TOTAL_PORT_NUM;
7067 hw->ksz_switch = kmalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7068 if (!hw->ksz_switch)
7069 goto pcidev_init_alloc_err;
7070 memset(hw->ksz_switch, 0, sizeof(struct ksz_switch));
7071
7072 sw = hw->ksz_switch;
7073 }
7074 for (i = 0; i < hw->mib_port_cnt; i++)
7075 hw->port_mib[i].mib_start = 0;
7076
7077 hw->parent = hw_priv;
7078
7079 /* Default MTU is 1500. */
7080 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7081
7082 if (ksz_alloc_mem(hw_priv))
7083 goto pcidev_init_mem_err;
7084
7085 hw_priv->hw.id = net_device_present;
7086
7087 spin_lock_init(&hw_priv->hwlock);
7088 mutex_init(&hw_priv->lock);
7089
7090 /* tasklet is enabled. */
7091 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7092 (unsigned long) hw_priv);
7093 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7094 (unsigned long) hw_priv);
7095
7096 /* tasklet_enable will decrement the atomic counter. */
7097 tasklet_disable(&hw_priv->rx_tasklet);
7098 tasklet_disable(&hw_priv->tx_tasklet);
7099
7100 for (i = 0; i < TOTAL_PORT_NUM; i++)
7101 init_waitqueue_head(&hw_priv->counter[i].counter);
7102
7103 if (macaddr[0] != ':')
7104 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7105
7106 /* Read MAC address and initialize override address if not overrided. */
7107 hw_read_addr(hw);
7108
7109 /* Multiple device interfaces mode requires a second MAC address. */
7110 if (hw->dev_count > 1) {
7111 memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7112 read_other_addr(hw);
7113 if (mac1addr[0] != ':')
7114 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7115 }
7116
7117 hw_setup(hw);
7118 if (hw->ksz_switch)
7119 sw_setup(hw);
7120 else {
7121 hw_priv->wol_support = WOL_SUPPORT;
7122 hw_priv->wol_enable = 0;
7123 }
7124
7125 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7126
7127 /* 500 ms timeout */
7128 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7129 mib_monitor, hw_priv);
7130
7131 for (i = 0; i < hw->dev_count; i++) {
7132 dev = alloc_etherdev(sizeof(struct dev_priv));
7133 if (!dev)
7134 goto pcidev_init_reg_err;
7135 info->netdev[i] = dev;
7136
7137 priv = netdev_priv(dev);
7138 priv->adapter = hw_priv;
7139 priv->id = net_device_present++;
7140
7141 port = &priv->port;
7142 port->port_cnt = port_count;
7143 port->mib_port_cnt = mib_port_count;
7144 port->first_port = i;
7145 port->flow_ctrl = PHY_FLOW_CTRL;
7146
7147 port->hw = hw;
7148 port->linked = &hw->port_info[port->first_port];
7149
7150 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7151 hw->port_info[pi].port_id = pi;
7152 hw->port_info[pi].pdev = dev;
7153 hw->port_info[pi].state = media_disconnected;
7154 }
7155
7156 dev->mem_start = (unsigned long) hw->io;
7157 dev->mem_end = dev->mem_start + reg_len - 1;
7158 dev->irq = pdev->irq;
7159 if (MAIN_PORT == i)
7160 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7161 MAC_ADDR_LEN);
7162 else {
7163 memcpy(dev->dev_addr, sw->other_addr,
7164 MAC_ADDR_LEN);
7165 if (!memcmp(sw->other_addr, hw->override_addr,
7166 MAC_ADDR_LEN))
7167 dev->dev_addr[5] += port->first_port;
7168 }
7169
7170 dev->netdev_ops = &netdev_ops;
7171 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7172 if (register_netdev(dev))
7173 goto pcidev_init_reg_err;
7174 port_set_power_saving(port, true);
7175 }
7176
7177 pci_dev_get(hw_priv->pdev);
7178 pci_set_drvdata(pdev, info);
7179 return 0;
7180
7181pcidev_init_reg_err:
7182 for (i = 0; i < hw->dev_count; i++) {
7183 if (info->netdev[i]) {
7184 netdev_free(info->netdev[i]);
7185 info->netdev[i] = NULL;
7186 }
7187 }
7188
7189pcidev_init_mem_err:
7190 ksz_free_mem(hw_priv);
7191 kfree(hw->ksz_switch);
7192
7193pcidev_init_alloc_err:
7194 iounmap(hw->io);
7195
7196pcidev_init_io_err:
7197 kfree(info);
7198
7199pcidev_init_dev_err:
7200 release_mem_region(reg_base, reg_len);
7201
7202 return result;
7203}
7204
7205static void pcidev_exit(struct pci_dev *pdev)
7206{
7207 int i;
7208 struct platform_info *info = pci_get_drvdata(pdev);
7209 struct dev_info *hw_priv = &info->dev_info;
7210
7211 pci_set_drvdata(pdev, NULL);
7212
7213 release_mem_region(pci_resource_start(pdev, 0),
7214 pci_resource_len(pdev, 0));
7215 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7216 if (info->netdev[i])
7217 netdev_free(info->netdev[i]);
7218 }
7219 if (hw_priv->hw.io)
7220 iounmap(hw_priv->hw.io);
7221 ksz_free_mem(hw_priv);
7222 kfree(hw_priv->hw.ksz_switch);
7223 pci_dev_put(hw_priv->pdev);
7224 kfree(info);
7225}
7226
7227#ifdef CONFIG_PM
7228static int pcidev_resume(struct pci_dev *pdev)
7229{
7230 int i;
7231 struct platform_info *info = pci_get_drvdata(pdev);
7232 struct dev_info *hw_priv = &info->dev_info;
7233 struct ksz_hw *hw = &hw_priv->hw;
7234
7235 pci_set_power_state(pdev, PCI_D0);
7236 pci_restore_state(pdev);
7237 pci_enable_wake(pdev, PCI_D0, 0);
7238
7239 if (hw_priv->wol_enable)
7240 hw_cfg_wol_pme(hw, 0);
7241 for (i = 0; i < hw->dev_count; i++) {
7242 if (info->netdev[i]) {
7243 struct net_device *dev = info->netdev[i];
7244
7245 if (netif_running(dev)) {
7246 netdev_open(dev);
7247 netif_device_attach(dev);
7248 }
7249 }
7250 }
7251 return 0;
7252}
7253
7254static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7255{
7256 int i;
7257 struct platform_info *info = pci_get_drvdata(pdev);
7258 struct dev_info *hw_priv = &info->dev_info;
7259 struct ksz_hw *hw = &hw_priv->hw;
7260
7261 /* Need to find a way to retrieve the device IP address. */
7262 u8 net_addr[] = { 192, 168, 1, 1 };
7263
7264 for (i = 0; i < hw->dev_count; i++) {
7265 if (info->netdev[i]) {
7266 struct net_device *dev = info->netdev[i];
7267
7268 if (netif_running(dev)) {
7269 netif_device_detach(dev);
7270 netdev_close(dev);
7271 }
7272 }
7273 }
7274 if (hw_priv->wol_enable) {
7275 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7276 hw_cfg_wol_pme(hw, 1);
7277 }
7278
7279 pci_save_state(pdev);
7280 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7281 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7282 return 0;
7283}
7284#endif
7285
7286static char pcidev_name[] = "ksz884xp";
7287
7288static struct pci_device_id pcidev_table[] = {
7289 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7290 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7291 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7292 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7293 { 0 }
7294};
7295
7296MODULE_DEVICE_TABLE(pci, pcidev_table);
7297
7298static struct pci_driver pci_device_driver = {
7299#ifdef CONFIG_PM
7300 .suspend = pcidev_suspend,
7301 .resume = pcidev_resume,
7302#endif
7303 .name = pcidev_name,
7304 .id_table = pcidev_table,
7305 .probe = pcidev_init,
7306 .remove = pcidev_exit
7307};
7308
7309static int __init ksz884x_init_module(void)
7310{
7311 return pci_register_driver(&pci_device_driver);
7312}
7313
7314static void __exit ksz884x_cleanup_module(void)
7315{
7316 pci_unregister_driver(&pci_device_driver);
7317}
7318
7319module_init(ksz884x_init_module);
7320module_exit(ksz884x_cleanup_module);
7321
7322MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7323MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7324MODULE_LICENSE("GPL");
7325
7326module_param_named(message, msg_enable, int, 0);
7327MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7328
7329module_param(macaddr, charp, 0);
7330module_param(mac1addr, charp, 0);
7331module_param(fast_aging, int, 0);
7332module_param(multi_dev, int, 0);
7333module_param(stp, int, 0);
7334MODULE_PARM_DESC(macaddr, "MAC address");
7335MODULE_PARM_DESC(mac1addr, "Second MAC address");
7336MODULE_PARM_DESC(fast_aging, "Fast aging");
7337MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7338MODULE_PARM_DESC(stp, "STP support");