include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igbvf / netdev.c
CommitLineData
d4e0fe01
AD
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
d4e0fe01
AD
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/pm_qos_params.h>
45
46#include "igbvf.h"
47
48#define DRV_VERSION "1.0.0-k0"
49char igbvf_driver_name[] = "igbvf";
50const char igbvf_driver_version[] = DRV_VERSION;
51static const char igbvf_driver_string[] =
52 "Intel(R) Virtual Function Network Driver";
53static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
54
55static int igbvf_poll(struct napi_struct *napi, int budget);
2d165771
AD
56static void igbvf_reset(struct igbvf_adapter *);
57static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
58static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
d4e0fe01
AD
59
60static struct igbvf_info igbvf_vf_info = {
61 .mac = e1000_vfadapt,
0364d6fd 62 .flags = 0,
d4e0fe01
AD
63 .pba = 10,
64 .init_ops = e1000_init_function_pointers_vf,
65};
66
67static const struct igbvf_info *igbvf_info_tbl[] = {
68 [board_vf] = &igbvf_vf_info,
69};
70
71/**
72 * igbvf_desc_unused - calculate if we have unused descriptors
73 **/
74static int igbvf_desc_unused(struct igbvf_ring *ring)
75{
76 if (ring->next_to_clean > ring->next_to_use)
77 return ring->next_to_clean - ring->next_to_use - 1;
78
79 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
80}
81
82/**
83 * igbvf_receive_skb - helper function to handle Rx indications
84 * @adapter: board private structure
85 * @status: descriptor status field as written by hardware
86 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
87 * @skb: pointer to sk_buff to be indicated to stack
88 **/
89static void igbvf_receive_skb(struct igbvf_adapter *adapter,
90 struct net_device *netdev,
91 struct sk_buff *skb,
92 u32 status, u16 vlan)
93{
94 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
95 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
96 le16_to_cpu(vlan) &
97 E1000_RXD_SPC_VLAN_MASK);
98 else
99 netif_receive_skb(skb);
d4e0fe01
AD
100}
101
102static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
103 u32 status_err, struct sk_buff *skb)
104{
105 skb->ip_summed = CHECKSUM_NONE;
106
107 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
0364d6fd
AD
108 if ((status_err & E1000_RXD_STAT_IXSM) ||
109 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
d4e0fe01 110 return;
0364d6fd 111
d4e0fe01
AD
112 /* TCP/UDP checksum error bit is set */
113 if (status_err &
114 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
115 /* let the stack verify checksum errors */
116 adapter->hw_csum_err++;
117 return;
118 }
0364d6fd 119
d4e0fe01
AD
120 /* It must be a TCP or UDP packet with a valid checksum */
121 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
122 skb->ip_summed = CHECKSUM_UNNECESSARY;
123
124 adapter->hw_csum_good++;
125}
126
127/**
128 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
129 * @rx_ring: address of ring structure to repopulate
130 * @cleaned_count: number of buffers to repopulate
131 **/
132static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
133 int cleaned_count)
134{
135 struct igbvf_adapter *adapter = rx_ring->adapter;
136 struct net_device *netdev = adapter->netdev;
137 struct pci_dev *pdev = adapter->pdev;
138 union e1000_adv_rx_desc *rx_desc;
139 struct igbvf_buffer *buffer_info;
140 struct sk_buff *skb;
141 unsigned int i;
142 int bufsz;
143
144 i = rx_ring->next_to_use;
145 buffer_info = &rx_ring->buffer_info[i];
146
147 if (adapter->rx_ps_hdr_size)
148 bufsz = adapter->rx_ps_hdr_size;
149 else
150 bufsz = adapter->rx_buffer_len;
d4e0fe01
AD
151
152 while (cleaned_count--) {
153 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
154
155 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
156 if (!buffer_info->page) {
157 buffer_info->page = alloc_page(GFP_ATOMIC);
158 if (!buffer_info->page) {
159 adapter->alloc_rx_buff_failed++;
160 goto no_buffers;
161 }
162 buffer_info->page_offset = 0;
163 } else {
164 buffer_info->page_offset ^= PAGE_SIZE / 2;
165 }
166 buffer_info->page_dma =
167 pci_map_page(pdev, buffer_info->page,
168 buffer_info->page_offset,
169 PAGE_SIZE / 2,
170 PCI_DMA_FROMDEVICE);
171 }
172
173 if (!buffer_info->skb) {
89d71a66 174 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
d4e0fe01
AD
175 if (!skb) {
176 adapter->alloc_rx_buff_failed++;
177 goto no_buffers;
178 }
179
d4e0fe01
AD
180 buffer_info->skb = skb;
181 buffer_info->dma = pci_map_single(pdev, skb->data,
182 bufsz,
183 PCI_DMA_FROMDEVICE);
184 }
185 /* Refresh the desc even if buffer_addrs didn't change because
186 * each write-back erases this info. */
187 if (adapter->rx_ps_hdr_size) {
188 rx_desc->read.pkt_addr =
189 cpu_to_le64(buffer_info->page_dma);
190 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
191 } else {
192 rx_desc->read.pkt_addr =
193 cpu_to_le64(buffer_info->dma);
194 rx_desc->read.hdr_addr = 0;
195 }
196
197 i++;
198 if (i == rx_ring->count)
199 i = 0;
200 buffer_info = &rx_ring->buffer_info[i];
201 }
202
203no_buffers:
204 if (rx_ring->next_to_use != i) {
205 rx_ring->next_to_use = i;
206 if (i == 0)
207 i = (rx_ring->count - 1);
208 else
209 i--;
210
211 /* Force memory writes to complete before letting h/w
212 * know there are new descriptors to fetch. (Only
213 * applicable for weak-ordered memory model archs,
214 * such as IA-64). */
215 wmb();
216 writel(i, adapter->hw.hw_addr + rx_ring->tail);
217 }
218}
219
220/**
221 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
222 * @adapter: board private structure
223 *
224 * the return value indicates whether actual cleaning was done, there
225 * is no guarantee that everything was cleaned
226 **/
227static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
228 int *work_done, int work_to_do)
229{
230 struct igbvf_ring *rx_ring = adapter->rx_ring;
231 struct net_device *netdev = adapter->netdev;
232 struct pci_dev *pdev = adapter->pdev;
233 union e1000_adv_rx_desc *rx_desc, *next_rxd;
234 struct igbvf_buffer *buffer_info, *next_buffer;
235 struct sk_buff *skb;
236 bool cleaned = false;
237 int cleaned_count = 0;
238 unsigned int total_bytes = 0, total_packets = 0;
239 unsigned int i;
240 u32 length, hlen, staterr;
241
242 i = rx_ring->next_to_clean;
243 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
244 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
245
246 while (staterr & E1000_RXD_STAT_DD) {
247 if (*work_done >= work_to_do)
248 break;
249 (*work_done)++;
250
251 buffer_info = &rx_ring->buffer_info[i];
252
253 /* HW will not DMA in data larger than the given buffer, even
254 * if it parses the (NFS, of course) header to be larger. In
255 * that case, it fills the header buffer and spills the rest
256 * into the page.
257 */
258 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
259 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
260 if (hlen > adapter->rx_ps_hdr_size)
261 hlen = adapter->rx_ps_hdr_size;
262
263 length = le16_to_cpu(rx_desc->wb.upper.length);
264 cleaned = true;
265 cleaned_count++;
266
267 skb = buffer_info->skb;
268 prefetch(skb->data - NET_IP_ALIGN);
269 buffer_info->skb = NULL;
270 if (!adapter->rx_ps_hdr_size) {
271 pci_unmap_single(pdev, buffer_info->dma,
272 adapter->rx_buffer_len,
273 PCI_DMA_FROMDEVICE);
274 buffer_info->dma = 0;
275 skb_put(skb, length);
276 goto send_up;
277 }
278
279 if (!skb_shinfo(skb)->nr_frags) {
280 pci_unmap_single(pdev, buffer_info->dma,
92d947b7 281 adapter->rx_ps_hdr_size,
d4e0fe01
AD
282 PCI_DMA_FROMDEVICE);
283 skb_put(skb, hlen);
284 }
285
286 if (length) {
287 pci_unmap_page(pdev, buffer_info->page_dma,
288 PAGE_SIZE / 2,
289 PCI_DMA_FROMDEVICE);
290 buffer_info->page_dma = 0;
291
292 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
293 buffer_info->page,
294 buffer_info->page_offset,
295 length);
296
297 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
298 (page_count(buffer_info->page) != 1))
299 buffer_info->page = NULL;
300 else
301 get_page(buffer_info->page);
302
303 skb->len += length;
304 skb->data_len += length;
305 skb->truesize += length;
306 }
307send_up:
308 i++;
309 if (i == rx_ring->count)
310 i = 0;
311 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
312 prefetch(next_rxd);
313 next_buffer = &rx_ring->buffer_info[i];
314
315 if (!(staterr & E1000_RXD_STAT_EOP)) {
316 buffer_info->skb = next_buffer->skb;
317 buffer_info->dma = next_buffer->dma;
318 next_buffer->skb = skb;
319 next_buffer->dma = 0;
320 goto next_desc;
321 }
322
323 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
324 dev_kfree_skb_irq(skb);
325 goto next_desc;
326 }
327
328 total_bytes += skb->len;
329 total_packets++;
330
331 igbvf_rx_checksum_adv(adapter, staterr, skb);
332
333 skb->protocol = eth_type_trans(skb, netdev);
334
335 igbvf_receive_skb(adapter, netdev, skb, staterr,
336 rx_desc->wb.upper.vlan);
337
d4e0fe01
AD
338next_desc:
339 rx_desc->wb.upper.status_error = 0;
340
341 /* return some buffers to hardware, one at a time is too slow */
342 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
343 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
344 cleaned_count = 0;
345 }
346
347 /* use prefetched values */
348 rx_desc = next_rxd;
349 buffer_info = next_buffer;
350
351 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
352 }
353
354 rx_ring->next_to_clean = i;
355 cleaned_count = igbvf_desc_unused(rx_ring);
356
357 if (cleaned_count)
358 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
359
360 adapter->total_rx_packets += total_packets;
361 adapter->total_rx_bytes += total_bytes;
362 adapter->net_stats.rx_bytes += total_bytes;
363 adapter->net_stats.rx_packets += total_packets;
364 return cleaned;
365}
366
367static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
368 struct igbvf_buffer *buffer_info)
369{
a7d5ca40
AD
370 if (buffer_info->dma) {
371 if (buffer_info->mapped_as_page)
372 pci_unmap_page(adapter->pdev,
373 buffer_info->dma,
374 buffer_info->length,
375 PCI_DMA_TODEVICE);
376 else
377 pci_unmap_single(adapter->pdev,
378 buffer_info->dma,
379 buffer_info->length,
380 PCI_DMA_TODEVICE);
381 buffer_info->dma = 0;
382 }
d4e0fe01 383 if (buffer_info->skb) {
d4e0fe01
AD
384 dev_kfree_skb_any(buffer_info->skb);
385 buffer_info->skb = NULL;
386 }
387 buffer_info->time_stamp = 0;
388}
389
390static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
391{
392 struct igbvf_ring *tx_ring = adapter->tx_ring;
393 unsigned int i = tx_ring->next_to_clean;
394 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
395 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
396
397 /* detected Tx unit hang */
398 dev_err(&adapter->pdev->dev,
399 "Detected Tx Unit Hang:\n"
400 " TDH <%x>\n"
401 " TDT <%x>\n"
402 " next_to_use <%x>\n"
403 " next_to_clean <%x>\n"
404 "buffer_info[next_to_clean]:\n"
405 " time_stamp <%lx>\n"
406 " next_to_watch <%x>\n"
407 " jiffies <%lx>\n"
408 " next_to_watch.status <%x>\n",
409 readl(adapter->hw.hw_addr + tx_ring->head),
410 readl(adapter->hw.hw_addr + tx_ring->tail),
411 tx_ring->next_to_use,
412 tx_ring->next_to_clean,
413 tx_ring->buffer_info[eop].time_stamp,
414 eop,
415 jiffies,
416 eop_desc->wb.status);
417}
418
419/**
420 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
421 * @adapter: board private structure
422 *
423 * Return 0 on success, negative on failure
424 **/
425int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
426 struct igbvf_ring *tx_ring)
427{
428 struct pci_dev *pdev = adapter->pdev;
429 int size;
430
431 size = sizeof(struct igbvf_buffer) * tx_ring->count;
432 tx_ring->buffer_info = vmalloc(size);
433 if (!tx_ring->buffer_info)
434 goto err;
435 memset(tx_ring->buffer_info, 0, size);
436
437 /* round up to nearest 4K */
438 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
439 tx_ring->size = ALIGN(tx_ring->size, 4096);
440
441 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
442 &tx_ring->dma);
443
444 if (!tx_ring->desc)
445 goto err;
446
447 tx_ring->adapter = adapter;
448 tx_ring->next_to_use = 0;
449 tx_ring->next_to_clean = 0;
450
451 return 0;
452err:
453 vfree(tx_ring->buffer_info);
454 dev_err(&adapter->pdev->dev,
455 "Unable to allocate memory for the transmit descriptor ring\n");
456 return -ENOMEM;
457}
458
459/**
460 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
461 * @adapter: board private structure
462 *
463 * Returns 0 on success, negative on failure
464 **/
465int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
466 struct igbvf_ring *rx_ring)
467{
468 struct pci_dev *pdev = adapter->pdev;
469 int size, desc_len;
470
471 size = sizeof(struct igbvf_buffer) * rx_ring->count;
472 rx_ring->buffer_info = vmalloc(size);
473 if (!rx_ring->buffer_info)
474 goto err;
475 memset(rx_ring->buffer_info, 0, size);
476
477 desc_len = sizeof(union e1000_adv_rx_desc);
478
479 /* Round up to nearest 4K */
480 rx_ring->size = rx_ring->count * desc_len;
481 rx_ring->size = ALIGN(rx_ring->size, 4096);
482
483 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
484 &rx_ring->dma);
485
486 if (!rx_ring->desc)
487 goto err;
488
489 rx_ring->next_to_clean = 0;
490 rx_ring->next_to_use = 0;
491
492 rx_ring->adapter = adapter;
493
494 return 0;
495
496err:
497 vfree(rx_ring->buffer_info);
498 rx_ring->buffer_info = NULL;
499 dev_err(&adapter->pdev->dev,
500 "Unable to allocate memory for the receive descriptor ring\n");
501 return -ENOMEM;
502}
503
504/**
505 * igbvf_clean_tx_ring - Free Tx Buffers
506 * @tx_ring: ring to be cleaned
507 **/
508static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
509{
510 struct igbvf_adapter *adapter = tx_ring->adapter;
511 struct igbvf_buffer *buffer_info;
512 unsigned long size;
513 unsigned int i;
514
515 if (!tx_ring->buffer_info)
516 return;
517
518 /* Free all the Tx ring sk_buffs */
519 for (i = 0; i < tx_ring->count; i++) {
520 buffer_info = &tx_ring->buffer_info[i];
521 igbvf_put_txbuf(adapter, buffer_info);
522 }
523
524 size = sizeof(struct igbvf_buffer) * tx_ring->count;
525 memset(tx_ring->buffer_info, 0, size);
526
527 /* Zero out the descriptor ring */
528 memset(tx_ring->desc, 0, tx_ring->size);
529
530 tx_ring->next_to_use = 0;
531 tx_ring->next_to_clean = 0;
532
533 writel(0, adapter->hw.hw_addr + tx_ring->head);
534 writel(0, adapter->hw.hw_addr + tx_ring->tail);
535}
536
537/**
538 * igbvf_free_tx_resources - Free Tx Resources per Queue
539 * @tx_ring: ring to free resources from
540 *
541 * Free all transmit software resources
542 **/
543void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
544{
545 struct pci_dev *pdev = tx_ring->adapter->pdev;
546
547 igbvf_clean_tx_ring(tx_ring);
548
549 vfree(tx_ring->buffer_info);
550 tx_ring->buffer_info = NULL;
551
552 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
553
554 tx_ring->desc = NULL;
555}
556
557/**
558 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
559 * @adapter: board private structure
560 **/
561static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
562{
563 struct igbvf_adapter *adapter = rx_ring->adapter;
564 struct igbvf_buffer *buffer_info;
565 struct pci_dev *pdev = adapter->pdev;
566 unsigned long size;
567 unsigned int i;
568
569 if (!rx_ring->buffer_info)
570 return;
571
572 /* Free all the Rx ring sk_buffs */
573 for (i = 0; i < rx_ring->count; i++) {
574 buffer_info = &rx_ring->buffer_info[i];
575 if (buffer_info->dma) {
576 if (adapter->rx_ps_hdr_size){
577 pci_unmap_single(pdev, buffer_info->dma,
578 adapter->rx_ps_hdr_size,
579 PCI_DMA_FROMDEVICE);
580 } else {
581 pci_unmap_single(pdev, buffer_info->dma,
582 adapter->rx_buffer_len,
583 PCI_DMA_FROMDEVICE);
584 }
585 buffer_info->dma = 0;
586 }
587
588 if (buffer_info->skb) {
589 dev_kfree_skb(buffer_info->skb);
590 buffer_info->skb = NULL;
591 }
592
593 if (buffer_info->page) {
594 if (buffer_info->page_dma)
595 pci_unmap_page(pdev, buffer_info->page_dma,
596 PAGE_SIZE / 2,
597 PCI_DMA_FROMDEVICE);
598 put_page(buffer_info->page);
599 buffer_info->page = NULL;
600 buffer_info->page_dma = 0;
601 buffer_info->page_offset = 0;
602 }
603 }
604
605 size = sizeof(struct igbvf_buffer) * rx_ring->count;
606 memset(rx_ring->buffer_info, 0, size);
607
608 /* Zero out the descriptor ring */
609 memset(rx_ring->desc, 0, rx_ring->size);
610
611 rx_ring->next_to_clean = 0;
612 rx_ring->next_to_use = 0;
613
614 writel(0, adapter->hw.hw_addr + rx_ring->head);
615 writel(0, adapter->hw.hw_addr + rx_ring->tail);
616}
617
618/**
619 * igbvf_free_rx_resources - Free Rx Resources
620 * @rx_ring: ring to clean the resources from
621 *
622 * Free all receive software resources
623 **/
624
625void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
626{
627 struct pci_dev *pdev = rx_ring->adapter->pdev;
628
629 igbvf_clean_rx_ring(rx_ring);
630
631 vfree(rx_ring->buffer_info);
632 rx_ring->buffer_info = NULL;
633
634 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
635 rx_ring->dma);
636 rx_ring->desc = NULL;
637}
638
639/**
640 * igbvf_update_itr - update the dynamic ITR value based on statistics
641 * @adapter: pointer to adapter
642 * @itr_setting: current adapter->itr
643 * @packets: the number of packets during this measurement interval
644 * @bytes: the number of bytes during this measurement interval
645 *
646 * Stores a new ITR value based on packets and byte
647 * counts during the last interrupt. The advantage of per interrupt
648 * computation is faster updates and more accurate ITR for the current
649 * traffic pattern. Constants in this function were computed
650 * based on theoretical maximum wire speed and thresholds were set based
651 * on testing data as well as attempting to minimize response time
652 * while increasing bulk throughput. This functionality is controlled
653 * by the InterruptThrottleRate module parameter.
654 **/
655static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
656 u16 itr_setting, int packets,
657 int bytes)
658{
659 unsigned int retval = itr_setting;
660
661 if (packets == 0)
662 goto update_itr_done;
663
664 switch (itr_setting) {
665 case lowest_latency:
666 /* handle TSO and jumbo frames */
667 if (bytes/packets > 8000)
668 retval = bulk_latency;
669 else if ((packets < 5) && (bytes > 512))
670 retval = low_latency;
671 break;
672 case low_latency: /* 50 usec aka 20000 ints/s */
673 if (bytes > 10000) {
674 /* this if handles the TSO accounting */
675 if (bytes/packets > 8000)
676 retval = bulk_latency;
677 else if ((packets < 10) || ((bytes/packets) > 1200))
678 retval = bulk_latency;
679 else if ((packets > 35))
680 retval = lowest_latency;
681 } else if (bytes/packets > 2000) {
682 retval = bulk_latency;
683 } else if (packets <= 2 && bytes < 512) {
684 retval = lowest_latency;
685 }
686 break;
687 case bulk_latency: /* 250 usec aka 4000 ints/s */
688 if (bytes > 25000) {
689 if (packets > 35)
690 retval = low_latency;
691 } else if (bytes < 6000) {
692 retval = low_latency;
693 }
694 break;
695 }
696
697update_itr_done:
698 return retval;
699}
700
701static void igbvf_set_itr(struct igbvf_adapter *adapter)
702{
703 struct e1000_hw *hw = &adapter->hw;
704 u16 current_itr;
705 u32 new_itr = adapter->itr;
706
707 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
708 adapter->total_tx_packets,
709 adapter->total_tx_bytes);
710 /* conservative mode (itr 3) eliminates the lowest_latency setting */
711 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
712 adapter->tx_itr = low_latency;
713
714 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
715 adapter->total_rx_packets,
716 adapter->total_rx_bytes);
717 /* conservative mode (itr 3) eliminates the lowest_latency setting */
718 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
719 adapter->rx_itr = low_latency;
720
721 current_itr = max(adapter->rx_itr, adapter->tx_itr);
722
723 switch (current_itr) {
724 /* counts and packets in update_itr are dependent on these numbers */
725 case lowest_latency:
726 new_itr = 70000;
727 break;
728 case low_latency:
729 new_itr = 20000; /* aka hwitr = ~200 */
730 break;
731 case bulk_latency:
732 new_itr = 4000;
733 break;
734 default:
735 break;
736 }
737
738 if (new_itr != adapter->itr) {
739 /*
740 * this attempts to bias the interrupt rate towards Bulk
741 * by adding intermediate steps when interrupt rate is
742 * increasing
743 */
744 new_itr = new_itr > adapter->itr ?
745 min(adapter->itr + (new_itr >> 2), new_itr) :
746 new_itr;
747 adapter->itr = new_itr;
748 adapter->rx_ring->itr_val = 1952;
749
750 if (adapter->msix_entries)
751 adapter->rx_ring->set_itr = 1;
752 else
753 ew32(ITR, 1952);
754 }
755}
756
757/**
758 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
759 * @adapter: board private structure
760 * returns true if ring is completely cleaned
761 **/
762static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
763{
764 struct igbvf_adapter *adapter = tx_ring->adapter;
765 struct e1000_hw *hw = &adapter->hw;
766 struct net_device *netdev = adapter->netdev;
767 struct igbvf_buffer *buffer_info;
768 struct sk_buff *skb;
769 union e1000_adv_tx_desc *tx_desc, *eop_desc;
770 unsigned int total_bytes = 0, total_packets = 0;
771 unsigned int i, eop, count = 0;
772 bool cleaned = false;
773
774 i = tx_ring->next_to_clean;
775 eop = tx_ring->buffer_info[i].next_to_watch;
776 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
777
778 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
779 (count < tx_ring->count)) {
780 for (cleaned = false; !cleaned; count++) {
781 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
782 buffer_info = &tx_ring->buffer_info[i];
783 cleaned = (i == eop);
784 skb = buffer_info->skb;
785
786 if (skb) {
787 unsigned int segs, bytecount;
788
789 /* gso_segs is currently only valid for tcp */
790 segs = skb_shinfo(skb)->gso_segs ?: 1;
791 /* multiply data chunks by size of headers */
792 bytecount = ((segs - 1) * skb_headlen(skb)) +
793 skb->len;
794 total_packets += segs;
795 total_bytes += bytecount;
796 }
797
798 igbvf_put_txbuf(adapter, buffer_info);
799 tx_desc->wb.status = 0;
800
801 i++;
802 if (i == tx_ring->count)
803 i = 0;
804 }
805 eop = tx_ring->buffer_info[i].next_to_watch;
806 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
807 }
808
809 tx_ring->next_to_clean = i;
810
811 if (unlikely(count &&
812 netif_carrier_ok(netdev) &&
813 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
814 /* Make sure that anybody stopping the queue after this
815 * sees the new next_to_clean.
816 */
817 smp_mb();
818 if (netif_queue_stopped(netdev) &&
819 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
820 netif_wake_queue(netdev);
821 ++adapter->restart_queue;
822 }
823 }
824
825 if (adapter->detect_tx_hung) {
826 /* Detect a transmit hang in hardware, this serializes the
827 * check with the clearing of time_stamp and movement of i */
828 adapter->detect_tx_hung = false;
829 if (tx_ring->buffer_info[i].time_stamp &&
830 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
831 (adapter->tx_timeout_factor * HZ)) &&
832 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
d4e0fe01
AD
833
834 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
835 /* detected Tx unit hang */
836 igbvf_print_tx_hang(adapter);
837
838 netif_stop_queue(netdev);
839 }
840 }
841 adapter->net_stats.tx_bytes += total_bytes;
842 adapter->net_stats.tx_packets += total_packets;
843 return (count < tx_ring->count);
844}
845
846static irqreturn_t igbvf_msix_other(int irq, void *data)
847{
848 struct net_device *netdev = data;
849 struct igbvf_adapter *adapter = netdev_priv(netdev);
850 struct e1000_hw *hw = &adapter->hw;
851
852 adapter->int_counter1++;
853
854 netif_carrier_off(netdev);
855 hw->mac.get_link_status = 1;
856 if (!test_bit(__IGBVF_DOWN, &adapter->state))
857 mod_timer(&adapter->watchdog_timer, jiffies + 1);
858
859 ew32(EIMS, adapter->eims_other);
860
861 return IRQ_HANDLED;
862}
863
864static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
865{
866 struct net_device *netdev = data;
867 struct igbvf_adapter *adapter = netdev_priv(netdev);
868 struct e1000_hw *hw = &adapter->hw;
869 struct igbvf_ring *tx_ring = adapter->tx_ring;
870
871
872 adapter->total_tx_bytes = 0;
873 adapter->total_tx_packets = 0;
874
875 /* auto mask will automatically reenable the interrupt when we write
876 * EICS */
877 if (!igbvf_clean_tx_irq(tx_ring))
878 /* Ring was not completely cleaned, so fire another interrupt */
879 ew32(EICS, tx_ring->eims_value);
880 else
881 ew32(EIMS, tx_ring->eims_value);
882
883 return IRQ_HANDLED;
884}
885
886static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
887{
888 struct net_device *netdev = data;
889 struct igbvf_adapter *adapter = netdev_priv(netdev);
890
891 adapter->int_counter0++;
892
893 /* Write the ITR value calculated at the end of the
894 * previous interrupt.
895 */
896 if (adapter->rx_ring->set_itr) {
897 writel(adapter->rx_ring->itr_val,
898 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
899 adapter->rx_ring->set_itr = 0;
900 }
901
902 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
903 adapter->total_rx_bytes = 0;
904 adapter->total_rx_packets = 0;
905 __napi_schedule(&adapter->rx_ring->napi);
906 }
907
908 return IRQ_HANDLED;
909}
910
911#define IGBVF_NO_QUEUE -1
912
913static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
914 int tx_queue, int msix_vector)
915{
916 struct e1000_hw *hw = &adapter->hw;
917 u32 ivar, index;
918
919 /* 82576 uses a table-based method for assigning vectors.
920 Each queue has a single entry in the table to which we write
921 a vector number along with a "valid" bit. Sadly, the layout
922 of the table is somewhat counterintuitive. */
923 if (rx_queue > IGBVF_NO_QUEUE) {
924 index = (rx_queue >> 1);
925 ivar = array_er32(IVAR0, index);
926 if (rx_queue & 0x1) {
927 /* vector goes into third byte of register */
928 ivar = ivar & 0xFF00FFFF;
929 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
930 } else {
931 /* vector goes into low byte of register */
932 ivar = ivar & 0xFFFFFF00;
933 ivar |= msix_vector | E1000_IVAR_VALID;
934 }
935 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
936 array_ew32(IVAR0, index, ivar);
937 }
938 if (tx_queue > IGBVF_NO_QUEUE) {
939 index = (tx_queue >> 1);
940 ivar = array_er32(IVAR0, index);
941 if (tx_queue & 0x1) {
942 /* vector goes into high byte of register */
943 ivar = ivar & 0x00FFFFFF;
944 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
945 } else {
946 /* vector goes into second byte of register */
947 ivar = ivar & 0xFFFF00FF;
948 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
949 }
950 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
951 array_ew32(IVAR0, index, ivar);
952 }
953}
954
955/**
956 * igbvf_configure_msix - Configure MSI-X hardware
957 *
958 * igbvf_configure_msix sets up the hardware to properly
959 * generate MSI-X interrupts.
960 **/
961static void igbvf_configure_msix(struct igbvf_adapter *adapter)
962{
963 u32 tmp;
964 struct e1000_hw *hw = &adapter->hw;
965 struct igbvf_ring *tx_ring = adapter->tx_ring;
966 struct igbvf_ring *rx_ring = adapter->rx_ring;
967 int vector = 0;
968
969 adapter->eims_enable_mask = 0;
970
971 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
972 adapter->eims_enable_mask |= tx_ring->eims_value;
973 if (tx_ring->itr_val)
974 writel(tx_ring->itr_val,
975 hw->hw_addr + tx_ring->itr_register);
976 else
977 writel(1952, hw->hw_addr + tx_ring->itr_register);
978
979 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
980 adapter->eims_enable_mask |= rx_ring->eims_value;
981 if (rx_ring->itr_val)
982 writel(rx_ring->itr_val,
983 hw->hw_addr + rx_ring->itr_register);
984 else
985 writel(1952, hw->hw_addr + rx_ring->itr_register);
986
987 /* set vector for other causes, i.e. link changes */
988
989 tmp = (vector++ | E1000_IVAR_VALID);
990
991 ew32(IVAR_MISC, tmp);
992
993 adapter->eims_enable_mask = (1 << (vector)) - 1;
994 adapter->eims_other = 1 << (vector - 1);
995 e1e_flush();
996}
997
2d165771 998static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
999{
1000 if (adapter->msix_entries) {
1001 pci_disable_msix(adapter->pdev);
1002 kfree(adapter->msix_entries);
1003 adapter->msix_entries = NULL;
1004 }
1005}
1006
1007/**
1008 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1009 *
1010 * Attempt to configure interrupts using the best available
1011 * capabilities of the hardware and kernel.
1012 **/
2d165771 1013static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1014{
1015 int err = -ENOMEM;
1016 int i;
1017
1018 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1019 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1020 GFP_KERNEL);
1021 if (adapter->msix_entries) {
1022 for (i = 0; i < 3; i++)
1023 adapter->msix_entries[i].entry = i;
1024
1025 err = pci_enable_msix(adapter->pdev,
1026 adapter->msix_entries, 3);
1027 }
1028
1029 if (err) {
1030 /* MSI-X failed */
1031 dev_err(&adapter->pdev->dev,
1032 "Failed to initialize MSI-X interrupts.\n");
1033 igbvf_reset_interrupt_capability(adapter);
1034 }
1035}
1036
1037/**
1038 * igbvf_request_msix - Initialize MSI-X interrupts
1039 *
1040 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1041 * kernel.
1042 **/
1043static int igbvf_request_msix(struct igbvf_adapter *adapter)
1044{
1045 struct net_device *netdev = adapter->netdev;
1046 int err = 0, vector = 0;
1047
1048 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1049 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1050 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1051 } else {
1052 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1053 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1054 }
1055
1056 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1057 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
d4e0fe01
AD
1058 netdev);
1059 if (err)
1060 goto out;
1061
1062 adapter->tx_ring->itr_register = E1000_EITR(vector);
1063 adapter->tx_ring->itr_val = 1952;
1064 vector++;
1065
1066 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1067 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
d4e0fe01
AD
1068 netdev);
1069 if (err)
1070 goto out;
1071
1072 adapter->rx_ring->itr_register = E1000_EITR(vector);
1073 adapter->rx_ring->itr_val = 1952;
1074 vector++;
1075
1076 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1077 igbvf_msix_other, 0, netdev->name, netdev);
d4e0fe01
AD
1078 if (err)
1079 goto out;
1080
1081 igbvf_configure_msix(adapter);
1082 return 0;
1083out:
1084 return err;
1085}
1086
1087/**
1088 * igbvf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1090 **/
1091static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1092{
1093 struct net_device *netdev = adapter->netdev;
1094
1095 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1096 if (!adapter->tx_ring)
1097 return -ENOMEM;
1098
1099 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1100 if (!adapter->rx_ring) {
1101 kfree(adapter->tx_ring);
1102 return -ENOMEM;
1103 }
1104
1105 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1106
1107 return 0;
1108}
1109
1110/**
1111 * igbvf_request_irq - initialize interrupts
1112 *
1113 * Attempts to configure interrupts using the best available
1114 * capabilities of the hardware and kernel.
1115 **/
1116static int igbvf_request_irq(struct igbvf_adapter *adapter)
1117{
1118 int err = -1;
1119
1120 /* igbvf supports msi-x only */
1121 if (adapter->msix_entries)
1122 err = igbvf_request_msix(adapter);
1123
1124 if (!err)
1125 return err;
1126
1127 dev_err(&adapter->pdev->dev,
1128 "Unable to allocate interrupt, Error: %d\n", err);
1129
1130 return err;
1131}
1132
1133static void igbvf_free_irq(struct igbvf_adapter *adapter)
1134{
1135 struct net_device *netdev = adapter->netdev;
1136 int vector;
1137
1138 if (adapter->msix_entries) {
1139 for (vector = 0; vector < 3; vector++)
1140 free_irq(adapter->msix_entries[vector].vector, netdev);
1141 }
1142}
1143
1144/**
1145 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1146 **/
1147static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1148{
1149 struct e1000_hw *hw = &adapter->hw;
1150
1151 ew32(EIMC, ~0);
1152
1153 if (adapter->msix_entries)
1154 ew32(EIAC, 0);
1155}
1156
1157/**
1158 * igbvf_irq_enable - Enable default interrupt generation settings
1159 **/
1160static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1161{
1162 struct e1000_hw *hw = &adapter->hw;
1163
1164 ew32(EIAC, adapter->eims_enable_mask);
1165 ew32(EIAM, adapter->eims_enable_mask);
1166 ew32(EIMS, adapter->eims_enable_mask);
1167}
1168
1169/**
1170 * igbvf_poll - NAPI Rx polling callback
1171 * @napi: struct associated with this polling callback
1172 * @budget: amount of packets driver is allowed to process this poll
1173 **/
1174static int igbvf_poll(struct napi_struct *napi, int budget)
1175{
1176 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1177 struct igbvf_adapter *adapter = rx_ring->adapter;
1178 struct e1000_hw *hw = &adapter->hw;
1179 int work_done = 0;
1180
1181 igbvf_clean_rx_irq(adapter, &work_done, budget);
1182
1183 /* If not enough Rx work done, exit the polling mode */
1184 if (work_done < budget) {
1185 napi_complete(napi);
1186
1187 if (adapter->itr_setting & 3)
1188 igbvf_set_itr(adapter);
1189
1190 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1191 ew32(EIMS, adapter->rx_ring->eims_value);
1192 }
1193
1194 return work_done;
1195}
1196
1197/**
1198 * igbvf_set_rlpml - set receive large packet maximum length
1199 * @adapter: board private structure
1200 *
1201 * Configure the maximum size of packets that will be received
1202 */
1203static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1204{
1205 int max_frame_size = adapter->max_frame_size;
1206 struct e1000_hw *hw = &adapter->hw;
1207
1208 if (adapter->vlgrp)
1209 max_frame_size += VLAN_TAG_SIZE;
1210
1211 e1000_rlpml_set_vf(hw, max_frame_size);
1212}
1213
1214static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1215{
1216 struct igbvf_adapter *adapter = netdev_priv(netdev);
1217 struct e1000_hw *hw = &adapter->hw;
1218
1219 if (hw->mac.ops.set_vfta(hw, vid, true))
1220 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1221}
1222
1223static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1224{
1225 struct igbvf_adapter *adapter = netdev_priv(netdev);
1226 struct e1000_hw *hw = &adapter->hw;
1227
1228 igbvf_irq_disable(adapter);
1229 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1230
1231 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1232 igbvf_irq_enable(adapter);
1233
1234 if (hw->mac.ops.set_vfta(hw, vid, false))
1235 dev_err(&adapter->pdev->dev,
1236 "Failed to remove vlan id %d\n", vid);
1237}
1238
1239static void igbvf_vlan_rx_register(struct net_device *netdev,
1240 struct vlan_group *grp)
1241{
1242 struct igbvf_adapter *adapter = netdev_priv(netdev);
1243
1244 adapter->vlgrp = grp;
1245}
1246
1247static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1248{
1249 u16 vid;
1250
1251 if (!adapter->vlgrp)
1252 return;
1253
1254 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1255 if (!vlan_group_get_device(adapter->vlgrp, vid))
1256 continue;
1257 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1258 }
1259
1260 igbvf_set_rlpml(adapter);
1261}
1262
1263/**
1264 * igbvf_configure_tx - Configure Transmit Unit after Reset
1265 * @adapter: board private structure
1266 *
1267 * Configure the Tx unit of the MAC after a reset.
1268 **/
1269static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1270{
1271 struct e1000_hw *hw = &adapter->hw;
1272 struct igbvf_ring *tx_ring = adapter->tx_ring;
1273 u64 tdba;
1274 u32 txdctl, dca_txctrl;
1275
1276 /* disable transmits */
1277 txdctl = er32(TXDCTL(0));
1278 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1279 msleep(10);
1280
1281 /* Setup the HW Tx Head and Tail descriptor pointers */
1282 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1283 tdba = tx_ring->dma;
8e20ce94 1284 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1285 ew32(TDBAH(0), (tdba >> 32));
1286 ew32(TDH(0), 0);
1287 ew32(TDT(0), 0);
1288 tx_ring->head = E1000_TDH(0);
1289 tx_ring->tail = E1000_TDT(0);
1290
1291 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1292 * MUST be delivered in order or it will completely screw up
1293 * our bookeeping.
1294 */
1295 dca_txctrl = er32(DCA_TXCTRL(0));
1296 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1297 ew32(DCA_TXCTRL(0), dca_txctrl);
1298
1299 /* enable transmits */
1300 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1301 ew32(TXDCTL(0), txdctl);
1302
1303 /* Setup Transmit Descriptor Settings for eop descriptor */
1304 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1305
1306 /* enable Report Status bit */
1307 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
d4e0fe01
AD
1308}
1309
1310/**
1311 * igbvf_setup_srrctl - configure the receive control registers
1312 * @adapter: Board private structure
1313 **/
1314static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1315{
1316 struct e1000_hw *hw = &adapter->hw;
1317 u32 srrctl = 0;
1318
1319 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1320 E1000_SRRCTL_BSIZEHDR_MASK |
1321 E1000_SRRCTL_BSIZEPKT_MASK);
1322
1323 /* Enable queue drop to avoid head of line blocking */
1324 srrctl |= E1000_SRRCTL_DROP_EN;
1325
1326 /* Setup buffer sizes */
1327 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1328 E1000_SRRCTL_BSIZEPKT_SHIFT;
1329
1330 if (adapter->rx_buffer_len < 2048) {
1331 adapter->rx_ps_hdr_size = 0;
1332 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1333 } else {
1334 adapter->rx_ps_hdr_size = 128;
1335 srrctl |= adapter->rx_ps_hdr_size <<
1336 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1337 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1338 }
1339
1340 ew32(SRRCTL(0), srrctl);
1341}
1342
1343/**
1344 * igbvf_configure_rx - Configure Receive Unit after Reset
1345 * @adapter: board private structure
1346 *
1347 * Configure the Rx unit of the MAC after a reset.
1348 **/
1349static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1350{
1351 struct e1000_hw *hw = &adapter->hw;
1352 struct igbvf_ring *rx_ring = adapter->rx_ring;
1353 u64 rdba;
1354 u32 rdlen, rxdctl;
1355
1356 /* disable receives */
1357 rxdctl = er32(RXDCTL(0));
1358 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1359 msleep(10);
1360
1361 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1362
1363 /*
1364 * Setup the HW Rx Head and Tail Descriptor Pointers and
1365 * the Base and Length of the Rx Descriptor Ring
1366 */
1367 rdba = rx_ring->dma;
8e20ce94 1368 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1369 ew32(RDBAH(0), (rdba >> 32));
1370 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1371 rx_ring->head = E1000_RDH(0);
1372 rx_ring->tail = E1000_RDT(0);
1373 ew32(RDH(0), 0);
1374 ew32(RDT(0), 0);
1375
1376 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1377 rxdctl &= 0xFFF00000;
1378 rxdctl |= IGBVF_RX_PTHRESH;
1379 rxdctl |= IGBVF_RX_HTHRESH << 8;
1380 rxdctl |= IGBVF_RX_WTHRESH << 16;
1381
1382 igbvf_set_rlpml(adapter);
1383
1384 /* enable receives */
1385 ew32(RXDCTL(0), rxdctl);
1386}
1387
1388/**
1389 * igbvf_set_multi - Multicast and Promiscuous mode set
1390 * @netdev: network interface device structure
1391 *
1392 * The set_multi entry point is called whenever the multicast address
1393 * list or the network interface flags are updated. This routine is
1394 * responsible for configuring the hardware for proper multicast,
1395 * promiscuous mode, and all-multi behavior.
1396 **/
1397static void igbvf_set_multi(struct net_device *netdev)
1398{
1399 struct igbvf_adapter *adapter = netdev_priv(netdev);
1400 struct e1000_hw *hw = &adapter->hw;
1401 struct dev_mc_list *mc_ptr;
1402 u8 *mta_list = NULL;
1403 int i;
1404
4cd24eaf
JP
1405 if (!netdev_mc_empty(netdev)) {
1406 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
d4e0fe01
AD
1407 if (!mta_list) {
1408 dev_err(&adapter->pdev->dev,
1409 "failed to allocate multicast filter list\n");
1410 return;
1411 }
1412 }
1413
1414 /* prepare a packed array of only addresses. */
48e2f183
JP
1415 i = 0;
1416 netdev_for_each_mc_addr(mc_ptr, netdev)
1417 memcpy(mta_list + (i++ * ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
d4e0fe01
AD
1418
1419 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1420 kfree(mta_list);
1421}
1422
1423/**
1424 * igbvf_configure - configure the hardware for Rx and Tx
1425 * @adapter: private board structure
1426 **/
1427static void igbvf_configure(struct igbvf_adapter *adapter)
1428{
1429 igbvf_set_multi(adapter->netdev);
1430
1431 igbvf_restore_vlan(adapter);
1432
1433 igbvf_configure_tx(adapter);
1434 igbvf_setup_srrctl(adapter);
1435 igbvf_configure_rx(adapter);
1436 igbvf_alloc_rx_buffers(adapter->rx_ring,
1437 igbvf_desc_unused(adapter->rx_ring));
1438}
1439
1440/* igbvf_reset - bring the hardware into a known good state
1441 *
1442 * This function boots the hardware and enables some settings that
1443 * require a configuration cycle of the hardware - those cannot be
1444 * set/changed during runtime. After reset the device needs to be
1445 * properly configured for Rx, Tx etc.
1446 */
2d165771 1447static void igbvf_reset(struct igbvf_adapter *adapter)
d4e0fe01
AD
1448{
1449 struct e1000_mac_info *mac = &adapter->hw.mac;
1450 struct net_device *netdev = adapter->netdev;
1451 struct e1000_hw *hw = &adapter->hw;
1452
1453 /* Allow time for pending master requests to run */
1454 if (mac->ops.reset_hw(hw))
1455 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1456
1457 mac->ops.init_hw(hw);
1458
1459 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1460 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1461 netdev->addr_len);
1462 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1463 netdev->addr_len);
1464 }
72279093
AD
1465
1466 adapter->last_reset = jiffies;
d4e0fe01
AD
1467}
1468
1469int igbvf_up(struct igbvf_adapter *adapter)
1470{
1471 struct e1000_hw *hw = &adapter->hw;
1472
1473 /* hardware has been reset, we need to reload some things */
1474 igbvf_configure(adapter);
1475
1476 clear_bit(__IGBVF_DOWN, &adapter->state);
1477
1478 napi_enable(&adapter->rx_ring->napi);
1479 if (adapter->msix_entries)
1480 igbvf_configure_msix(adapter);
1481
1482 /* Clear any pending interrupts. */
1483 er32(EICR);
1484 igbvf_irq_enable(adapter);
1485
1486 /* start the watchdog */
1487 hw->mac.get_link_status = 1;
1488 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1489
1490
1491 return 0;
1492}
1493
1494void igbvf_down(struct igbvf_adapter *adapter)
1495{
1496 struct net_device *netdev = adapter->netdev;
1497 struct e1000_hw *hw = &adapter->hw;
1498 u32 rxdctl, txdctl;
1499
1500 /*
1501 * signal that we're down so the interrupt handler does not
1502 * reschedule our watchdog timer
1503 */
1504 set_bit(__IGBVF_DOWN, &adapter->state);
1505
1506 /* disable receives in the hardware */
1507 rxdctl = er32(RXDCTL(0));
1508 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1509
1510 netif_stop_queue(netdev);
1511
1512 /* disable transmits in the hardware */
1513 txdctl = er32(TXDCTL(0));
1514 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1515
1516 /* flush both disables and wait for them to finish */
1517 e1e_flush();
1518 msleep(10);
1519
1520 napi_disable(&adapter->rx_ring->napi);
1521
1522 igbvf_irq_disable(adapter);
1523
1524 del_timer_sync(&adapter->watchdog_timer);
1525
d4e0fe01
AD
1526 netif_carrier_off(netdev);
1527
1528 /* record the stats before reset*/
1529 igbvf_update_stats(adapter);
1530
1531 adapter->link_speed = 0;
1532 adapter->link_duplex = 0;
1533
1534 igbvf_reset(adapter);
1535 igbvf_clean_tx_ring(adapter->tx_ring);
1536 igbvf_clean_rx_ring(adapter->rx_ring);
1537}
1538
1539void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1540{
1541 might_sleep();
1542 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1543 msleep(1);
1544 igbvf_down(adapter);
1545 igbvf_up(adapter);
1546 clear_bit(__IGBVF_RESETTING, &adapter->state);
1547}
1548
1549/**
1550 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1551 * @adapter: board private structure to initialize
1552 *
1553 * igbvf_sw_init initializes the Adapter private data structure.
1554 * Fields are initialized based on PCI device information and
1555 * OS network device settings (MTU size).
1556 **/
1557static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1558{
1559 struct net_device *netdev = adapter->netdev;
1560 s32 rc;
1561
1562 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1563 adapter->rx_ps_hdr_size = 0;
1564 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1565 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1566
1567 adapter->tx_int_delay = 8;
1568 adapter->tx_abs_int_delay = 32;
1569 adapter->rx_int_delay = 0;
1570 adapter->rx_abs_int_delay = 8;
1571 adapter->itr_setting = 3;
1572 adapter->itr = 20000;
1573
1574 /* Set various function pointers */
1575 adapter->ei->init_ops(&adapter->hw);
1576
1577 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1578 if (rc)
1579 return rc;
1580
1581 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1582 if (rc)
1583 return rc;
1584
1585 igbvf_set_interrupt_capability(adapter);
1586
1587 if (igbvf_alloc_queues(adapter))
1588 return -ENOMEM;
1589
1590 spin_lock_init(&adapter->tx_queue_lock);
1591
1592 /* Explicitly disable IRQ since the NIC can be in any state. */
1593 igbvf_irq_disable(adapter);
1594
1595 spin_lock_init(&adapter->stats_lock);
1596
1597 set_bit(__IGBVF_DOWN, &adapter->state);
1598 return 0;
1599}
1600
1601static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1602{
1603 struct e1000_hw *hw = &adapter->hw;
1604
1605 adapter->stats.last_gprc = er32(VFGPRC);
1606 adapter->stats.last_gorc = er32(VFGORC);
1607 adapter->stats.last_gptc = er32(VFGPTC);
1608 adapter->stats.last_gotc = er32(VFGOTC);
1609 adapter->stats.last_mprc = er32(VFMPRC);
1610 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1611 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1612 adapter->stats.last_gorlbc = er32(VFGORLBC);
1613 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1614
1615 adapter->stats.base_gprc = er32(VFGPRC);
1616 adapter->stats.base_gorc = er32(VFGORC);
1617 adapter->stats.base_gptc = er32(VFGPTC);
1618 adapter->stats.base_gotc = er32(VFGOTC);
1619 adapter->stats.base_mprc = er32(VFMPRC);
1620 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1621 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1622 adapter->stats.base_gorlbc = er32(VFGORLBC);
1623 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1624}
1625
1626/**
1627 * igbvf_open - Called when a network interface is made active
1628 * @netdev: network interface device structure
1629 *
1630 * Returns 0 on success, negative value on failure
1631 *
1632 * The open entry point is called when a network interface is made
1633 * active by the system (IFF_UP). At this point all resources needed
1634 * for transmit and receive operations are allocated, the interrupt
1635 * handler is registered with the OS, the watchdog timer is started,
1636 * and the stack is notified that the interface is ready.
1637 **/
1638static int igbvf_open(struct net_device *netdev)
1639{
1640 struct igbvf_adapter *adapter = netdev_priv(netdev);
1641 struct e1000_hw *hw = &adapter->hw;
1642 int err;
1643
1644 /* disallow open during test */
1645 if (test_bit(__IGBVF_TESTING, &adapter->state))
1646 return -EBUSY;
1647
1648 /* allocate transmit descriptors */
1649 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1650 if (err)
1651 goto err_setup_tx;
1652
1653 /* allocate receive descriptors */
1654 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1655 if (err)
1656 goto err_setup_rx;
1657
1658 /*
1659 * before we allocate an interrupt, we must be ready to handle it.
1660 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1661 * as soon as we call pci_request_irq, so we have to setup our
1662 * clean_rx handler before we do so.
1663 */
1664 igbvf_configure(adapter);
1665
1666 err = igbvf_request_irq(adapter);
1667 if (err)
1668 goto err_req_irq;
1669
1670 /* From here on the code is the same as igbvf_up() */
1671 clear_bit(__IGBVF_DOWN, &adapter->state);
1672
1673 napi_enable(&adapter->rx_ring->napi);
1674
1675 /* clear any pending interrupts */
1676 er32(EICR);
1677
1678 igbvf_irq_enable(adapter);
1679
1680 /* start the watchdog */
1681 hw->mac.get_link_status = 1;
1682 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1683
1684 return 0;
1685
1686err_req_irq:
1687 igbvf_free_rx_resources(adapter->rx_ring);
1688err_setup_rx:
1689 igbvf_free_tx_resources(adapter->tx_ring);
1690err_setup_tx:
1691 igbvf_reset(adapter);
1692
1693 return err;
1694}
1695
1696/**
1697 * igbvf_close - Disables a network interface
1698 * @netdev: network interface device structure
1699 *
1700 * Returns 0, this is not allowed to fail
1701 *
1702 * The close entry point is called when an interface is de-activated
1703 * by the OS. The hardware is still under the drivers control, but
1704 * needs to be disabled. A global MAC reset is issued to stop the
1705 * hardware, and all transmit and receive resources are freed.
1706 **/
1707static int igbvf_close(struct net_device *netdev)
1708{
1709 struct igbvf_adapter *adapter = netdev_priv(netdev);
1710
1711 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1712 igbvf_down(adapter);
1713
1714 igbvf_free_irq(adapter);
1715
1716 igbvf_free_tx_resources(adapter->tx_ring);
1717 igbvf_free_rx_resources(adapter->rx_ring);
1718
1719 return 0;
1720}
1721/**
1722 * igbvf_set_mac - Change the Ethernet Address of the NIC
1723 * @netdev: network interface device structure
1724 * @p: pointer to an address structure
1725 *
1726 * Returns 0 on success, negative on failure
1727 **/
1728static int igbvf_set_mac(struct net_device *netdev, void *p)
1729{
1730 struct igbvf_adapter *adapter = netdev_priv(netdev);
1731 struct e1000_hw *hw = &adapter->hw;
1732 struct sockaddr *addr = p;
1733
1734 if (!is_valid_ether_addr(addr->sa_data))
1735 return -EADDRNOTAVAIL;
1736
1737 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1738
1739 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1740
1741 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1742 return -EADDRNOTAVAIL;
1743
1744 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1745
1746 return 0;
1747}
1748
1749#define UPDATE_VF_COUNTER(reg, name) \
1750 { \
1751 u32 current_counter = er32(reg); \
1752 if (current_counter < adapter->stats.last_##name) \
1753 adapter->stats.name += 0x100000000LL; \
1754 adapter->stats.last_##name = current_counter; \
1755 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1756 adapter->stats.name |= current_counter; \
1757 }
1758
1759/**
1760 * igbvf_update_stats - Update the board statistics counters
1761 * @adapter: board private structure
1762**/
1763void igbvf_update_stats(struct igbvf_adapter *adapter)
1764{
1765 struct e1000_hw *hw = &adapter->hw;
1766 struct pci_dev *pdev = adapter->pdev;
1767
1768 /*
1769 * Prevent stats update while adapter is being reset, link is down
1770 * or if the pci connection is down.
1771 */
1772 if (adapter->link_speed == 0)
1773 return;
1774
1775 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1776 return;
1777
1778 if (pci_channel_offline(pdev))
1779 return;
1780
1781 UPDATE_VF_COUNTER(VFGPRC, gprc);
1782 UPDATE_VF_COUNTER(VFGORC, gorc);
1783 UPDATE_VF_COUNTER(VFGPTC, gptc);
1784 UPDATE_VF_COUNTER(VFGOTC, gotc);
1785 UPDATE_VF_COUNTER(VFMPRC, mprc);
1786 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1787 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1788 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1789 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1790
1791 /* Fill out the OS statistics structure */
1792 adapter->net_stats.multicast = adapter->stats.mprc;
1793}
1794
1795static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1796{
1797 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1798 adapter->link_speed,
1799 ((adapter->link_duplex == FULL_DUPLEX) ?
1800 "Full Duplex" : "Half Duplex"));
1801}
1802
1803static bool igbvf_has_link(struct igbvf_adapter *adapter)
1804{
1805 struct e1000_hw *hw = &adapter->hw;
1806 s32 ret_val = E1000_SUCCESS;
1807 bool link_active;
1808
72279093
AD
1809 /* If interface is down, stay link down */
1810 if (test_bit(__IGBVF_DOWN, &adapter->state))
1811 return false;
1812
d4e0fe01
AD
1813 ret_val = hw->mac.ops.check_for_link(hw);
1814 link_active = !hw->mac.get_link_status;
1815
1816 /* if check for link returns error we will need to reset */
72279093 1817 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
d4e0fe01
AD
1818 schedule_work(&adapter->reset_task);
1819
1820 return link_active;
1821}
1822
1823/**
1824 * igbvf_watchdog - Timer Call-back
1825 * @data: pointer to adapter cast into an unsigned long
1826 **/
1827static void igbvf_watchdog(unsigned long data)
1828{
1829 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1830
1831 /* Do the rest outside of interrupt context */
1832 schedule_work(&adapter->watchdog_task);
1833}
1834
1835static void igbvf_watchdog_task(struct work_struct *work)
1836{
1837 struct igbvf_adapter *adapter = container_of(work,
1838 struct igbvf_adapter,
1839 watchdog_task);
1840 struct net_device *netdev = adapter->netdev;
1841 struct e1000_mac_info *mac = &adapter->hw.mac;
1842 struct igbvf_ring *tx_ring = adapter->tx_ring;
1843 struct e1000_hw *hw = &adapter->hw;
1844 u32 link;
1845 int tx_pending = 0;
1846
1847 link = igbvf_has_link(adapter);
1848
1849 if (link) {
1850 if (!netif_carrier_ok(netdev)) {
1851 bool txb2b = 1;
1852
1853 mac->ops.get_link_up_info(&adapter->hw,
1854 &adapter->link_speed,
1855 &adapter->link_duplex);
1856 igbvf_print_link_info(adapter);
1857
a08af745 1858 /* adjust timeout factor according to speed/duplex */
d4e0fe01
AD
1859 adapter->tx_timeout_factor = 1;
1860 switch (adapter->link_speed) {
1861 case SPEED_10:
1862 txb2b = 0;
d4e0fe01
AD
1863 adapter->tx_timeout_factor = 16;
1864 break;
1865 case SPEED_100:
1866 txb2b = 0;
d4e0fe01
AD
1867 /* maybe add some timeout factor ? */
1868 break;
1869 }
1870
1871 netif_carrier_on(netdev);
1872 netif_wake_queue(netdev);
1873 }
1874 } else {
1875 if (netif_carrier_ok(netdev)) {
1876 adapter->link_speed = 0;
1877 adapter->link_duplex = 0;
1878 dev_info(&adapter->pdev->dev, "Link is Down\n");
1879 netif_carrier_off(netdev);
1880 netif_stop_queue(netdev);
1881 }
1882 }
1883
1884 if (netif_carrier_ok(netdev)) {
1885 igbvf_update_stats(adapter);
1886 } else {
1887 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1888 tx_ring->count);
1889 if (tx_pending) {
1890 /*
1891 * We've lost link, so the controller stops DMA,
1892 * but we've got queued Tx work that's never going
1893 * to get done, so reset controller to flush Tx.
1894 * (Do the reset outside of interrupt context).
1895 */
1896 adapter->tx_timeout_count++;
1897 schedule_work(&adapter->reset_task);
1898 }
1899 }
1900
1901 /* Cause software interrupt to ensure Rx ring is cleaned */
1902 ew32(EICS, adapter->rx_ring->eims_value);
1903
1904 /* Force detection of hung controller every watchdog period */
1905 adapter->detect_tx_hung = 1;
1906
1907 /* Reset the timer */
1908 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1909 mod_timer(&adapter->watchdog_timer,
1910 round_jiffies(jiffies + (2 * HZ)));
1911}
1912
1913#define IGBVF_TX_FLAGS_CSUM 0x00000001
1914#define IGBVF_TX_FLAGS_VLAN 0x00000002
1915#define IGBVF_TX_FLAGS_TSO 0x00000004
1916#define IGBVF_TX_FLAGS_IPV4 0x00000008
1917#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1918#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1919
1920static int igbvf_tso(struct igbvf_adapter *adapter,
1921 struct igbvf_ring *tx_ring,
1922 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1923{
1924 struct e1000_adv_tx_context_desc *context_desc;
1925 unsigned int i;
1926 int err;
1927 struct igbvf_buffer *buffer_info;
1928 u32 info = 0, tu_cmd = 0;
1929 u32 mss_l4len_idx, l4len;
1930 *hdr_len = 0;
1931
1932 if (skb_header_cloned(skb)) {
1933 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1934 if (err) {
1935 dev_err(&adapter->pdev->dev,
1936 "igbvf_tso returning an error\n");
1937 return err;
1938 }
1939 }
1940
1941 l4len = tcp_hdrlen(skb);
1942 *hdr_len += l4len;
1943
1944 if (skb->protocol == htons(ETH_P_IP)) {
1945 struct iphdr *iph = ip_hdr(skb);
1946 iph->tot_len = 0;
1947 iph->check = 0;
1948 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1949 iph->daddr, 0,
1950 IPPROTO_TCP,
1951 0);
8e1e8a47 1952 } else if (skb_is_gso_v6(skb)) {
d4e0fe01
AD
1953 ipv6_hdr(skb)->payload_len = 0;
1954 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1955 &ipv6_hdr(skb)->daddr,
1956 0, IPPROTO_TCP, 0);
1957 }
1958
1959 i = tx_ring->next_to_use;
1960
1961 buffer_info = &tx_ring->buffer_info[i];
1962 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1963 /* VLAN MACLEN IPLEN */
1964 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1965 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1966 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1967 *hdr_len += skb_network_offset(skb);
1968 info |= (skb_transport_header(skb) - skb_network_header(skb));
1969 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1970 context_desc->vlan_macip_lens = cpu_to_le32(info);
1971
1972 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1973 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1974
1975 if (skb->protocol == htons(ETH_P_IP))
1976 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1977 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1978
1979 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1980
1981 /* MSS L4LEN IDX */
1982 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1983 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1984
1985 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1986 context_desc->seqnum_seed = 0;
1987
1988 buffer_info->time_stamp = jiffies;
1989 buffer_info->next_to_watch = i;
1990 buffer_info->dma = 0;
1991 i++;
1992 if (i == tx_ring->count)
1993 i = 0;
1994
1995 tx_ring->next_to_use = i;
1996
1997 return true;
1998}
1999
2000static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2001 struct igbvf_ring *tx_ring,
2002 struct sk_buff *skb, u32 tx_flags)
2003{
2004 struct e1000_adv_tx_context_desc *context_desc;
2005 unsigned int i;
2006 struct igbvf_buffer *buffer_info;
2007 u32 info = 0, tu_cmd = 0;
2008
2009 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2010 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2011 i = tx_ring->next_to_use;
2012 buffer_info = &tx_ring->buffer_info[i];
2013 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2014
2015 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2016 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2017
2018 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2019 if (skb->ip_summed == CHECKSUM_PARTIAL)
2020 info |= (skb_transport_header(skb) -
2021 skb_network_header(skb));
2022
2023
2024 context_desc->vlan_macip_lens = cpu_to_le32(info);
2025
2026 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2027
2028 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2029 switch (skb->protocol) {
2030 case __constant_htons(ETH_P_IP):
2031 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2032 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2033 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2034 break;
2035 case __constant_htons(ETH_P_IPV6):
2036 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2037 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2038 break;
2039 default:
2040 break;
2041 }
2042 }
2043
2044 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2045 context_desc->seqnum_seed = 0;
2046 context_desc->mss_l4len_idx = 0;
2047
2048 buffer_info->time_stamp = jiffies;
2049 buffer_info->next_to_watch = i;
2050 buffer_info->dma = 0;
2051 i++;
2052 if (i == tx_ring->count)
2053 i = 0;
2054 tx_ring->next_to_use = i;
2055
2056 return true;
2057 }
2058
2059 return false;
2060}
2061
2062static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2063{
2064 struct igbvf_adapter *adapter = netdev_priv(netdev);
2065
2066 /* there is enough descriptors then we don't need to worry */
2067 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2068 return 0;
2069
2070 netif_stop_queue(netdev);
2071
2072 smp_mb();
2073
2074 /* We need to check again just in case room has been made available */
2075 if (igbvf_desc_unused(adapter->tx_ring) < size)
2076 return -EBUSY;
2077
2078 netif_wake_queue(netdev);
2079
2080 ++adapter->restart_queue;
2081 return 0;
2082}
2083
2084#define IGBVF_MAX_TXD_PWR 16
2085#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2086
2087static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2088 struct igbvf_ring *tx_ring,
2089 struct sk_buff *skb,
2090 unsigned int first)
2091{
2092 struct igbvf_buffer *buffer_info;
a7d5ca40 2093 struct pci_dev *pdev = adapter->pdev;
d4e0fe01
AD
2094 unsigned int len = skb_headlen(skb);
2095 unsigned int count = 0, i;
2096 unsigned int f;
d4e0fe01
AD
2097
2098 i = tx_ring->next_to_use;
2099
d4e0fe01
AD
2100 buffer_info = &tx_ring->buffer_info[i];
2101 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2102 buffer_info->length = len;
2103 /* set time_stamp *before* dma to help avoid a possible race */
2104 buffer_info->time_stamp = jiffies;
2105 buffer_info->next_to_watch = i;
ac26d7d6 2106 buffer_info->mapped_as_page = false;
a7d5ca40
AD
2107 buffer_info->dma = pci_map_single(pdev, skb->data, len,
2108 PCI_DMA_TODEVICE);
2109 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2110 goto dma_error;
2111
d4e0fe01
AD
2112
2113 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2114 struct skb_frag_struct *frag;
2115
8581145f 2116 count++;
d4e0fe01
AD
2117 i++;
2118 if (i == tx_ring->count)
2119 i = 0;
2120
2121 frag = &skb_shinfo(skb)->frags[f];
2122 len = frag->size;
2123
2124 buffer_info = &tx_ring->buffer_info[i];
2125 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2126 buffer_info->length = len;
2127 buffer_info->time_stamp = jiffies;
2128 buffer_info->next_to_watch = i;
a7d5ca40
AD
2129 buffer_info->mapped_as_page = true;
2130 buffer_info->dma = pci_map_page(pdev,
2131 frag->page,
2132 frag->page_offset,
2133 len,
2134 PCI_DMA_TODEVICE);
2135 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2136 goto dma_error;
d4e0fe01
AD
2137 }
2138
2139 tx_ring->buffer_info[i].skb = skb;
2140 tx_ring->buffer_info[first].next_to_watch = i;
2141
a7d5ca40
AD
2142 return ++count;
2143
2144dma_error:
2145 dev_err(&pdev->dev, "TX DMA map failed\n");
2146
2147 /* clear timestamp and dma mappings for failed buffer_info mapping */
2148 buffer_info->dma = 0;
2149 buffer_info->time_stamp = 0;
2150 buffer_info->length = 0;
2151 buffer_info->next_to_watch = 0;
2152 buffer_info->mapped_as_page = false;
c1fa347f
RK
2153 if (count)
2154 count--;
a7d5ca40
AD
2155
2156 /* clear timestamp and dma mappings for remaining portion of packet */
c1fa347f
RK
2157 while (count--) {
2158 if (i==0)
a7d5ca40 2159 i += tx_ring->count;
c1fa347f 2160 i--;
a7d5ca40
AD
2161 buffer_info = &tx_ring->buffer_info[i];
2162 igbvf_put_txbuf(adapter, buffer_info);
2163 }
2164
2165 return 0;
d4e0fe01
AD
2166}
2167
2168static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2169 struct igbvf_ring *tx_ring,
2170 int tx_flags, int count, u32 paylen,
2171 u8 hdr_len)
2172{
2173 union e1000_adv_tx_desc *tx_desc = NULL;
2174 struct igbvf_buffer *buffer_info;
2175 u32 olinfo_status = 0, cmd_type_len;
2176 unsigned int i;
2177
2178 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2179 E1000_ADVTXD_DCMD_DEXT);
2180
2181 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2182 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2183
2184 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2185 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2186
2187 /* insert tcp checksum */
2188 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2189
2190 /* insert ip checksum */
2191 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2192 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2193
2194 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2195 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2196 }
2197
2198 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2199
2200 i = tx_ring->next_to_use;
2201 while (count--) {
2202 buffer_info = &tx_ring->buffer_info[i];
2203 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2204 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2205 tx_desc->read.cmd_type_len =
2206 cpu_to_le32(cmd_type_len | buffer_info->length);
2207 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2208 i++;
2209 if (i == tx_ring->count)
2210 i = 0;
2211 }
2212
2213 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2214 /* Force memory writes to complete before letting h/w
2215 * know there are new descriptors to fetch. (Only
2216 * applicable for weak-ordered memory model archs,
2217 * such as IA-64). */
2218 wmb();
2219
2220 tx_ring->next_to_use = i;
2221 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2222 /* we need this if more than one processor can write to our tail
2223 * at a time, it syncronizes IO on IA64/Altix systems */
2224 mmiowb();
2225}
2226
3b29a56d
SH
2227static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2228 struct net_device *netdev,
2229 struct igbvf_ring *tx_ring)
d4e0fe01
AD
2230{
2231 struct igbvf_adapter *adapter = netdev_priv(netdev);
2232 unsigned int first, tx_flags = 0;
2233 u8 hdr_len = 0;
2234 int count = 0;
2235 int tso = 0;
2236
2237 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2238 dev_kfree_skb_any(skb);
2239 return NETDEV_TX_OK;
2240 }
2241
2242 if (skb->len <= 0) {
2243 dev_kfree_skb_any(skb);
2244 return NETDEV_TX_OK;
2245 }
2246
2247 /*
2248 * need: count + 4 desc gap to keep tail from touching
2249 * + 2 desc gap to keep tail from touching head,
2250 * + 1 desc for skb->data,
2251 * + 1 desc for context descriptor,
2252 * head, otherwise try next time
2253 */
2254 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2255 /* this is a hard error */
2256 return NETDEV_TX_BUSY;
2257 }
2258
2259 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2260 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2261 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2262 }
2263
2264 if (skb->protocol == htons(ETH_P_IP))
2265 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2266
2267 first = tx_ring->next_to_use;
2268
2269 tso = skb_is_gso(skb) ?
2270 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2271 if (unlikely(tso < 0)) {
2272 dev_kfree_skb_any(skb);
2273 return NETDEV_TX_OK;
2274 }
2275
2276 if (tso)
2277 tx_flags |= IGBVF_TX_FLAGS_TSO;
2278 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2279 (skb->ip_summed == CHECKSUM_PARTIAL))
2280 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2281
2282 /*
2283 * count reflects descriptors mapped, if 0 then mapping error
2284 * has occured and we need to rewind the descriptor queue
2285 */
2286 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2287
2288 if (count) {
2289 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2290 skb->len, hdr_len);
d4e0fe01
AD
2291 /* Make sure there is space in the ring for the next send. */
2292 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2293 } else {
2294 dev_kfree_skb_any(skb);
2295 tx_ring->buffer_info[first].time_stamp = 0;
2296 tx_ring->next_to_use = first;
2297 }
2298
2299 return NETDEV_TX_OK;
2300}
2301
3b29a56d
SH
2302static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2303 struct net_device *netdev)
d4e0fe01
AD
2304{
2305 struct igbvf_adapter *adapter = netdev_priv(netdev);
2306 struct igbvf_ring *tx_ring;
d4e0fe01
AD
2307
2308 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2309 dev_kfree_skb_any(skb);
2310 return NETDEV_TX_OK;
2311 }
2312
2313 tx_ring = &adapter->tx_ring[0];
2314
3b29a56d 2315 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
d4e0fe01
AD
2316}
2317
2318/**
2319 * igbvf_tx_timeout - Respond to a Tx Hang
2320 * @netdev: network interface device structure
2321 **/
2322static void igbvf_tx_timeout(struct net_device *netdev)
2323{
2324 struct igbvf_adapter *adapter = netdev_priv(netdev);
2325
2326 /* Do the reset outside of interrupt context */
2327 adapter->tx_timeout_count++;
2328 schedule_work(&adapter->reset_task);
2329}
2330
2331static void igbvf_reset_task(struct work_struct *work)
2332{
2333 struct igbvf_adapter *adapter;
2334 adapter = container_of(work, struct igbvf_adapter, reset_task);
2335
2336 igbvf_reinit_locked(adapter);
2337}
2338
2339/**
2340 * igbvf_get_stats - Get System Network Statistics
2341 * @netdev: network interface device structure
2342 *
2343 * Returns the address of the device statistics structure.
2344 * The statistics are actually updated from the timer callback.
2345 **/
2346static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2347{
2348 struct igbvf_adapter *adapter = netdev_priv(netdev);
2349
2350 /* only return the current stats */
2351 return &adapter->net_stats;
2352}
2353
2354/**
2355 * igbvf_change_mtu - Change the Maximum Transfer Unit
2356 * @netdev: network interface device structure
2357 * @new_mtu: new value for maximum frame size
2358 *
2359 * Returns 0 on success, negative on failure
2360 **/
2361static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2362{
2363 struct igbvf_adapter *adapter = netdev_priv(netdev);
2364 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2365
2366 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2367 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2368 return -EINVAL;
2369 }
2370
d4e0fe01
AD
2371#define MAX_STD_JUMBO_FRAME_SIZE 9234
2372 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2373 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2374 return -EINVAL;
2375 }
2376
2377 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2378 msleep(1);
2379 /* igbvf_down has a dependency on max_frame_size */
2380 adapter->max_frame_size = max_frame;
2381 if (netif_running(netdev))
2382 igbvf_down(adapter);
2383
2384 /*
2385 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2386 * means we reserve 2 more, this pushes us to allocate from the next
2387 * larger slab size.
2388 * i.e. RXBUFFER_2048 --> size-4096 slab
2389 * However with the new *_jumbo_rx* routines, jumbo receives will use
2390 * fragmented skbs
2391 */
2392
2393 if (max_frame <= 1024)
2394 adapter->rx_buffer_len = 1024;
2395 else if (max_frame <= 2048)
2396 adapter->rx_buffer_len = 2048;
2397 else
2398#if (PAGE_SIZE / 2) > 16384
2399 adapter->rx_buffer_len = 16384;
2400#else
2401 adapter->rx_buffer_len = PAGE_SIZE / 2;
2402#endif
2403
2404
2405 /* adjust allocation if LPE protects us, and we aren't using SBP */
2406 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2407 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2408 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2409 ETH_FCS_LEN;
2410
2411 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2412 netdev->mtu, new_mtu);
2413 netdev->mtu = new_mtu;
2414
2415 if (netif_running(netdev))
2416 igbvf_up(adapter);
2417 else
2418 igbvf_reset(adapter);
2419
2420 clear_bit(__IGBVF_RESETTING, &adapter->state);
2421
2422 return 0;
2423}
2424
2425static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2426{
2427 switch (cmd) {
2428 default:
2429 return -EOPNOTSUPP;
2430 }
2431}
2432
2433static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2434{
2435 struct net_device *netdev = pci_get_drvdata(pdev);
2436 struct igbvf_adapter *adapter = netdev_priv(netdev);
2437#ifdef CONFIG_PM
2438 int retval = 0;
2439#endif
2440
2441 netif_device_detach(netdev);
2442
2443 if (netif_running(netdev)) {
2444 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2445 igbvf_down(adapter);
2446 igbvf_free_irq(adapter);
2447 }
2448
2449#ifdef CONFIG_PM
2450 retval = pci_save_state(pdev);
2451 if (retval)
2452 return retval;
2453#endif
2454
2455 pci_disable_device(pdev);
2456
2457 return 0;
2458}
2459
2460#ifdef CONFIG_PM
2461static int igbvf_resume(struct pci_dev *pdev)
2462{
2463 struct net_device *netdev = pci_get_drvdata(pdev);
2464 struct igbvf_adapter *adapter = netdev_priv(netdev);
2465 u32 err;
2466
2467 pci_restore_state(pdev);
2468 err = pci_enable_device_mem(pdev);
2469 if (err) {
2470 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2471 return err;
2472 }
2473
2474 pci_set_master(pdev);
2475
2476 if (netif_running(netdev)) {
2477 err = igbvf_request_irq(adapter);
2478 if (err)
2479 return err;
2480 }
2481
2482 igbvf_reset(adapter);
2483
2484 if (netif_running(netdev))
2485 igbvf_up(adapter);
2486
2487 netif_device_attach(netdev);
2488
2489 return 0;
2490}
2491#endif
2492
2493static void igbvf_shutdown(struct pci_dev *pdev)
2494{
2495 igbvf_suspend(pdev, PMSG_SUSPEND);
2496}
2497
2498#ifdef CONFIG_NET_POLL_CONTROLLER
2499/*
2500 * Polling 'interrupt' - used by things like netconsole to send skbs
2501 * without having to re-enable interrupts. It's not called while
2502 * the interrupt routine is executing.
2503 */
2504static void igbvf_netpoll(struct net_device *netdev)
2505{
2506 struct igbvf_adapter *adapter = netdev_priv(netdev);
2507
2508 disable_irq(adapter->pdev->irq);
2509
2510 igbvf_clean_tx_irq(adapter->tx_ring);
2511
2512 enable_irq(adapter->pdev->irq);
2513}
2514#endif
2515
2516/**
2517 * igbvf_io_error_detected - called when PCI error is detected
2518 * @pdev: Pointer to PCI device
2519 * @state: The current pci connection state
2520 *
2521 * This function is called after a PCI bus error affecting
2522 * this device has been detected.
2523 */
2524static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2525 pci_channel_state_t state)
2526{
2527 struct net_device *netdev = pci_get_drvdata(pdev);
2528 struct igbvf_adapter *adapter = netdev_priv(netdev);
2529
2530 netif_device_detach(netdev);
2531
c06c430d
DN
2532 if (state == pci_channel_io_perm_failure)
2533 return PCI_ERS_RESULT_DISCONNECT;
2534
d4e0fe01
AD
2535 if (netif_running(netdev))
2536 igbvf_down(adapter);
2537 pci_disable_device(pdev);
2538
2539 /* Request a slot slot reset. */
2540 return PCI_ERS_RESULT_NEED_RESET;
2541}
2542
2543/**
2544 * igbvf_io_slot_reset - called after the pci bus has been reset.
2545 * @pdev: Pointer to PCI device
2546 *
2547 * Restart the card from scratch, as if from a cold-boot. Implementation
2548 * resembles the first-half of the igbvf_resume routine.
2549 */
2550static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2551{
2552 struct net_device *netdev = pci_get_drvdata(pdev);
2553 struct igbvf_adapter *adapter = netdev_priv(netdev);
2554
2555 if (pci_enable_device_mem(pdev)) {
2556 dev_err(&pdev->dev,
2557 "Cannot re-enable PCI device after reset.\n");
2558 return PCI_ERS_RESULT_DISCONNECT;
2559 }
2560 pci_set_master(pdev);
2561
2562 igbvf_reset(adapter);
2563
2564 return PCI_ERS_RESULT_RECOVERED;
2565}
2566
2567/**
2568 * igbvf_io_resume - called when traffic can start flowing again.
2569 * @pdev: Pointer to PCI device
2570 *
2571 * This callback is called when the error recovery driver tells us that
2572 * its OK to resume normal operation. Implementation resembles the
2573 * second-half of the igbvf_resume routine.
2574 */
2575static void igbvf_io_resume(struct pci_dev *pdev)
2576{
2577 struct net_device *netdev = pci_get_drvdata(pdev);
2578 struct igbvf_adapter *adapter = netdev_priv(netdev);
2579
2580 if (netif_running(netdev)) {
2581 if (igbvf_up(adapter)) {
2582 dev_err(&pdev->dev,
2583 "can't bring device back up after reset\n");
2584 return;
2585 }
2586 }
2587
2588 netif_device_attach(netdev);
2589}
2590
2591static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2592{
2593 struct e1000_hw *hw = &adapter->hw;
2594 struct net_device *netdev = adapter->netdev;
2595 struct pci_dev *pdev = adapter->pdev;
2596
2597 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
753cdc33 2598 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
d4e0fe01
AD
2599 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2600}
2601
2602static const struct net_device_ops igbvf_netdev_ops = {
2603 .ndo_open = igbvf_open,
2604 .ndo_stop = igbvf_close,
2605 .ndo_start_xmit = igbvf_xmit_frame,
2606 .ndo_get_stats = igbvf_get_stats,
2607 .ndo_set_multicast_list = igbvf_set_multi,
2608 .ndo_set_mac_address = igbvf_set_mac,
2609 .ndo_change_mtu = igbvf_change_mtu,
2610 .ndo_do_ioctl = igbvf_ioctl,
2611 .ndo_tx_timeout = igbvf_tx_timeout,
2612 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2613 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2614 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2615#ifdef CONFIG_NET_POLL_CONTROLLER
2616 .ndo_poll_controller = igbvf_netpoll,
2617#endif
2618};
2619
2620/**
2621 * igbvf_probe - Device Initialization Routine
2622 * @pdev: PCI device information struct
2623 * @ent: entry in igbvf_pci_tbl
2624 *
2625 * Returns 0 on success, negative on failure
2626 *
2627 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2628 * The OS initialization, configuring of the adapter private structure,
2629 * and a hardware reset occur.
2630 **/
2631static int __devinit igbvf_probe(struct pci_dev *pdev,
2632 const struct pci_device_id *ent)
2633{
2634 struct net_device *netdev;
2635 struct igbvf_adapter *adapter;
2636 struct e1000_hw *hw;
2637 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2638
2639 static int cards_found;
2640 int err, pci_using_dac;
2641
2642 err = pci_enable_device_mem(pdev);
2643 if (err)
2644 return err;
2645
2646 pci_using_dac = 0;
8e20ce94 2647 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
d4e0fe01 2648 if (!err) {
8e20ce94 2649 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
d4e0fe01
AD
2650 if (!err)
2651 pci_using_dac = 1;
2652 } else {
8e20ce94 2653 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
d4e0fe01 2654 if (err) {
8e20ce94
AM
2655 err = pci_set_consistent_dma_mask(pdev,
2656 DMA_BIT_MASK(32));
d4e0fe01
AD
2657 if (err) {
2658 dev_err(&pdev->dev, "No usable DMA "
2659 "configuration, aborting\n");
2660 goto err_dma;
2661 }
2662 }
2663 }
2664
2665 err = pci_request_regions(pdev, igbvf_driver_name);
2666 if (err)
2667 goto err_pci_reg;
2668
2669 pci_set_master(pdev);
2670
2671 err = -ENOMEM;
2672 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2673 if (!netdev)
2674 goto err_alloc_etherdev;
2675
2676 SET_NETDEV_DEV(netdev, &pdev->dev);
2677
2678 pci_set_drvdata(pdev, netdev);
2679 adapter = netdev_priv(netdev);
2680 hw = &adapter->hw;
2681 adapter->netdev = netdev;
2682 adapter->pdev = pdev;
2683 adapter->ei = ei;
2684 adapter->pba = ei->pba;
2685 adapter->flags = ei->flags;
2686 adapter->hw.back = adapter;
2687 adapter->hw.mac.type = ei->mac;
2688 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2689
2690 /* PCI config space info */
2691
2692 hw->vendor_id = pdev->vendor;
2693 hw->device_id = pdev->device;
2694 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2695 hw->subsystem_device_id = pdev->subsystem_device;
2696
2697 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2698
2699 err = -EIO;
2700 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2701 pci_resource_len(pdev, 0));
2702
2703 if (!adapter->hw.hw_addr)
2704 goto err_ioremap;
2705
2706 if (ei->get_variants) {
2707 err = ei->get_variants(adapter);
2708 if (err)
2709 goto err_ioremap;
2710 }
2711
2712 /* setup adapter struct */
2713 err = igbvf_sw_init(adapter);
2714 if (err)
2715 goto err_sw_init;
2716
2717 /* construct the net_device struct */
2718 netdev->netdev_ops = &igbvf_netdev_ops;
2719
2720 igbvf_set_ethtool_ops(netdev);
2721 netdev->watchdog_timeo = 5 * HZ;
2722 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2723
2724 adapter->bd_number = cards_found++;
2725
2726 netdev->features = NETIF_F_SG |
2727 NETIF_F_IP_CSUM |
2728 NETIF_F_HW_VLAN_TX |
2729 NETIF_F_HW_VLAN_RX |
2730 NETIF_F_HW_VLAN_FILTER;
2731
2732 netdev->features |= NETIF_F_IPV6_CSUM;
2733 netdev->features |= NETIF_F_TSO;
2734 netdev->features |= NETIF_F_TSO6;
2735
2736 if (pci_using_dac)
2737 netdev->features |= NETIF_F_HIGHDMA;
2738
2739 netdev->vlan_features |= NETIF_F_TSO;
2740 netdev->vlan_features |= NETIF_F_TSO6;
2741 netdev->vlan_features |= NETIF_F_IP_CSUM;
2742 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2743 netdev->vlan_features |= NETIF_F_SG;
2744
2745 /*reset the controller to put the device in a known good state */
2746 err = hw->mac.ops.reset_hw(hw);
2747 if (err) {
2748 dev_info(&pdev->dev,
1242b6f3
WM
2749 "PF still in reset state, assigning new address."
2750 " Is the PF interface up?\n");
d4e0fe01
AD
2751 random_ether_addr(hw->mac.addr);
2752 } else {
2753 err = hw->mac.ops.read_mac_addr(hw);
2754 if (err) {
2755 dev_err(&pdev->dev, "Error reading MAC address\n");
2756 goto err_hw_init;
2757 }
2758 }
2759
2760 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2761 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2762
2763 if (!is_valid_ether_addr(netdev->perm_addr)) {
753cdc33
HS
2764 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2765 netdev->dev_addr);
d4e0fe01
AD
2766 err = -EIO;
2767 goto err_hw_init;
2768 }
2769
2770 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2771 (unsigned long) adapter);
2772
2773 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2774 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2775
2776 /* ring size defaults */
2777 adapter->rx_ring->count = 1024;
2778 adapter->tx_ring->count = 1024;
2779
2780 /* reset the hardware with the new settings */
2781 igbvf_reset(adapter);
2782
2783 /* tell the stack to leave us alone until igbvf_open() is called */
2784 netif_carrier_off(netdev);
2785 netif_stop_queue(netdev);
2786
2787 strcpy(netdev->name, "eth%d");
2788 err = register_netdev(netdev);
2789 if (err)
2790 goto err_hw_init;
2791
2792 igbvf_print_device_info(adapter);
2793
2794 igbvf_initialize_last_counter_stats(adapter);
2795
2796 return 0;
2797
2798err_hw_init:
2799 kfree(adapter->tx_ring);
2800 kfree(adapter->rx_ring);
2801err_sw_init:
2802 igbvf_reset_interrupt_capability(adapter);
2803 iounmap(adapter->hw.hw_addr);
2804err_ioremap:
2805 free_netdev(netdev);
2806err_alloc_etherdev:
2807 pci_release_regions(pdev);
2808err_pci_reg:
2809err_dma:
2810 pci_disable_device(pdev);
2811 return err;
2812}
2813
2814/**
2815 * igbvf_remove - Device Removal Routine
2816 * @pdev: PCI device information struct
2817 *
2818 * igbvf_remove is called by the PCI subsystem to alert the driver
2819 * that it should release a PCI device. The could be caused by a
2820 * Hot-Plug event, or because the driver is going to be removed from
2821 * memory.
2822 **/
2823static void __devexit igbvf_remove(struct pci_dev *pdev)
2824{
2825 struct net_device *netdev = pci_get_drvdata(pdev);
2826 struct igbvf_adapter *adapter = netdev_priv(netdev);
2827 struct e1000_hw *hw = &adapter->hw;
2828
2829 /*
2830 * flush_scheduled work may reschedule our watchdog task, so
2831 * explicitly disable watchdog tasks from being rescheduled
2832 */
2833 set_bit(__IGBVF_DOWN, &adapter->state);
2834 del_timer_sync(&adapter->watchdog_timer);
2835
2836 flush_scheduled_work();
2837
2838 unregister_netdev(netdev);
2839
2840 igbvf_reset_interrupt_capability(adapter);
2841
2842 /*
2843 * it is important to delete the napi struct prior to freeing the
2844 * rx ring so that you do not end up with null pointer refs
2845 */
2846 netif_napi_del(&adapter->rx_ring->napi);
2847 kfree(adapter->tx_ring);
2848 kfree(adapter->rx_ring);
2849
2850 iounmap(hw->hw_addr);
2851 if (hw->flash_address)
2852 iounmap(hw->flash_address);
2853 pci_release_regions(pdev);
2854
2855 free_netdev(netdev);
2856
2857 pci_disable_device(pdev);
2858}
2859
2860/* PCI Error Recovery (ERS) */
2861static struct pci_error_handlers igbvf_err_handler = {
2862 .error_detected = igbvf_io_error_detected,
2863 .slot_reset = igbvf_io_slot_reset,
2864 .resume = igbvf_io_resume,
2865};
2866
a3aa1884 2867static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
d4e0fe01
AD
2868 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2869 { } /* terminate list */
2870};
2871MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2872
2873/* PCI Device API Driver */
2874static struct pci_driver igbvf_driver = {
2875 .name = igbvf_driver_name,
2876 .id_table = igbvf_pci_tbl,
2877 .probe = igbvf_probe,
2878 .remove = __devexit_p(igbvf_remove),
2879#ifdef CONFIG_PM
2880 /* Power Management Hooks */
2881 .suspend = igbvf_suspend,
2882 .resume = igbvf_resume,
2883#endif
2884 .shutdown = igbvf_shutdown,
2885 .err_handler = &igbvf_err_handler
2886};
2887
2888/**
2889 * igbvf_init_module - Driver Registration Routine
2890 *
2891 * igbvf_init_module is the first routine called when the driver is
2892 * loaded. All it does is register with the PCI subsystem.
2893 **/
2894static int __init igbvf_init_module(void)
2895{
2896 int ret;
2897 printk(KERN_INFO "%s - version %s\n",
2898 igbvf_driver_string, igbvf_driver_version);
2899 printk(KERN_INFO "%s\n", igbvf_copyright);
2900
2901 ret = pci_register_driver(&igbvf_driver);
2902 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2903 PM_QOS_DEFAULT_VALUE);
2904
2905 return ret;
2906}
2907module_init(igbvf_init_module);
2908
2909/**
2910 * igbvf_exit_module - Driver Exit Cleanup Routine
2911 *
2912 * igbvf_exit_module is called just before the driver is removed
2913 * from memory.
2914 **/
2915static void __exit igbvf_exit_module(void)
2916{
2917 pci_unregister_driver(&igbvf_driver);
2918 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2919}
2920module_exit(igbvf_exit_module);
2921
2922
2923MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2924MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2925MODULE_LICENSE("GPL");
2926MODULE_VERSION(DRV_VERSION);
2927
2928/* netdev.c */