Merge tag 'mxs-fixes-3.10' of git://git.linaro.org/people/shawnguo/linux-2.6 into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
18c49b91 10#include <linux/bitops.h>
c4e84bde
RM
11#include <linux/types.h>
12#include <linux/module.h>
13#include <linux/list.h>
14#include <linux/pci.h>
15#include <linux/dma-mapping.h>
16#include <linux/pagemap.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/dmapool.h>
20#include <linux/mempool.h>
21#include <linux/spinlock.h>
22#include <linux/kthread.h>
23#include <linux/interrupt.h>
24#include <linux/errno.h>
25#include <linux/ioport.h>
26#include <linux/in.h>
27#include <linux/ip.h>
28#include <linux/ipv6.h>
29#include <net/ipv6.h>
30#include <linux/tcp.h>
31#include <linux/udp.h>
32#include <linux/if_arp.h>
33#include <linux/if_ether.h>
34#include <linux/netdevice.h>
35#include <linux/etherdevice.h>
36#include <linux/ethtool.h>
18c49b91 37#include <linux/if_vlan.h>
c4e84bde 38#include <linux/skbuff.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
70c71606 42#include <linux/prefetch.h>
b7c6bfb7 43#include <net/ip6_checksum.h>
c4e84bde
RM
44
45#include "qlge.h"
46
47char qlge_driver_name[] = DRV_NAME;
48const char qlge_driver_version[] = DRV_VERSION;
49
50MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51MODULE_DESCRIPTION(DRV_STRING " ");
52MODULE_LICENSE("GPL");
53MODULE_VERSION(DRV_VERSION);
54
55static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57/* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
4974097a
RM
62/* NETIF_MSG_TX_QUEUED | */
63/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
64/* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
84cf7029
SR
67static int debug = -1; /* defaults above */
68module_param(debug, int, 0664);
c4e84bde
RM
69MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71#define MSIX_IRQ 0
72#define MSI_IRQ 1
73#define LEG_IRQ 2
a5a62a1c 74static int qlge_irq_type = MSIX_IRQ;
84cf7029 75module_param(qlge_irq_type, int, 0664);
a5a62a1c 76MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 77
8aae2600
RM
78static int qlge_mpi_coredump;
79module_param(qlge_mpi_coredump, int, 0);
80MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
d5c1da56
RM
82 "Default is OFF - Do Not allocate memory. ");
83
84static int qlge_force_coredump;
85module_param(qlge_force_coredump, int, 0);
86MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
8aae2600 89
a3aa1884 90static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
b0c2aadf 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
93 /* required last entry */
94 {0,}
95};
96
97MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
ac409215 99static int ql_wol(struct ql_adapter *qdev);
100static void qlge_set_multicast_list(struct net_device *ndev);
101
c4e84bde
RM
102/* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
105 */
106static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107{
108 u32 sem_bits = 0;
109
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
ae9540f7 136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
137 return -EINVAL;
138 }
139
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
142}
143
144int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145{
0857e9d7 146 unsigned int wait_count = 30;
c4e84bde
RM
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
0857e9d7
RM
150 udelay(100);
151 } while (--wait_count);
c4e84bde
RM
152 return -ETIMEDOUT;
153}
154
155void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156{
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
159}
160
161/* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 */
166int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167{
168 u32 temp;
169 int count = UDELAY_COUNT;
170
171 while (count) {
172 temp = ql_read32(qdev, reg);
173
174 /* check for errors */
175 if (temp & err_bit) {
ae9540f7
JP
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
c4e84bde
RM
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
184 }
ae9540f7
JP
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
187 return -ETIMEDOUT;
188}
189
190/* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
192 */
193static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194{
195 int count = UDELAY_COUNT;
196 u32 temp;
197
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
206 }
207 return -ETIMEDOUT;
208}
209
210
211/* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
213 */
214int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
216{
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
222
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
226
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
230 return -ENOMEM;
231 }
232
4322c5be
RM
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
236
c4e84bde
RM
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
ae9540f7
JP
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
241 goto exit;
242 }
243
c4e84bde
RM
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
246
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
250
251 /*
252 * Wait for the bit to clear after signaling hw.
253 */
254 status = ql_wait_cfg(qdev, bit);
255exit:
4322c5be 256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
259}
260
261/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
262int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
264{
265 u32 offset = 0;
266 int status;
267
c4e84bde
RM
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
271 {
272 status =
273 ql_wait_reg_rdy(qdev,
939678f8 274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
939678f8 282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
939678f8 296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
939678f8 303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 311 MAC_ADDR_MR, 0);
c4e84bde
RM
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 }
316 break;
317 }
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
ae9540f7
JP
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
c4e84bde
RM
323 status = -EPERM;
324 }
325exit:
c4e84bde
RM
326 return status;
327}
328
329/* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
331 */
332static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
334{
335 u32 offset = 0;
336 int status = 0;
337
c4e84bde
RM
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
340 {
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
362
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
370 }
c4e84bde
RM
371 case MAC_ADDR_TYPE_CAM_MAC:
372 {
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
c4e84bde
RM
378 status =
379 ql_wait_reg_rdy(qdev,
939678f8 380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, lower);
387 status =
388 ql_wait_reg_rdy(qdev,
939678f8 389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 ql_write32(qdev, MAC_ADDR_DATA, upper);
396 status =
397 ql_wait_reg_rdy(qdev,
939678f8 398 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
399 if (status)
400 goto exit;
401 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
402 (index << MAC_ADDR_IDX_SHIFT) | /* index */
403 type); /* type */
404 /* This field should also include the queue id
405 and possibly the function id. Right now we hardcode
406 the route field to NIC core.
407 */
76b26694
RM
408 cam_output = (CAM_OUT_ROUTE_NIC |
409 (qdev->
410 func << CAM_OUT_FUNC_SHIFT) |
411 (0 << CAM_OUT_CQ_ID_SHIFT));
f646968f 412 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
76b26694
RM
413 cam_output |= CAM_OUT_RV;
414 /* route to NIC core */
415 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
416 break;
417 }
418 case MAC_ADDR_TYPE_VLAN:
419 {
420 u32 enable_bit = *((u32 *) &addr[0]);
421 /* For VLAN, the addr actually holds a bit that
422 * either enables or disables the vlan id we are
423 * addressing. It's either MAC_ADDR_E on or off.
424 * That's bit-27 we're talking about.
425 */
c4e84bde
RM
426 status =
427 ql_wait_reg_rdy(qdev,
939678f8 428 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
429 if (status)
430 goto exit;
431 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432 (index << MAC_ADDR_IDX_SHIFT) | /* index */
433 type | /* type */
434 enable_bit); /* enable/disable */
435 break;
436 }
437 case MAC_ADDR_TYPE_MULTI_FLTR:
438 default:
ae9540f7
JP
439 netif_crit(qdev, ifup, qdev->ndev,
440 "Address type %d not yet supported.\n", type);
c4e84bde
RM
441 status = -EPERM;
442 }
443exit:
c4e84bde
RM
444 return status;
445}
446
7fab3bfe
RM
447/* Set or clear MAC address in hardware. We sometimes
448 * have to clear it to prevent wrong frame routing
449 * especially in a bonding environment.
450 */
451static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452{
453 int status;
454 char zero_mac_addr[ETH_ALEN];
455 char *addr;
456
457 if (set) {
801e9096 458 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
459 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460 "Set Mac addr %pM\n", addr);
7fab3bfe
RM
461 } else {
462 memset(zero_mac_addr, 0, ETH_ALEN);
463 addr = &zero_mac_addr[0];
ae9540f7
JP
464 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465 "Clearing MAC address\n");
7fab3bfe
RM
466 }
467 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 if (status)
469 return status;
470 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473 if (status)
ae9540f7
JP
474 netif_err(qdev, ifup, qdev->ndev,
475 "Failed to init mac address.\n");
7fab3bfe
RM
476 return status;
477}
478
6a473308
RM
479void ql_link_on(struct ql_adapter *qdev)
480{
ae9540f7 481 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
482 netif_carrier_on(qdev->ndev);
483 ql_set_mac_addr(qdev, 1);
484}
485
486void ql_link_off(struct ql_adapter *qdev)
487{
ae9540f7 488 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491}
492
c4e84bde
RM
493/* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497{
498 int status = 0;
499
939678f8 500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510exit:
c4e84bde
RM
511 return status;
512}
513
514/* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521{
8587ea35 522 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
523 u32 value = 0;
524
c4e84bde
RM
525 switch (mask) {
526 case RT_IDX_CAM_HIT:
527 {
528 value = RT_IDX_DST_CAM_Q | /* dest */
529 RT_IDX_TYPE_NICQ | /* type */
530 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531 break;
532 }
533 case RT_IDX_VALID: /* Promiscuous Mode frames. */
534 {
535 value = RT_IDX_DST_DFLT_Q | /* dest */
536 RT_IDX_TYPE_NICQ | /* type */
537 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538 break;
539 }
540 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
541 {
542 value = RT_IDX_DST_DFLT_Q | /* dest */
543 RT_IDX_TYPE_NICQ | /* type */
544 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545 break;
546 }
fbc2ac33
RM
547 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548 {
549 value = RT_IDX_DST_DFLT_Q | /* dest */
550 RT_IDX_TYPE_NICQ | /* type */
551 (RT_IDX_IP_CSUM_ERR_SLOT <<
552 RT_IDX_IDX_SHIFT); /* index */
553 break;
554 }
555 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560 RT_IDX_IDX_SHIFT); /* index */
561 break;
562 }
c4e84bde
RM
563 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
571 {
e163d7f2 572 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
578 {
e163d7f2 579 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
585 {
586 value = RT_IDX_DST_RSS | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case 0: /* Clear the E-bit on an entry. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (index << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 default:
ae9540f7
JP
599 netif_err(qdev, ifup, qdev->ndev,
600 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
601 status = -EPERM;
602 goto exit;
603 }
604
605 if (value) {
606 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607 if (status)
608 goto exit;
609 value |= (enable ? RT_IDX_E : 0);
610 ql_write32(qdev, RT_IDX, value);
611 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612 }
613exit:
c4e84bde
RM
614 return status;
615}
616
617static void ql_enable_interrupts(struct ql_adapter *qdev)
618{
619 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620}
621
622static void ql_disable_interrupts(struct ql_adapter *qdev)
623{
624 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625}
626
627/* If we're running with multiple MSI-X vectors then we enable on the fly.
628 * Otherwise, we may have multiple outstanding workers and don't want to
629 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 630 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
631 * a worker finishes. Once it hits zero we enable the interrupt.
632 */
bb0d215c 633u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 634{
bb0d215c
RM
635 u32 var = 0;
636 unsigned long hw_flags = 0;
637 struct intr_context *ctx = qdev->intr_context + intr;
638
639 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640 /* Always enable if we're MSIX multi interrupts and
641 * it's not the default (zeroeth) interrupt.
642 */
c4e84bde 643 ql_write32(qdev, INTR_EN,
bb0d215c
RM
644 ctx->intr_en_mask);
645 var = ql_read32(qdev, STS);
646 return var;
c4e84bde 647 }
bb0d215c
RM
648
649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650 if (atomic_dec_and_test(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_en_mask);
653 var = ql_read32(qdev, STS);
654 }
655 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656 return var;
c4e84bde
RM
657}
658
659static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660{
661 u32 var = 0;
bb0d215c 662 struct intr_context *ctx;
c4e84bde 663
bb0d215c
RM
664 /* HW disables for us if we're MSIX multi interrupts and
665 * it's not the default (zeroeth) interrupt.
666 */
667 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668 return 0;
669
670 ctx = qdev->intr_context + intr;
08b1bc8f 671 spin_lock(&qdev->hw_lock);
bb0d215c 672 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 673 ql_write32(qdev, INTR_EN,
bb0d215c 674 ctx->intr_dis_mask);
c4e84bde
RM
675 var = ql_read32(qdev, STS);
676 }
bb0d215c 677 atomic_inc(&ctx->irq_cnt);
08b1bc8f 678 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
679 return var;
680}
681
682static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683{
684 int i;
685 for (i = 0; i < qdev->intr_count; i++) {
686 /* The enable call does a atomic_dec_and_test
687 * and enables only if the result is zero.
688 * So we precharge it here.
689 */
bb0d215c
RM
690 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691 i == 0))
692 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
693 ql_enable_completion_interrupt(qdev, i);
694 }
695
696}
697
b0c2aadf
RM
698static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699{
700 int status, i;
701 u16 csum = 0;
702 __le16 *flash = (__le16 *)&qdev->flash;
703
704 status = strncmp((char *)&qdev->flash, str, 4);
705 if (status) {
ae9540f7 706 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
707 return status;
708 }
709
710 for (i = 0; i < size; i++)
711 csum += le16_to_cpu(*flash++);
712
713 if (csum)
ae9540f7
JP
714 netif_err(qdev, ifup, qdev->ndev,
715 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
716
717 return csum;
718}
719
26351479 720static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
721{
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733 if (status)
734 goto exit;
26351479
RM
735 /* This data is stored on flash as an array of
736 * __le32. Since ql_read32() returns cpu endian
737 * we need to swap it back.
738 */
739 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
740exit:
741 return status;
742}
743
cdca8d02
RM
744static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745{
746 u32 i, size;
747 int status;
748 __le32 *p = (__le32 *)&qdev->flash;
749 u32 offset;
542512e4 750 u8 mac_addr[6];
cdca8d02
RM
751
752 /* Get flash offset for function and adjust
753 * for dword access.
754 */
e4552f51 755 if (!qdev->port)
cdca8d02
RM
756 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757 else
758 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761 return -ETIMEDOUT;
762
763 size = sizeof(struct flash_params_8000) / sizeof(u32);
764 for (i = 0; i < size; i++, p++) {
765 status = ql_read_flash_word(qdev, i+offset, p);
766 if (status) {
ae9540f7
JP
767 netif_err(qdev, ifup, qdev->ndev,
768 "Error reading flash.\n");
cdca8d02
RM
769 goto exit;
770 }
771 }
772
773 status = ql_validate_flash(qdev,
774 sizeof(struct flash_params_8000) / sizeof(u16),
775 "8000");
776 if (status) {
ae9540f7 777 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
778 status = -EINVAL;
779 goto exit;
780 }
781
542512e4
RM
782 /* Extract either manufacturer or BOFM modified
783 * MAC address.
784 */
785 if (qdev->flash.flash_params_8000.data_type1 == 2)
786 memcpy(mac_addr,
787 qdev->flash.flash_params_8000.mac_addr1,
788 qdev->ndev->addr_len);
789 else
790 memcpy(mac_addr,
791 qdev->flash.flash_params_8000.mac_addr,
792 qdev->ndev->addr_len);
793
794 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 795 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
796 status = -EINVAL;
797 goto exit;
798 }
799
800 memcpy(qdev->ndev->dev_addr,
542512e4 801 mac_addr,
cdca8d02
RM
802 qdev->ndev->addr_len);
803
804exit:
805 ql_sem_unlock(qdev, SEM_FLASH_MASK);
806 return status;
807}
808
b0c2aadf 809static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
810{
811 int i;
812 int status;
26351479 813 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 814 u32 offset = 0;
b0c2aadf 815 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
816
817 /* Second function's parameters follow the first
818 * function's.
819 */
e4552f51 820 if (qdev->port)
b0c2aadf 821 offset = size;
c4e84bde
RM
822
823 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824 return -ETIMEDOUT;
825
b0c2aadf 826 for (i = 0; i < size; i++, p++) {
e78f5fa7 827 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 828 if (status) {
ae9540f7
JP
829 netif_err(qdev, ifup, qdev->ndev,
830 "Error reading flash.\n");
c4e84bde
RM
831 goto exit;
832 }
833
834 }
b0c2aadf
RM
835
836 status = ql_validate_flash(qdev,
837 sizeof(struct flash_params_8012) / sizeof(u16),
838 "8012");
839 if (status) {
ae9540f7 840 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
841 status = -EINVAL;
842 goto exit;
843 }
844
845 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846 status = -EINVAL;
847 goto exit;
848 }
849
850 memcpy(qdev->ndev->dev_addr,
851 qdev->flash.flash_params_8012.mac_addr,
852 qdev->ndev->addr_len);
853
c4e84bde
RM
854exit:
855 ql_sem_unlock(qdev, SEM_FLASH_MASK);
856 return status;
857}
858
859/* xgmac register are located behind the xgmac_addr and xgmac_data
860 * register pair. Each read/write requires us to wait for the ready
861 * bit before reading/writing the data.
862 */
863static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864{
865 int status;
866 /* wait for reg to come ready */
867 status = ql_wait_reg_rdy(qdev,
868 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869 if (status)
870 return status;
871 /* write the data to the data reg */
872 ql_write32(qdev, XGMAC_DATA, data);
873 /* trigger the write */
874 ql_write32(qdev, XGMAC_ADDR, reg);
875 return status;
876}
877
878/* xgmac register are located behind the xgmac_addr and xgmac_data
879 * register pair. Each read/write requires us to wait for the ready
880 * bit before reading/writing the data.
881 */
882int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883{
884 int status = 0;
885 /* wait for reg to come ready */
886 status = ql_wait_reg_rdy(qdev,
887 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888 if (status)
889 goto exit;
890 /* set up for reg read */
891 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892 /* wait for reg to come ready */
893 status = ql_wait_reg_rdy(qdev,
894 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895 if (status)
896 goto exit;
897 /* get the data */
898 *data = ql_read32(qdev, XGMAC_DATA);
899exit:
900 return status;
901}
902
903/* This is used for reading the 64-bit statistics regs. */
904int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905{
906 int status = 0;
907 u32 hi = 0;
908 u32 lo = 0;
909
910 status = ql_read_xgmac_reg(qdev, reg, &lo);
911 if (status)
912 goto exit;
913
914 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915 if (status)
916 goto exit;
917
918 *data = (u64) lo | ((u64) hi << 32);
919
920exit:
921 return status;
922}
923
cdca8d02
RM
924static int ql_8000_port_initialize(struct ql_adapter *qdev)
925{
bcc2cb3b 926 int status;
cfec0cbc
RM
927 /*
928 * Get MPI firmware version for driver banner
929 * and ethool info.
930 */
931 status = ql_mb_about_fw(qdev);
932 if (status)
933 goto exit;
bcc2cb3b
RM
934 status = ql_mb_get_fw_state(qdev);
935 if (status)
936 goto exit;
937 /* Wake up a worker to get/set the TX/RX frame sizes. */
938 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939exit:
940 return status;
cdca8d02
RM
941}
942
c4e84bde
RM
943/* Take the MAC Core out of reset.
944 * Enable statistics counting.
945 * Take the transmitter/receiver out of reset.
946 * This functionality may be done in the MPI firmware at a
947 * later date.
948 */
b0c2aadf 949static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
950{
951 int status = 0;
952 u32 data;
953
954 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955 /* Another function has the semaphore, so
956 * wait for the port init bit to come ready.
957 */
ae9540f7
JP
958 netif_info(qdev, link, qdev->ndev,
959 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
960 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961 if (status) {
ae9540f7
JP
962 netif_crit(qdev, link, qdev->ndev,
963 "Port initialize timed out.\n");
c4e84bde
RM
964 }
965 return status;
966 }
967
ae9540f7 968 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
969 /* Set the core reset. */
970 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971 if (status)
972 goto end;
973 data |= GLOBAL_CFG_RESET;
974 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975 if (status)
976 goto end;
977
978 /* Clear the core reset and turn on jumbo for receiver. */
979 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
980 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
981 data |= GLOBAL_CFG_TX_STAT_EN;
982 data |= GLOBAL_CFG_RX_STAT_EN;
983 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984 if (status)
985 goto end;
986
987 /* Enable transmitter, and clear it's reset. */
988 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989 if (status)
990 goto end;
991 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
992 data |= TX_CFG_EN; /* Enable the transmitter. */
993 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994 if (status)
995 goto end;
996
997 /* Enable receiver and clear it's reset. */
998 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999 if (status)
1000 goto end;
1001 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1002 data |= RX_CFG_EN; /* Enable the receiver. */
1003 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004 if (status)
1005 goto end;
1006
1007 /* Turn on jumbo. */
1008 status =
1009 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010 if (status)
1011 goto end;
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014 if (status)
1015 goto end;
1016
1017 /* Signal to the world that the port is enabled. */
1018 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019end:
1020 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021 return status;
1022}
1023
7c734359
RM
1024static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025{
1026 return PAGE_SIZE << qdev->lbq_buf_order;
1027}
1028
c4e84bde 1029/* Get the next large buffer. */
8668ae92 1030static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1031{
1032 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033 rx_ring->lbq_curr_idx++;
1034 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035 rx_ring->lbq_curr_idx = 0;
1036 rx_ring->lbq_free_cnt++;
1037 return lbq_desc;
1038}
1039
7c734359
RM
1040static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041 struct rx_ring *rx_ring)
1042{
1043 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1046 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1047 rx_ring->lbq_buf_size,
1048 PCI_DMA_FROMDEVICE);
1049
1050 /* If it's the last chunk of our master page then
1051 * we unmap it.
1052 */
1053 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054 == ql_lbq_block_size(qdev))
1055 pci_unmap_page(qdev->pdev,
1056 lbq_desc->p.pg_chunk.map,
1057 ql_lbq_block_size(qdev),
1058 PCI_DMA_FROMDEVICE);
1059 return lbq_desc;
1060}
1061
c4e84bde 1062/* Get the next small buffer. */
8668ae92 1063static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1064{
1065 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066 rx_ring->sbq_curr_idx++;
1067 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068 rx_ring->sbq_curr_idx = 0;
1069 rx_ring->sbq_free_cnt++;
1070 return sbq_desc;
1071}
1072
1073/* Update an rx ring index. */
1074static void ql_update_cq(struct rx_ring *rx_ring)
1075{
1076 rx_ring->cnsmr_idx++;
1077 rx_ring->curr_entry++;
1078 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079 rx_ring->cnsmr_idx = 0;
1080 rx_ring->curr_entry = rx_ring->cq_base;
1081 }
1082}
1083
1084static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085{
1086 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087}
1088
7c734359
RM
1089static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090 struct bq_desc *lbq_desc)
1091{
1092 if (!rx_ring->pg_chunk.page) {
1093 u64 map;
1094 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095 GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
7c734359
RM
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
ef380794 1109 rx_ring->pg_chunk.page = NULL;
ae9540f7
JP
1110 netif_err(qdev, drv, qdev->ndev,
1111 "PCI mapping failed.\n");
7c734359
RM
1112 return -ENOMEM;
1113 }
1114 rx_ring->pg_chunk.map = map;
1115 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1116 }
1117
1118 /* Copy the current master pg_chunk info
1119 * to the current descriptor.
1120 */
1121 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1122
1123 /* Adjust the master page chunk for next
1124 * buffer get.
1125 */
1126 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1127 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1128 rx_ring->pg_chunk.page = NULL;
1129 lbq_desc->p.pg_chunk.last_flag = 1;
1130 } else {
1131 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1132 get_page(rx_ring->pg_chunk.page);
1133 lbq_desc->p.pg_chunk.last_flag = 0;
1134 }
1135 return 0;
1136}
c4e84bde
RM
1137/* Process (refill) a large buffer queue. */
1138static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1139{
49f2186d
RM
1140 u32 clean_idx = rx_ring->lbq_clean_idx;
1141 u32 start_idx = clean_idx;
c4e84bde 1142 struct bq_desc *lbq_desc;
c4e84bde
RM
1143 u64 map;
1144 int i;
1145
7c734359 1146 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1147 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1148 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1149 "lbq: try cleaning clean_idx = %d.\n",
1150 clean_idx);
c4e84bde 1151 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1152 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1153 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1154 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1155 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1156 i, clean_idx);
ae9540f7
JP
1157 return;
1158 }
7c734359
RM
1159
1160 map = lbq_desc->p.pg_chunk.map +
1161 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1162 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1163 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1164 rx_ring->lbq_buf_size);
2c9a0d41 1165 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1166
1167 pci_dma_sync_single_for_device(qdev->pdev, map,
1168 rx_ring->lbq_buf_size,
1169 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1170 clean_idx++;
1171 if (clean_idx == rx_ring->lbq_len)
1172 clean_idx = 0;
1173 }
1174
1175 rx_ring->lbq_clean_idx = clean_idx;
1176 rx_ring->lbq_prod_idx += 16;
1177 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1178 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1179 rx_ring->lbq_free_cnt -= 16;
1180 }
1181
1182 if (start_idx != clean_idx) {
ae9540f7
JP
1183 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1184 "lbq: updating prod idx = %d.\n",
1185 rx_ring->lbq_prod_idx);
c4e84bde
RM
1186 ql_write_db_reg(rx_ring->lbq_prod_idx,
1187 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1188 }
1189}
1190
1191/* Process (refill) a small buffer queue. */
1192static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1193{
49f2186d
RM
1194 u32 clean_idx = rx_ring->sbq_clean_idx;
1195 u32 start_idx = clean_idx;
c4e84bde 1196 struct bq_desc *sbq_desc;
c4e84bde
RM
1197 u64 map;
1198 int i;
1199
1200 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1201 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1202 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1203 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1204 "sbq: try cleaning clean_idx = %d.\n",
1205 clean_idx);
c4e84bde 1206 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1207 netif_printk(qdev, rx_status, KERN_DEBUG,
1208 qdev->ndev,
1209 "sbq: getting new skb for index %d.\n",
1210 sbq_desc->index);
c4e84bde
RM
1211 sbq_desc->p.skb =
1212 netdev_alloc_skb(qdev->ndev,
52e55f3c 1213 SMALL_BUFFER_SIZE);
c4e84bde 1214 if (sbq_desc->p.skb == NULL) {
c4e84bde
RM
1215 rx_ring->sbq_clean_idx = clean_idx;
1216 return;
1217 }
1218 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1219 map = pci_map_single(qdev->pdev,
1220 sbq_desc->p.skb->data,
52e55f3c
RM
1221 rx_ring->sbq_buf_size,
1222 PCI_DMA_FROMDEVICE);
c907a35a 1223 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1224 netif_err(qdev, ifup, qdev->ndev,
1225 "PCI mapping failed.\n");
c907a35a 1226 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1227 dev_kfree_skb_any(sbq_desc->p.skb);
1228 sbq_desc->p.skb = NULL;
c907a35a
RM
1229 return;
1230 }
64b9b41d
FT
1231 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1232 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1233 rx_ring->sbq_buf_size);
2c9a0d41 1234 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1235 }
1236
1237 clean_idx++;
1238 if (clean_idx == rx_ring->sbq_len)
1239 clean_idx = 0;
1240 }
1241 rx_ring->sbq_clean_idx = clean_idx;
1242 rx_ring->sbq_prod_idx += 16;
1243 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1244 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1245 rx_ring->sbq_free_cnt -= 16;
1246 }
1247
1248 if (start_idx != clean_idx) {
ae9540f7
JP
1249 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1250 "sbq: updating prod idx = %d.\n",
1251 rx_ring->sbq_prod_idx);
c4e84bde
RM
1252 ql_write_db_reg(rx_ring->sbq_prod_idx,
1253 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1254 }
1255}
1256
1257static void ql_update_buffer_queues(struct ql_adapter *qdev,
1258 struct rx_ring *rx_ring)
1259{
1260 ql_update_sbq(qdev, rx_ring);
1261 ql_update_lbq(qdev, rx_ring);
1262}
1263
1264/* Unmaps tx buffers. Can be called from send() if a pci mapping
1265 * fails at some stage, or from the interrupt when a tx completes.
1266 */
1267static void ql_unmap_send(struct ql_adapter *qdev,
1268 struct tx_ring_desc *tx_ring_desc, int mapped)
1269{
1270 int i;
1271 for (i = 0; i < mapped; i++) {
1272 if (i == 0 || (i == 7 && mapped > 7)) {
1273 /*
1274 * Unmap the skb->data area, or the
1275 * external sglist (AKA the Outbound
1276 * Address List (OAL)).
1277 * If its the zeroeth element, then it's
1278 * the skb->data area. If it's the 7th
1279 * element and there is more than 6 frags,
1280 * then its an OAL.
1281 */
1282 if (i == 7) {
ae9540f7
JP
1283 netif_printk(qdev, tx_done, KERN_DEBUG,
1284 qdev->ndev,
1285 "unmapping OAL area.\n");
c4e84bde
RM
1286 }
1287 pci_unmap_single(qdev->pdev,
64b9b41d 1288 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1289 mapaddr),
64b9b41d 1290 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1291 maplen),
1292 PCI_DMA_TODEVICE);
1293 } else {
ae9540f7
JP
1294 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1295 "unmapping frag %d.\n", i);
c4e84bde 1296 pci_unmap_page(qdev->pdev,
64b9b41d 1297 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1298 mapaddr),
64b9b41d 1299 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1300 maplen), PCI_DMA_TODEVICE);
1301 }
1302 }
1303
1304}
1305
1306/* Map the buffers for this transmit. This will return
1307 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1308 */
1309static int ql_map_send(struct ql_adapter *qdev,
1310 struct ob_mac_iocb_req *mac_iocb_ptr,
1311 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1312{
1313 int len = skb_headlen(skb);
1314 dma_addr_t map;
1315 int frag_idx, err, map_idx = 0;
1316 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317 int frag_cnt = skb_shinfo(skb)->nr_frags;
1318
1319 if (frag_cnt) {
ae9540f7
JP
1320 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1321 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1322 }
1323 /*
1324 * Map the skb buffer first.
1325 */
1326 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1327
1328 err = pci_dma_mapping_error(qdev->pdev, map);
1329 if (err) {
ae9540f7
JP
1330 netif_err(qdev, tx_queued, qdev->ndev,
1331 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1332
1333 return NETDEV_TX_BUSY;
1334 }
1335
1336 tbd->len = cpu_to_le32(len);
1337 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1338 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1339 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1340 map_idx++;
1341
1342 /*
1343 * This loop fills the remainder of the 8 address descriptors
1344 * in the IOCB. If there are more than 7 fragments, then the
1345 * eighth address desc will point to an external list (OAL).
1346 * When this happens, the remainder of the frags will be stored
1347 * in this list.
1348 */
1349 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1350 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1351 tbd++;
1352 if (frag_idx == 6 && frag_cnt > 7) {
1353 /* Let's tack on an sglist.
1354 * Our control block will now
1355 * look like this:
1356 * iocb->seg[0] = skb->data
1357 * iocb->seg[1] = frag[0]
1358 * iocb->seg[2] = frag[1]
1359 * iocb->seg[3] = frag[2]
1360 * iocb->seg[4] = frag[3]
1361 * iocb->seg[5] = frag[4]
1362 * iocb->seg[6] = frag[5]
1363 * iocb->seg[7] = ptr to OAL (external sglist)
1364 * oal->seg[0] = frag[6]
1365 * oal->seg[1] = frag[7]
1366 * oal->seg[2] = frag[8]
1367 * oal->seg[3] = frag[9]
1368 * oal->seg[4] = frag[10]
1369 * etc...
1370 */
1371 /* Tack on the OAL in the eighth segment of IOCB. */
1372 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1373 sizeof(struct oal),
1374 PCI_DMA_TODEVICE);
1375 err = pci_dma_mapping_error(qdev->pdev, map);
1376 if (err) {
ae9540f7
JP
1377 netif_err(qdev, tx_queued, qdev->ndev,
1378 "PCI mapping outbound address list with error: %d\n",
1379 err);
c4e84bde
RM
1380 goto map_error;
1381 }
1382
1383 tbd->addr = cpu_to_le64(map);
1384 /*
1385 * The length is the number of fragments
1386 * that remain to be mapped times the length
1387 * of our sglist (OAL).
1388 */
1389 tbd->len =
1390 cpu_to_le32((sizeof(struct tx_buf_desc) *
1391 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1392 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1393 map);
64b9b41d 1394 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1395 sizeof(struct oal));
1396 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1397 map_idx++;
1398 }
1399
9e903e08 1400 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1401 DMA_TO_DEVICE);
c4e84bde 1402
5d6bcdfe 1403 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1404 if (err) {
ae9540f7
JP
1405 netif_err(qdev, tx_queued, qdev->ndev,
1406 "PCI mapping frags failed with error: %d.\n",
1407 err);
c4e84bde
RM
1408 goto map_error;
1409 }
1410
1411 tbd->addr = cpu_to_le64(map);
9e903e08 1412 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1413 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1414 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1415 skb_frag_size(frag));
c4e84bde
RM
1416
1417 }
1418 /* Save the number of segments we've mapped. */
1419 tx_ring_desc->map_cnt = map_idx;
1420 /* Terminate the last segment. */
1421 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1422 return NETDEV_TX_OK;
1423
1424map_error:
1425 /*
1426 * If the first frag mapping failed, then i will be zero.
1427 * This causes the unmap of the skb->data area. Otherwise
1428 * we pass in the number of frags that mapped successfully
1429 * so they can be umapped.
1430 */
1431 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1432 return NETDEV_TX_BUSY;
1433}
1434
433c88e8 1435/* Categorizing receive firmware frame errors */
ae721f3a
SV
1436static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1437 struct rx_ring *rx_ring)
433c88e8
JK
1438{
1439 struct nic_stats *stats = &qdev->nic_stats;
1440
1441 stats->rx_err_count++;
ae721f3a 1442 rx_ring->rx_errors++;
433c88e8
JK
1443
1444 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1445 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1446 stats->rx_code_err++;
1447 break;
1448 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1449 stats->rx_oversize_err++;
1450 break;
1451 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1452 stats->rx_undersize_err++;
1453 break;
1454 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1455 stats->rx_preamble_err++;
1456 break;
1457 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1458 stats->rx_frame_len_err++;
1459 break;
1460 case IB_MAC_IOCB_RSP_ERR_CRC:
1461 stats->rx_crc_err++;
1462 default:
1463 break;
1464 }
1465}
1466
63526713
RM
1467/* Process an inbound completion from an rx ring. */
1468static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1469 struct rx_ring *rx_ring,
1470 struct ib_mac_iocb_rsp *ib_mac_rsp,
1471 u32 length,
1472 u16 vlan_id)
1473{
1474 struct sk_buff *skb;
1475 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1476 struct napi_struct *napi = &rx_ring->napi;
1477
ae721f3a
SV
1478 /* Frame error, so drop the packet. */
1479 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1480 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1481 put_page(lbq_desc->p.pg_chunk.page);
1482 return;
1483 }
63526713
RM
1484 napi->dev = qdev->ndev;
1485
1486 skb = napi_get_frags(napi);
1487 if (!skb) {
ae9540f7
JP
1488 netif_err(qdev, drv, qdev->ndev,
1489 "Couldn't get an skb, exiting.\n");
63526713
RM
1490 rx_ring->rx_dropped++;
1491 put_page(lbq_desc->p.pg_chunk.page);
1492 return;
1493 }
1494 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1495 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1496 lbq_desc->p.pg_chunk.page,
1497 lbq_desc->p.pg_chunk.offset,
1498 length);
63526713
RM
1499
1500 skb->len += length;
1501 skb->data_len += length;
1502 skb->truesize += length;
1503 skb_shinfo(skb)->nr_frags++;
1504
1505 rx_ring->rx_packets++;
1506 rx_ring->rx_bytes += length;
1507 skb->ip_summed = CHECKSUM_UNNECESSARY;
1508 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1509 if (vlan_id != 0xffff)
86a9bad3 1510 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91 1511 napi_gro_frags(napi);
63526713
RM
1512}
1513
4f848c0a
RM
1514/* Process an inbound completion from an rx ring. */
1515static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1516 struct rx_ring *rx_ring,
1517 struct ib_mac_iocb_rsp *ib_mac_rsp,
1518 u32 length,
1519 u16 vlan_id)
1520{
1521 struct net_device *ndev = qdev->ndev;
1522 struct sk_buff *skb = NULL;
1523 void *addr;
1524 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1525 struct napi_struct *napi = &rx_ring->napi;
1526
1527 skb = netdev_alloc_skb(ndev, length);
1528 if (!skb) {
4f848c0a
RM
1529 rx_ring->rx_dropped++;
1530 put_page(lbq_desc->p.pg_chunk.page);
1531 return;
1532 }
1533
1534 addr = lbq_desc->p.pg_chunk.va;
1535 prefetch(addr);
1536
ae721f3a
SV
1537 /* Frame error, so drop the packet. */
1538 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1539 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1540 goto err_out;
1541 }
1542
4f848c0a
RM
1543 /* The max framesize filter on this chip is set higher than
1544 * MTU since FCoE uses 2k frames.
1545 */
1546 if (skb->len > ndev->mtu + ETH_HLEN) {
ae9540f7
JP
1547 netif_err(qdev, drv, qdev->ndev,
1548 "Segment too small, dropping.\n");
4f848c0a
RM
1549 rx_ring->rx_dropped++;
1550 goto err_out;
1551 }
1552 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
ae9540f7
JP
1553 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1554 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1555 length);
4f848c0a
RM
1556 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1557 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1558 length-ETH_HLEN);
1559 skb->len += length-ETH_HLEN;
1560 skb->data_len += length-ETH_HLEN;
1561 skb->truesize += length-ETH_HLEN;
1562
1563 rx_ring->rx_packets++;
1564 rx_ring->rx_bytes += skb->len;
1565 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1566 skb_checksum_none_assert(skb);
4f848c0a 1567
88230fd5 1568 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1569 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1570 /* TCP frame. */
1571 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1572 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1573 "TCP checksum done!\n");
4f848c0a
RM
1574 skb->ip_summed = CHECKSUM_UNNECESSARY;
1575 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1576 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1577 /* Unfragmented ipv4 UDP frame. */
e02ef331
JK
1578 struct iphdr *iph =
1579 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
4f848c0a 1580 if (!(iph->frag_off &
0d653ed8 1581 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1582 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1583 netif_printk(qdev, rx_status, KERN_DEBUG,
1584 qdev->ndev,
e02ef331 1585 "UDP checksum done!\n");
4f848c0a
RM
1586 }
1587 }
1588 }
1589
1590 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1591 if (vlan_id != 0xffff)
86a9bad3 1592 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1593 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1594 napi_gro_receive(napi, skb);
1595 else
1596 netif_receive_skb(skb);
4f848c0a
RM
1597 return;
1598err_out:
1599 dev_kfree_skb_any(skb);
1600 put_page(lbq_desc->p.pg_chunk.page);
1601}
1602
1603/* Process an inbound completion from an rx ring. */
1604static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1605 struct rx_ring *rx_ring,
1606 struct ib_mac_iocb_rsp *ib_mac_rsp,
1607 u32 length,
1608 u16 vlan_id)
1609{
1610 struct net_device *ndev = qdev->ndev;
1611 struct sk_buff *skb = NULL;
1612 struct sk_buff *new_skb = NULL;
1613 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1614
1615 skb = sbq_desc->p.skb;
1616 /* Allocate new_skb and copy */
1617 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1618 if (new_skb == NULL) {
4f848c0a
RM
1619 rx_ring->rx_dropped++;
1620 return;
1621 }
1622 skb_reserve(new_skb, NET_IP_ALIGN);
1623 memcpy(skb_put(new_skb, length), skb->data, length);
1624 skb = new_skb;
1625
ae721f3a
SV
1626 /* Frame error, so drop the packet. */
1627 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1628 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1629 dev_kfree_skb_any(skb);
1630 return;
1631 }
1632
4f848c0a
RM
1633 /* loopback self test for ethtool */
1634 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1635 ql_check_lb_frame(qdev, skb);
1636 dev_kfree_skb_any(skb);
1637 return;
1638 }
1639
1640 /* The max framesize filter on this chip is set higher than
1641 * MTU since FCoE uses 2k frames.
1642 */
1643 if (skb->len > ndev->mtu + ETH_HLEN) {
1644 dev_kfree_skb_any(skb);
1645 rx_ring->rx_dropped++;
1646 return;
1647 }
1648
1649 prefetch(skb->data);
4f848c0a 1650 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1651 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1652 "%s Multicast.\n",
1653 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1654 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1655 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1656 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1657 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1658 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1659 }
1660 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1661 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1662 "Promiscuous Packet.\n");
4f848c0a
RM
1663
1664 rx_ring->rx_packets++;
1665 rx_ring->rx_bytes += skb->len;
1666 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1667 skb_checksum_none_assert(skb);
4f848c0a
RM
1668
1669 /* If rx checksum is on, and there are no
1670 * csum or frame errors.
1671 */
88230fd5 1672 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1673 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1674 /* TCP frame. */
1675 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1676 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1677 "TCP checksum done!\n");
4f848c0a
RM
1678 skb->ip_summed = CHECKSUM_UNNECESSARY;
1679 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1680 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1681 /* Unfragmented ipv4 UDP frame. */
1682 struct iphdr *iph = (struct iphdr *) skb->data;
1683 if (!(iph->frag_off &
0d653ed8 1684 htons(IP_MF|IP_OFFSET))) {
4f848c0a 1685 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1686 netif_printk(qdev, rx_status, KERN_DEBUG,
1687 qdev->ndev,
e02ef331 1688 "UDP checksum done!\n");
4f848c0a
RM
1689 }
1690 }
1691 }
1692
1693 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 1694 if (vlan_id != 0xffff)
86a9bad3 1695 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
1696 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1697 napi_gro_receive(&rx_ring->napi, skb);
1698 else
1699 netif_receive_skb(skb);
4f848c0a
RM
1700}
1701
8668ae92 1702static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1703{
1704 void *temp_addr = skb->data;
1705
1706 /* Undo the skb_reserve(skb,32) we did before
1707 * giving to hardware, and realign data on
1708 * a 2-byte boundary.
1709 */
1710 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1711 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1712 skb_copy_to_linear_data(skb, temp_addr,
1713 (unsigned int)len);
1714}
1715
1716/*
1717 * This function builds an skb for the given inbound
1718 * completion. It will be rewritten for readability in the near
1719 * future, but for not it works well.
1720 */
1721static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1722 struct rx_ring *rx_ring,
1723 struct ib_mac_iocb_rsp *ib_mac_rsp)
1724{
1725 struct bq_desc *lbq_desc;
1726 struct bq_desc *sbq_desc;
1727 struct sk_buff *skb = NULL;
1728 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1729 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1730
1731 /*
1732 * Handle the header buffer if present.
1733 */
1734 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1735 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1736 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1737 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1738 /*
1739 * Headers fit nicely into a small buffer.
1740 */
1741 sbq_desc = ql_get_curr_sbuf(rx_ring);
1742 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1743 dma_unmap_addr(sbq_desc, mapaddr),
1744 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1745 PCI_DMA_FROMDEVICE);
1746 skb = sbq_desc->p.skb;
1747 ql_realign_skb(skb, hdr_len);
1748 skb_put(skb, hdr_len);
1749 sbq_desc->p.skb = NULL;
1750 }
1751
1752 /*
1753 * Handle the data buffer(s).
1754 */
1755 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1756 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1757 "No Data buffer in this packet.\n");
c4e84bde
RM
1758 return skb;
1759 }
1760
1761 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1762 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1763 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1764 "Headers in small, data of %d bytes in small, combine them.\n",
1765 length);
c4e84bde
RM
1766 /*
1767 * Data is less than small buffer size so it's
1768 * stuffed in a small buffer.
1769 * For this case we append the data
1770 * from the "data" small buffer to the "header" small
1771 * buffer.
1772 */
1773 sbq_desc = ql_get_curr_sbuf(rx_ring);
1774 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1775 dma_unmap_addr
c4e84bde 1776 (sbq_desc, mapaddr),
64b9b41d 1777 dma_unmap_len
c4e84bde
RM
1778 (sbq_desc, maplen),
1779 PCI_DMA_FROMDEVICE);
1780 memcpy(skb_put(skb, length),
1781 sbq_desc->p.skb->data, length);
1782 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1783 dma_unmap_addr
c4e84bde
RM
1784 (sbq_desc,
1785 mapaddr),
64b9b41d 1786 dma_unmap_len
c4e84bde
RM
1787 (sbq_desc,
1788 maplen),
1789 PCI_DMA_FROMDEVICE);
1790 } else {
ae9540f7
JP
1791 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1792 "%d bytes in a single small buffer.\n",
1793 length);
c4e84bde
RM
1794 sbq_desc = ql_get_curr_sbuf(rx_ring);
1795 skb = sbq_desc->p.skb;
1796 ql_realign_skb(skb, length);
1797 skb_put(skb, length);
1798 pci_unmap_single(qdev->pdev,
64b9b41d 1799 dma_unmap_addr(sbq_desc,
c4e84bde 1800 mapaddr),
64b9b41d 1801 dma_unmap_len(sbq_desc,
c4e84bde
RM
1802 maplen),
1803 PCI_DMA_FROMDEVICE);
1804 sbq_desc->p.skb = NULL;
1805 }
1806 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1807 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1808 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1809 "Header in small, %d bytes in large. Chain large to small!\n",
1810 length);
c4e84bde
RM
1811 /*
1812 * The data is in a single large buffer. We
1813 * chain it to the header buffer's skb and let
1814 * it rip.
1815 */
7c734359 1816 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1817 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1818 "Chaining page at offset = %d, for %d bytes to skb.\n",
1819 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1820 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1821 lbq_desc->p.pg_chunk.offset,
1822 length);
c4e84bde
RM
1823 skb->len += length;
1824 skb->data_len += length;
1825 skb->truesize += length;
c4e84bde
RM
1826 } else {
1827 /*
1828 * The headers and data are in a single large buffer. We
1829 * copy it to a new skb and let it go. This can happen with
1830 * jumbo mtu on a non-TCP/UDP frame.
1831 */
7c734359 1832 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1833 skb = netdev_alloc_skb(qdev->ndev, length);
1834 if (skb == NULL) {
ae9540f7
JP
1835 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1836 "No skb available, drop the packet.\n");
c4e84bde
RM
1837 return NULL;
1838 }
4055c7d4 1839 pci_unmap_page(qdev->pdev,
64b9b41d 1840 dma_unmap_addr(lbq_desc,
4055c7d4 1841 mapaddr),
64b9b41d 1842 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1843 PCI_DMA_FROMDEVICE);
c4e84bde 1844 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1845 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1846 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1847 length);
7c734359
RM
1848 skb_fill_page_desc(skb, 0,
1849 lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
c4e84bde
RM
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
1855 length -= length;
c4e84bde
RM
1856 __pskb_pull_tail(skb,
1857 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1858 VLAN_ETH_HLEN : ETH_HLEN);
1859 }
1860 } else {
1861 /*
1862 * The data is in a chain of large buffers
1863 * pointed to by a small buffer. We loop
1864 * thru and chain them to the our small header
1865 * buffer's skb.
1866 * frags: There are 18 max frags and our small
1867 * buffer will hold 32 of them. The thing is,
1868 * we'll use 3 max for our 9000 byte jumbo
1869 * frames. If the MTU goes up we could
1870 * eventually be in trouble.
1871 */
7c734359 1872 int size, i = 0;
c4e84bde
RM
1873 sbq_desc = ql_get_curr_sbuf(rx_ring);
1874 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1875 dma_unmap_addr(sbq_desc, mapaddr),
1876 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1877 PCI_DMA_FROMDEVICE);
1878 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1879 /*
1880 * This is an non TCP/UDP IP frame, so
1881 * the headers aren't split into a small
1882 * buffer. We have to use the small buffer
1883 * that contains our sg list as our skb to
1884 * send upstairs. Copy the sg list here to
1885 * a local buffer and use it to find the
1886 * pages to chain.
1887 */
ae9540f7
JP
1888 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1889 "%d bytes of headers & data in chain of large.\n",
1890 length);
c4e84bde 1891 skb = sbq_desc->p.skb;
c4e84bde
RM
1892 sbq_desc->p.skb = NULL;
1893 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1894 }
1895 while (length > 0) {
7c734359
RM
1896 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1897 size = (length < rx_ring->lbq_buf_size) ? length :
1898 rx_ring->lbq_buf_size;
c4e84bde 1899
ae9540f7
JP
1900 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1901 "Adding page %d to skb for %d bytes.\n",
1902 i, size);
7c734359
RM
1903 skb_fill_page_desc(skb, i,
1904 lbq_desc->p.pg_chunk.page,
1905 lbq_desc->p.pg_chunk.offset,
1906 size);
c4e84bde
RM
1907 skb->len += size;
1908 skb->data_len += size;
1909 skb->truesize += size;
1910 length -= size;
c4e84bde
RM
1911 i++;
1912 }
1913 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1914 VLAN_ETH_HLEN : ETH_HLEN);
1915 }
1916 return skb;
1917}
1918
1919/* Process an inbound completion from an rx ring. */
4f848c0a 1920static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1921 struct rx_ring *rx_ring,
4f848c0a
RM
1922 struct ib_mac_iocb_rsp *ib_mac_rsp,
1923 u16 vlan_id)
c4e84bde
RM
1924{
1925 struct net_device *ndev = qdev->ndev;
1926 struct sk_buff *skb = NULL;
1927
1928 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1929
1930 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1931 if (unlikely(!skb)) {
ae9540f7
JP
1932 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1933 "No skb available, drop packet.\n");
885ee398 1934 rx_ring->rx_dropped++;
c4e84bde
RM
1935 return;
1936 }
1937
ae721f3a
SV
1938 /* Frame error, so drop the packet. */
1939 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1940 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1941 dev_kfree_skb_any(skb);
1942 return;
1943 }
1944
ec33a491
RM
1945 /* The max framesize filter on this chip is set higher than
1946 * MTU since FCoE uses 2k frames.
1947 */
1948 if (skb->len > ndev->mtu + ETH_HLEN) {
1949 dev_kfree_skb_any(skb);
885ee398 1950 rx_ring->rx_dropped++;
ec33a491
RM
1951 return;
1952 }
1953
9dfbbaa6
RM
1954 /* loopback self test for ethtool */
1955 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1956 ql_check_lb_frame(qdev, skb);
1957 dev_kfree_skb_any(skb);
1958 return;
1959 }
1960
c4e84bde 1961 prefetch(skb->data);
c4e84bde 1962 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1964 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1965 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1966 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1967 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1968 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1969 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 1970 rx_ring->rx_multicast++;
c4e84bde
RM
1971 }
1972 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
1973 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1974 "Promiscuous Packet.\n");
c4e84bde 1975 }
d555f592 1976
d555f592 1977 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1978 skb_checksum_none_assert(skb);
d555f592
RM
1979
1980 /* If rx checksum is on, and there are no
1981 * csum or frame errors.
1982 */
88230fd5 1983 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
1984 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1985 /* TCP frame. */
1986 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1987 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1988 "TCP checksum done!\n");
d555f592
RM
1989 skb->ip_summed = CHECKSUM_UNNECESSARY;
1990 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1991 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1992 /* Unfragmented ipv4 UDP frame. */
1993 struct iphdr *iph = (struct iphdr *) skb->data;
1994 if (!(iph->frag_off &
0d653ed8 1995 htons(IP_MF|IP_OFFSET))) {
d555f592 1996 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1997 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1998 "TCP checksum done!\n");
d555f592
RM
1999 }
2000 }
c4e84bde 2001 }
d555f592 2002
885ee398
RM
2003 rx_ring->rx_packets++;
2004 rx_ring->rx_bytes += skb->len;
b2014ff8 2005 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91 2006 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
86a9bad3 2007 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
18c49b91
JP
2008 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2009 napi_gro_receive(&rx_ring->napi, skb);
2010 else
2011 netif_receive_skb(skb);
c4e84bde
RM
2012}
2013
4f848c0a
RM
2014/* Process an inbound completion from an rx ring. */
2015static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2016 struct rx_ring *rx_ring,
2017 struct ib_mac_iocb_rsp *ib_mac_rsp)
2018{
2019 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2020 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2021 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2022 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2023
2024 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2025
2026 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2027 /* The data and headers are split into
2028 * separate buffers.
2029 */
2030 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2031 vlan_id);
2032 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2033 /* The data fit in a single small buffer.
2034 * Allocate a new skb, copy the data and
2035 * return the buffer to the free pool.
2036 */
2037 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2038 length, vlan_id);
63526713
RM
2039 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2040 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2041 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2042 /* TCP packet in a page chunk that's been checksummed.
2043 * Tack it on to our GRO skb and let it go.
2044 */
2045 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2046 length, vlan_id);
4f848c0a
RM
2047 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2048 /* Non-TCP packet in a page chunk. Allocate an
2049 * skb, tack it on frags, and send it up.
2050 */
2051 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2052 length, vlan_id);
2053 } else {
c0c56955
RM
2054 /* Non-TCP/UDP large frames that span multiple buffers
2055 * can be processed corrrectly by the split frame logic.
2056 */
2057 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2058 vlan_id);
4f848c0a
RM
2059 }
2060
2061 return (unsigned long)length;
2062}
2063
c4e84bde
RM
2064/* Process an outbound completion from an rx ring. */
2065static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2066 struct ob_mac_iocb_rsp *mac_rsp)
2067{
2068 struct tx_ring *tx_ring;
2069 struct tx_ring_desc *tx_ring_desc;
2070
2071 QL_DUMP_OB_MAC_RSP(mac_rsp);
2072 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2073 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2074 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2075 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2076 tx_ring->tx_packets++;
c4e84bde
RM
2077 dev_kfree_skb(tx_ring_desc->skb);
2078 tx_ring_desc->skb = NULL;
2079
2080 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2081 OB_MAC_IOCB_RSP_S |
2082 OB_MAC_IOCB_RSP_L |
2083 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2084 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2085 netif_warn(qdev, tx_done, qdev->ndev,
2086 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2087 }
2088 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2089 netif_warn(qdev, tx_done, qdev->ndev,
2090 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2091 }
2092 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2093 netif_warn(qdev, tx_done, qdev->ndev,
2094 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2095 }
2096 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2097 netif_warn(qdev, tx_done, qdev->ndev,
2098 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2099 }
2100 }
2101 atomic_inc(&tx_ring->tx_count);
2102}
2103
2104/* Fire up a handler to reset the MPI processor. */
2105void ql_queue_fw_error(struct ql_adapter *qdev)
2106{
6a473308 2107 ql_link_off(qdev);
c4e84bde
RM
2108 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2109}
2110
2111void ql_queue_asic_error(struct ql_adapter *qdev)
2112{
6a473308 2113 ql_link_off(qdev);
c4e84bde 2114 ql_disable_interrupts(qdev);
6497b607
RM
2115 /* Clear adapter up bit to signal the recovery
2116 * process that it shouldn't kill the reset worker
2117 * thread
2118 */
2119 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2120 /* Set asic recovery bit to indicate reset process that we are
2121 * in fatal error recovery process rather than normal close
2122 */
2123 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2124 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2125}
2126
2127static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2128 struct ib_ae_iocb_rsp *ib_ae_rsp)
2129{
2130 switch (ib_ae_rsp->event) {
2131 case MGMT_ERR_EVENT:
ae9540f7
JP
2132 netif_err(qdev, rx_err, qdev->ndev,
2133 "Management Processor Fatal Error.\n");
c4e84bde
RM
2134 ql_queue_fw_error(qdev);
2135 return;
2136
2137 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2138 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2139 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2140 ql_queue_asic_error(qdev);
2141 return;
2142
2143 case SOFT_ECC_ERROR_EVENT:
5069ee55 2144 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2145 ql_queue_asic_error(qdev);
2146 break;
2147
2148 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2149 netdev_err(qdev->ndev, "PCI error occurred when reading "
2150 "anonymous buffers from rx_ring %d.\n",
2151 ib_ae_rsp->q_id);
c4e84bde
RM
2152 ql_queue_asic_error(qdev);
2153 break;
2154
2155 default:
ae9540f7
JP
2156 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2157 ib_ae_rsp->event);
c4e84bde
RM
2158 ql_queue_asic_error(qdev);
2159 break;
2160 }
2161}
2162
2163static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2164{
2165 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2166 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2167 struct ob_mac_iocb_rsp *net_rsp = NULL;
2168 int count = 0;
2169
1e213303 2170 struct tx_ring *tx_ring;
c4e84bde
RM
2171 /* While there are entries in the completion queue. */
2172 while (prod != rx_ring->cnsmr_idx) {
2173
ae9540f7
JP
2174 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2175 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2176 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2177
2178 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2179 rmb();
2180 switch (net_rsp->opcode) {
2181
2182 case OPCODE_OB_MAC_TSO_IOCB:
2183 case OPCODE_OB_MAC_IOCB:
2184 ql_process_mac_tx_intr(qdev, net_rsp);
2185 break;
2186 default:
ae9540f7
JP
2187 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2188 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2189 net_rsp->opcode);
c4e84bde
RM
2190 }
2191 count++;
2192 ql_update_cq(rx_ring);
ba7cd3ba 2193 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2194 }
4da79504
DC
2195 if (!net_rsp)
2196 return 0;
c4e84bde 2197 ql_write_cq_idx(rx_ring);
1e213303 2198 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2199 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2200 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2201 /*
2202 * The queue got stopped because the tx_ring was full.
2203 * Wake it up, because it's now at least 25% empty.
2204 */
1e213303 2205 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2206 }
2207
2208 return count;
2209}
2210
2211static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2212{
2213 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2214 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2215 struct ql_net_rsp_iocb *net_rsp;
2216 int count = 0;
2217
2218 /* While there are entries in the completion queue. */
2219 while (prod != rx_ring->cnsmr_idx) {
2220
ae9540f7
JP
2221 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2222 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2223 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2224
2225 net_rsp = rx_ring->curr_entry;
2226 rmb();
2227 switch (net_rsp->opcode) {
2228 case OPCODE_IB_MAC_IOCB:
2229 ql_process_mac_rx_intr(qdev, rx_ring,
2230 (struct ib_mac_iocb_rsp *)
2231 net_rsp);
2232 break;
2233
2234 case OPCODE_IB_AE_IOCB:
2235 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2236 net_rsp);
2237 break;
2238 default:
ae9540f7
JP
2239 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2240 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2241 net_rsp->opcode);
2242 break;
c4e84bde
RM
2243 }
2244 count++;
2245 ql_update_cq(rx_ring);
ba7cd3ba 2246 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2247 if (count == budget)
2248 break;
2249 }
2250 ql_update_buffer_queues(qdev, rx_ring);
2251 ql_write_cq_idx(rx_ring);
2252 return count;
2253}
2254
2255static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2256{
2257 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2258 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2259 struct rx_ring *trx_ring;
2260 int i, work_done = 0;
2261 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2262
ae9540f7
JP
2263 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2264 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2265
39aa8165
RM
2266 /* Service the TX rings first. They start
2267 * right after the RSS rings. */
2268 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2269 trx_ring = &qdev->rx_ring[i];
2270 /* If this TX completion ring belongs to this vector and
2271 * it's not empty then service it.
2272 */
2273 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2274 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2275 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2276 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2277 "%s: Servicing TX completion ring %d.\n",
2278 __func__, trx_ring->cq_id);
39aa8165
RM
2279 ql_clean_outbound_rx_ring(trx_ring);
2280 }
2281 }
2282
2283 /*
2284 * Now service the RSS ring if it's active.
2285 */
2286 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2287 rx_ring->cnsmr_idx) {
ae9540f7
JP
2288 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2289 "%s: Servicing RX completion ring %d.\n",
2290 __func__, rx_ring->cq_id);
39aa8165
RM
2291 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2292 }
2293
c4e84bde 2294 if (work_done < budget) {
22bdd4f5 2295 napi_complete(napi);
c4e84bde
RM
2296 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2297 }
2298 return work_done;
2299}
2300
c8f44aff 2301static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2302{
2303 struct ql_adapter *qdev = netdev_priv(ndev);
2304
f646968f 2305 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
c4e84bde 2306 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2307 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2308 } else {
c4e84bde
RM
2309 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2310 }
2311}
2312
c8f44aff
MM
2313static netdev_features_t qlge_fix_features(struct net_device *ndev,
2314 netdev_features_t features)
18c49b91
JP
2315{
2316 /*
2317 * Since there is no support for separate rx/tx vlan accel
2318 * enable/disable make sure tx flag is always in same state as rx.
2319 */
f646968f
PM
2320 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2321 features |= NETIF_F_HW_VLAN_CTAG_TX;
18c49b91 2322 else
f646968f 2323 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
18c49b91
JP
2324
2325 return features;
2326}
2327
c8f44aff
MM
2328static int qlge_set_features(struct net_device *ndev,
2329 netdev_features_t features)
18c49b91 2330{
c8f44aff 2331 netdev_features_t changed = ndev->features ^ features;
18c49b91 2332
f646968f 2333 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
18c49b91
JP
2334 qlge_vlan_mode(ndev, features);
2335
2336 return 0;
2337}
2338
8e586137 2339static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2340{
c4e84bde 2341 u32 enable_bit = MAC_ADDR_E;
8e586137 2342 int err;
c4e84bde 2343
8e586137
JP
2344 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2345 MAC_ADDR_TYPE_VLAN, vid);
2346 if (err)
ae9540f7
JP
2347 netif_err(qdev, ifup, qdev->ndev,
2348 "Failed to init vlan address.\n");
8e586137 2349 return err;
c4e84bde
RM
2350}
2351
80d5c368 2352static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
c4e84bde
RM
2353{
2354 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2355 int status;
8e586137 2356 int err;
cc288f54
RM
2357
2358 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2359 if (status)
8e586137 2360 return status;
c4e84bde 2361
8e586137 2362 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2363 set_bit(vid, qdev->active_vlans);
2364
2365 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2366
2367 return err;
18c49b91
JP
2368}
2369
8e586137 2370static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2371{
2372 u32 enable_bit = 0;
8e586137 2373 int err;
18c49b91 2374
8e586137
JP
2375 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2376 MAC_ADDR_TYPE_VLAN, vid);
2377 if (err)
ae9540f7
JP
2378 netif_err(qdev, ifup, qdev->ndev,
2379 "Failed to clear vlan address.\n");
8e586137 2380 return err;
18c49b91
JP
2381}
2382
80d5c368 2383static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
18c49b91
JP
2384{
2385 struct ql_adapter *qdev = netdev_priv(ndev);
2386 int status;
8e586137 2387 int err;
c4e84bde 2388
18c49b91
JP
2389 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2390 if (status)
8e586137 2391 return status;
18c49b91 2392
8e586137 2393 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2394 clear_bit(vid, qdev->active_vlans);
2395
2396 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2397
2398 return err;
c4e84bde
RM
2399}
2400
c1b60092
RM
2401static void qlge_restore_vlan(struct ql_adapter *qdev)
2402{
18c49b91
JP
2403 int status;
2404 u16 vid;
2405
2406 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2407 if (status)
2408 return;
2409
2410 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2411 __qlge_vlan_rx_add_vid(qdev, vid);
2412
2413 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2414}
2415
c4e84bde
RM
2416/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2417static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2418{
2419 struct rx_ring *rx_ring = dev_id;
288379f0 2420 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2421 return IRQ_HANDLED;
2422}
2423
c4e84bde
RM
2424/* This handles a fatal error, MPI activity, and the default
2425 * rx_ring in an MSI-X multiple vector environment.
2426 * In MSI/Legacy environment it also process the rest of
2427 * the rx_rings.
2428 */
2429static irqreturn_t qlge_isr(int irq, void *dev_id)
2430{
2431 struct rx_ring *rx_ring = dev_id;
2432 struct ql_adapter *qdev = rx_ring->qdev;
2433 struct intr_context *intr_context = &qdev->intr_context[0];
2434 u32 var;
c4e84bde
RM
2435 int work_done = 0;
2436
bb0d215c
RM
2437 spin_lock(&qdev->hw_lock);
2438 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2439 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2440 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2441 spin_unlock(&qdev->hw_lock);
2442 return IRQ_NONE;
c4e84bde 2443 }
bb0d215c 2444 spin_unlock(&qdev->hw_lock);
c4e84bde 2445
bb0d215c 2446 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2447
2448 /*
2449 * Check for fatal error.
2450 */
2451 if (var & STS_FE) {
2452 ql_queue_asic_error(qdev);
5069ee55 2453 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2454 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2455 netdev_err(qdev->ndev, "Resetting chip. "
2456 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2457 return IRQ_HANDLED;
2458 }
2459
2460 /*
2461 * Check MPI processor activity.
2462 */
5ee22a5a
RM
2463 if ((var & STS_PI) &&
2464 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2465 /*
2466 * We've got an async event or mailbox completion.
2467 * Handle it and clear the source of the interrupt.
2468 */
ae9540f7
JP
2469 netif_err(qdev, intr, qdev->ndev,
2470 "Got MPI processor interrupt.\n");
c4e84bde 2471 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2472 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2473 queue_delayed_work_on(smp_processor_id(),
2474 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2475 work_done++;
2476 }
2477
2478 /*
39aa8165
RM
2479 * Get the bit-mask that shows the active queues for this
2480 * pass. Compare it to the queues that this irq services
2481 * and call napi if there's a match.
c4e84bde 2482 */
39aa8165
RM
2483 var = ql_read32(qdev, ISR1);
2484 if (var & intr_context->irq_mask) {
ae9540f7
JP
2485 netif_info(qdev, intr, qdev->ndev,
2486 "Waking handler for rx_ring[0].\n");
39aa8165 2487 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2488 napi_schedule(&rx_ring->napi);
2489 work_done++;
2490 }
bb0d215c 2491 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2492 return work_done ? IRQ_HANDLED : IRQ_NONE;
2493}
2494
2495static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2496{
2497
2498 if (skb_is_gso(skb)) {
2499 int err;
2500 if (skb_header_cloned(skb)) {
2501 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2502 if (err)
2503 return err;
2504 }
2505
2506 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2507 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2508 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2509 mac_iocb_ptr->total_hdrs_len =
2510 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2511 mac_iocb_ptr->net_trans_offset =
2512 cpu_to_le16(skb_network_offset(skb) |
2513 skb_transport_offset(skb)
2514 << OB_MAC_TRANSPORT_HDR_SHIFT);
2515 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2516 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2517 if (likely(skb->protocol == htons(ETH_P_IP))) {
2518 struct iphdr *iph = ip_hdr(skb);
2519 iph->check = 0;
2520 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2521 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2522 iph->daddr, 0,
2523 IPPROTO_TCP,
2524 0);
2525 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2526 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2527 tcp_hdr(skb)->check =
2528 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2529 &ipv6_hdr(skb)->daddr,
2530 0, IPPROTO_TCP, 0);
2531 }
2532 return 1;
2533 }
2534 return 0;
2535}
2536
2537static void ql_hw_csum_setup(struct sk_buff *skb,
2538 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2539{
2540 int len;
2541 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2542 __sum16 *check;
c4e84bde
RM
2543 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2544 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2545 mac_iocb_ptr->net_trans_offset =
2546 cpu_to_le16(skb_network_offset(skb) |
2547 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2548
2549 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2550 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2551 if (likely(iph->protocol == IPPROTO_TCP)) {
2552 check = &(tcp_hdr(skb)->check);
2553 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2554 mac_iocb_ptr->total_hdrs_len =
2555 cpu_to_le16(skb_transport_offset(skb) +
2556 (tcp_hdr(skb)->doff << 2));
2557 } else {
2558 check = &(udp_hdr(skb)->check);
2559 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2560 mac_iocb_ptr->total_hdrs_len =
2561 cpu_to_le16(skb_transport_offset(skb) +
2562 sizeof(struct udphdr));
2563 }
2564 *check = ~csum_tcpudp_magic(iph->saddr,
2565 iph->daddr, len, iph->protocol, 0);
2566}
2567
61357325 2568static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2569{
2570 struct tx_ring_desc *tx_ring_desc;
2571 struct ob_mac_iocb_req *mac_iocb_ptr;
2572 struct ql_adapter *qdev = netdev_priv(ndev);
2573 int tso;
2574 struct tx_ring *tx_ring;
1e213303 2575 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2576
2577 tx_ring = &qdev->tx_ring[tx_ring_idx];
2578
74c50b4b
RM
2579 if (skb_padto(skb, ETH_ZLEN))
2580 return NETDEV_TX_OK;
2581
c4e84bde 2582 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2583 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2584 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2585 __func__, tx_ring_idx);
1e213303 2586 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2587 tx_ring->tx_errors++;
c4e84bde
RM
2588 return NETDEV_TX_BUSY;
2589 }
2590 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2591 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2592 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2593
2594 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2595 mac_iocb_ptr->tid = tx_ring_desc->index;
2596 /* We use the upper 32-bits to store the tx queue for this IO.
2597 * When we get the completion we can use it to establish the context.
2598 */
2599 mac_iocb_ptr->txq_idx = tx_ring_idx;
2600 tx_ring_desc->skb = skb;
2601
2602 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2603
eab6d18d 2604 if (vlan_tx_tag_present(skb)) {
ae9540f7
JP
2605 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2606 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
c4e84bde
RM
2607 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2608 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2609 }
2610 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2611 if (tso < 0) {
2612 dev_kfree_skb_any(skb);
2613 return NETDEV_TX_OK;
2614 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2615 ql_hw_csum_setup(skb,
2616 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2617 }
0d979f74
RM
2618 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2619 NETDEV_TX_OK) {
ae9540f7
JP
2620 netif_err(qdev, tx_queued, qdev->ndev,
2621 "Could not map the segments.\n");
885ee398 2622 tx_ring->tx_errors++;
0d979f74
RM
2623 return NETDEV_TX_BUSY;
2624 }
c4e84bde
RM
2625 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2626 tx_ring->prod_idx++;
2627 if (tx_ring->prod_idx == tx_ring->wq_len)
2628 tx_ring->prod_idx = 0;
2629 wmb();
2630
2631 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2632 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2633 "tx queued, slot %d, len %d\n",
2634 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2635
2636 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2637
2638 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2639 netif_stop_subqueue(ndev, tx_ring->wq_id);
2640 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2641 /*
2642 * The queue got stopped because the tx_ring was full.
2643 * Wake it up, because it's now at least 25% empty.
2644 */
2645 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2646 }
c4e84bde
RM
2647 return NETDEV_TX_OK;
2648}
2649
9dfbbaa6 2650
c4e84bde
RM
2651static void ql_free_shadow_space(struct ql_adapter *qdev)
2652{
2653 if (qdev->rx_ring_shadow_reg_area) {
2654 pci_free_consistent(qdev->pdev,
2655 PAGE_SIZE,
2656 qdev->rx_ring_shadow_reg_area,
2657 qdev->rx_ring_shadow_reg_dma);
2658 qdev->rx_ring_shadow_reg_area = NULL;
2659 }
2660 if (qdev->tx_ring_shadow_reg_area) {
2661 pci_free_consistent(qdev->pdev,
2662 PAGE_SIZE,
2663 qdev->tx_ring_shadow_reg_area,
2664 qdev->tx_ring_shadow_reg_dma);
2665 qdev->tx_ring_shadow_reg_area = NULL;
2666 }
2667}
2668
2669static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2670{
2671 qdev->rx_ring_shadow_reg_area =
2672 pci_alloc_consistent(qdev->pdev,
2673 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2674 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2675 netif_err(qdev, ifup, qdev->ndev,
2676 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2677 return -ENOMEM;
2678 }
b25215d0 2679 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2680 qdev->tx_ring_shadow_reg_area =
2681 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2682 &qdev->tx_ring_shadow_reg_dma);
2683 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2684 netif_err(qdev, ifup, qdev->ndev,
2685 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2686 goto err_wqp_sh_area;
2687 }
b25215d0 2688 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2689 return 0;
2690
2691err_wqp_sh_area:
2692 pci_free_consistent(qdev->pdev,
2693 PAGE_SIZE,
2694 qdev->rx_ring_shadow_reg_area,
2695 qdev->rx_ring_shadow_reg_dma);
2696 return -ENOMEM;
2697}
2698
2699static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2700{
2701 struct tx_ring_desc *tx_ring_desc;
2702 int i;
2703 struct ob_mac_iocb_req *mac_iocb_ptr;
2704
2705 mac_iocb_ptr = tx_ring->wq_base;
2706 tx_ring_desc = tx_ring->q;
2707 for (i = 0; i < tx_ring->wq_len; i++) {
2708 tx_ring_desc->index = i;
2709 tx_ring_desc->skb = NULL;
2710 tx_ring_desc->queue_entry = mac_iocb_ptr;
2711 mac_iocb_ptr++;
2712 tx_ring_desc++;
2713 }
2714 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2715}
2716
2717static void ql_free_tx_resources(struct ql_adapter *qdev,
2718 struct tx_ring *tx_ring)
2719{
2720 if (tx_ring->wq_base) {
2721 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2722 tx_ring->wq_base, tx_ring->wq_base_dma);
2723 tx_ring->wq_base = NULL;
2724 }
2725 kfree(tx_ring->q);
2726 tx_ring->q = NULL;
2727}
2728
2729static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2730 struct tx_ring *tx_ring)
2731{
2732 tx_ring->wq_base =
2733 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2734 &tx_ring->wq_base_dma);
2735
8e95a202 2736 if ((tx_ring->wq_base == NULL) ||
f5c4441c
JK
2737 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2738 goto pci_alloc_err;
2739
c4e84bde
RM
2740 tx_ring->q =
2741 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2742 if (tx_ring->q == NULL)
2743 goto err;
2744
2745 return 0;
2746err:
2747 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2748 tx_ring->wq_base, tx_ring->wq_base_dma);
f5c4441c
JK
2749 tx_ring->wq_base = NULL;
2750pci_alloc_err:
2751 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2752 return -ENOMEM;
2753}
2754
8668ae92 2755static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2756{
c4e84bde
RM
2757 struct bq_desc *lbq_desc;
2758
7c734359
RM
2759 uint32_t curr_idx, clean_idx;
2760
2761 curr_idx = rx_ring->lbq_curr_idx;
2762 clean_idx = rx_ring->lbq_clean_idx;
2763 while (curr_idx != clean_idx) {
2764 lbq_desc = &rx_ring->lbq[curr_idx];
2765
2766 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2767 pci_unmap_page(qdev->pdev,
7c734359
RM
2768 lbq_desc->p.pg_chunk.map,
2769 ql_lbq_block_size(qdev),
c4e84bde 2770 PCI_DMA_FROMDEVICE);
7c734359 2771 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2772 }
7c734359
RM
2773
2774 put_page(lbq_desc->p.pg_chunk.page);
2775 lbq_desc->p.pg_chunk.page = NULL;
2776
2777 if (++curr_idx == rx_ring->lbq_len)
2778 curr_idx = 0;
2779
c4e84bde 2780 }
ef380794
TLSC
2781 if (rx_ring->pg_chunk.page) {
2782 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2783 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2784 put_page(rx_ring->pg_chunk.page);
2785 rx_ring->pg_chunk.page = NULL;
2786 }
c4e84bde
RM
2787}
2788
8668ae92 2789static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2790{
2791 int i;
2792 struct bq_desc *sbq_desc;
2793
2794 for (i = 0; i < rx_ring->sbq_len; i++) {
2795 sbq_desc = &rx_ring->sbq[i];
2796 if (sbq_desc == NULL) {
ae9540f7
JP
2797 netif_err(qdev, ifup, qdev->ndev,
2798 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2799 return;
2800 }
2801 if (sbq_desc->p.skb) {
2802 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2803 dma_unmap_addr(sbq_desc, mapaddr),
2804 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2805 PCI_DMA_FROMDEVICE);
2806 dev_kfree_skb(sbq_desc->p.skb);
2807 sbq_desc->p.skb = NULL;
2808 }
c4e84bde
RM
2809 }
2810}
2811
4545a3f2
RM
2812/* Free all large and small rx buffers associated
2813 * with the completion queues for this device.
2814 */
2815static void ql_free_rx_buffers(struct ql_adapter *qdev)
2816{
2817 int i;
2818 struct rx_ring *rx_ring;
2819
2820 for (i = 0; i < qdev->rx_ring_count; i++) {
2821 rx_ring = &qdev->rx_ring[i];
2822 if (rx_ring->lbq)
2823 ql_free_lbq_buffers(qdev, rx_ring);
2824 if (rx_ring->sbq)
2825 ql_free_sbq_buffers(qdev, rx_ring);
2826 }
2827}
2828
2829static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2830{
2831 struct rx_ring *rx_ring;
2832 int i;
2833
2834 for (i = 0; i < qdev->rx_ring_count; i++) {
2835 rx_ring = &qdev->rx_ring[i];
2836 if (rx_ring->type != TX_Q)
2837 ql_update_buffer_queues(qdev, rx_ring);
2838 }
2839}
2840
2841static void ql_init_lbq_ring(struct ql_adapter *qdev,
2842 struct rx_ring *rx_ring)
2843{
2844 int i;
2845 struct bq_desc *lbq_desc;
2846 __le64 *bq = rx_ring->lbq_base;
2847
2848 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2849 for (i = 0; i < rx_ring->lbq_len; i++) {
2850 lbq_desc = &rx_ring->lbq[i];
2851 memset(lbq_desc, 0, sizeof(*lbq_desc));
2852 lbq_desc->index = i;
2853 lbq_desc->addr = bq;
2854 bq++;
2855 }
2856}
2857
2858static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2859 struct rx_ring *rx_ring)
2860{
2861 int i;
2862 struct bq_desc *sbq_desc;
2c9a0d41 2863 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2864
4545a3f2 2865 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2866 for (i = 0; i < rx_ring->sbq_len; i++) {
2867 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2868 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2869 sbq_desc->index = i;
2c9a0d41 2870 sbq_desc->addr = bq;
c4e84bde
RM
2871 bq++;
2872 }
c4e84bde
RM
2873}
2874
2875static void ql_free_rx_resources(struct ql_adapter *qdev,
2876 struct rx_ring *rx_ring)
2877{
c4e84bde
RM
2878 /* Free the small buffer queue. */
2879 if (rx_ring->sbq_base) {
2880 pci_free_consistent(qdev->pdev,
2881 rx_ring->sbq_size,
2882 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2883 rx_ring->sbq_base = NULL;
2884 }
2885
2886 /* Free the small buffer queue control blocks. */
2887 kfree(rx_ring->sbq);
2888 rx_ring->sbq = NULL;
2889
2890 /* Free the large buffer queue. */
2891 if (rx_ring->lbq_base) {
2892 pci_free_consistent(qdev->pdev,
2893 rx_ring->lbq_size,
2894 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2895 rx_ring->lbq_base = NULL;
2896 }
2897
2898 /* Free the large buffer queue control blocks. */
2899 kfree(rx_ring->lbq);
2900 rx_ring->lbq = NULL;
2901
2902 /* Free the rx queue. */
2903 if (rx_ring->cq_base) {
2904 pci_free_consistent(qdev->pdev,
2905 rx_ring->cq_size,
2906 rx_ring->cq_base, rx_ring->cq_base_dma);
2907 rx_ring->cq_base = NULL;
2908 }
2909}
2910
2911/* Allocate queues and buffers for this completions queue based
2912 * on the values in the parameter structure. */
2913static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2914 struct rx_ring *rx_ring)
2915{
2916
2917 /*
2918 * Allocate the completion queue for this rx_ring.
2919 */
2920 rx_ring->cq_base =
2921 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2922 &rx_ring->cq_base_dma);
2923
2924 if (rx_ring->cq_base == NULL) {
ae9540f7 2925 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2926 return -ENOMEM;
2927 }
2928
2929 if (rx_ring->sbq_len) {
2930 /*
2931 * Allocate small buffer queue.
2932 */
2933 rx_ring->sbq_base =
2934 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2935 &rx_ring->sbq_base_dma);
2936
2937 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
2938 netif_err(qdev, ifup, qdev->ndev,
2939 "Small buffer queue allocation failed.\n");
c4e84bde
RM
2940 goto err_mem;
2941 }
2942
2943 /*
2944 * Allocate small buffer queue control blocks.
2945 */
14f8dc49
JP
2946 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
2947 sizeof(struct bq_desc),
2948 GFP_KERNEL);
2949 if (rx_ring->sbq == NULL)
c4e84bde 2950 goto err_mem;
c4e84bde 2951
4545a3f2 2952 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2953 }
2954
2955 if (rx_ring->lbq_len) {
2956 /*
2957 * Allocate large buffer queue.
2958 */
2959 rx_ring->lbq_base =
2960 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2961 &rx_ring->lbq_base_dma);
2962
2963 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
2964 netif_err(qdev, ifup, qdev->ndev,
2965 "Large buffer queue allocation failed.\n");
c4e84bde
RM
2966 goto err_mem;
2967 }
2968 /*
2969 * Allocate large buffer queue control blocks.
2970 */
14f8dc49
JP
2971 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
2972 sizeof(struct bq_desc),
2973 GFP_KERNEL);
2974 if (rx_ring->lbq == NULL)
c4e84bde 2975 goto err_mem;
c4e84bde 2976
4545a3f2 2977 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2978 }
2979
2980 return 0;
2981
2982err_mem:
2983 ql_free_rx_resources(qdev, rx_ring);
2984 return -ENOMEM;
2985}
2986
2987static void ql_tx_ring_clean(struct ql_adapter *qdev)
2988{
2989 struct tx_ring *tx_ring;
2990 struct tx_ring_desc *tx_ring_desc;
2991 int i, j;
2992
2993 /*
2994 * Loop through all queues and free
2995 * any resources.
2996 */
2997 for (j = 0; j < qdev->tx_ring_count; j++) {
2998 tx_ring = &qdev->tx_ring[j];
2999 for (i = 0; i < tx_ring->wq_len; i++) {
3000 tx_ring_desc = &tx_ring->q[i];
3001 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
3002 netif_err(qdev, ifdown, qdev->ndev,
3003 "Freeing lost SKB %p, from queue %d, index %d.\n",
3004 tx_ring_desc->skb, j,
3005 tx_ring_desc->index);
c4e84bde
RM
3006 ql_unmap_send(qdev, tx_ring_desc,
3007 tx_ring_desc->map_cnt);
3008 dev_kfree_skb(tx_ring_desc->skb);
3009 tx_ring_desc->skb = NULL;
3010 }
3011 }
3012 }
3013}
3014
c4e84bde
RM
3015static void ql_free_mem_resources(struct ql_adapter *qdev)
3016{
3017 int i;
3018
3019 for (i = 0; i < qdev->tx_ring_count; i++)
3020 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3021 for (i = 0; i < qdev->rx_ring_count; i++)
3022 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3023 ql_free_shadow_space(qdev);
3024}
3025
3026static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3027{
3028 int i;
3029
3030 /* Allocate space for our shadow registers and such. */
3031 if (ql_alloc_shadow_space(qdev))
3032 return -ENOMEM;
3033
3034 for (i = 0; i < qdev->rx_ring_count; i++) {
3035 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3036 netif_err(qdev, ifup, qdev->ndev,
3037 "RX resource allocation failed.\n");
c4e84bde
RM
3038 goto err_mem;
3039 }
3040 }
3041 /* Allocate tx queue resources */
3042 for (i = 0; i < qdev->tx_ring_count; i++) {
3043 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3044 netif_err(qdev, ifup, qdev->ndev,
3045 "TX resource allocation failed.\n");
c4e84bde
RM
3046 goto err_mem;
3047 }
3048 }
3049 return 0;
3050
3051err_mem:
3052 ql_free_mem_resources(qdev);
3053 return -ENOMEM;
3054}
3055
3056/* Set up the rx ring control block and pass it to the chip.
3057 * The control block is defined as
3058 * "Completion Queue Initialization Control Block", or cqicb.
3059 */
3060static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3061{
3062 struct cqicb *cqicb = &rx_ring->cqicb;
3063 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3064 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3065 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3066 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3067 void __iomem *doorbell_area =
3068 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3069 int err = 0;
3070 u16 bq_len;
d4a4aba6 3071 u64 tmp;
b8facca0
RM
3072 __le64 *base_indirect_ptr;
3073 int page_entries;
c4e84bde
RM
3074
3075 /* Set up the shadow registers for this ring. */
3076 rx_ring->prod_idx_sh_reg = shadow_reg;
3077 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3078 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3079 shadow_reg += sizeof(u64);
3080 shadow_reg_dma += sizeof(u64);
3081 rx_ring->lbq_base_indirect = shadow_reg;
3082 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3083 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3084 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3085 rx_ring->sbq_base_indirect = shadow_reg;
3086 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3087
3088 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3089 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3090 rx_ring->cnsmr_idx = 0;
3091 rx_ring->curr_entry = rx_ring->cq_base;
3092
3093 /* PCI doorbell mem area + 0x04 for valid register */
3094 rx_ring->valid_db_reg = doorbell_area + 0x04;
3095
3096 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3097 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3098
3099 /* PCI doorbell mem area + 0x1c */
8668ae92 3100 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3101
3102 memset((void *)cqicb, 0, sizeof(struct cqicb));
3103 cqicb->msix_vect = rx_ring->irq;
3104
459caf5a
RM
3105 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3106 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3107
97345524 3108 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3109
97345524 3110 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3111
3112 /*
3113 * Set up the control block load flags.
3114 */
3115 cqicb->flags = FLAGS_LC | /* Load queue base address */
3116 FLAGS_LV | /* Load MSI-X vector */
3117 FLAGS_LI; /* Load irq delay values */
3118 if (rx_ring->lbq_len) {
3119 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3120 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3121 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3122 page_entries = 0;
3123 do {
3124 *base_indirect_ptr = cpu_to_le64(tmp);
3125 tmp += DB_PAGE_SIZE;
3126 base_indirect_ptr++;
3127 page_entries++;
3128 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3129 cqicb->lbq_addr =
3130 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3131 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3132 (u16) rx_ring->lbq_buf_size;
3133 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3134 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3135 (u16) rx_ring->lbq_len;
c4e84bde 3136 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3137 rx_ring->lbq_prod_idx = 0;
c4e84bde 3138 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3139 rx_ring->lbq_clean_idx = 0;
3140 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3141 }
3142 if (rx_ring->sbq_len) {
3143 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3144 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3145 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3146 page_entries = 0;
3147 do {
3148 *base_indirect_ptr = cpu_to_le64(tmp);
3149 tmp += DB_PAGE_SIZE;
3150 base_indirect_ptr++;
3151 page_entries++;
3152 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3153 cqicb->sbq_addr =
3154 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3155 cqicb->sbq_buf_size =
52e55f3c 3156 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3157 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3158 (u16) rx_ring->sbq_len;
c4e84bde 3159 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3160 rx_ring->sbq_prod_idx = 0;
c4e84bde 3161 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3162 rx_ring->sbq_clean_idx = 0;
3163 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3164 }
3165 switch (rx_ring->type) {
3166 case TX_Q:
c4e84bde
RM
3167 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3168 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3169 break;
c4e84bde
RM
3170 case RX_Q:
3171 /* Inbound completion handling rx_rings run in
3172 * separate NAPI contexts.
3173 */
3174 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3175 64);
3176 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3177 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3178 break;
3179 default:
ae9540f7
JP
3180 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3181 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3182 }
c4e84bde
RM
3183 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3184 CFG_LCQ, rx_ring->cq_id);
3185 if (err) {
ae9540f7 3186 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3187 return err;
3188 }
c4e84bde
RM
3189 return err;
3190}
3191
3192static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3193{
3194 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3195 void __iomem *doorbell_area =
3196 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3197 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3198 (tx_ring->wq_id * sizeof(u64));
3199 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3200 (tx_ring->wq_id * sizeof(u64));
3201 int err = 0;
3202
3203 /*
3204 * Assign doorbell registers for this tx_ring.
3205 */
3206 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3207 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3208 tx_ring->prod_idx = 0;
3209 /* TX PCI doorbell mem area + 0x04 */
3210 tx_ring->valid_db_reg = doorbell_area + 0x04;
3211
3212 /*
3213 * Assign shadow registers for this tx_ring.
3214 */
3215 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3216 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3217
3218 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3219 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3220 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3221 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3222 wqicb->rid = 0;
97345524 3223 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3224
97345524 3225 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3226
3227 ql_init_tx_ring(qdev, tx_ring);
3228
e332471c 3229 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3230 (u16) tx_ring->wq_id);
3231 if (err) {
ae9540f7 3232 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3233 return err;
3234 }
c4e84bde
RM
3235 return err;
3236}
3237
3238static void ql_disable_msix(struct ql_adapter *qdev)
3239{
3240 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3241 pci_disable_msix(qdev->pdev);
3242 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3243 kfree(qdev->msi_x_entry);
3244 qdev->msi_x_entry = NULL;
3245 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3246 pci_disable_msi(qdev->pdev);
3247 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3248 }
3249}
3250
a4ab6137
RM
3251/* We start by trying to get the number of vectors
3252 * stored in qdev->intr_count. If we don't get that
3253 * many then we reduce the count and try again.
3254 */
c4e84bde
RM
3255static void ql_enable_msix(struct ql_adapter *qdev)
3256{
a4ab6137 3257 int i, err;
c4e84bde 3258
c4e84bde 3259 /* Get the MSIX vectors. */
a5a62a1c 3260 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3261 /* Try to alloc space for the msix struct,
3262 * if it fails then go to MSI/legacy.
3263 */
a4ab6137 3264 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3265 sizeof(struct msix_entry),
3266 GFP_KERNEL);
3267 if (!qdev->msi_x_entry) {
a5a62a1c 3268 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3269 goto msi;
3270 }
3271
a4ab6137 3272 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3273 qdev->msi_x_entry[i].entry = i;
3274
a4ab6137
RM
3275 /* Loop to get our vectors. We start with
3276 * what we want and settle for what we get.
3277 */
3278 do {
3279 err = pci_enable_msix(qdev->pdev,
3280 qdev->msi_x_entry, qdev->intr_count);
3281 if (err > 0)
3282 qdev->intr_count = err;
3283 } while (err > 0);
3284
3285 if (err < 0) {
c4e84bde
RM
3286 kfree(qdev->msi_x_entry);
3287 qdev->msi_x_entry = NULL;
ae9540f7
JP
3288 netif_warn(qdev, ifup, qdev->ndev,
3289 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 3290 qdev->intr_count = 1;
a5a62a1c 3291 qlge_irq_type = MSI_IRQ;
a4ab6137
RM
3292 } else if (err == 0) {
3293 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3294 netif_info(qdev, ifup, qdev->ndev,
3295 "MSI-X Enabled, got %d vectors.\n",
3296 qdev->intr_count);
a4ab6137 3297 return;
c4e84bde
RM
3298 }
3299 }
3300msi:
a4ab6137 3301 qdev->intr_count = 1;
a5a62a1c 3302 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3303 if (!pci_enable_msi(qdev->pdev)) {
3304 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3305 netif_info(qdev, ifup, qdev->ndev,
3306 "Running with MSI interrupts.\n");
c4e84bde
RM
3307 return;
3308 }
3309 }
a5a62a1c 3310 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3311 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3312 "Running with legacy interrupts.\n");
c4e84bde
RM
3313}
3314
39aa8165
RM
3315/* Each vector services 1 RSS ring and and 1 or more
3316 * TX completion rings. This function loops through
3317 * the TX completion rings and assigns the vector that
3318 * will service it. An example would be if there are
3319 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3320 * This would mean that vector 0 would service RSS ring 0
25985edc 3321 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3322 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3323 */
3324static void ql_set_tx_vect(struct ql_adapter *qdev)
3325{
3326 int i, j, vect;
3327 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3328
3329 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3330 /* Assign irq vectors to TX rx_rings.*/
3331 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3332 i < qdev->rx_ring_count; i++) {
3333 if (j == tx_rings_per_vector) {
3334 vect++;
3335 j = 0;
3336 }
3337 qdev->rx_ring[i].irq = vect;
3338 j++;
3339 }
3340 } else {
3341 /* For single vector all rings have an irq
3342 * of zero.
3343 */
3344 for (i = 0; i < qdev->rx_ring_count; i++)
3345 qdev->rx_ring[i].irq = 0;
3346 }
3347}
3348
3349/* Set the interrupt mask for this vector. Each vector
3350 * will service 1 RSS ring and 1 or more TX completion
3351 * rings. This function sets up a bit mask per vector
3352 * that indicates which rings it services.
3353 */
3354static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3355{
3356 int j, vect = ctx->intr;
3357 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3358
3359 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3360 /* Add the RSS ring serviced by this vector
3361 * to the mask.
3362 */
3363 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3364 /* Add the TX ring(s) serviced by this vector
3365 * to the mask. */
3366 for (j = 0; j < tx_rings_per_vector; j++) {
3367 ctx->irq_mask |=
3368 (1 << qdev->rx_ring[qdev->rss_ring_count +
3369 (vect * tx_rings_per_vector) + j].cq_id);
3370 }
3371 } else {
3372 /* For single vector we just shift each queue's
3373 * ID into the mask.
3374 */
3375 for (j = 0; j < qdev->rx_ring_count; j++)
3376 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3377 }
3378}
3379
c4e84bde
RM
3380/*
3381 * Here we build the intr_context structures based on
3382 * our rx_ring count and intr vector count.
3383 * The intr_context structure is used to hook each vector
3384 * to possibly different handlers.
3385 */
3386static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3387{
3388 int i = 0;
3389 struct intr_context *intr_context = &qdev->intr_context[0];
3390
c4e84bde
RM
3391 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3392 /* Each rx_ring has it's
3393 * own intr_context since we have separate
3394 * vectors for each queue.
c4e84bde
RM
3395 */
3396 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3397 qdev->rx_ring[i].irq = i;
3398 intr_context->intr = i;
3399 intr_context->qdev = qdev;
39aa8165
RM
3400 /* Set up this vector's bit-mask that indicates
3401 * which queues it services.
3402 */
3403 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3404 /*
3405 * We set up each vectors enable/disable/read bits so
3406 * there's no bit/mask calculations in the critical path.
3407 */
3408 intr_context->intr_en_mask =
3409 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3410 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3411 | i;
3412 intr_context->intr_dis_mask =
3413 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3414 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3415 INTR_EN_IHD | i;
3416 intr_context->intr_read_mask =
3417 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3418 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3419 i;
39aa8165
RM
3420 if (i == 0) {
3421 /* The first vector/queue handles
3422 * broadcast/multicast, fatal errors,
3423 * and firmware events. This in addition
3424 * to normal inbound NAPI processing.
c4e84bde 3425 */
39aa8165 3426 intr_context->handler = qlge_isr;
b2014ff8
RM
3427 sprintf(intr_context->name, "%s-rx-%d",
3428 qdev->ndev->name, i);
3429 } else {
c4e84bde 3430 /*
39aa8165 3431 * Inbound queues handle unicast frames only.
c4e84bde 3432 */
39aa8165
RM
3433 intr_context->handler = qlge_msix_rx_isr;
3434 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3435 qdev->ndev->name, i);
c4e84bde
RM
3436 }
3437 }
3438 } else {
3439 /*
3440 * All rx_rings use the same intr_context since
3441 * there is only one vector.
3442 */
3443 intr_context->intr = 0;
3444 intr_context->qdev = qdev;
3445 /*
3446 * We set up each vectors enable/disable/read bits so
3447 * there's no bit/mask calculations in the critical path.
3448 */
3449 intr_context->intr_en_mask =
3450 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3451 intr_context->intr_dis_mask =
3452 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3453 INTR_EN_TYPE_DISABLE;
3454 intr_context->intr_read_mask =
3455 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3456 /*
3457 * Single interrupt means one handler for all rings.
3458 */
3459 intr_context->handler = qlge_isr;
3460 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3461 /* Set up this vector's bit-mask that indicates
3462 * which queues it services. In this case there is
3463 * a single vector so it will service all RSS and
3464 * TX completion rings.
3465 */
3466 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3467 }
39aa8165
RM
3468 /* Tell the TX completion rings which MSIx vector
3469 * they will be using.
3470 */
3471 ql_set_tx_vect(qdev);
c4e84bde
RM
3472}
3473
3474static void ql_free_irq(struct ql_adapter *qdev)
3475{
3476 int i;
3477 struct intr_context *intr_context = &qdev->intr_context[0];
3478
3479 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3480 if (intr_context->hooked) {
3481 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3482 free_irq(qdev->msi_x_entry[i].vector,
3483 &qdev->rx_ring[i]);
c4e84bde
RM
3484 } else {
3485 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3486 }
3487 }
3488 }
3489 ql_disable_msix(qdev);
3490}
3491
3492static int ql_request_irq(struct ql_adapter *qdev)
3493{
3494 int i;
3495 int status = 0;
3496 struct pci_dev *pdev = qdev->pdev;
3497 struct intr_context *intr_context = &qdev->intr_context[0];
3498
3499 ql_resolve_queues_to_irqs(qdev);
3500
3501 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3502 atomic_set(&intr_context->irq_cnt, 0);
3503 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3504 status = request_irq(qdev->msi_x_entry[i].vector,
3505 intr_context->handler,
3506 0,
3507 intr_context->name,
3508 &qdev->rx_ring[i]);
3509 if (status) {
ae9540f7
JP
3510 netif_err(qdev, ifup, qdev->ndev,
3511 "Failed request for MSIX interrupt %d.\n",
3512 i);
c4e84bde 3513 goto err_irq;
c4e84bde
RM
3514 }
3515 } else {
ae9540f7
JP
3516 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3517 "trying msi or legacy interrupts.\n");
3518 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3519 "%s: irq = %d.\n", __func__, pdev->irq);
3520 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3521 "%s: context->name = %s.\n", __func__,
3522 intr_context->name);
3523 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3524 "%s: dev_id = 0x%p.\n", __func__,
3525 &qdev->rx_ring[0]);
c4e84bde
RM
3526 status =
3527 request_irq(pdev->irq, qlge_isr,
3528 test_bit(QL_MSI_ENABLED,
3529 &qdev->
3530 flags) ? 0 : IRQF_SHARED,
3531 intr_context->name, &qdev->rx_ring[0]);
3532 if (status)
3533 goto err_irq;
3534
ae9540f7
JP
3535 netif_err(qdev, ifup, qdev->ndev,
3536 "Hooked intr %d, queue type %s, with name %s.\n",
3537 i,
3538 qdev->rx_ring[0].type == DEFAULT_Q ?
3539 "DEFAULT_Q" :
3540 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3541 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3542 intr_context->name);
c4e84bde
RM
3543 }
3544 intr_context->hooked = 1;
3545 }
3546 return status;
3547err_irq:
ae9540f7 3548 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
c4e84bde
RM
3549 ql_free_irq(qdev);
3550 return status;
3551}
3552
3553static int ql_start_rss(struct ql_adapter *qdev)
3554{
215faf9c
JP
3555 static const u8 init_hash_seed[] = {
3556 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3557 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3558 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3559 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3560 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3561 };
c4e84bde
RM
3562 struct ricb *ricb = &qdev->ricb;
3563 int status = 0;
3564 int i;
3565 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3566
e332471c 3567 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3568
b2014ff8 3569 ricb->base_cq = RSS_L4K;
c4e84bde 3570 ricb->flags =
541ae28c
RM
3571 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3572 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3573
3574 /*
3575 * Fill out the Indirection Table.
3576 */
541ae28c
RM
3577 for (i = 0; i < 1024; i++)
3578 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3579
541ae28c
RM
3580 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3581 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3582
e332471c 3583 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3584 if (status) {
ae9540f7 3585 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3586 return status;
3587 }
c4e84bde
RM
3588 return status;
3589}
3590
a5f59dc9 3591static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3592{
a5f59dc9 3593 int i, status = 0;
c4e84bde 3594
8587ea35
RM
3595 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3596 if (status)
3597 return status;
c4e84bde
RM
3598 /* Clear all the entries in the routing table. */
3599 for (i = 0; i < 16; i++) {
3600 status = ql_set_routing_reg(qdev, i, 0, 0);
3601 if (status) {
ae9540f7
JP
3602 netif_err(qdev, ifup, qdev->ndev,
3603 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3604 break;
c4e84bde
RM
3605 }
3606 }
a5f59dc9
RM
3607 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3608 return status;
3609}
3610
3611/* Initialize the frame-to-queue routing. */
3612static int ql_route_initialize(struct ql_adapter *qdev)
3613{
3614 int status = 0;
3615
fd21cf52
RM
3616 /* Clear all the entries in the routing table. */
3617 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3618 if (status)
3619 return status;
3620
fd21cf52 3621 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3622 if (status)
fd21cf52 3623 return status;
c4e84bde 3624
fbc2ac33
RM
3625 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3626 RT_IDX_IP_CSUM_ERR, 1);
3627 if (status) {
3628 netif_err(qdev, ifup, qdev->ndev,
3629 "Failed to init routing register "
3630 "for IP CSUM error packets.\n");
3631 goto exit;
3632 }
3633 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3634 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3635 if (status) {
ae9540f7 3636 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3637 "Failed to init routing register "
3638 "for TCP/UDP CSUM error packets.\n");
8587ea35 3639 goto exit;
c4e84bde
RM
3640 }
3641 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3642 if (status) {
ae9540f7
JP
3643 netif_err(qdev, ifup, qdev->ndev,
3644 "Failed to init routing register for broadcast packets.\n");
8587ea35 3645 goto exit;
c4e84bde
RM
3646 }
3647 /* If we have more than one inbound queue, then turn on RSS in the
3648 * routing block.
3649 */
3650 if (qdev->rss_ring_count > 1) {
3651 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3652 RT_IDX_RSS_MATCH, 1);
3653 if (status) {
ae9540f7
JP
3654 netif_err(qdev, ifup, qdev->ndev,
3655 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3656 goto exit;
c4e84bde
RM
3657 }
3658 }
3659
3660 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3661 RT_IDX_CAM_HIT, 1);
8587ea35 3662 if (status)
ae9540f7
JP
3663 netif_err(qdev, ifup, qdev->ndev,
3664 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3665exit:
3666 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3667 return status;
3668}
3669
2ee1e272 3670int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3671{
7fab3bfe 3672 int status, set;
bb58b5b6 3673
7fab3bfe
RM
3674 /* If check if the link is up and use to
3675 * determine if we are setting or clearing
3676 * the MAC address in the CAM.
3677 */
3678 set = ql_read32(qdev, STS);
3679 set &= qdev->port_link_up;
3680 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3681 if (status) {
ae9540f7 3682 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3683 return status;
3684 }
3685
3686 status = ql_route_initialize(qdev);
3687 if (status)
ae9540f7 3688 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3689
3690 return status;
3691}
3692
c4e84bde
RM
3693static int ql_adapter_initialize(struct ql_adapter *qdev)
3694{
3695 u32 value, mask;
3696 int i;
3697 int status = 0;
3698
3699 /*
3700 * Set up the System register to halt on errors.
3701 */
3702 value = SYS_EFE | SYS_FAE;
3703 mask = value << 16;
3704 ql_write32(qdev, SYS, mask | value);
3705
c9cf0a04
RM
3706 /* Set the default queue, and VLAN behavior. */
3707 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3708 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3709 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3710
3711 /* Set the MPI interrupt to enabled. */
3712 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3713
3714 /* Enable the function, set pagesize, enable error checking. */
3715 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3716 FSC_EC | FSC_VM_PAGE_4K;
3717 value |= SPLT_SETTING;
c4e84bde
RM
3718
3719 /* Set/clear header splitting. */
3720 mask = FSC_VM_PAGESIZE_MASK |
3721 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3722 ql_write32(qdev, FSC, mask | value);
3723
572c526f 3724 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3725
a3b71939
RM
3726 /* Set RX packet routing to use port/pci function on which the
3727 * packet arrived on in addition to usual frame routing.
3728 * This is helpful on bonding where both interfaces can have
3729 * the same MAC address.
3730 */
3731 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3732 /* Reroute all packets to our Interface.
3733 * They may have been routed to MPI firmware
3734 * due to WOL.
3735 */
3736 value = ql_read32(qdev, MGMT_RCV_CFG);
3737 value &= ~MGMT_RCV_CFG_RM;
3738 mask = 0xffff0000;
3739
3740 /* Sticky reg needs clearing due to WOL. */
3741 ql_write32(qdev, MGMT_RCV_CFG, mask);
3742 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3743
3744 /* Default WOL is enable on Mezz cards */
3745 if (qdev->pdev->subsystem_device == 0x0068 ||
3746 qdev->pdev->subsystem_device == 0x0180)
3747 qdev->wol = WAKE_MAGIC;
a3b71939 3748
c4e84bde
RM
3749 /* Start up the rx queues. */
3750 for (i = 0; i < qdev->rx_ring_count; i++) {
3751 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3752 if (status) {
ae9540f7
JP
3753 netif_err(qdev, ifup, qdev->ndev,
3754 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3755 return status;
3756 }
3757 }
3758
3759 /* If there is more than one inbound completion queue
3760 * then download a RICB to configure RSS.
3761 */
3762 if (qdev->rss_ring_count > 1) {
3763 status = ql_start_rss(qdev);
3764 if (status) {
ae9540f7 3765 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3766 return status;
3767 }
3768 }
3769
3770 /* Start up the tx queues. */
3771 for (i = 0; i < qdev->tx_ring_count; i++) {
3772 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3773 if (status) {
ae9540f7
JP
3774 netif_err(qdev, ifup, qdev->ndev,
3775 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3776 return status;
3777 }
3778 }
3779
b0c2aadf
RM
3780 /* Initialize the port and set the max framesize. */
3781 status = qdev->nic_ops->port_initialize(qdev);
80928860 3782 if (status)
ae9540f7 3783 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3784
bb58b5b6
RM
3785 /* Set up the MAC address and frame routing filter. */
3786 status = ql_cam_route_initialize(qdev);
c4e84bde 3787 if (status) {
ae9540f7
JP
3788 netif_err(qdev, ifup, qdev->ndev,
3789 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3790 return status;
3791 }
3792
3793 /* Start NAPI for the RSS queues. */
19257f5a 3794 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3795 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3796
3797 return status;
3798}
3799
3800/* Issue soft reset to chip. */
3801static int ql_adapter_reset(struct ql_adapter *qdev)
3802{
3803 u32 value;
c4e84bde 3804 int status = 0;
a5f59dc9 3805 unsigned long end_jiffies;
c4e84bde 3806
a5f59dc9
RM
3807 /* Clear all the entries in the routing table. */
3808 status = ql_clear_routing_entries(qdev);
3809 if (status) {
ae9540f7 3810 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3811 return status;
3812 }
3813
3814 end_jiffies = jiffies +
3815 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d 3816
da92b393
JK
3817 /* Check if bit is set then skip the mailbox command and
3818 * clear the bit, else we are in normal reset process.
3819 */
3820 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3821 /* Stop management traffic. */
3822 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3823
3824 /* Wait for the NIC and MGMNT FIFOs to empty. */
3825 ql_wait_fifo_empty(qdev);
3826 } else
3827 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3828
c4e84bde 3829 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3830
c4e84bde
RM
3831 do {
3832 value = ql_read32(qdev, RST_FO);
3833 if ((value & RST_FO_FR) == 0)
3834 break;
a75ee7f1
RM
3835 cpu_relax();
3836 } while (time_before(jiffies, end_jiffies));
c4e84bde 3837
c4e84bde 3838 if (value & RST_FO_FR) {
ae9540f7
JP
3839 netif_err(qdev, ifdown, qdev->ndev,
3840 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3841 status = -ETIMEDOUT;
c4e84bde
RM
3842 }
3843
84087f4d
RM
3844 /* Resume management traffic. */
3845 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3846 return status;
3847}
3848
3849static void ql_display_dev_info(struct net_device *ndev)
3850{
b16fed0a 3851 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3852
ae9540f7
JP
3853 netif_info(qdev, probe, qdev->ndev,
3854 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3855 "XG Roll = %d, XG Rev = %d.\n",
3856 qdev->func,
3857 qdev->port,
3858 qdev->chip_rev_id & 0x0000000f,
3859 qdev->chip_rev_id >> 4 & 0x0000000f,
3860 qdev->chip_rev_id >> 8 & 0x0000000f,
3861 qdev->chip_rev_id >> 12 & 0x0000000f);
3862 netif_info(qdev, probe, qdev->ndev,
3863 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3864}
3865
ac409215 3866static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3867{
3868 int status = 0;
3869 u32 wol = MB_WOL_DISABLE;
3870
3871 /* The CAM is still intact after a reset, but if we
3872 * are doing WOL, then we may need to program the
3873 * routing regs. We would also need to issue the mailbox
3874 * commands to instruct the MPI what to do per the ethtool
3875 * settings.
3876 */
3877
3878 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3879 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3880 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3881 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3882 qdev->wol);
bc083ce9
RM
3883 return -EINVAL;
3884 }
3885
3886 if (qdev->wol & WAKE_MAGIC) {
3887 status = ql_mb_wol_set_magic(qdev, 1);
3888 if (status) {
ae9540f7
JP
3889 netif_err(qdev, ifdown, qdev->ndev,
3890 "Failed to set magic packet on %s.\n",
3891 qdev->ndev->name);
bc083ce9
RM
3892 return status;
3893 } else
ae9540f7
JP
3894 netif_info(qdev, drv, qdev->ndev,
3895 "Enabled magic packet successfully on %s.\n",
3896 qdev->ndev->name);
bc083ce9
RM
3897
3898 wol |= MB_WOL_MAGIC_PKT;
3899 }
3900
3901 if (qdev->wol) {
bc083ce9
RM
3902 wol |= MB_WOL_MODE_ON;
3903 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3904 netif_err(qdev, drv, qdev->ndev,
3905 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3906 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3907 wol, qdev->ndev->name);
bc083ce9
RM
3908 }
3909
3910 return status;
3911}
3912
c5dadddb 3913static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3914{
c4e84bde 3915
6497b607
RM
3916 /* Don't kill the reset worker thread if we
3917 * are in the process of recovery.
3918 */
3919 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3920 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3921 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3922 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3923 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3924 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3925 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3926}
3927
3928static int ql_adapter_down(struct ql_adapter *qdev)
3929{
3930 int i, status = 0;
3931
3932 ql_link_off(qdev);
3933
3934 ql_cancel_all_work_sync(qdev);
c4e84bde 3935
39aa8165
RM
3936 for (i = 0; i < qdev->rss_ring_count; i++)
3937 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3938
3939 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3940
3941 ql_disable_interrupts(qdev);
3942
3943 ql_tx_ring_clean(qdev);
3944
6b318cb3
RM
3945 /* Call netif_napi_del() from common point.
3946 */
b2014ff8 3947 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3948 netif_napi_del(&qdev->rx_ring[i].napi);
3949
c4e84bde
RM
3950 status = ql_adapter_reset(qdev);
3951 if (status)
ae9540f7
JP
3952 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3953 qdev->func);
fe5f0980
BL
3954 ql_free_rx_buffers(qdev);
3955
c4e84bde
RM
3956 return status;
3957}
3958
3959static int ql_adapter_up(struct ql_adapter *qdev)
3960{
3961 int err = 0;
3962
c4e84bde
RM
3963 err = ql_adapter_initialize(qdev);
3964 if (err) {
ae9540f7 3965 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
3966 goto err_init;
3967 }
c4e84bde 3968 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3969 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3970 /* If the port is initialized and the
3971 * link is up the turn on the carrier.
3972 */
3973 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3974 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3975 ql_link_on(qdev);
f2c05004
RM
3976 /* Restore rx mode. */
3977 clear_bit(QL_ALLMULTI, &qdev->flags);
3978 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3979 qlge_set_multicast_list(qdev->ndev);
3980
c1b60092
RM
3981 /* Restore vlan setting. */
3982 qlge_restore_vlan(qdev);
3983
c4e84bde
RM
3984 ql_enable_interrupts(qdev);
3985 ql_enable_all_completion_interrupts(qdev);
1e213303 3986 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3987
3988 return 0;
3989err_init:
3990 ql_adapter_reset(qdev);
3991 return err;
3992}
3993
c4e84bde
RM
3994static void ql_release_adapter_resources(struct ql_adapter *qdev)
3995{
3996 ql_free_mem_resources(qdev);
3997 ql_free_irq(qdev);
3998}
3999
4000static int ql_get_adapter_resources(struct ql_adapter *qdev)
4001{
4002 int status = 0;
4003
4004 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 4005 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
4006 return -ENOMEM;
4007 }
4008 status = ql_request_irq(qdev);
c4e84bde
RM
4009 return status;
4010}
4011
4012static int qlge_close(struct net_device *ndev)
4013{
4014 struct ql_adapter *qdev = netdev_priv(ndev);
4015
4bbd1a19
RM
4016 /* If we hit pci_channel_io_perm_failure
4017 * failure condition, then we already
4018 * brought the adapter down.
4019 */
4020 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 4021 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
4022 clear_bit(QL_EEH_FATAL, &qdev->flags);
4023 return 0;
4024 }
4025
c4e84bde
RM
4026 /*
4027 * Wait for device to recover from a reset.
4028 * (Rarely happens, but possible.)
4029 */
4030 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4031 msleep(1);
4032 ql_adapter_down(qdev);
4033 ql_release_adapter_resources(qdev);
c4e84bde
RM
4034 return 0;
4035}
4036
4037static int ql_configure_rings(struct ql_adapter *qdev)
4038{
4039 int i;
4040 struct rx_ring *rx_ring;
4041 struct tx_ring *tx_ring;
a4ab6137 4042 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4043 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4044 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4045
4046 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4047
4048 /* In a perfect world we have one RSS ring for each CPU
4049 * and each has it's own vector. To do that we ask for
4050 * cpu_cnt vectors. ql_enable_msix() will adjust the
4051 * vector count to what we actually get. We then
4052 * allocate an RSS ring for each.
4053 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4054 */
a4ab6137
RM
4055 qdev->intr_count = cpu_cnt;
4056 ql_enable_msix(qdev);
4057 /* Adjust the RSS ring count to the actual vector count. */
4058 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4059 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4060 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4061
c4e84bde
RM
4062 for (i = 0; i < qdev->tx_ring_count; i++) {
4063 tx_ring = &qdev->tx_ring[i];
e332471c 4064 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4065 tx_ring->qdev = qdev;
4066 tx_ring->wq_id = i;
4067 tx_ring->wq_len = qdev->tx_ring_size;
4068 tx_ring->wq_size =
4069 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4070
4071 /*
4072 * The completion queue ID for the tx rings start
39aa8165 4073 * immediately after the rss rings.
c4e84bde 4074 */
39aa8165 4075 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4076 }
4077
4078 for (i = 0; i < qdev->rx_ring_count; i++) {
4079 rx_ring = &qdev->rx_ring[i];
e332471c 4080 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4081 rx_ring->qdev = qdev;
4082 rx_ring->cq_id = i;
4083 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4084 if (i < qdev->rss_ring_count) {
39aa8165
RM
4085 /*
4086 * Inbound (RSS) queues.
4087 */
c4e84bde
RM
4088 rx_ring->cq_len = qdev->rx_ring_size;
4089 rx_ring->cq_size =
4090 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4091 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4092 rx_ring->lbq_size =
2c9a0d41 4093 rx_ring->lbq_len * sizeof(__le64);
7c734359 4094 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4095 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4096 rx_ring->sbq_size =
2c9a0d41 4097 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4098 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4099 rx_ring->type = RX_Q;
4100 } else {
c4e84bde
RM
4101 /*
4102 * Outbound queue handles outbound completions only.
4103 */
4104 /* outbound cq is same size as tx_ring it services. */
4105 rx_ring->cq_len = qdev->tx_ring_size;
4106 rx_ring->cq_size =
4107 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4108 rx_ring->lbq_len = 0;
4109 rx_ring->lbq_size = 0;
4110 rx_ring->lbq_buf_size = 0;
4111 rx_ring->sbq_len = 0;
4112 rx_ring->sbq_size = 0;
4113 rx_ring->sbq_buf_size = 0;
4114 rx_ring->type = TX_Q;
c4e84bde
RM
4115 }
4116 }
4117 return 0;
4118}
4119
4120static int qlge_open(struct net_device *ndev)
4121{
4122 int err = 0;
4123 struct ql_adapter *qdev = netdev_priv(ndev);
4124
74e12435
RM
4125 err = ql_adapter_reset(qdev);
4126 if (err)
4127 return err;
4128
c4e84bde
RM
4129 err = ql_configure_rings(qdev);
4130 if (err)
4131 return err;
4132
4133 err = ql_get_adapter_resources(qdev);
4134 if (err)
4135 goto error_up;
4136
4137 err = ql_adapter_up(qdev);
4138 if (err)
4139 goto error_up;
4140
4141 return err;
4142
4143error_up:
4144 ql_release_adapter_resources(qdev);
c4e84bde
RM
4145 return err;
4146}
4147
7c734359
RM
4148static int ql_change_rx_buffers(struct ql_adapter *qdev)
4149{
4150 struct rx_ring *rx_ring;
4151 int i, status;
4152 u32 lbq_buf_len;
4153
25985edc 4154 /* Wait for an outstanding reset to complete. */
7c734359
RM
4155 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4156 int i = 3;
4157 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4158 netif_err(qdev, ifup, qdev->ndev,
4159 "Waiting for adapter UP...\n");
7c734359
RM
4160 ssleep(1);
4161 }
4162
4163 if (!i) {
ae9540f7
JP
4164 netif_err(qdev, ifup, qdev->ndev,
4165 "Timed out waiting for adapter UP\n");
7c734359
RM
4166 return -ETIMEDOUT;
4167 }
4168 }
4169
4170 status = ql_adapter_down(qdev);
4171 if (status)
4172 goto error;
4173
4174 /* Get the new rx buffer size. */
4175 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4176 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4177 qdev->lbq_buf_order = get_order(lbq_buf_len);
4178
4179 for (i = 0; i < qdev->rss_ring_count; i++) {
4180 rx_ring = &qdev->rx_ring[i];
4181 /* Set the new size. */
4182 rx_ring->lbq_buf_size = lbq_buf_len;
4183 }
4184
4185 status = ql_adapter_up(qdev);
4186 if (status)
4187 goto error;
4188
4189 return status;
4190error:
ae9540f7
JP
4191 netif_alert(qdev, ifup, qdev->ndev,
4192 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4193 set_bit(QL_ADAPTER_UP, &qdev->flags);
4194 dev_close(qdev->ndev);
4195 return status;
4196}
4197
c4e84bde
RM
4198static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4199{
4200 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4201 int status;
c4e84bde
RM
4202
4203 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4204 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4205 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4206 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4207 } else
4208 return -EINVAL;
7c734359
RM
4209
4210 queue_delayed_work(qdev->workqueue,
4211 &qdev->mpi_port_cfg_work, 3*HZ);
4212
746079da
BL
4213 ndev->mtu = new_mtu;
4214
7c734359 4215 if (!netif_running(qdev->ndev)) {
7c734359
RM
4216 return 0;
4217 }
4218
7c734359
RM
4219 status = ql_change_rx_buffers(qdev);
4220 if (status) {
ae9540f7
JP
4221 netif_err(qdev, ifup, qdev->ndev,
4222 "Changing MTU failed.\n");
7c734359
RM
4223 }
4224
4225 return status;
c4e84bde
RM
4226}
4227
4228static struct net_device_stats *qlge_get_stats(struct net_device
4229 *ndev)
4230{
885ee398
RM
4231 struct ql_adapter *qdev = netdev_priv(ndev);
4232 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4233 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4234 unsigned long pkts, mcast, dropped, errors, bytes;
4235 int i;
4236
4237 /* Get RX stats. */
4238 pkts = mcast = dropped = errors = bytes = 0;
4239 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4240 pkts += rx_ring->rx_packets;
4241 bytes += rx_ring->rx_bytes;
4242 dropped += rx_ring->rx_dropped;
4243 errors += rx_ring->rx_errors;
4244 mcast += rx_ring->rx_multicast;
4245 }
4246 ndev->stats.rx_packets = pkts;
4247 ndev->stats.rx_bytes = bytes;
4248 ndev->stats.rx_dropped = dropped;
4249 ndev->stats.rx_errors = errors;
4250 ndev->stats.multicast = mcast;
4251
4252 /* Get TX stats. */
4253 pkts = errors = bytes = 0;
4254 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4255 pkts += tx_ring->tx_packets;
4256 bytes += tx_ring->tx_bytes;
4257 errors += tx_ring->tx_errors;
4258 }
4259 ndev->stats.tx_packets = pkts;
4260 ndev->stats.tx_bytes = bytes;
4261 ndev->stats.tx_errors = errors;
bcc90f55 4262 return &ndev->stats;
c4e84bde
RM
4263}
4264
ac409215 4265static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4266{
b16fed0a 4267 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4268 struct netdev_hw_addr *ha;
cc288f54 4269 int i, status;
c4e84bde 4270
cc288f54
RM
4271 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4272 if (status)
4273 return;
c4e84bde
RM
4274 /*
4275 * Set or clear promiscuous mode if a
4276 * transition is taking place.
4277 */
4278 if (ndev->flags & IFF_PROMISC) {
4279 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4280 if (ql_set_routing_reg
4281 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4282 netif_err(qdev, hw, qdev->ndev,
25985edc 4283 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4284 } else {
4285 set_bit(QL_PROMISCUOUS, &qdev->flags);
4286 }
4287 }
4288 } else {
4289 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4290 if (ql_set_routing_reg
4291 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4292 netif_err(qdev, hw, qdev->ndev,
25985edc 4293 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4294 } else {
4295 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4296 }
4297 }
4298 }
4299
4300 /*
4301 * Set or clear all multicast mode if a
4302 * transition is taking place.
4303 */
4304 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4305 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4306 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4307 if (ql_set_routing_reg
4308 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4309 netif_err(qdev, hw, qdev->ndev,
4310 "Failed to set all-multi mode.\n");
c4e84bde
RM
4311 } else {
4312 set_bit(QL_ALLMULTI, &qdev->flags);
4313 }
4314 }
4315 } else {
4316 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4317 if (ql_set_routing_reg
4318 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4319 netif_err(qdev, hw, qdev->ndev,
4320 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4321 } else {
4322 clear_bit(QL_ALLMULTI, &qdev->flags);
4323 }
4324 }
4325 }
4326
4cd24eaf 4327 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4328 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4329 if (status)
4330 goto exit;
f9dcbcc9 4331 i = 0;
22bedad3
JP
4332 netdev_for_each_mc_addr(ha, ndev) {
4333 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4334 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4335 netif_err(qdev, hw, qdev->ndev,
4336 "Failed to loadmulticast address.\n");
cc288f54 4337 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4338 goto exit;
4339 }
f9dcbcc9
JP
4340 i++;
4341 }
cc288f54 4342 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4343 if (ql_set_routing_reg
4344 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4345 netif_err(qdev, hw, qdev->ndev,
4346 "Failed to set multicast match mode.\n");
c4e84bde
RM
4347 } else {
4348 set_bit(QL_ALLMULTI, &qdev->flags);
4349 }
4350 }
4351exit:
8587ea35 4352 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4353}
4354
4355static int qlge_set_mac_address(struct net_device *ndev, void *p)
4356{
b16fed0a 4357 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4358 struct sockaddr *addr = p;
cc288f54 4359 int status;
c4e84bde 4360
c4e84bde
RM
4361 if (!is_valid_ether_addr(addr->sa_data))
4362 return -EADDRNOTAVAIL;
4363 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4364 /* Update local copy of current mac address. */
4365 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4366
cc288f54
RM
4367 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4368 if (status)
4369 return status;
cc288f54
RM
4370 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4371 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4372 if (status)
ae9540f7 4373 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4374 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4375 return status;
c4e84bde
RM
4376}
4377
4378static void qlge_tx_timeout(struct net_device *ndev)
4379{
b16fed0a 4380 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4381 ql_queue_asic_error(qdev);
c4e84bde
RM
4382}
4383
4384static void ql_asic_reset_work(struct work_struct *work)
4385{
4386 struct ql_adapter *qdev =
4387 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4388 int status;
f2c0d8df 4389 rtnl_lock();
db98812f
RM
4390 status = ql_adapter_down(qdev);
4391 if (status)
4392 goto error;
4393
4394 status = ql_adapter_up(qdev);
4395 if (status)
4396 goto error;
2cd6dbaa
RM
4397
4398 /* Restore rx mode. */
4399 clear_bit(QL_ALLMULTI, &qdev->flags);
4400 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4401 qlge_set_multicast_list(qdev->ndev);
4402
f2c0d8df 4403 rtnl_unlock();
db98812f
RM
4404 return;
4405error:
ae9540f7
JP
4406 netif_alert(qdev, ifup, qdev->ndev,
4407 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4408
db98812f
RM
4409 set_bit(QL_ADAPTER_UP, &qdev->flags);
4410 dev_close(qdev->ndev);
4411 rtnl_unlock();
c4e84bde
RM
4412}
4413
ef9c7ab4 4414static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4415 .get_flash = ql_get_8012_flash_params,
4416 .port_initialize = ql_8012_port_initialize,
4417};
4418
ef9c7ab4 4419static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4420 .get_flash = ql_get_8000_flash_params,
4421 .port_initialize = ql_8000_port_initialize,
4422};
4423
e4552f51
RM
4424/* Find the pcie function number for the other NIC
4425 * on this chip. Since both NIC functions share a
4426 * common firmware we have the lowest enabled function
4427 * do any common work. Examples would be resetting
4428 * after a fatal firmware error, or doing a firmware
4429 * coredump.
4430 */
4431static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4432{
4433 int status = 0;
4434 u32 temp;
4435 u32 nic_func1, nic_func2;
4436
4437 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4438 &temp);
4439 if (status)
4440 return status;
4441
4442 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4443 MPI_TEST_NIC_FUNC_MASK);
4444 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4445 MPI_TEST_NIC_FUNC_MASK);
4446
4447 if (qdev->func == nic_func1)
4448 qdev->alt_func = nic_func2;
4449 else if (qdev->func == nic_func2)
4450 qdev->alt_func = nic_func1;
4451 else
4452 status = -EIO;
4453
4454 return status;
4455}
b0c2aadf 4456
e4552f51 4457static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4458{
e4552f51 4459 int status;
c4e84bde
RM
4460 qdev->func =
4461 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4462 if (qdev->func > 3)
4463 return -EIO;
4464
4465 status = ql_get_alt_pcie_func(qdev);
4466 if (status)
4467 return status;
4468
4469 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4470 if (qdev->port) {
c4e84bde
RM
4471 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4472 qdev->port_link_up = STS_PL1;
4473 qdev->port_init = STS_PI1;
4474 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4475 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4476 } else {
4477 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4478 qdev->port_link_up = STS_PL0;
4479 qdev->port_init = STS_PI0;
4480 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4481 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4482 }
4483 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4484 qdev->device_id = qdev->pdev->device;
4485 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4486 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4487 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4488 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4489 return status;
c4e84bde
RM
4490}
4491
4492static void ql_release_all(struct pci_dev *pdev)
4493{
4494 struct net_device *ndev = pci_get_drvdata(pdev);
4495 struct ql_adapter *qdev = netdev_priv(ndev);
4496
4497 if (qdev->workqueue) {
4498 destroy_workqueue(qdev->workqueue);
4499 qdev->workqueue = NULL;
4500 }
39aa8165 4501
c4e84bde 4502 if (qdev->reg_base)
8668ae92 4503 iounmap(qdev->reg_base);
c4e84bde
RM
4504 if (qdev->doorbell_area)
4505 iounmap(qdev->doorbell_area);
8aae2600 4506 vfree(qdev->mpi_coredump);
c4e84bde
RM
4507 pci_release_regions(pdev);
4508 pci_set_drvdata(pdev, NULL);
4509}
4510
1dd06ae8
GKH
4511static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4512 int cards_found)
c4e84bde
RM
4513{
4514 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4515 int err = 0;
c4e84bde 4516
e332471c 4517 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4518 err = pci_enable_device(pdev);
4519 if (err) {
4520 dev_err(&pdev->dev, "PCI device enable failed.\n");
4521 return err;
4522 }
4523
ebd6e774
RM
4524 qdev->ndev = ndev;
4525 qdev->pdev = pdev;
4526 pci_set_drvdata(pdev, ndev);
c4e84bde 4527
bc9167f3
RM
4528 /* Set PCIe read request size */
4529 err = pcie_set_readrq(pdev, 4096);
4530 if (err) {
4531 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4532 goto err_out1;
bc9167f3
RM
4533 }
4534
c4e84bde
RM
4535 err = pci_request_regions(pdev, DRV_NAME);
4536 if (err) {
4537 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4538 return err;
c4e84bde
RM
4539 }
4540
4541 pci_set_master(pdev);
6a35528a 4542 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4543 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4544 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4545 } else {
284901a9 4546 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4547 if (!err)
284901a9 4548 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4549 }
4550
4551 if (err) {
4552 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4553 goto err_out2;
c4e84bde
RM
4554 }
4555
73475339
RM
4556 /* Set PCIe reset type for EEH to fundamental. */
4557 pdev->needs_freset = 1;
6d190c6e 4558 pci_save_state(pdev);
c4e84bde
RM
4559 qdev->reg_base =
4560 ioremap_nocache(pci_resource_start(pdev, 1),
4561 pci_resource_len(pdev, 1));
4562 if (!qdev->reg_base) {
4563 dev_err(&pdev->dev, "Register mapping failed.\n");
4564 err = -ENOMEM;
4f9a91c8 4565 goto err_out2;
c4e84bde
RM
4566 }
4567
4568 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4569 qdev->doorbell_area =
4570 ioremap_nocache(pci_resource_start(pdev, 3),
4571 pci_resource_len(pdev, 3));
4572 if (!qdev->doorbell_area) {
4573 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4574 err = -ENOMEM;
4f9a91c8 4575 goto err_out2;
c4e84bde
RM
4576 }
4577
e4552f51
RM
4578 err = ql_get_board_info(qdev);
4579 if (err) {
4580 dev_err(&pdev->dev, "Register access failed.\n");
4581 err = -EIO;
4f9a91c8 4582 goto err_out2;
e4552f51 4583 }
c4e84bde
RM
4584 qdev->msg_enable = netif_msg_init(debug, default_msg);
4585 spin_lock_init(&qdev->hw_lock);
4586 spin_lock_init(&qdev->stats_lock);
4587
8aae2600
RM
4588 if (qlge_mpi_coredump) {
4589 qdev->mpi_coredump =
4590 vmalloc(sizeof(struct ql_mpi_coredump));
4591 if (qdev->mpi_coredump == NULL) {
8aae2600 4592 err = -ENOMEM;
ce96bc86 4593 goto err_out2;
8aae2600 4594 }
d5c1da56
RM
4595 if (qlge_force_coredump)
4596 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4597 }
c4e84bde 4598 /* make sure the EEPROM is good */
b0c2aadf 4599 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4600 if (err) {
4601 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4602 goto err_out2;
c4e84bde
RM
4603 }
4604
801e9096
RM
4605 /* Keep local copy of current mac address. */
4606 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4607
4608 /* Set up the default ring sizes. */
4609 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4610 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4611
4612 /* Set up the coalescing parameters. */
4613 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4614 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4615 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4616 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4617
4618 /*
4619 * Set up the operating parameters.
4620 */
c4e84bde
RM
4621 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4622 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4623 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4624 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4625 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4626 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4627 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4628 init_completion(&qdev->ide_completion);
4d7b6b5d 4629 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4630
4631 if (!cards_found) {
4632 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4633 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4634 DRV_NAME, DRV_VERSION);
4635 }
4636 return 0;
4f9a91c8 4637err_out2:
c4e84bde 4638 ql_release_all(pdev);
4f9a91c8 4639err_out1:
c4e84bde
RM
4640 pci_disable_device(pdev);
4641 return err;
4642}
4643
25ed7849
SH
4644static const struct net_device_ops qlge_netdev_ops = {
4645 .ndo_open = qlge_open,
4646 .ndo_stop = qlge_close,
4647 .ndo_start_xmit = qlge_send,
4648 .ndo_change_mtu = qlge_change_mtu,
4649 .ndo_get_stats = qlge_get_stats,
afc4b13d 4650 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4651 .ndo_set_mac_address = qlge_set_mac_address,
4652 .ndo_validate_addr = eth_validate_addr,
4653 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4654 .ndo_fix_features = qlge_fix_features,
4655 .ndo_set_features = qlge_set_features,
01e6b953
RM
4656 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4657 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4658};
4659
15c052fc
RM
4660static void ql_timer(unsigned long data)
4661{
4662 struct ql_adapter *qdev = (struct ql_adapter *)data;
4663 u32 var = 0;
4664
4665 var = ql_read32(qdev, STS);
4666 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4667 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4668 return;
4669 }
4670
72046d84 4671 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4672}
4673
5d8e8726 4674static int qlge_probe(struct pci_dev *pdev,
1dd06ae8 4675 const struct pci_device_id *pci_entry)
c4e84bde
RM
4676{
4677 struct net_device *ndev = NULL;
4678 struct ql_adapter *qdev = NULL;
4679 static int cards_found = 0;
4680 int err = 0;
4681
1e213303 4682 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4683 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4684 if (!ndev)
4685 return -ENOMEM;
4686
4687 err = ql_init_device(pdev, ndev, cards_found);
4688 if (err < 0) {
4689 free_netdev(ndev);
4690 return err;
4691 }
4692
4693 qdev = netdev_priv(ndev);
4694 SET_NETDEV_DEV(ndev, &pdev->dev);
88230fd5 4695 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
f7e9e230 4696 NETIF_F_TSO | NETIF_F_TSO_ECN |
f646968f 4697 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXCSUM;
88230fd5 4698 ndev->features = ndev->hw_features |
f646968f 4699 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
1a0150a9 4700 ndev->vlan_features = ndev->hw_features;
c4e84bde
RM
4701
4702 if (test_bit(QL_DMA64, &qdev->flags))
4703 ndev->features |= NETIF_F_HIGHDMA;
4704
4705 /*
4706 * Set up net_device structure.
4707 */
4708 ndev->tx_queue_len = qdev->tx_ring_size;
4709 ndev->irq = pdev->irq;
25ed7849
SH
4710
4711 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4712 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4713 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4714
c4e84bde
RM
4715 err = register_netdev(ndev);
4716 if (err) {
4717 dev_err(&pdev->dev, "net device registration failed.\n");
4718 ql_release_all(pdev);
4719 pci_disable_device(pdev);
4720 return err;
4721 }
15c052fc
RM
4722 /* Start up the timer to trigger EEH if
4723 * the bus goes dead
4724 */
4725 init_timer_deferrable(&qdev->timer);
4726 qdev->timer.data = (unsigned long)qdev;
4727 qdev->timer.function = ql_timer;
4728 qdev->timer.expires = jiffies + (5*HZ);
4729 add_timer(&qdev->timer);
6a473308 4730 ql_link_off(qdev);
c4e84bde 4731 ql_display_dev_info(ndev);
9dfbbaa6 4732 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4733 cards_found++;
4734 return 0;
4735}
4736
9dfbbaa6
RM
4737netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4738{
4739 return qlge_send(skb, ndev);
4740}
4741
4742int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4743{
4744 return ql_clean_inbound_rx_ring(rx_ring, budget);
4745}
4746
5d8e8726 4747static void qlge_remove(struct pci_dev *pdev)
c4e84bde
RM
4748{
4749 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4750 struct ql_adapter *qdev = netdev_priv(ndev);
4751 del_timer_sync(&qdev->timer);
c5dadddb 4752 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4753 unregister_netdev(ndev);
4754 ql_release_all(pdev);
4755 pci_disable_device(pdev);
4756 free_netdev(ndev);
4757}
4758
6d190c6e
RM
4759/* Clean up resources without touching hardware. */
4760static void ql_eeh_close(struct net_device *ndev)
4761{
4762 int i;
4763 struct ql_adapter *qdev = netdev_priv(ndev);
4764
4765 if (netif_carrier_ok(ndev)) {
4766 netif_carrier_off(ndev);
4767 netif_stop_queue(ndev);
4768 }
4769
7ae80abd
BL
4770 /* Disabling the timer */
4771 del_timer_sync(&qdev->timer);
c5dadddb 4772 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4773
4774 for (i = 0; i < qdev->rss_ring_count; i++)
4775 netif_napi_del(&qdev->rx_ring[i].napi);
4776
4777 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4778 ql_tx_ring_clean(qdev);
4779 ql_free_rx_buffers(qdev);
4780 ql_release_adapter_resources(qdev);
4781}
4782
c4e84bde
RM
4783/*
4784 * This callback is called by the PCI subsystem whenever
4785 * a PCI bus error is detected.
4786 */
4787static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4788 enum pci_channel_state state)
4789{
4790 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4791 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4792
6d190c6e
RM
4793 switch (state) {
4794 case pci_channel_io_normal:
4795 return PCI_ERS_RESULT_CAN_RECOVER;
4796 case pci_channel_io_frozen:
4797 netif_device_detach(ndev);
4798 if (netif_running(ndev))
4799 ql_eeh_close(ndev);
4800 pci_disable_device(pdev);
4801 return PCI_ERS_RESULT_NEED_RESET;
4802 case pci_channel_io_perm_failure:
4803 dev_err(&pdev->dev,
4804 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4805 ql_eeh_close(ndev);
4806 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4807 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4808 }
c4e84bde
RM
4809
4810 /* Request a slot reset. */
4811 return PCI_ERS_RESULT_NEED_RESET;
4812}
4813
4814/*
4815 * This callback is called after the PCI buss has been reset.
4816 * Basically, this tries to restart the card from scratch.
4817 * This is a shortened version of the device probe/discovery code,
4818 * it resembles the first-half of the () routine.
4819 */
4820static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4821{
4822 struct net_device *ndev = pci_get_drvdata(pdev);
4823 struct ql_adapter *qdev = netdev_priv(ndev);
4824
6d190c6e
RM
4825 pdev->error_state = pci_channel_io_normal;
4826
4827 pci_restore_state(pdev);
c4e84bde 4828 if (pci_enable_device(pdev)) {
ae9540f7
JP
4829 netif_err(qdev, ifup, qdev->ndev,
4830 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4831 return PCI_ERS_RESULT_DISCONNECT;
4832 }
c4e84bde 4833 pci_set_master(pdev);
a112fd4c
RM
4834
4835 if (ql_adapter_reset(qdev)) {
ae9540f7 4836 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4837 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4838 return PCI_ERS_RESULT_DISCONNECT;
4839 }
4840
c4e84bde
RM
4841 return PCI_ERS_RESULT_RECOVERED;
4842}
4843
4844static void qlge_io_resume(struct pci_dev *pdev)
4845{
4846 struct net_device *ndev = pci_get_drvdata(pdev);
4847 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4848 int err = 0;
c4e84bde 4849
c4e84bde 4850 if (netif_running(ndev)) {
6d190c6e
RM
4851 err = qlge_open(ndev);
4852 if (err) {
ae9540f7
JP
4853 netif_err(qdev, ifup, qdev->ndev,
4854 "Device initialization failed after reset.\n");
c4e84bde
RM
4855 return;
4856 }
6d190c6e 4857 } else {
ae9540f7
JP
4858 netif_err(qdev, ifup, qdev->ndev,
4859 "Device was not running prior to EEH.\n");
c4e84bde 4860 }
72046d84 4861 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4862 netif_device_attach(ndev);
4863}
4864
3646f0e5 4865static const struct pci_error_handlers qlge_err_handler = {
c4e84bde
RM
4866 .error_detected = qlge_io_error_detected,
4867 .slot_reset = qlge_io_slot_reset,
4868 .resume = qlge_io_resume,
4869};
4870
4871static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4872{
4873 struct net_device *ndev = pci_get_drvdata(pdev);
4874 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4875 int err;
c4e84bde
RM
4876
4877 netif_device_detach(ndev);
15c052fc 4878 del_timer_sync(&qdev->timer);
c4e84bde
RM
4879
4880 if (netif_running(ndev)) {
4881 err = ql_adapter_down(qdev);
4882 if (!err)
4883 return err;
4884 }
4885
bc083ce9 4886 ql_wol(qdev);
c4e84bde
RM
4887 err = pci_save_state(pdev);
4888 if (err)
4889 return err;
4890
4891 pci_disable_device(pdev);
4892
4893 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4894
4895 return 0;
4896}
4897
04da2cf9 4898#ifdef CONFIG_PM
c4e84bde
RM
4899static int qlge_resume(struct pci_dev *pdev)
4900{
4901 struct net_device *ndev = pci_get_drvdata(pdev);
4902 struct ql_adapter *qdev = netdev_priv(ndev);
4903 int err;
4904
4905 pci_set_power_state(pdev, PCI_D0);
4906 pci_restore_state(pdev);
4907 err = pci_enable_device(pdev);
4908 if (err) {
ae9540f7 4909 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4910 return err;
4911 }
4912 pci_set_master(pdev);
4913
4914 pci_enable_wake(pdev, PCI_D3hot, 0);
4915 pci_enable_wake(pdev, PCI_D3cold, 0);
4916
4917 if (netif_running(ndev)) {
4918 err = ql_adapter_up(qdev);
4919 if (err)
4920 return err;
4921 }
4922
72046d84 4923 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4924 netif_device_attach(ndev);
4925
4926 return 0;
4927}
04da2cf9 4928#endif /* CONFIG_PM */
c4e84bde
RM
4929
4930static void qlge_shutdown(struct pci_dev *pdev)
4931{
4932 qlge_suspend(pdev, PMSG_SUSPEND);
4933}
4934
4935static struct pci_driver qlge_driver = {
4936 .name = DRV_NAME,
4937 .id_table = qlge_pci_tbl,
4938 .probe = qlge_probe,
5d8e8726 4939 .remove = qlge_remove,
c4e84bde
RM
4940#ifdef CONFIG_PM
4941 .suspend = qlge_suspend,
4942 .resume = qlge_resume,
4943#endif
4944 .shutdown = qlge_shutdown,
4945 .err_handler = &qlge_err_handler
4946};
4947
4948static int __init qlge_init_module(void)
4949{
4950 return pci_register_driver(&qlge_driver);
4951}
4952
4953static void __exit qlge_exit(void)
4954{
4955 pci_unregister_driver(&qlge_driver);
4956}
4957
4958module_init(qlge_init_module);
4959module_exit(qlge_exit);