net: mvneta: replace Tx timer with a real interrupt
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / marvell / mvneta.c
CommitLineData
c5aff182
TP
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/kernel.h>
c5aff182
TP
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/platform_device.h>
18#include <linux/skbuff.h>
19#include <linux/inetdevice.h>
20#include <linux/mbus.h>
21#include <linux/module.h>
22#include <linux/interrupt.h>
23#include <net/ip.h>
24#include <net/ipv6.h>
25#include <linux/of.h>
26#include <linux/of_irq.h>
27#include <linux/of_mdio.h>
28#include <linux/of_net.h>
29#include <linux/of_address.h>
30#include <linux/phy.h>
189dd626 31#include <linux/clk.h>
c5aff182
TP
32
33/* Registers */
34#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
35#define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
36#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
37#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
38#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
39#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
40#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
41#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
42#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
43#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
44#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
45#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
46#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
47#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
48#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
49#define MVNETA_PORT_RX_RESET 0x1cc0
50#define MVNETA_PORT_RX_DMA_RESET BIT(0)
51#define MVNETA_PHY_ADDR 0x2000
52#define MVNETA_PHY_ADDR_MASK 0x1f
53#define MVNETA_MBUS_RETRY 0x2010
54#define MVNETA_UNIT_INTR_CAUSE 0x2080
55#define MVNETA_UNIT_CONTROL 0x20B0
56#define MVNETA_PHY_POLLING_ENABLE BIT(1)
57#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
58#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
59#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
60#define MVNETA_BASE_ADDR_ENABLE 0x2290
61#define MVNETA_PORT_CONFIG 0x2400
62#define MVNETA_UNI_PROMISC_MODE BIT(0)
63#define MVNETA_DEF_RXQ(q) ((q) << 1)
64#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
65#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
66#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
67#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
68#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
69#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
70#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
71 MVNETA_DEF_RXQ_ARP(q) | \
72 MVNETA_DEF_RXQ_TCP(q) | \
73 MVNETA_DEF_RXQ_UDP(q) | \
74 MVNETA_DEF_RXQ_BPDU(q) | \
75 MVNETA_TX_UNSET_ERR_SUM | \
76 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
77#define MVNETA_PORT_CONFIG_EXTEND 0x2404
78#define MVNETA_MAC_ADDR_LOW 0x2414
79#define MVNETA_MAC_ADDR_HIGH 0x2418
80#define MVNETA_SDMA_CONFIG 0x241c
81#define MVNETA_SDMA_BRST_SIZE_16 4
82#define MVNETA_NO_DESC_SWAP 0x0
83#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
84#define MVNETA_RX_NO_DATA_SWAP BIT(4)
85#define MVNETA_TX_NO_DATA_SWAP BIT(5)
86#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
87#define MVNETA_PORT_STATUS 0x2444
88#define MVNETA_TX_IN_PRGRS BIT(1)
89#define MVNETA_TX_FIFO_EMPTY BIT(8)
90#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
91#define MVNETA_TYPE_PRIO 0x24bc
92#define MVNETA_FORCE_UNI BIT(21)
93#define MVNETA_TXQ_CMD_1 0x24e4
94#define MVNETA_TXQ_CMD 0x2448
95#define MVNETA_TXQ_DISABLE_SHIFT 8
96#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
97#define MVNETA_ACC_MODE 0x2500
98#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
99#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
100#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
101#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
15ca23fc 102
103/* Exception Interrupt Port/Queue Cause register */
104
c5aff182 105#define MVNETA_INTR_NEW_CAUSE 0x25a0
c5aff182 106#define MVNETA_INTR_NEW_MASK 0x25a4
15ca23fc 107
108/* bits 0..7 = TXQ SENT, one bit per queue.
109 * bits 8..15 = RXQ OCCUP, one bit per queue.
110 * bits 16..23 = RXQ FREE, one bit per queue.
111 * bit 29 = OLD_REG_SUM, see old reg ?
112 * bit 30 = TX_ERR_SUM, one bit for 4 ports
113 * bit 31 = MISC_SUM, one bit for 4 ports
114 */
115#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
116#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
117#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
118#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
119
c5aff182
TP
120#define MVNETA_INTR_OLD_CAUSE 0x25a8
121#define MVNETA_INTR_OLD_MASK 0x25ac
15ca23fc 122
123/* Data Path Port/Queue Cause Register */
c5aff182
TP
124#define MVNETA_INTR_MISC_CAUSE 0x25b0
125#define MVNETA_INTR_MISC_MASK 0x25b4
15ca23fc 126
127#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
128#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
129#define MVNETA_CAUSE_PTP BIT(4)
130
131#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
132#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
133#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
134#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
135#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
136#define MVNETA_CAUSE_PRBS_ERR BIT(12)
137#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
138#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
139
140#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
141#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
142#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
143
144#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
145#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
146#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
147
c5aff182
TP
148#define MVNETA_INTR_ENABLE 0x25b8
149#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
15ca23fc 150#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
151
c5aff182
TP
152#define MVNETA_RXQ_CMD 0x2680
153#define MVNETA_RXQ_DISABLE_SHIFT 8
154#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
155#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
156#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
157#define MVNETA_GMAC_CTRL_0 0x2c00
158#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
159#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
160#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
161#define MVNETA_GMAC_CTRL_2 0x2c08
d113edc6 162#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
c5aff182
TP
163#define MVNETA_GMAC2_PORT_RGMII BIT(4)
164#define MVNETA_GMAC2_PORT_RESET BIT(6)
165#define MVNETA_GMAC_STATUS 0x2c10
166#define MVNETA_GMAC_LINK_UP BIT(0)
167#define MVNETA_GMAC_SPEED_1000 BIT(1)
168#define MVNETA_GMAC_SPEED_100 BIT(2)
169#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
170#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
171#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
172#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
173#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
174#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
175#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
176#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
177#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
178#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
4c54b9db 179#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
c5aff182 180#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
4c54b9db 181#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
c5aff182
TP
182#define MVNETA_MIB_COUNTERS_BASE 0x3080
183#define MVNETA_MIB_LATE_COLLISION 0x7c
184#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
185#define MVNETA_DA_FILT_OTH_MCAST 0x3500
186#define MVNETA_DA_FILT_UCAST_BASE 0x3600
187#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
188#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
189#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
190#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
191#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
192#define MVNETA_TXQ_DEC_SENT_SHIFT 16
193#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
194#define MVNETA_TXQ_SENT_DESC_SHIFT 16
195#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
196#define MVNETA_PORT_TX_RESET 0x3cf0
197#define MVNETA_PORT_TX_DMA_RESET BIT(0)
198#define MVNETA_TX_MTU 0x3e0c
199#define MVNETA_TX_TOKEN_SIZE 0x3e14
200#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
201#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
202#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
203
204#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
205
206/* Descriptor ring Macros */
207#define MVNETA_QUEUE_NEXT_DESC(q, index) \
208 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
209
210/* Various constants */
211
212/* Coalescing */
213#define MVNETA_TXDONE_COAL_PKTS 16
214#define MVNETA_RX_COAL_PKTS 32
215#define MVNETA_RX_COAL_USEC 100
216
c5aff182
TP
217/* Napi polling weight */
218#define MVNETA_RX_POLL_WEIGHT 64
219
6a20c175 220/* The two bytes Marvell header. Either contains a special value used
c5aff182
TP
221 * by Marvell switches when a specific hardware mode is enabled (not
222 * supported by this driver) or is filled automatically by zeroes on
223 * the RX side. Those two bytes being at the front of the Ethernet
224 * header, they allow to have the IP header aligned on a 4 bytes
225 * boundary automatically: the hardware skips those two bytes on its
226 * own.
227 */
228#define MVNETA_MH_SIZE 2
229
230#define MVNETA_VLAN_TAG_LEN 4
231
232#define MVNETA_CPU_D_CACHE_LINE_SIZE 32
233#define MVNETA_TX_CSUM_MAX_SIZE 9800
234#define MVNETA_ACC_MODE_EXT 1
235
236/* Timeout constants */
237#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
238#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
239#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
240
241#define MVNETA_TX_MTU_MAX 0x3ffff
242
243/* Max number of Rx descriptors */
244#define MVNETA_MAX_RXD 128
245
246/* Max number of Tx descriptors */
247#define MVNETA_MAX_TXD 532
248
249/* descriptor aligned size */
250#define MVNETA_DESC_ALIGNED_SIZE 32
251
252#define MVNETA_RX_PKT_SIZE(mtu) \
253 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
254 ETH_HLEN + ETH_FCS_LEN, \
255 MVNETA_CPU_D_CACHE_LINE_SIZE)
256
257#define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
258
936e9bc5 259struct mvneta_pcpu_stats {
c5aff182 260 struct u64_stats_sync syncp;
936e9bc5 261 u64 rx_packets;
262 u64 rx_bytes;
263 u64 tx_packets;
264 u64 tx_bytes;
c5aff182
TP
265};
266
267struct mvneta_port {
268 int pkt_size;
269 void __iomem *base;
270 struct mvneta_rx_queue *rxqs;
271 struct mvneta_tx_queue *txqs;
c5aff182
TP
272 struct net_device *dev;
273
274 u32 cause_rx_tx;
275 struct napi_struct napi;
276
c5aff182
TP
277 /* Napi weight */
278 int weight;
279
280 /* Core clock */
189dd626 281 struct clk *clk;
c5aff182
TP
282 u8 mcast_count[256];
283 u16 tx_ring_size;
284 u16 rx_ring_size;
936e9bc5 285 struct mvneta_pcpu_stats *stats;
c5aff182
TP
286
287 struct mii_bus *mii_bus;
288 struct phy_device *phy_dev;
289 phy_interface_t phy_interface;
290 struct device_node *phy_node;
291 unsigned int link;
292 unsigned int duplex;
293 unsigned int speed;
294};
295
6a20c175 296/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
c5aff182
TP
297 * layout of the transmit and reception DMA descriptors, and their
298 * layout is therefore defined by the hardware design
299 */
300struct mvneta_tx_desc {
301 u32 command; /* Options used by HW for packet transmitting.*/
302#define MVNETA_TX_L3_OFF_SHIFT 0
303#define MVNETA_TX_IP_HLEN_SHIFT 8
304#define MVNETA_TX_L4_UDP BIT(16)
305#define MVNETA_TX_L3_IP6 BIT(17)
306#define MVNETA_TXD_IP_CSUM BIT(18)
307#define MVNETA_TXD_Z_PAD BIT(19)
308#define MVNETA_TXD_L_DESC BIT(20)
309#define MVNETA_TXD_F_DESC BIT(21)
310#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
311 MVNETA_TXD_L_DESC | \
312 MVNETA_TXD_F_DESC)
313#define MVNETA_TX_L4_CSUM_FULL BIT(30)
314#define MVNETA_TX_L4_CSUM_NOT BIT(31)
315
316 u16 reserverd1; /* csum_l4 (for future use) */
317 u16 data_size; /* Data size of transmitted packet in bytes */
318 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
319 u32 reserved2; /* hw_cmd - (for future use, PMT) */
320 u32 reserved3[4]; /* Reserved - (for future use) */
321};
322
323struct mvneta_rx_desc {
324 u32 status; /* Info about received packet */
325#define MVNETA_RXD_ERR_CRC 0x0
326#define MVNETA_RXD_ERR_SUMMARY BIT(16)
327#define MVNETA_RXD_ERR_OVERRUN BIT(17)
328#define MVNETA_RXD_ERR_LEN BIT(18)
329#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
330#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
331#define MVNETA_RXD_L3_IP4 BIT(25)
332#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
333#define MVNETA_RXD_L4_CSUM_OK BIT(30)
334
335 u16 reserved1; /* pnc_info - (for future use, PnC) */
336 u16 data_size; /* Size of received packet in bytes */
337 u32 buf_phys_addr; /* Physical address of the buffer */
338 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
339 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
340 u16 reserved3; /* prefetch_cmd, for future use */
341 u16 reserved4; /* csum_l4 - (for future use, PnC) */
342 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
343 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
344};
345
346struct mvneta_tx_queue {
347 /* Number of this TX queue, in the range 0-7 */
348 u8 id;
349
350 /* Number of TX DMA descriptors in the descriptor ring */
351 int size;
352
353 /* Number of currently used TX DMA descriptor in the
6a20c175
TP
354 * descriptor ring
355 */
c5aff182
TP
356 int count;
357
358 /* Array of transmitted skb */
359 struct sk_buff **tx_skb;
360
361 /* Index of last TX DMA descriptor that was inserted */
362 int txq_put_index;
363
364 /* Index of the TX DMA descriptor to be cleaned up */
365 int txq_get_index;
366
367 u32 done_pkts_coal;
368
369 /* Virtual address of the TX DMA descriptors array */
370 struct mvneta_tx_desc *descs;
371
372 /* DMA address of the TX DMA descriptors array */
373 dma_addr_t descs_phys;
374
375 /* Index of the last TX DMA descriptor */
376 int last_desc;
377
378 /* Index of the next TX DMA descriptor to process */
379 int next_desc_to_proc;
380};
381
382struct mvneta_rx_queue {
383 /* rx queue number, in the range 0-7 */
384 u8 id;
385
386 /* num of rx descriptors in the rx descriptor ring */
387 int size;
388
389 /* counter of times when mvneta_refill() failed */
390 int missed;
391
392 u32 pkts_coal;
393 u32 time_coal;
394
395 /* Virtual address of the RX DMA descriptors array */
396 struct mvneta_rx_desc *descs;
397
398 /* DMA address of the RX DMA descriptors array */
399 dma_addr_t descs_phys;
400
401 /* Index of the last RX DMA descriptor */
402 int last_desc;
403
404 /* Index of the next RX DMA descriptor to process */
405 int next_desc_to_proc;
406};
407
408static int rxq_number = 8;
409static int txq_number = 8;
410
411static int rxq_def;
c5aff182
TP
412
413#define MVNETA_DRIVER_NAME "mvneta"
414#define MVNETA_DRIVER_VERSION "1.0"
415
416/* Utility/helper methods */
417
418/* Write helper method */
419static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
420{
421 writel(data, pp->base + offset);
422}
423
424/* Read helper method */
425static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
426{
427 return readl(pp->base + offset);
428}
429
430/* Increment txq get counter */
431static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
432{
433 txq->txq_get_index++;
434 if (txq->txq_get_index == txq->size)
435 txq->txq_get_index = 0;
436}
437
438/* Increment txq put counter */
439static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
440{
441 txq->txq_put_index++;
442 if (txq->txq_put_index == txq->size)
443 txq->txq_put_index = 0;
444}
445
446
447/* Clear all MIB counters */
448static void mvneta_mib_counters_clear(struct mvneta_port *pp)
449{
450 int i;
451 u32 dummy;
452
453 /* Perform dummy reads from MIB counters */
454 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
455 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
456}
457
458/* Get System Network Statistics */
459struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
460 struct rtnl_link_stats64 *stats)
461{
462 struct mvneta_port *pp = netdev_priv(dev);
463 unsigned int start;
936e9bc5 464 int cpu;
c5aff182 465
936e9bc5 466 for_each_possible_cpu(cpu) {
467 struct mvneta_pcpu_stats *cpu_stats;
468 u64 rx_packets;
469 u64 rx_bytes;
470 u64 tx_packets;
471 u64 tx_bytes;
c5aff182 472
936e9bc5 473 cpu_stats = per_cpu_ptr(pp->stats, cpu);
474 do {
475 start = u64_stats_fetch_begin_bh(&cpu_stats->syncp);
476 rx_packets = cpu_stats->rx_packets;
477 rx_bytes = cpu_stats->rx_bytes;
478 tx_packets = cpu_stats->tx_packets;
479 tx_bytes = cpu_stats->tx_bytes;
480 } while (u64_stats_fetch_retry_bh(&cpu_stats->syncp, start));
c5aff182 481
936e9bc5 482 stats->rx_packets += rx_packets;
483 stats->rx_bytes += rx_bytes;
484 stats->tx_packets += tx_packets;
485 stats->tx_bytes += tx_bytes;
486 }
c5aff182
TP
487
488 stats->rx_errors = dev->stats.rx_errors;
489 stats->rx_dropped = dev->stats.rx_dropped;
490
491 stats->tx_dropped = dev->stats.tx_dropped;
492
493 return stats;
494}
495
496/* Rx descriptors helper methods */
497
6a20c175 498/* Checks whether the given RX descriptor is both the first and the
c5aff182
TP
499 * last descriptor for the RX packet. Each RX packet is currently
500 * received through a single RX descriptor, so not having each RX
501 * descriptor with its first and last bits set is an error
502 */
503static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
504{
505 return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
506 MVNETA_RXD_FIRST_LAST_DESC;
507}
508
509/* Add number of descriptors ready to receive new packets */
510static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
511 struct mvneta_rx_queue *rxq,
512 int ndescs)
513{
514 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
6a20c175
TP
515 * be added at once
516 */
c5aff182
TP
517 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
518 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
519 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
520 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
521 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
522 }
523
524 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
525 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
526}
527
528/* Get number of RX descriptors occupied by received packets */
529static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
530 struct mvneta_rx_queue *rxq)
531{
532 u32 val;
533
534 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
535 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
536}
537
6a20c175 538/* Update num of rx desc called upon return from rx path or
c5aff182
TP
539 * from mvneta_rxq_drop_pkts().
540 */
541static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
542 struct mvneta_rx_queue *rxq,
543 int rx_done, int rx_filled)
544{
545 u32 val;
546
547 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
548 val = rx_done |
549 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
550 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
551 return;
552 }
553
554 /* Only 255 descriptors can be added at once */
555 while ((rx_done > 0) || (rx_filled > 0)) {
556 if (rx_done <= 0xff) {
557 val = rx_done;
558 rx_done = 0;
559 } else {
560 val = 0xff;
561 rx_done -= 0xff;
562 }
563 if (rx_filled <= 0xff) {
564 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
565 rx_filled = 0;
566 } else {
567 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
568 rx_filled -= 0xff;
569 }
570 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
571 }
572}
573
574/* Get pointer to next RX descriptor to be processed by SW */
575static struct mvneta_rx_desc *
576mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
577{
578 int rx_desc = rxq->next_desc_to_proc;
579
580 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
581 return rxq->descs + rx_desc;
582}
583
584/* Change maximum receive size of the port. */
585static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
586{
587 u32 val;
588
589 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
590 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
591 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
592 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
593 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
594}
595
596
597/* Set rx queue offset */
598static void mvneta_rxq_offset_set(struct mvneta_port *pp,
599 struct mvneta_rx_queue *rxq,
600 int offset)
601{
602 u32 val;
603
604 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
605 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
606
607 /* Offset is in */
608 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
609 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
610}
611
612
613/* Tx descriptors helper methods */
614
615/* Update HW with number of TX descriptors to be sent */
616static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
617 struct mvneta_tx_queue *txq,
618 int pend_desc)
619{
620 u32 val;
621
622 /* Only 255 descriptors can be added at once ; Assume caller
6a20c175
TP
623 * process TX desriptors in quanta less than 256
624 */
c5aff182
TP
625 val = pend_desc;
626 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
627}
628
629/* Get pointer to next TX descriptor to be processed (send) by HW */
630static struct mvneta_tx_desc *
631mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
632{
633 int tx_desc = txq->next_desc_to_proc;
634
635 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
636 return txq->descs + tx_desc;
637}
638
639/* Release the last allocated TX descriptor. Useful to handle DMA
6a20c175
TP
640 * mapping failures in the TX path.
641 */
c5aff182
TP
642static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
643{
644 if (txq->next_desc_to_proc == 0)
645 txq->next_desc_to_proc = txq->last_desc - 1;
646 else
647 txq->next_desc_to_proc--;
648}
649
650/* Set rxq buf size */
651static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
652 struct mvneta_rx_queue *rxq,
653 int buf_size)
654{
655 u32 val;
656
657 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
658
659 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
660 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
661
662 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
663}
664
665/* Disable buffer management (BM) */
666static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
667 struct mvneta_rx_queue *rxq)
668{
669 u32 val;
670
671 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
672 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
673 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
674}
675
676
677
678/* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
03ce758e 679static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
c5aff182
TP
680{
681 u32 val;
682
683 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
684
685 if (enable)
686 val |= MVNETA_GMAC2_PORT_RGMII;
687 else
688 val &= ~MVNETA_GMAC2_PORT_RGMII;
689
690 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
691}
692
693/* Config SGMII port */
03ce758e 694static void mvneta_port_sgmii_config(struct mvneta_port *pp)
c5aff182
TP
695{
696 u32 val;
697
698 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
d113edc6 699 val |= MVNETA_GMAC2_PCS_ENABLE;
c5aff182
TP
700 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
701}
702
703/* Start the Ethernet port RX and TX activity */
704static void mvneta_port_up(struct mvneta_port *pp)
705{
706 int queue;
707 u32 q_map;
708
709 /* Enable all initialized TXs. */
710 mvneta_mib_counters_clear(pp);
711 q_map = 0;
712 for (queue = 0; queue < txq_number; queue++) {
713 struct mvneta_tx_queue *txq = &pp->txqs[queue];
714 if (txq->descs != NULL)
715 q_map |= (1 << queue);
716 }
717 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
718
719 /* Enable all initialized RXQs. */
720 q_map = 0;
721 for (queue = 0; queue < rxq_number; queue++) {
722 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
723 if (rxq->descs != NULL)
724 q_map |= (1 << queue);
725 }
726
727 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
728}
729
730/* Stop the Ethernet port activity */
731static void mvneta_port_down(struct mvneta_port *pp)
732{
733 u32 val;
734 int count;
735
736 /* Stop Rx port activity. Check port Rx activity. */
737 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
738
739 /* Issue stop command for active channels only */
740 if (val != 0)
741 mvreg_write(pp, MVNETA_RXQ_CMD,
742 val << MVNETA_RXQ_DISABLE_SHIFT);
743
744 /* Wait for all Rx activity to terminate. */
745 count = 0;
746 do {
747 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
748 netdev_warn(pp->dev,
749 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
750 val);
751 break;
752 }
753 mdelay(1);
754
755 val = mvreg_read(pp, MVNETA_RXQ_CMD);
756 } while (val & 0xff);
757
758 /* Stop Tx port activity. Check port Tx activity. Issue stop
6a20c175
TP
759 * command for active channels only
760 */
c5aff182
TP
761 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
762
763 if (val != 0)
764 mvreg_write(pp, MVNETA_TXQ_CMD,
765 (val << MVNETA_TXQ_DISABLE_SHIFT));
766
767 /* Wait for all Tx activity to terminate. */
768 count = 0;
769 do {
770 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
771 netdev_warn(pp->dev,
772 "TIMEOUT for TX stopped status=0x%08x\n",
773 val);
774 break;
775 }
776 mdelay(1);
777
778 /* Check TX Command reg that all Txqs are stopped */
779 val = mvreg_read(pp, MVNETA_TXQ_CMD);
780
781 } while (val & 0xff);
782
783 /* Double check to verify that TX FIFO is empty */
784 count = 0;
785 do {
786 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
787 netdev_warn(pp->dev,
788 "TX FIFO empty timeout status=0x08%x\n",
789 val);
790 break;
791 }
792 mdelay(1);
793
794 val = mvreg_read(pp, MVNETA_PORT_STATUS);
795 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
796 (val & MVNETA_TX_IN_PRGRS));
797
798 udelay(200);
799}
800
801/* Enable the port by setting the port enable bit of the MAC control register */
802static void mvneta_port_enable(struct mvneta_port *pp)
803{
804 u32 val;
805
806 /* Enable port */
807 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
808 val |= MVNETA_GMAC0_PORT_ENABLE;
809 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
810}
811
812/* Disable the port and wait for about 200 usec before retuning */
813static void mvneta_port_disable(struct mvneta_port *pp)
814{
815 u32 val;
816
817 /* Reset the Enable bit in the Serial Control Register */
818 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
819 val &= ~MVNETA_GMAC0_PORT_ENABLE;
820 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
821
822 udelay(200);
823}
824
825/* Multicast tables methods */
826
827/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
828static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
829{
830 int offset;
831 u32 val;
832
833 if (queue == -1) {
834 val = 0;
835 } else {
836 val = 0x1 | (queue << 1);
837 val |= (val << 24) | (val << 16) | (val << 8);
838 }
839
840 for (offset = 0; offset <= 0xc; offset += 4)
841 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
842}
843
844/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
845static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
846{
847 int offset;
848 u32 val;
849
850 if (queue == -1) {
851 val = 0;
852 } else {
853 val = 0x1 | (queue << 1);
854 val |= (val << 24) | (val << 16) | (val << 8);
855 }
856
857 for (offset = 0; offset <= 0xfc; offset += 4)
858 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
859
860}
861
862/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
863static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
864{
865 int offset;
866 u32 val;
867
868 if (queue == -1) {
869 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
870 val = 0;
871 } else {
872 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
873 val = 0x1 | (queue << 1);
874 val |= (val << 24) | (val << 16) | (val << 8);
875 }
876
877 for (offset = 0; offset <= 0xfc; offset += 4)
878 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
879}
880
881/* This method sets defaults to the NETA port:
882 * Clears interrupt Cause and Mask registers.
883 * Clears all MAC tables.
884 * Sets defaults to all registers.
885 * Resets RX and TX descriptor rings.
886 * Resets PHY.
887 * This method can be called after mvneta_port_down() to return the port
888 * settings to defaults.
889 */
890static void mvneta_defaults_set(struct mvneta_port *pp)
891{
892 int cpu;
893 int queue;
894 u32 val;
895
896 /* Clear all Cause registers */
897 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
898 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
899 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
900
901 /* Mask all interrupts */
902 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
903 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
904 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
905 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
906
907 /* Enable MBUS Retry bit16 */
908 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
909
910 /* Set CPU queue access map - all CPUs have access to all RX
6a20c175
TP
911 * queues and to all TX queues
912 */
c5aff182
TP
913 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
914 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
915 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
916 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
917
918 /* Reset RX and TX DMAs */
919 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
920 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
921
922 /* Disable Legacy WRR, Disable EJP, Release from reset */
923 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
924 for (queue = 0; queue < txq_number; queue++) {
925 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
926 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
927 }
928
929 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
930 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
931
932 /* Set Port Acceleration Mode */
933 val = MVNETA_ACC_MODE_EXT;
934 mvreg_write(pp, MVNETA_ACC_MODE, val);
935
936 /* Update val of portCfg register accordingly with all RxQueue types */
937 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
938 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
939
940 val = 0;
941 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
942 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
943
944 /* Build PORT_SDMA_CONFIG_REG */
945 val = 0;
946
947 /* Default burst size */
948 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
949 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
950
951 val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
952 MVNETA_NO_DESC_SWAP);
953
954 /* Assign port SDMA configuration */
955 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
956
4c54b9db
TP
957 /* Disable PHY polling in hardware, since we're using the
958 * kernel phylib to do this.
959 */
960 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
961 val &= ~MVNETA_PHY_POLLING_ENABLE;
962 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
963
c5aff182
TP
964 mvneta_set_ucast_table(pp, -1);
965 mvneta_set_special_mcast_table(pp, -1);
966 mvneta_set_other_mcast_table(pp, -1);
967
968 /* Set port interrupt enable register - default enable all */
969 mvreg_write(pp, MVNETA_INTR_ENABLE,
970 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
971 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
972}
973
974/* Set max sizes for tx queues */
975static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
976
977{
978 u32 val, size, mtu;
979 int queue;
980
981 mtu = max_tx_size * 8;
982 if (mtu > MVNETA_TX_MTU_MAX)
983 mtu = MVNETA_TX_MTU_MAX;
984
985 /* Set MTU */
986 val = mvreg_read(pp, MVNETA_TX_MTU);
987 val &= ~MVNETA_TX_MTU_MAX;
988 val |= mtu;
989 mvreg_write(pp, MVNETA_TX_MTU, val);
990
991 /* TX token size and all TXQs token size must be larger that MTU */
992 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
993
994 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
995 if (size < mtu) {
996 size = mtu;
997 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
998 val |= size;
999 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1000 }
1001 for (queue = 0; queue < txq_number; queue++) {
1002 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1003
1004 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1005 if (size < mtu) {
1006 size = mtu;
1007 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1008 val |= size;
1009 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1010 }
1011 }
1012}
1013
1014/* Set unicast address */
1015static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1016 int queue)
1017{
1018 unsigned int unicast_reg;
1019 unsigned int tbl_offset;
1020 unsigned int reg_offset;
1021
1022 /* Locate the Unicast table entry */
1023 last_nibble = (0xf & last_nibble);
1024
1025 /* offset from unicast tbl base */
1026 tbl_offset = (last_nibble / 4) * 4;
1027
1028 /* offset within the above reg */
1029 reg_offset = last_nibble % 4;
1030
1031 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1032
1033 if (queue == -1) {
1034 /* Clear accepts frame bit at specified unicast DA tbl entry */
1035 unicast_reg &= ~(0xff << (8 * reg_offset));
1036 } else {
1037 unicast_reg &= ~(0xff << (8 * reg_offset));
1038 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1039 }
1040
1041 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1042}
1043
1044/* Set mac address */
1045static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1046 int queue)
1047{
1048 unsigned int mac_h;
1049 unsigned int mac_l;
1050
1051 if (queue != -1) {
1052 mac_l = (addr[4] << 8) | (addr[5]);
1053 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1054 (addr[2] << 8) | (addr[3] << 0);
1055
1056 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1057 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1058 }
1059
1060 /* Accept frames of this address */
1061 mvneta_set_ucast_addr(pp, addr[5], queue);
1062}
1063
6a20c175
TP
1064/* Set the number of packets that will be received before RX interrupt
1065 * will be generated by HW.
c5aff182
TP
1066 */
1067static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1068 struct mvneta_rx_queue *rxq, u32 value)
1069{
1070 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1071 value | MVNETA_RXQ_NON_OCCUPIED(0));
1072 rxq->pkts_coal = value;
1073}
1074
6a20c175
TP
1075/* Set the time delay in usec before RX interrupt will be generated by
1076 * HW.
c5aff182
TP
1077 */
1078static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1079 struct mvneta_rx_queue *rxq, u32 value)
1080{
189dd626
TP
1081 u32 val;
1082 unsigned long clk_rate;
1083
1084 clk_rate = clk_get_rate(pp->clk);
1085 val = (clk_rate / 1000000) * value;
c5aff182
TP
1086
1087 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1088 rxq->time_coal = value;
1089}
1090
1091/* Set threshold for TX_DONE pkts coalescing */
1092static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1093 struct mvneta_tx_queue *txq, u32 value)
1094{
1095 u32 val;
1096
1097 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1098
1099 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1100 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1101
1102 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1103
1104 txq->done_pkts_coal = value;
1105}
1106
c5aff182
TP
1107/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1108static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1109 u32 phys_addr, u32 cookie)
1110{
1111 rx_desc->buf_cookie = cookie;
1112 rx_desc->buf_phys_addr = phys_addr;
1113}
1114
1115/* Decrement sent descriptors counter */
1116static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1117 struct mvneta_tx_queue *txq,
1118 int sent_desc)
1119{
1120 u32 val;
1121
1122 /* Only 255 TX descriptors can be updated at once */
1123 while (sent_desc > 0xff) {
1124 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1125 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1126 sent_desc = sent_desc - 0xff;
1127 }
1128
1129 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1130 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1131}
1132
1133/* Get number of TX descriptors already sent by HW */
1134static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1135 struct mvneta_tx_queue *txq)
1136{
1137 u32 val;
1138 int sent_desc;
1139
1140 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1141 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1142 MVNETA_TXQ_SENT_DESC_SHIFT;
1143
1144 return sent_desc;
1145}
1146
6a20c175 1147/* Get number of sent descriptors and decrement counter.
c5aff182
TP
1148 * The number of sent descriptors is returned.
1149 */
1150static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1151 struct mvneta_tx_queue *txq)
1152{
1153 int sent_desc;
1154
1155 /* Get number of sent descriptors */
1156 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1157
1158 /* Decrement sent descriptors counter */
1159 if (sent_desc)
1160 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1161
1162 return sent_desc;
1163}
1164
1165/* Set TXQ descriptors fields relevant for CSUM calculation */
1166static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1167 int ip_hdr_len, int l4_proto)
1168{
1169 u32 command;
1170
1171 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
6a20c175
TP
1172 * G_L4_chk, L4_type; required only for checksum
1173 * calculation
1174 */
c5aff182
TP
1175 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1176 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1177
ba502e1e 1178 if (l3_proto == htons(ETH_P_IP))
c5aff182
TP
1179 command |= MVNETA_TXD_IP_CSUM;
1180 else
1181 command |= MVNETA_TX_L3_IP6;
1182
1183 if (l4_proto == IPPROTO_TCP)
1184 command |= MVNETA_TX_L4_CSUM_FULL;
1185 else if (l4_proto == IPPROTO_UDP)
1186 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1187 else
1188 command |= MVNETA_TX_L4_CSUM_NOT;
1189
1190 return command;
1191}
1192
1193
1194/* Display more error info */
1195static void mvneta_rx_error(struct mvneta_port *pp,
1196 struct mvneta_rx_desc *rx_desc)
1197{
1198 u32 status = rx_desc->status;
1199
1200 if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1201 netdev_err(pp->dev,
1202 "bad rx status %08x (buffer oversize), size=%d\n",
1203 rx_desc->status, rx_desc->data_size);
1204 return;
1205 }
1206
1207 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1208 case MVNETA_RXD_ERR_CRC:
1209 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1210 status, rx_desc->data_size);
1211 break;
1212 case MVNETA_RXD_ERR_OVERRUN:
1213 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1214 status, rx_desc->data_size);
1215 break;
1216 case MVNETA_RXD_ERR_LEN:
1217 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1218 status, rx_desc->data_size);
1219 break;
1220 case MVNETA_RXD_ERR_RESOURCE:
1221 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1222 status, rx_desc->data_size);
1223 break;
1224 }
1225}
1226
1227/* Handle RX checksum offload */
1228static void mvneta_rx_csum(struct mvneta_port *pp,
1229 struct mvneta_rx_desc *rx_desc,
1230 struct sk_buff *skb)
1231{
1232 if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1233 (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1234 skb->csum = 0;
1235 skb->ip_summed = CHECKSUM_UNNECESSARY;
1236 return;
1237 }
1238
1239 skb->ip_summed = CHECKSUM_NONE;
1240}
1241
1242/* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1243static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1244 u32 cause)
1245{
1246 int queue = fls(cause) - 1;
1247
1248 return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1249}
1250
1251/* Free tx queue skbuffs */
1252static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1253 struct mvneta_tx_queue *txq, int num)
1254{
1255 int i;
1256
1257 for (i = 0; i < num; i++) {
1258 struct mvneta_tx_desc *tx_desc = txq->descs +
1259 txq->txq_get_index;
1260 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1261
1262 mvneta_txq_inc_get(txq);
1263
1264 if (!skb)
1265 continue;
1266
1267 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1268 tx_desc->data_size, DMA_TO_DEVICE);
1269 dev_kfree_skb_any(skb);
1270 }
1271}
1272
1273/* Handle end of transmission */
1274static int mvneta_txq_done(struct mvneta_port *pp,
1275 struct mvneta_tx_queue *txq)
1276{
1277 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1278 int tx_done;
1279
1280 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1281 if (tx_done == 0)
1282 return tx_done;
1283 mvneta_txq_bufs_free(pp, txq, tx_done);
1284
1285 txq->count -= tx_done;
1286
1287 if (netif_tx_queue_stopped(nq)) {
1288 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1289 netif_tx_wake_queue(nq);
1290 }
1291
1292 return tx_done;
1293}
1294
1295/* Refill processing */
1296static int mvneta_rx_refill(struct mvneta_port *pp,
1297 struct mvneta_rx_desc *rx_desc)
1298
1299{
1300 dma_addr_t phys_addr;
1301 struct sk_buff *skb;
1302
1303 skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1304 if (!skb)
1305 return -ENOMEM;
1306
1307 phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1308 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1309 DMA_FROM_DEVICE);
1310 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1311 dev_kfree_skb(skb);
1312 return -ENOMEM;
1313 }
1314
1315 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1316
1317 return 0;
1318}
1319
1320/* Handle tx checksum */
1321static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1322{
1323 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1324 int ip_hdr_len = 0;
1325 u8 l4_proto;
1326
1327 if (skb->protocol == htons(ETH_P_IP)) {
1328 struct iphdr *ip4h = ip_hdr(skb);
1329
1330 /* Calculate IPv4 checksum and L4 checksum */
1331 ip_hdr_len = ip4h->ihl;
1332 l4_proto = ip4h->protocol;
1333 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1334 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1335
1336 /* Read l4_protocol from one of IPv6 extra headers */
1337 if (skb_network_header_len(skb) > 0)
1338 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1339 l4_proto = ip6h->nexthdr;
1340 } else
1341 return MVNETA_TX_L4_CSUM_NOT;
1342
1343 return mvneta_txq_desc_csum(skb_network_offset(skb),
1344 skb->protocol, ip_hdr_len, l4_proto);
1345 }
1346
1347 return MVNETA_TX_L4_CSUM_NOT;
1348}
1349
6a20c175 1350/* Returns rx queue pointer (find last set bit) according to causeRxTx
c5aff182
TP
1351 * value
1352 */
1353static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1354 u32 cause)
1355{
1356 int queue = fls(cause >> 8) - 1;
1357
1358 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1359}
1360
1361/* Drop packets received by the RXQ and free buffers */
1362static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1363 struct mvneta_rx_queue *rxq)
1364{
1365 int rx_done, i;
1366
1367 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1368 for (i = 0; i < rxq->size; i++) {
1369 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1370 struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1371
1372 dev_kfree_skb_any(skb);
1373 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1374 rx_desc->data_size, DMA_FROM_DEVICE);
1375 }
1376
1377 if (rx_done)
1378 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1379}
1380
1381/* Main rx processing */
1382static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1383 struct mvneta_rx_queue *rxq)
1384{
1385 struct net_device *dev = pp->dev;
1386 int rx_done, rx_filled;
5831364f 1387 u32 rcvd_pkts = 0;
1388 u32 rcvd_bytes = 0;
c5aff182
TP
1389
1390 /* Get number of received packets */
1391 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1392
1393 if (rx_todo > rx_done)
1394 rx_todo = rx_done;
1395
1396 rx_done = 0;
1397 rx_filled = 0;
1398
1399 /* Fairness NAPI loop */
1400 while (rx_done < rx_todo) {
1401 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1402 struct sk_buff *skb;
1403 u32 rx_status;
1404 int rx_bytes, err;
1405
1406 prefetch(rx_desc);
1407 rx_done++;
1408 rx_filled++;
1409 rx_status = rx_desc->status;
1410 skb = (struct sk_buff *)rx_desc->buf_cookie;
1411
1412 if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1413 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1414 dev->stats.rx_errors++;
1415 mvneta_rx_error(pp, rx_desc);
1416 mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1417 (u32)skb);
1418 continue;
1419 }
1420
1421 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1422 rx_desc->data_size, DMA_FROM_DEVICE);
1423
1424 rx_bytes = rx_desc->data_size -
1425 (ETH_FCS_LEN + MVNETA_MH_SIZE);
5831364f 1426 rcvd_pkts++;
1427 rcvd_bytes += rx_bytes;
c5aff182
TP
1428
1429 /* Linux processing */
1430 skb_reserve(skb, MVNETA_MH_SIZE);
1431 skb_put(skb, rx_bytes);
1432
1433 skb->protocol = eth_type_trans(skb, dev);
1434
1435 mvneta_rx_csum(pp, rx_desc, skb);
1436
1437 napi_gro_receive(&pp->napi, skb);
1438
1439 /* Refill processing */
1440 err = mvneta_rx_refill(pp, rx_desc);
1441 if (err) {
1442 netdev_err(pp->dev, "Linux processing - Can't refill\n");
1443 rxq->missed++;
1444 rx_filled--;
1445 }
1446 }
1447
5831364f 1448 if (rcvd_pkts) {
936e9bc5 1449 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1450
1451 u64_stats_update_begin(&stats->syncp);
1452 stats->rx_packets += rcvd_pkts;
1453 stats->rx_bytes += rcvd_bytes;
1454 u64_stats_update_end(&stats->syncp);
5831364f 1455 }
1456
c5aff182
TP
1457 /* Update rxq management counters */
1458 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1459
1460 return rx_done;
1461}
1462
1463/* Handle tx fragmentation processing */
1464static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1465 struct mvneta_tx_queue *txq)
1466{
1467 struct mvneta_tx_desc *tx_desc;
1468 int i;
1469
1470 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1471 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1472 void *addr = page_address(frag->page.p) + frag->page_offset;
1473
1474 tx_desc = mvneta_txq_next_desc_get(txq);
1475 tx_desc->data_size = frag->size;
1476
1477 tx_desc->buf_phys_addr =
1478 dma_map_single(pp->dev->dev.parent, addr,
1479 tx_desc->data_size, DMA_TO_DEVICE);
1480
1481 if (dma_mapping_error(pp->dev->dev.parent,
1482 tx_desc->buf_phys_addr)) {
1483 mvneta_txq_desc_put(txq);
1484 goto error;
1485 }
1486
1487 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1488 /* Last descriptor */
1489 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1490
1491 txq->tx_skb[txq->txq_put_index] = skb;
1492
1493 mvneta_txq_inc_put(txq);
1494 } else {
1495 /* Descriptor in the middle: Not First, Not Last */
1496 tx_desc->command = 0;
1497
1498 txq->tx_skb[txq->txq_put_index] = NULL;
1499 mvneta_txq_inc_put(txq);
1500 }
1501 }
1502
1503 return 0;
1504
1505error:
1506 /* Release all descriptors that were used to map fragments of
6a20c175
TP
1507 * this packet, as well as the corresponding DMA mappings
1508 */
c5aff182
TP
1509 for (i = i - 1; i >= 0; i--) {
1510 tx_desc = txq->descs + i;
1511 dma_unmap_single(pp->dev->dev.parent,
1512 tx_desc->buf_phys_addr,
1513 tx_desc->data_size,
1514 DMA_TO_DEVICE);
1515 mvneta_txq_desc_put(txq);
1516 }
1517
1518 return -ENOMEM;
1519}
1520
1521/* Main tx processing */
1522static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1523{
1524 struct mvneta_port *pp = netdev_priv(dev);
ee40a116
WT
1525 u16 txq_id = skb_get_queue_mapping(skb);
1526 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
c5aff182
TP
1527 struct mvneta_tx_desc *tx_desc;
1528 struct netdev_queue *nq;
1529 int frags = 0;
1530 u32 tx_cmd;
1531
1532 if (!netif_running(dev))
1533 goto out;
1534
1535 frags = skb_shinfo(skb)->nr_frags + 1;
ee40a116 1536 nq = netdev_get_tx_queue(dev, txq_id);
c5aff182
TP
1537
1538 /* Get a descriptor for the first part of the packet */
1539 tx_desc = mvneta_txq_next_desc_get(txq);
1540
1541 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1542
1543 tx_desc->data_size = skb_headlen(skb);
1544
1545 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1546 tx_desc->data_size,
1547 DMA_TO_DEVICE);
1548 if (unlikely(dma_mapping_error(dev->dev.parent,
1549 tx_desc->buf_phys_addr))) {
1550 mvneta_txq_desc_put(txq);
1551 frags = 0;
1552 goto out;
1553 }
1554
1555 if (frags == 1) {
1556 /* First and Last descriptor */
1557 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1558 tx_desc->command = tx_cmd;
1559 txq->tx_skb[txq->txq_put_index] = skb;
1560 mvneta_txq_inc_put(txq);
1561 } else {
1562 /* First but not Last */
1563 tx_cmd |= MVNETA_TXD_F_DESC;
1564 txq->tx_skb[txq->txq_put_index] = NULL;
1565 mvneta_txq_inc_put(txq);
1566 tx_desc->command = tx_cmd;
1567 /* Continue with other skb fragments */
1568 if (mvneta_tx_frag_process(pp, skb, txq)) {
1569 dma_unmap_single(dev->dev.parent,
1570 tx_desc->buf_phys_addr,
1571 tx_desc->data_size,
1572 DMA_TO_DEVICE);
1573 mvneta_txq_desc_put(txq);
1574 frags = 0;
1575 goto out;
1576 }
1577 }
1578
1579 txq->count += frags;
1580 mvneta_txq_pend_desc_add(pp, txq, frags);
1581
1582 if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1583 netif_tx_stop_queue(nq);
1584
1585out:
1586 if (frags > 0) {
936e9bc5 1587 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
c5aff182 1588
936e9bc5 1589 u64_stats_update_begin(&stats->syncp);
1590 stats->tx_packets++;
1591 stats->tx_bytes += skb->len;
1592 u64_stats_update_end(&stats->syncp);
c5aff182
TP
1593 } else {
1594 dev->stats.tx_dropped++;
1595 dev_kfree_skb_any(skb);
1596 }
1597
c5aff182
TP
1598 return NETDEV_TX_OK;
1599}
1600
1601
1602/* Free tx resources, when resetting a port */
1603static void mvneta_txq_done_force(struct mvneta_port *pp,
1604 struct mvneta_tx_queue *txq)
1605
1606{
1607 int tx_done = txq->count;
1608
1609 mvneta_txq_bufs_free(pp, txq, tx_done);
1610
1611 /* reset txq */
1612 txq->count = 0;
1613 txq->txq_put_index = 0;
1614 txq->txq_get_index = 0;
1615}
1616
1617/* handle tx done - called from tx done timer callback */
1618static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1619 int *tx_todo)
1620{
1621 struct mvneta_tx_queue *txq;
1622 u32 tx_done = 0;
1623 struct netdev_queue *nq;
1624
1625 *tx_todo = 0;
1626 while (cause_tx_done != 0) {
1627 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1628 if (!txq)
1629 break;
1630
1631 nq = netdev_get_tx_queue(pp->dev, txq->id);
1632 __netif_tx_lock(nq, smp_processor_id());
1633
1634 if (txq->count) {
1635 tx_done += mvneta_txq_done(pp, txq);
1636 *tx_todo += txq->count;
1637 }
1638
1639 __netif_tx_unlock(nq);
1640 cause_tx_done &= ~((1 << txq->id));
1641 }
1642
1643 return tx_done;
1644}
1645
6a20c175 1646/* Compute crc8 of the specified address, using a unique algorithm ,
c5aff182
TP
1647 * according to hw spec, different than generic crc8 algorithm
1648 */
1649static int mvneta_addr_crc(unsigned char *addr)
1650{
1651 int crc = 0;
1652 int i;
1653
1654 for (i = 0; i < ETH_ALEN; i++) {
1655 int j;
1656
1657 crc = (crc ^ addr[i]) << 8;
1658 for (j = 7; j >= 0; j--) {
1659 if (crc & (0x100 << j))
1660 crc ^= 0x107 << j;
1661 }
1662 }
1663
1664 return crc;
1665}
1666
1667/* This method controls the net device special MAC multicast support.
1668 * The Special Multicast Table for MAC addresses supports MAC of the form
1669 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1670 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1671 * Table entries in the DA-Filter table. This method set the Special
1672 * Multicast Table appropriate entry.
1673 */
1674static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1675 unsigned char last_byte,
1676 int queue)
1677{
1678 unsigned int smc_table_reg;
1679 unsigned int tbl_offset;
1680 unsigned int reg_offset;
1681
1682 /* Register offset from SMC table base */
1683 tbl_offset = (last_byte / 4);
1684 /* Entry offset within the above reg */
1685 reg_offset = last_byte % 4;
1686
1687 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1688 + tbl_offset * 4));
1689
1690 if (queue == -1)
1691 smc_table_reg &= ~(0xff << (8 * reg_offset));
1692 else {
1693 smc_table_reg &= ~(0xff << (8 * reg_offset));
1694 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1695 }
1696
1697 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1698 smc_table_reg);
1699}
1700
1701/* This method controls the network device Other MAC multicast support.
1702 * The Other Multicast Table is used for multicast of another type.
1703 * A CRC-8 is used as an index to the Other Multicast Table entries
1704 * in the DA-Filter table.
1705 * The method gets the CRC-8 value from the calling routine and
1706 * sets the Other Multicast Table appropriate entry according to the
1707 * specified CRC-8 .
1708 */
1709static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1710 unsigned char crc8,
1711 int queue)
1712{
1713 unsigned int omc_table_reg;
1714 unsigned int tbl_offset;
1715 unsigned int reg_offset;
1716
1717 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1718 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1719
1720 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1721
1722 if (queue == -1) {
1723 /* Clear accepts frame bit at specified Other DA table entry */
1724 omc_table_reg &= ~(0xff << (8 * reg_offset));
1725 } else {
1726 omc_table_reg &= ~(0xff << (8 * reg_offset));
1727 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1728 }
1729
1730 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1731}
1732
1733/* The network device supports multicast using two tables:
1734 * 1) Special Multicast Table for MAC addresses of the form
1735 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1736 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1737 * Table entries in the DA-Filter table.
1738 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1739 * is used as an index to the Other Multicast Table entries in the
1740 * DA-Filter table.
1741 */
1742static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1743 int queue)
1744{
1745 unsigned char crc_result = 0;
1746
1747 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1748 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1749 return 0;
1750 }
1751
1752 crc_result = mvneta_addr_crc(p_addr);
1753 if (queue == -1) {
1754 if (pp->mcast_count[crc_result] == 0) {
1755 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1756 crc_result);
1757 return -EINVAL;
1758 }
1759
1760 pp->mcast_count[crc_result]--;
1761 if (pp->mcast_count[crc_result] != 0) {
1762 netdev_info(pp->dev,
1763 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1764 pp->mcast_count[crc_result], crc_result);
1765 return -EINVAL;
1766 }
1767 } else
1768 pp->mcast_count[crc_result]++;
1769
1770 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1771
1772 return 0;
1773}
1774
1775/* Configure Fitering mode of Ethernet port */
1776static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1777 int is_promisc)
1778{
1779 u32 port_cfg_reg, val;
1780
1781 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1782
1783 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1784
1785 /* Set / Clear UPM bit in port configuration register */
1786 if (is_promisc) {
1787 /* Accept all Unicast addresses */
1788 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1789 val |= MVNETA_FORCE_UNI;
1790 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1791 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1792 } else {
1793 /* Reject all Unicast addresses */
1794 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1795 val &= ~MVNETA_FORCE_UNI;
1796 }
1797
1798 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1799 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1800}
1801
1802/* register unicast and multicast addresses */
1803static void mvneta_set_rx_mode(struct net_device *dev)
1804{
1805 struct mvneta_port *pp = netdev_priv(dev);
1806 struct netdev_hw_addr *ha;
1807
1808 if (dev->flags & IFF_PROMISC) {
1809 /* Accept all: Multicast + Unicast */
1810 mvneta_rx_unicast_promisc_set(pp, 1);
1811 mvneta_set_ucast_table(pp, rxq_def);
1812 mvneta_set_special_mcast_table(pp, rxq_def);
1813 mvneta_set_other_mcast_table(pp, rxq_def);
1814 } else {
1815 /* Accept single Unicast */
1816 mvneta_rx_unicast_promisc_set(pp, 0);
1817 mvneta_set_ucast_table(pp, -1);
1818 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1819
1820 if (dev->flags & IFF_ALLMULTI) {
1821 /* Accept all multicast */
1822 mvneta_set_special_mcast_table(pp, rxq_def);
1823 mvneta_set_other_mcast_table(pp, rxq_def);
1824 } else {
1825 /* Accept only initialized multicast */
1826 mvneta_set_special_mcast_table(pp, -1);
1827 mvneta_set_other_mcast_table(pp, -1);
1828
1829 if (!netdev_mc_empty(dev)) {
1830 netdev_for_each_mc_addr(ha, dev) {
1831 mvneta_mcast_addr_set(pp, ha->addr,
1832 rxq_def);
1833 }
1834 }
1835 }
1836 }
1837}
1838
1839/* Interrupt handling - the callback for request_irq() */
1840static irqreturn_t mvneta_isr(int irq, void *dev_id)
1841{
1842 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1843
1844 /* Mask all interrupts */
1845 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1846
1847 napi_schedule(&pp->napi);
1848
1849 return IRQ_HANDLED;
1850}
1851
1852/* NAPI handler
1853 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1854 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1855 * Bits 8 -15 of the cause Rx Tx register indicate that are received
1856 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1857 * Each CPU has its own causeRxTx register
1858 */
1859static int mvneta_poll(struct napi_struct *napi, int budget)
1860{
1861 int rx_done = 0;
1862 u32 cause_rx_tx;
1863 unsigned long flags;
1864 struct mvneta_port *pp = netdev_priv(napi->dev);
1865
1866 if (!netif_running(pp->dev)) {
1867 napi_complete(napi);
1868 return rx_done;
1869 }
1870
1871 /* Read cause register */
1872 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
a733b535 1873 (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
1874
1875 /* Release Tx descriptors */
1876 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
1877 int tx_todo = 0;
1878
1879 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL), &tx_todo);
1880 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
1881 }
c5aff182 1882
6a20c175 1883 /* For the case where the last mvneta_poll did not process all
c5aff182
TP
1884 * RX packets
1885 */
1886 cause_rx_tx |= pp->cause_rx_tx;
1887 if (rxq_number > 1) {
a733b535 1888 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
c5aff182
TP
1889 int count;
1890 struct mvneta_rx_queue *rxq;
1891 /* get rx queue number from cause_rx_tx */
1892 rxq = mvneta_rx_policy(pp, cause_rx_tx);
1893 if (!rxq)
1894 break;
1895
1896 /* process the packet in that rx queue */
1897 count = mvneta_rx(pp, budget, rxq);
1898 rx_done += count;
1899 budget -= count;
1900 if (budget > 0) {
6a20c175
TP
1901 /* set off the rx bit of the
1902 * corresponding bit in the cause rx
1903 * tx register, so that next iteration
1904 * will find the next rx queue where
1905 * packets are received on
1906 */
c5aff182
TP
1907 cause_rx_tx &= ~((1 << rxq->id) << 8);
1908 }
1909 }
1910 } else {
1911 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1912 budget -= rx_done;
1913 }
1914
1915 if (budget > 0) {
1916 cause_rx_tx = 0;
1917 napi_complete(napi);
1918 local_irq_save(flags);
1919 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
a733b535 1920 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
c5aff182
TP
1921 local_irq_restore(flags);
1922 }
1923
1924 pp->cause_rx_tx = cause_rx_tx;
1925 return rx_done;
1926}
1927
c5aff182
TP
1928/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1929static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1930 int num)
1931{
1932 struct net_device *dev = pp->dev;
1933 int i;
1934
1935 for (i = 0; i < num; i++) {
1936 struct sk_buff *skb;
1937 struct mvneta_rx_desc *rx_desc;
1938 unsigned long phys_addr;
1939
1940 skb = dev_alloc_skb(pp->pkt_size);
1941 if (!skb) {
1942 netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n",
1943 __func__, rxq->id, i, num);
1944 break;
1945 }
1946
1947 rx_desc = rxq->descs + i;
1948 memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1949 phys_addr = dma_map_single(dev->dev.parent, skb->head,
1950 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1951 DMA_FROM_DEVICE);
1952 if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1953 dev_kfree_skb(skb);
1954 break;
1955 }
1956
1957 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1958 }
1959
1960 /* Add this number of RX descriptors as non occupied (ready to
6a20c175
TP
1961 * get packets)
1962 */
c5aff182
TP
1963 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1964
1965 return i;
1966}
1967
1968/* Free all packets pending transmit from all TXQs and reset TX port */
1969static void mvneta_tx_reset(struct mvneta_port *pp)
1970{
1971 int queue;
1972
1973 /* free the skb's in the hal tx ring */
1974 for (queue = 0; queue < txq_number; queue++)
1975 mvneta_txq_done_force(pp, &pp->txqs[queue]);
1976
1977 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1978 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1979}
1980
1981static void mvneta_rx_reset(struct mvneta_port *pp)
1982{
1983 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1984 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1985}
1986
1987/* Rx/Tx queue initialization/cleanup methods */
1988
1989/* Create a specified RX queue */
1990static int mvneta_rxq_init(struct mvneta_port *pp,
1991 struct mvneta_rx_queue *rxq)
1992
1993{
1994 rxq->size = pp->rx_ring_size;
1995
1996 /* Allocate memory for RX descriptors */
1997 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
1998 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1999 &rxq->descs_phys, GFP_KERNEL);
d0320f75 2000 if (rxq->descs == NULL)
c5aff182 2001 return -ENOMEM;
c5aff182
TP
2002
2003 BUG_ON(rxq->descs !=
2004 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2005
2006 rxq->last_desc = rxq->size - 1;
2007
2008 /* Set Rx descriptors queue starting address */
2009 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2010 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2011
2012 /* Set Offset */
2013 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2014
2015 /* Set coalescing pkts and time */
2016 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2017 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2018
2019 /* Fill RXQ with buffers from RX pool */
2020 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2021 mvneta_rxq_bm_disable(pp, rxq);
2022 mvneta_rxq_fill(pp, rxq, rxq->size);
2023
2024 return 0;
2025}
2026
2027/* Cleanup Rx queue */
2028static void mvneta_rxq_deinit(struct mvneta_port *pp,
2029 struct mvneta_rx_queue *rxq)
2030{
2031 mvneta_rxq_drop_pkts(pp, rxq);
2032
2033 if (rxq->descs)
2034 dma_free_coherent(pp->dev->dev.parent,
2035 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2036 rxq->descs,
2037 rxq->descs_phys);
2038
2039 rxq->descs = NULL;
2040 rxq->last_desc = 0;
2041 rxq->next_desc_to_proc = 0;
2042 rxq->descs_phys = 0;
2043}
2044
2045/* Create and initialize a tx queue */
2046static int mvneta_txq_init(struct mvneta_port *pp,
2047 struct mvneta_tx_queue *txq)
2048{
2049 txq->size = pp->tx_ring_size;
2050
2051 /* Allocate memory for TX descriptors */
2052 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2053 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2054 &txq->descs_phys, GFP_KERNEL);
d0320f75 2055 if (txq->descs == NULL)
c5aff182 2056 return -ENOMEM;
c5aff182
TP
2057
2058 /* Make sure descriptor address is cache line size aligned */
2059 BUG_ON(txq->descs !=
2060 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2061
2062 txq->last_desc = txq->size - 1;
2063
2064 /* Set maximum bandwidth for enabled TXQs */
2065 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2066 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2067
2068 /* Set Tx descriptors queue starting address */
2069 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2070 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2071
2072 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2073 if (txq->tx_skb == NULL) {
2074 dma_free_coherent(pp->dev->dev.parent,
2075 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2076 txq->descs, txq->descs_phys);
2077 return -ENOMEM;
2078 }
2079 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2080
2081 return 0;
2082}
2083
2084/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2085static void mvneta_txq_deinit(struct mvneta_port *pp,
2086 struct mvneta_tx_queue *txq)
2087{
2088 kfree(txq->tx_skb);
2089
2090 if (txq->descs)
2091 dma_free_coherent(pp->dev->dev.parent,
2092 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2093 txq->descs, txq->descs_phys);
2094
2095 txq->descs = NULL;
2096 txq->last_desc = 0;
2097 txq->next_desc_to_proc = 0;
2098 txq->descs_phys = 0;
2099
2100 /* Set minimum bandwidth for disabled TXQs */
2101 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2102 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2103
2104 /* Set Tx descriptors queue starting address and size */
2105 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2106 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2107}
2108
2109/* Cleanup all Tx queues */
2110static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2111{
2112 int queue;
2113
2114 for (queue = 0; queue < txq_number; queue++)
2115 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2116}
2117
2118/* Cleanup all Rx queues */
2119static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2120{
2121 int queue;
2122
2123 for (queue = 0; queue < rxq_number; queue++)
2124 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2125}
2126
2127
2128/* Init all Rx queues */
2129static int mvneta_setup_rxqs(struct mvneta_port *pp)
2130{
2131 int queue;
2132
2133 for (queue = 0; queue < rxq_number; queue++) {
2134 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2135 if (err) {
2136 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2137 __func__, queue);
2138 mvneta_cleanup_rxqs(pp);
2139 return err;
2140 }
2141 }
2142
2143 return 0;
2144}
2145
2146/* Init all tx queues */
2147static int mvneta_setup_txqs(struct mvneta_port *pp)
2148{
2149 int queue;
2150
2151 for (queue = 0; queue < txq_number; queue++) {
2152 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2153 if (err) {
2154 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2155 __func__, queue);
2156 mvneta_cleanup_txqs(pp);
2157 return err;
2158 }
2159 }
2160
2161 return 0;
2162}
2163
2164static void mvneta_start_dev(struct mvneta_port *pp)
2165{
2166 mvneta_max_rx_size_set(pp, pp->pkt_size);
2167 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2168
2169 /* start the Rx/Tx activity */
2170 mvneta_port_enable(pp);
2171
2172 /* Enable polling on the port */
2173 napi_enable(&pp->napi);
2174
2175 /* Unmask interrupts */
2176 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
a733b535 2177 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
c5aff182
TP
2178
2179 phy_start(pp->phy_dev);
2180 netif_tx_start_all_queues(pp->dev);
2181}
2182
2183static void mvneta_stop_dev(struct mvneta_port *pp)
2184{
2185 phy_stop(pp->phy_dev);
2186
2187 napi_disable(&pp->napi);
2188
2189 netif_carrier_off(pp->dev);
2190
2191 mvneta_port_down(pp);
2192 netif_tx_stop_all_queues(pp->dev);
2193
2194 /* Stop the port activity */
2195 mvneta_port_disable(pp);
2196
2197 /* Clear all ethernet port interrupts */
2198 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2199 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2200
2201 /* Mask all ethernet port interrupts */
2202 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2203 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2204 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2205
2206 mvneta_tx_reset(pp);
2207 mvneta_rx_reset(pp);
2208}
2209
c5aff182
TP
2210/* Return positive if MTU is valid */
2211static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2212{
2213 if (mtu < 68) {
2214 netdev_err(dev, "cannot change mtu to less than 68\n");
2215 return -EINVAL;
2216 }
2217
6a20c175 2218 /* 9676 == 9700 - 20 and rounding to 8 */
c5aff182
TP
2219 if (mtu > 9676) {
2220 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2221 mtu = 9676;
2222 }
2223
2224 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2225 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2226 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2227 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2228 }
2229
2230 return mtu;
2231}
2232
2233/* Change the device mtu */
2234static int mvneta_change_mtu(struct net_device *dev, int mtu)
2235{
2236 struct mvneta_port *pp = netdev_priv(dev);
2237 int ret;
2238
2239 mtu = mvneta_check_mtu_valid(dev, mtu);
2240 if (mtu < 0)
2241 return -EINVAL;
2242
2243 dev->mtu = mtu;
2244
2245 if (!netif_running(dev))
2246 return 0;
2247
6a20c175 2248 /* The interface is running, so we have to force a
c5aff182
TP
2249 * reallocation of the RXQs
2250 */
2251 mvneta_stop_dev(pp);
2252
2253 mvneta_cleanup_txqs(pp);
2254 mvneta_cleanup_rxqs(pp);
2255
2256 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2257
2258 ret = mvneta_setup_rxqs(pp);
2259 if (ret) {
2260 netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2261 return ret;
2262 }
2263
2264 mvneta_setup_txqs(pp);
2265
2266 mvneta_start_dev(pp);
2267 mvneta_port_up(pp);
2268
2269 return 0;
2270}
2271
2272/* Handle setting mac address */
2273static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2274{
2275 struct mvneta_port *pp = netdev_priv(dev);
2276 u8 *mac = addr + 2;
2277 int i;
2278
2279 if (netif_running(dev))
2280 return -EBUSY;
2281
2282 /* Remove previous address table entry */
2283 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2284
2285 /* Set new addr in hw */
2286 mvneta_mac_addr_set(pp, mac, rxq_def);
2287
2288 /* Set addr in the device */
2289 for (i = 0; i < ETH_ALEN; i++)
2290 dev->dev_addr[i] = mac[i];
2291
2292 return 0;
2293}
2294
2295static void mvneta_adjust_link(struct net_device *ndev)
2296{
2297 struct mvneta_port *pp = netdev_priv(ndev);
2298 struct phy_device *phydev = pp->phy_dev;
2299 int status_change = 0;
2300
2301 if (phydev->link) {
2302 if ((pp->speed != phydev->speed) ||
2303 (pp->duplex != phydev->duplex)) {
2304 u32 val;
2305
2306 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2307 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2308 MVNETA_GMAC_CONFIG_GMII_SPEED |
4c54b9db
TP
2309 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2310 MVNETA_GMAC_AN_SPEED_EN |
2311 MVNETA_GMAC_AN_DUPLEX_EN);
c5aff182
TP
2312
2313 if (phydev->duplex)
2314 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2315
2316 if (phydev->speed == SPEED_1000)
2317 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
8a8d269d 2318 else if (phydev->speed == SPEED_100)
c5aff182
TP
2319 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2320
2321 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2322
2323 pp->duplex = phydev->duplex;
2324 pp->speed = phydev->speed;
2325 }
2326 }
2327
2328 if (phydev->link != pp->link) {
2329 if (!phydev->link) {
2330 pp->duplex = -1;
2331 pp->speed = 0;
2332 }
2333
2334 pp->link = phydev->link;
2335 status_change = 1;
2336 }
2337
2338 if (status_change) {
2339 if (phydev->link) {
2340 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2341 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2342 MVNETA_GMAC_FORCE_LINK_DOWN);
2343 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2344 mvneta_port_up(pp);
2345 netdev_info(pp->dev, "link up\n");
2346 } else {
2347 mvneta_port_down(pp);
2348 netdev_info(pp->dev, "link down\n");
2349 }
2350 }
2351}
2352
2353static int mvneta_mdio_probe(struct mvneta_port *pp)
2354{
2355 struct phy_device *phy_dev;
2356
2357 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2358 pp->phy_interface);
2359 if (!phy_dev) {
2360 netdev_err(pp->dev, "could not find the PHY\n");
2361 return -ENODEV;
2362 }
2363
2364 phy_dev->supported &= PHY_GBIT_FEATURES;
2365 phy_dev->advertising = phy_dev->supported;
2366
2367 pp->phy_dev = phy_dev;
2368 pp->link = 0;
2369 pp->duplex = 0;
2370 pp->speed = 0;
2371
2372 return 0;
2373}
2374
2375static void mvneta_mdio_remove(struct mvneta_port *pp)
2376{
2377 phy_disconnect(pp->phy_dev);
2378 pp->phy_dev = NULL;
2379}
2380
2381static int mvneta_open(struct net_device *dev)
2382{
2383 struct mvneta_port *pp = netdev_priv(dev);
2384 int ret;
2385
2386 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2387
2388 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2389
2390 ret = mvneta_setup_rxqs(pp);
2391 if (ret)
2392 return ret;
2393
2394 ret = mvneta_setup_txqs(pp);
2395 if (ret)
2396 goto err_cleanup_rxqs;
2397
2398 /* Connect to port interrupt line */
2399 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2400 MVNETA_DRIVER_NAME, pp);
2401 if (ret) {
2402 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2403 goto err_cleanup_txqs;
2404 }
2405
2406 /* In default link is down */
2407 netif_carrier_off(pp->dev);
2408
2409 ret = mvneta_mdio_probe(pp);
2410 if (ret < 0) {
2411 netdev_err(dev, "cannot probe MDIO bus\n");
2412 goto err_free_irq;
2413 }
2414
2415 mvneta_start_dev(pp);
2416
2417 return 0;
2418
2419err_free_irq:
2420 free_irq(pp->dev->irq, pp);
2421err_cleanup_txqs:
2422 mvneta_cleanup_txqs(pp);
2423err_cleanup_rxqs:
2424 mvneta_cleanup_rxqs(pp);
2425 return ret;
2426}
2427
2428/* Stop the port, free port interrupt line */
2429static int mvneta_stop(struct net_device *dev)
2430{
2431 struct mvneta_port *pp = netdev_priv(dev);
2432
2433 mvneta_stop_dev(pp);
2434 mvneta_mdio_remove(pp);
2435 free_irq(dev->irq, pp);
2436 mvneta_cleanup_rxqs(pp);
2437 mvneta_cleanup_txqs(pp);
c5aff182
TP
2438
2439 return 0;
2440}
2441
2442/* Ethtool methods */
2443
2444/* Get settings (phy address, speed) for ethtools */
2445int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2446{
2447 struct mvneta_port *pp = netdev_priv(dev);
2448
2449 if (!pp->phy_dev)
2450 return -ENODEV;
2451
2452 return phy_ethtool_gset(pp->phy_dev, cmd);
2453}
2454
2455/* Set settings (phy address, speed) for ethtools */
2456int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2457{
2458 struct mvneta_port *pp = netdev_priv(dev);
2459
2460 if (!pp->phy_dev)
2461 return -ENODEV;
2462
2463 return phy_ethtool_sset(pp->phy_dev, cmd);
2464}
2465
2466/* Set interrupt coalescing for ethtools */
2467static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2468 struct ethtool_coalesce *c)
2469{
2470 struct mvneta_port *pp = netdev_priv(dev);
2471 int queue;
2472
2473 for (queue = 0; queue < rxq_number; queue++) {
2474 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2475 rxq->time_coal = c->rx_coalesce_usecs;
2476 rxq->pkts_coal = c->rx_max_coalesced_frames;
2477 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2478 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2479 }
2480
2481 for (queue = 0; queue < txq_number; queue++) {
2482 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2483 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2484 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2485 }
2486
2487 return 0;
2488}
2489
2490/* get coalescing for ethtools */
2491static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2492 struct ethtool_coalesce *c)
2493{
2494 struct mvneta_port *pp = netdev_priv(dev);
2495
2496 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2497 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2498
2499 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2500 return 0;
2501}
2502
2503
2504static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2505 struct ethtool_drvinfo *drvinfo)
2506{
2507 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2508 sizeof(drvinfo->driver));
2509 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2510 sizeof(drvinfo->version));
2511 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2512 sizeof(drvinfo->bus_info));
2513}
2514
2515
2516static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2517 struct ethtool_ringparam *ring)
2518{
2519 struct mvneta_port *pp = netdev_priv(netdev);
2520
2521 ring->rx_max_pending = MVNETA_MAX_RXD;
2522 ring->tx_max_pending = MVNETA_MAX_TXD;
2523 ring->rx_pending = pp->rx_ring_size;
2524 ring->tx_pending = pp->tx_ring_size;
2525}
2526
2527static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2528 struct ethtool_ringparam *ring)
2529{
2530 struct mvneta_port *pp = netdev_priv(dev);
2531
2532 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2533 return -EINVAL;
2534 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2535 ring->rx_pending : MVNETA_MAX_RXD;
2536 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2537 ring->tx_pending : MVNETA_MAX_TXD;
2538
2539 if (netif_running(dev)) {
2540 mvneta_stop(dev);
2541 if (mvneta_open(dev)) {
2542 netdev_err(dev,
2543 "error on opening device after ring param change\n");
2544 return -ENOMEM;
2545 }
2546 }
2547
2548 return 0;
2549}
2550
2551static const struct net_device_ops mvneta_netdev_ops = {
2552 .ndo_open = mvneta_open,
2553 .ndo_stop = mvneta_stop,
2554 .ndo_start_xmit = mvneta_tx,
2555 .ndo_set_rx_mode = mvneta_set_rx_mode,
2556 .ndo_set_mac_address = mvneta_set_mac_addr,
2557 .ndo_change_mtu = mvneta_change_mtu,
c5aff182
TP
2558 .ndo_get_stats64 = mvneta_get_stats64,
2559};
2560
2561const struct ethtool_ops mvneta_eth_tool_ops = {
2562 .get_link = ethtool_op_get_link,
2563 .get_settings = mvneta_ethtool_get_settings,
2564 .set_settings = mvneta_ethtool_set_settings,
2565 .set_coalesce = mvneta_ethtool_set_coalesce,
2566 .get_coalesce = mvneta_ethtool_get_coalesce,
2567 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2568 .get_ringparam = mvneta_ethtool_get_ringparam,
2569 .set_ringparam = mvneta_ethtool_set_ringparam,
2570};
2571
2572/* Initialize hw */
03ce758e 2573static int mvneta_init(struct mvneta_port *pp, int phy_addr)
c5aff182
TP
2574{
2575 int queue;
2576
2577 /* Disable port */
2578 mvneta_port_disable(pp);
2579
2580 /* Set port default values */
2581 mvneta_defaults_set(pp);
2582
2583 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2584 GFP_KERNEL);
2585 if (!pp->txqs)
2586 return -ENOMEM;
2587
2588 /* Initialize TX descriptor rings */
2589 for (queue = 0; queue < txq_number; queue++) {
2590 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2591 txq->id = queue;
2592 txq->size = pp->tx_ring_size;
2593 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2594 }
2595
2596 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2597 GFP_KERNEL);
2598 if (!pp->rxqs) {
2599 kfree(pp->txqs);
2600 return -ENOMEM;
2601 }
2602
2603 /* Create Rx descriptor rings */
2604 for (queue = 0; queue < rxq_number; queue++) {
2605 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2606 rxq->id = queue;
2607 rxq->size = pp->rx_ring_size;
2608 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2609 rxq->time_coal = MVNETA_RX_COAL_USEC;
2610 }
2611
2612 return 0;
2613}
2614
70eeaf98 2615static void mvneta_deinit(struct mvneta_port *pp)
c5aff182
TP
2616{
2617 kfree(pp->txqs);
2618 kfree(pp->rxqs);
2619}
2620
2621/* platform glue : initialize decoding windows */
03ce758e
GK
2622static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2623 const struct mbus_dram_target_info *dram)
c5aff182
TP
2624{
2625 u32 win_enable;
2626 u32 win_protect;
2627 int i;
2628
2629 for (i = 0; i < 6; i++) {
2630 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2631 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2632
2633 if (i < 4)
2634 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2635 }
2636
2637 win_enable = 0x3f;
2638 win_protect = 0;
2639
2640 for (i = 0; i < dram->num_cs; i++) {
2641 const struct mbus_dram_window *cs = dram->cs + i;
2642 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2643 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2644
2645 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2646 (cs->size - 1) & 0xffff0000);
2647
2648 win_enable &= ~(1 << i);
2649 win_protect |= 3 << (2 * i);
2650 }
2651
2652 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2653}
2654
2655/* Power up the port */
03ce758e 2656static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
c5aff182
TP
2657{
2658 u32 val;
2659
2660 /* MAC Cause register should be cleared */
2661 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2662
2663 if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2664 mvneta_port_sgmii_config(pp);
2665
2666 mvneta_gmac_rgmii_set(pp, 1);
2667
2668 /* Cancel Port Reset */
2669 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2670 val &= ~MVNETA_GMAC2_PORT_RESET;
2671 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2672
2673 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2674 MVNETA_GMAC2_PORT_RESET) != 0)
2675 continue;
2676}
2677
2678/* Device initialization routine */
03ce758e 2679static int mvneta_probe(struct platform_device *pdev)
c5aff182
TP
2680{
2681 const struct mbus_dram_target_info *dram_target_info;
2682 struct device_node *dn = pdev->dev.of_node;
2683 struct device_node *phy_node;
189dd626 2684 u32 phy_addr;
c5aff182
TP
2685 struct mvneta_port *pp;
2686 struct net_device *dev;
2687 const char *mac_addr;
2688 int phy_mode;
2689 int err;
2690
6a20c175 2691 /* Our multiqueue support is not complete, so for now, only
c5aff182
TP
2692 * allow the usage of the first RX queue
2693 */
2694 if (rxq_def != 0) {
2695 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2696 return -EINVAL;
2697 }
2698
ee40a116 2699 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
c5aff182
TP
2700 if (!dev)
2701 return -ENOMEM;
2702
2703 dev->irq = irq_of_parse_and_map(dn, 0);
2704 if (dev->irq == 0) {
2705 err = -EINVAL;
2706 goto err_free_netdev;
2707 }
2708
2709 phy_node = of_parse_phandle(dn, "phy", 0);
2710 if (!phy_node) {
2711 dev_err(&pdev->dev, "no associated PHY\n");
2712 err = -ENODEV;
2713 goto err_free_irq;
2714 }
2715
2716 phy_mode = of_get_phy_mode(dn);
2717 if (phy_mode < 0) {
2718 dev_err(&pdev->dev, "incorrect phy-mode\n");
2719 err = -EINVAL;
2720 goto err_free_irq;
2721 }
2722
c5aff182
TP
2723 mac_addr = of_get_mac_address(dn);
2724
2725 if (!mac_addr || !is_valid_ether_addr(mac_addr))
2726 eth_hw_addr_random(dev);
2727 else
2728 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
2729
2730 dev->tx_queue_len = MVNETA_MAX_TXD;
2731 dev->watchdog_timeo = 5 * HZ;
2732 dev->netdev_ops = &mvneta_netdev_ops;
2733
2734 SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2735
2736 pp = netdev_priv(dev);
2737
c5aff182 2738 pp->weight = MVNETA_RX_POLL_WEIGHT;
c5aff182
TP
2739 pp->phy_node = phy_node;
2740 pp->phy_interface = phy_mode;
2741
2742 pp->base = of_iomap(dn, 0);
2743 if (pp->base == NULL) {
2744 err = -ENOMEM;
2745 goto err_free_irq;
2746 }
2747
189dd626
TP
2748 pp->clk = devm_clk_get(&pdev->dev, NULL);
2749 if (IS_ERR(pp->clk)) {
2750 err = PTR_ERR(pp->clk);
2751 goto err_unmap;
2752 }
2753
2754 clk_prepare_enable(pp->clk);
2755
936e9bc5 2756 /* Alloc per-cpu stats */
2757 pp->stats = alloc_percpu(struct mvneta_pcpu_stats);
2758 if (!pp->stats) {
2759 err = -ENOMEM;
2760 goto err_clk;
2761 }
2762
c5aff182
TP
2763 pp->tx_ring_size = MVNETA_MAX_TXD;
2764 pp->rx_ring_size = MVNETA_MAX_RXD;
2765
2766 pp->dev = dev;
2767 SET_NETDEV_DEV(dev, &pdev->dev);
2768
2769 err = mvneta_init(pp, phy_addr);
2770 if (err < 0) {
2771 dev_err(&pdev->dev, "can't init eth hal\n");
936e9bc5 2772 goto err_free_stats;
c5aff182
TP
2773 }
2774 mvneta_port_power_up(pp, phy_mode);
2775
2776 dram_target_info = mv_mbus_dram_info();
2777 if (dram_target_info)
2778 mvneta_conf_mbus_windows(pp, dram_target_info);
2779
2780 netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2781
b50b72de 2782 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2783 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2784 dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2785 dev->priv_flags |= IFF_UNICAST_FLT;
2786
c5aff182
TP
2787 err = register_netdev(dev);
2788 if (err < 0) {
2789 dev_err(&pdev->dev, "failed to register\n");
2790 goto err_deinit;
2791 }
2792
c5aff182
TP
2793 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
2794
2795 platform_set_drvdata(pdev, pp->dev);
2796
2797 return 0;
2798
2799err_deinit:
2800 mvneta_deinit(pp);
936e9bc5 2801err_free_stats:
2802 free_percpu(pp->stats);
189dd626
TP
2803err_clk:
2804 clk_disable_unprepare(pp->clk);
c5aff182
TP
2805err_unmap:
2806 iounmap(pp->base);
2807err_free_irq:
2808 irq_dispose_mapping(dev->irq);
2809err_free_netdev:
2810 free_netdev(dev);
2811 return err;
2812}
2813
2814/* Device removal routine */
03ce758e 2815static int mvneta_remove(struct platform_device *pdev)
c5aff182
TP
2816{
2817 struct net_device *dev = platform_get_drvdata(pdev);
2818 struct mvneta_port *pp = netdev_priv(dev);
2819
2820 unregister_netdev(dev);
2821 mvneta_deinit(pp);
189dd626 2822 clk_disable_unprepare(pp->clk);
936e9bc5 2823 free_percpu(pp->stats);
c5aff182
TP
2824 iounmap(pp->base);
2825 irq_dispose_mapping(dev->irq);
2826 free_netdev(dev);
2827
2828 platform_set_drvdata(pdev, NULL);
2829
2830 return 0;
2831}
2832
2833static const struct of_device_id mvneta_match[] = {
2834 { .compatible = "marvell,armada-370-neta" },
2835 { }
2836};
2837MODULE_DEVICE_TABLE(of, mvneta_match);
2838
2839static struct platform_driver mvneta_driver = {
2840 .probe = mvneta_probe,
03ce758e 2841 .remove = mvneta_remove,
c5aff182
TP
2842 .driver = {
2843 .name = MVNETA_DRIVER_NAME,
2844 .of_match_table = mvneta_match,
2845 },
2846};
2847
2848module_platform_driver(mvneta_driver);
2849
2850MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2851MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2852MODULE_LICENSE("GPL");
2853
2854module_param(rxq_number, int, S_IRUGO);
2855module_param(txq_number, int, S_IRUGO);
2856
2857module_param(rxq_def, int, S_IRUGO);