Merge branches 'devel-stable', 'entry', 'fixes', 'mach-types', 'misc' and 'smp-hotplu...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4b9ea462 4 Copyright(c) 2007-2013 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
441fc6fd 60#include <linux/i2c.h>
9d5c8243
AK
61#include "igb.h"
62
200e5fd5 63#define MAJ 4
6699938b
CW
64#define MIN 1
65#define BUILD 2
0d1fe82d 66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 67__stringify(BUILD) "-k"
9d5c8243
AK
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462
AA
72static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
9d5c8243 74
9d5c8243
AK
75static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77};
78
a3aa1884 79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
f96a8a0b
CW
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
d2ba2ed8
AD
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110 /* required last entry */
111 {0, }
112};
113
114MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115
116void igb_reset(struct igb_adapter *);
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 121static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 123static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
53c7d064 127static void igb_configure(struct igb_adapter *);
9d5c8243
AK
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 134static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
cd392f5c 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
9d5c8243
AK
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
68d480c4 143static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
047e0030 147static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 148#ifdef CONFIG_IGB_DCA
047e0030 149static void igb_update_dca(struct igb_q_vector *);
fe4506b6 150static void igb_setup_dca(struct igb_adapter *);
421e02f0 151#endif /* CONFIG_IGB_DCA */
661086df 152static int igb_poll(struct napi_struct *, int);
13fde97a 153static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
c8f44aff 158static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
8e586137
JP
159static int igb_vlan_rx_add_vid(struct net_device *, u16);
160static int igb_vlan_rx_kill_vid(struct net_device *, u16);
9d5c8243 161static void igb_restore_vlan(struct igb_adapter *);
26ad9178 162static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
163static void igb_ping_all_vfs(struct igb_adapter *);
164static void igb_msg_task(struct igb_adapter *);
4ae196df 165static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 166static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 167static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
168static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170 int vf, u16 vlan, u8 qos);
171static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173 struct ifla_vf_info *ivi);
17dc566c 174static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
175
176#ifdef CONFIG_PCI_IOV
0224d663 177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
f557147c 178static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
46a01698 179#endif
9d5c8243 180
9d5c8243 181#ifdef CONFIG_PM
d9dd966d 182#ifdef CONFIG_PM_SLEEP
749ab2cd 183static int igb_suspend(struct device *);
d9dd966d 184#endif
749ab2cd
YZ
185static int igb_resume(struct device *);
186#ifdef CONFIG_PM_RUNTIME
187static int igb_runtime_suspend(struct device *dev);
188static int igb_runtime_resume(struct device *dev);
189static int igb_runtime_idle(struct device *dev);
190#endif
191static const struct dev_pm_ops igb_pm_ops = {
192 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194 igb_runtime_idle)
195};
9d5c8243
AK
196#endif
197static void igb_shutdown(struct pci_dev *);
fa44f2f1 198static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 199#ifdef CONFIG_IGB_DCA
fe4506b6
JC
200static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201static struct notifier_block dca_notifier = {
202 .notifier_call = igb_notify_dca,
203 .next = NULL,
204 .priority = 0
205};
206#endif
9d5c8243
AK
207#ifdef CONFIG_NET_POLL_CONTROLLER
208/* for netdump / net console */
209static void igb_netpoll(struct net_device *);
210#endif
37680117 211#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
212static unsigned int max_vfs = 0;
213module_param(max_vfs, uint, 0);
214MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215 "per physical function");
216#endif /* CONFIG_PCI_IOV */
217
9d5c8243
AK
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
3646f0e5 223static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
224 .error_detected = igb_io_error_detected,
225 .slot_reset = igb_io_slot_reset,
226 .resume = igb_io_resume,
227};
228
b6e0c419 229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
230
231static struct pci_driver igb_driver = {
232 .name = igb_driver_name,
233 .id_table = igb_pci_tbl,
234 .probe = igb_probe,
9f9a12f8 235 .remove = igb_remove,
9d5c8243 236#ifdef CONFIG_PM
749ab2cd 237 .driver.pm = &igb_pm_ops,
9d5c8243
AK
238#endif
239 .shutdown = igb_shutdown,
fa44f2f1 240 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
241 .err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
b3f4d599 249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
c97ec42a
TI
254struct igb_reg_info {
255 u32 ofs;
256 char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261 /* General Registers */
262 {E1000_CTRL, "CTRL"},
263 {E1000_STATUS, "STATUS"},
264 {E1000_CTRL_EXT, "CTRL_EXT"},
265
266 /* Interrupt Registers */
267 {E1000_ICR, "ICR"},
268
269 /* RX Registers */
270 {E1000_RCTL, "RCTL"},
271 {E1000_RDLEN(0), "RDLEN"},
272 {E1000_RDH(0), "RDH"},
273 {E1000_RDT(0), "RDT"},
274 {E1000_RXDCTL(0), "RXDCTL"},
275 {E1000_RDBAL(0), "RDBAL"},
276 {E1000_RDBAH(0), "RDBAH"},
277
278 /* TX Registers */
279 {E1000_TCTL, "TCTL"},
280 {E1000_TDBAL(0), "TDBAL"},
281 {E1000_TDBAH(0), "TDBAH"},
282 {E1000_TDLEN(0), "TDLEN"},
283 {E1000_TDH(0), "TDH"},
284 {E1000_TDT(0), "TDT"},
285 {E1000_TXDCTL(0), "TXDCTL"},
286 {E1000_TDFH, "TDFH"},
287 {E1000_TDFT, "TDFT"},
288 {E1000_TDFHS, "TDFHS"},
289 {E1000_TDFPC, "TDFPC"},
290
291 /* List Terminator */
292 {}
293};
294
295/*
296 * igb_regdump - register printout routine
297 */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
876d2d6f 354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
c97ec42a
TI
361}
362
363/*
364 * igb_dump - Print registers, tx-rings and rx-rings
365 */
366static void igb_dump(struct igb_adapter *adapter)
367{
368 struct net_device *netdev = adapter->netdev;
369 struct e1000_hw *hw = &adapter->hw;
370 struct igb_reg_info *reginfo;
c97ec42a
TI
371 struct igb_ring *tx_ring;
372 union e1000_adv_tx_desc *tx_desc;
373 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
374 struct igb_ring *rx_ring;
375 union e1000_adv_rx_desc *rx_desc;
376 u32 staterr;
6ad4edfc 377 u16 i, n;
c97ec42a
TI
378
379 if (!netif_msg_hw(adapter))
380 return;
381
382 /* Print netdevice Info */
383 if (netdev) {
384 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
385 pr_info("Device Name state trans_start "
386 "last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 393 pr_info(" Register Name Value\n");
c97ec42a
TI
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 405 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 406 struct igb_tx_buffer *buffer_info;
c97ec42a 407 tx_ring = adapter->tx_ring[n];
06034649 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
876d2d6f
JK
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
c97ec42a
TI
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
440 "[bi->dma ] leng ntw timestamp "
441 "bi->skb\n");
c97ec42a
TI
442
443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 444 const char *next_desc;
06034649 445 struct igb_tx_buffer *buffer_info;
60136906 446 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 447 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 448 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
449 if (i == tx_ring->next_to_use &&
450 i == tx_ring->next_to_clean)
451 next_desc = " NTC/U";
452 else if (i == tx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == tx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 pr_info("T [0x%03X] %016llX %016llX %016llX"
460 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
461 le64_to_cpu(u0->a),
462 le64_to_cpu(u0->b),
c9f14bf3
AD
463 (u64)dma_unmap_addr(buffer_info, dma),
464 dma_unmap_len(buffer_info, len),
c97ec42a
TI
465 buffer_info->next_to_watch,
466 (u64)buffer_info->time_stamp,
876d2d6f 467 buffer_info->skb, next_desc);
c97ec42a 468
b669588a 469 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
470 print_hex_dump(KERN_INFO, "",
471 DUMP_PREFIX_ADDRESS,
b669588a 472 16, 1, buffer_info->skb->data,
c9f14bf3
AD
473 dma_unmap_len(buffer_info, len),
474 true);
c97ec42a
TI
475 }
476 }
477
478 /* Print RX Rings Summary */
479rx_ring_summary:
480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 481 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
482 for (n = 0; n < adapter->num_rx_queues; n++) {
483 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
484 pr_info(" %5d %5X %5X\n",
485 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
486 }
487
488 /* Print RX Rings */
489 if (!netif_msg_rx_status(adapter))
490 goto exit;
491
492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494 /* Advanced Receive Descriptor (Read) Format
495 * 63 1 0
496 * +-----------------------------------------------------+
497 * 0 | Packet Buffer Address [63:1] |A0/NSE|
498 * +----------------------------------------------+------+
499 * 8 | Header Buffer Address [63:1] | DD |
500 * +-----------------------------------------------------+
501 *
502 *
503 * Advanced Receive Descriptor (Write-Back) Format
504 *
505 * 63 48 47 32 31 30 21 20 17 16 4 3 0
506 * +------------------------------------------------------+
507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
508 * | Checksum Ident | | | | Type | Type |
509 * +------------------------------------------------------+
510 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 * +------------------------------------------------------+
512 * 63 48 47 32 31 20 19 0
513 */
514
515 for (n = 0; n < adapter->num_rx_queues; n++) {
516 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
517 pr_info("------------------------------------\n");
518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 pr_info("------------------------------------\n");
520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
524
525 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 526 const char *next_desc;
06034649
AD
527 struct igb_rx_buffer *buffer_info;
528 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 529 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
530 u0 = (struct my_u0 *)rx_desc;
531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
532
533 if (i == rx_ring->next_to_use)
534 next_desc = " NTU";
535 else if (i == rx_ring->next_to_clean)
536 next_desc = " NTC";
537 else
538 next_desc = "";
539
c97ec42a
TI
540 if (staterr & E1000_RXD_STAT_DD) {
541 /* Descriptor Done */
1a1c225b
AD
542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
543 "RWB", i,
c97ec42a
TI
544 le64_to_cpu(u0->a),
545 le64_to_cpu(u0->b),
1a1c225b 546 next_desc);
c97ec42a 547 } else {
1a1c225b
AD
548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
549 "R ", i,
c97ec42a
TI
550 le64_to_cpu(u0->a),
551 le64_to_cpu(u0->b),
552 (u64)buffer_info->dma,
1a1c225b 553 next_desc);
c97ec42a 554
b669588a 555 if (netif_msg_pktdata(adapter) &&
1a1c225b 556 buffer_info->dma && buffer_info->page) {
44390ca6
AD
557 print_hex_dump(KERN_INFO, "",
558 DUMP_PREFIX_ADDRESS,
559 16, 1,
b669588a
ET
560 page_address(buffer_info->page) +
561 buffer_info->page_offset,
de78d1f9 562 IGB_RX_BUFSZ, true);
c97ec42a
TI
563 }
564 }
c97ec42a
TI
565 }
566 }
567
568exit:
569 return;
570}
571
441fc6fd
CW
572/* igb_get_i2c_data - Reads the I2C SDA data bit
573 * @hw: pointer to hardware structure
574 * @i2cctl: Current value of I2CCTL register
575 *
576 * Returns the I2C data bit value
577 */
578static int igb_get_i2c_data(void *data)
579{
580 struct igb_adapter *adapter = (struct igb_adapter *)data;
581 struct e1000_hw *hw = &adapter->hw;
582 s32 i2cctl = rd32(E1000_I2CPARAMS);
583
584 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585}
586
587/* igb_set_i2c_data - Sets the I2C data bit
588 * @data: pointer to hardware structure
589 * @state: I2C data value (0 or 1) to set
590 *
591 * Sets the I2C data bit
592 */
593static void igb_set_i2c_data(void *data, int state)
594{
595 struct igb_adapter *adapter = (struct igb_adapter *)data;
596 struct e1000_hw *hw = &adapter->hw;
597 s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599 if (state)
600 i2cctl |= E1000_I2C_DATA_OUT;
601 else
602 i2cctl &= ~E1000_I2C_DATA_OUT;
603
604 i2cctl &= ~E1000_I2C_DATA_OE_N;
605 i2cctl |= E1000_I2C_CLK_OE_N;
606 wr32(E1000_I2CPARAMS, i2cctl);
607 wrfl();
608
609}
610
611/* igb_set_i2c_clk - Sets the I2C SCL clock
612 * @data: pointer to hardware structure
613 * @state: state to set clock
614 *
615 * Sets the I2C clock line to state
616 */
617static void igb_set_i2c_clk(void *data, int state)
618{
619 struct igb_adapter *adapter = (struct igb_adapter *)data;
620 struct e1000_hw *hw = &adapter->hw;
621 s32 i2cctl = rd32(E1000_I2CPARAMS);
622
623 if (state) {
624 i2cctl |= E1000_I2C_CLK_OUT;
625 i2cctl &= ~E1000_I2C_CLK_OE_N;
626 } else {
627 i2cctl &= ~E1000_I2C_CLK_OUT;
628 i2cctl &= ~E1000_I2C_CLK_OE_N;
629 }
630 wr32(E1000_I2CPARAMS, i2cctl);
631 wrfl();
632}
633
634/* igb_get_i2c_clk - Gets the I2C SCL clock state
635 * @data: pointer to hardware structure
636 *
637 * Gets the I2C clock state
638 */
639static int igb_get_i2c_clk(void *data)
640{
641 struct igb_adapter *adapter = (struct igb_adapter *)data;
642 struct e1000_hw *hw = &adapter->hw;
643 s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646}
647
648static const struct i2c_algo_bit_data igb_i2c_algo = {
649 .setsda = igb_set_i2c_data,
650 .setscl = igb_set_i2c_clk,
651 .getsda = igb_get_i2c_data,
652 .getscl = igb_get_i2c_clk,
653 .udelay = 5,
654 .timeout = 20,
655};
656
9d5c8243 657/**
c041076a 658 * igb_get_hw_dev - return device
9d5c8243
AK
659 * used by hardware layer to print debugging information
660 **/
c041076a 661struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
662{
663 struct igb_adapter *adapter = hw->back;
c041076a 664 return adapter->netdev;
9d5c8243 665}
38c845c7 666
9d5c8243
AK
667/**
668 * igb_init_module - Driver Registration Routine
669 *
670 * igb_init_module is the first routine called when the driver is
671 * loaded. All it does is register with the PCI subsystem.
672 **/
673static int __init igb_init_module(void)
674{
675 int ret;
876d2d6f 676 pr_info("%s - version %s\n",
9d5c8243
AK
677 igb_driver_string, igb_driver_version);
678
876d2d6f 679 pr_info("%s\n", igb_copyright);
9d5c8243 680
421e02f0 681#ifdef CONFIG_IGB_DCA
fe4506b6
JC
682 dca_register_notify(&dca_notifier);
683#endif
bbd98fe4 684 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
685 return ret;
686}
687
688module_init(igb_init_module);
689
690/**
691 * igb_exit_module - Driver Exit Cleanup Routine
692 *
693 * igb_exit_module is called just before the driver is removed
694 * from memory.
695 **/
696static void __exit igb_exit_module(void)
697{
421e02f0 698#ifdef CONFIG_IGB_DCA
fe4506b6
JC
699 dca_unregister_notify(&dca_notifier);
700#endif
9d5c8243
AK
701 pci_unregister_driver(&igb_driver);
702}
703
704module_exit(igb_exit_module);
705
26bc19ec
AD
706#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707/**
708 * igb_cache_ring_register - Descriptor ring to register mapping
709 * @adapter: board private structure to initialize
710 *
711 * Once we know the feature-set enabled for the device, we'll cache
712 * the register offset the descriptor ring is assigned to.
713 **/
714static void igb_cache_ring_register(struct igb_adapter *adapter)
715{
ee1b9f06 716 int i = 0, j = 0;
047e0030 717 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
718
719 switch (adapter->hw.mac.type) {
720 case e1000_82576:
721 /* The queues are allocated for virtualization such that VF 0
722 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723 * In order to avoid collision we start at the first free queue
724 * and continue consuming queues in the same sequence
725 */
ee1b9f06 726 if (adapter->vfs_allocated_count) {
a99955fc 727 for (; i < adapter->rss_queues; i++)
3025a446
AD
728 adapter->rx_ring[i]->reg_idx = rbase_offset +
729 Q_IDX_82576(i);
ee1b9f06 730 }
26bc19ec 731 case e1000_82575:
55cac248 732 case e1000_82580:
d2ba2ed8 733 case e1000_i350:
f96a8a0b
CW
734 case e1000_i210:
735 case e1000_i211:
26bc19ec 736 default:
ee1b9f06 737 for (; i < adapter->num_rx_queues; i++)
3025a446 738 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 739 for (; j < adapter->num_tx_queues; j++)
3025a446 740 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
741 break;
742 }
743}
744
4be000c8
AD
745/**
746 * igb_write_ivar - configure ivar for given MSI-X vector
747 * @hw: pointer to the HW structure
748 * @msix_vector: vector number we are allocating to a given ring
749 * @index: row index of IVAR register to write within IVAR table
750 * @offset: column offset of in IVAR, should be multiple of 8
751 *
752 * This function is intended to handle the writing of the IVAR register
753 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
754 * each containing an cause allocation for an Rx and Tx ring, and a
755 * variable number of rows depending on the number of queues supported.
756 **/
757static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758 int index, int offset)
759{
760 u32 ivar = array_rd32(E1000_IVAR0, index);
761
762 /* clear any bits that are currently set */
763 ivar &= ~((u32)0xFF << offset);
764
765 /* write vector and valid bit */
766 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767
768 array_wr32(E1000_IVAR0, index, ivar);
769}
770
9d5c8243 771#define IGB_N0_QUEUE -1
047e0030 772static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 773{
047e0030 774 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 775 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
776 int rx_queue = IGB_N0_QUEUE;
777 int tx_queue = IGB_N0_QUEUE;
4be000c8 778 u32 msixbm = 0;
047e0030 779
0ba82994
AD
780 if (q_vector->rx.ring)
781 rx_queue = q_vector->rx.ring->reg_idx;
782 if (q_vector->tx.ring)
783 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
784
785 switch (hw->mac.type) {
786 case e1000_82575:
9d5c8243
AK
787 /* The 82575 assigns vectors using a bitmask, which matches the
788 bitmask for the EICR/EIMS/EIMC registers. To assign one
789 or more queues to a vector, we write the appropriate bits
790 into the MSIXBM register for that vector. */
047e0030 791 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 792 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 793 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 794 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
795 if (!adapter->msix_entries && msix_vector == 0)
796 msixbm |= E1000_EIMS_OTHER;
9d5c8243 797 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 798 q_vector->eims_value = msixbm;
2d064c06
AD
799 break;
800 case e1000_82576:
4be000c8
AD
801 /*
802 * 82576 uses a table that essentially consists of 2 columns
803 * with 8 rows. The ordering is column-major so we use the
804 * lower 3 bits as the row index, and the 4th bit as the
805 * column offset.
806 */
807 if (rx_queue > IGB_N0_QUEUE)
808 igb_write_ivar(hw, msix_vector,
809 rx_queue & 0x7,
810 (rx_queue & 0x8) << 1);
811 if (tx_queue > IGB_N0_QUEUE)
812 igb_write_ivar(hw, msix_vector,
813 tx_queue & 0x7,
814 ((tx_queue & 0x8) << 1) + 8);
047e0030 815 q_vector->eims_value = 1 << msix_vector;
2d064c06 816 break;
55cac248 817 case e1000_82580:
d2ba2ed8 818 case e1000_i350:
f96a8a0b
CW
819 case e1000_i210:
820 case e1000_i211:
4be000c8
AD
821 /*
822 * On 82580 and newer adapters the scheme is similar to 82576
823 * however instead of ordering column-major we have things
824 * ordered row-major. So we traverse the table by using
825 * bit 0 as the column offset, and the remaining bits as the
826 * row index.
827 */
828 if (rx_queue > IGB_N0_QUEUE)
829 igb_write_ivar(hw, msix_vector,
830 rx_queue >> 1,
831 (rx_queue & 0x1) << 4);
832 if (tx_queue > IGB_N0_QUEUE)
833 igb_write_ivar(hw, msix_vector,
834 tx_queue >> 1,
835 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
836 q_vector->eims_value = 1 << msix_vector;
837 break;
2d064c06
AD
838 default:
839 BUG();
840 break;
841 }
26b39276
AD
842
843 /* add q_vector eims value to global eims_enable_mask */
844 adapter->eims_enable_mask |= q_vector->eims_value;
845
846 /* configure q_vector to set itr on first interrupt */
847 q_vector->set_itr = 1;
9d5c8243
AK
848}
849
850/**
851 * igb_configure_msix - Configure MSI-X hardware
852 *
853 * igb_configure_msix sets up the hardware to properly
854 * generate MSI-X interrupts.
855 **/
856static void igb_configure_msix(struct igb_adapter *adapter)
857{
858 u32 tmp;
859 int i, vector = 0;
860 struct e1000_hw *hw = &adapter->hw;
861
862 adapter->eims_enable_mask = 0;
9d5c8243
AK
863
864 /* set vector for other causes, i.e. link changes */
2d064c06
AD
865 switch (hw->mac.type) {
866 case e1000_82575:
9d5c8243
AK
867 tmp = rd32(E1000_CTRL_EXT);
868 /* enable MSI-X PBA support*/
869 tmp |= E1000_CTRL_EXT_PBA_CLR;
870
871 /* Auto-Mask interrupts upon ICR read. */
872 tmp |= E1000_CTRL_EXT_EIAME;
873 tmp |= E1000_CTRL_EXT_IRCA;
874
875 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
876
877 /* enable msix_other interrupt */
878 array_wr32(E1000_MSIXBM(0), vector++,
879 E1000_EIMS_OTHER);
844290e5 880 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 881
2d064c06
AD
882 break;
883
884 case e1000_82576:
55cac248 885 case e1000_82580:
d2ba2ed8 886 case e1000_i350:
f96a8a0b
CW
887 case e1000_i210:
888 case e1000_i211:
047e0030
AD
889 /* Turn on MSI-X capability first, or our settings
890 * won't stick. And it will take days to debug. */
891 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892 E1000_GPIE_PBA | E1000_GPIE_EIAME |
893 E1000_GPIE_NSICR);
894
895 /* enable msix_other interrupt */
896 adapter->eims_other = 1 << vector;
2d064c06 897 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 898
047e0030 899 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
900 break;
901 default:
902 /* do nothing, since nothing else supports MSI-X */
903 break;
904 } /* switch (hw->mac.type) */
047e0030
AD
905
906 adapter->eims_enable_mask |= adapter->eims_other;
907
26b39276
AD
908 for (i = 0; i < adapter->num_q_vectors; i++)
909 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 910
9d5c8243
AK
911 wrfl();
912}
913
914/**
915 * igb_request_msix - Initialize MSI-X interrupts
916 *
917 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918 * kernel.
919 **/
920static int igb_request_msix(struct igb_adapter *adapter)
921{
922 struct net_device *netdev = adapter->netdev;
047e0030 923 struct e1000_hw *hw = &adapter->hw;
52285b76 924 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 925
047e0030 926 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 927 igb_msix_other, 0, netdev->name, adapter);
047e0030 928 if (err)
52285b76 929 goto err_out;
047e0030
AD
930
931 for (i = 0; i < adapter->num_q_vectors; i++) {
932 struct igb_q_vector *q_vector = adapter->q_vector[i];
933
52285b76
SA
934 vector++;
935
047e0030
AD
936 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937
0ba82994 938 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 939 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
940 q_vector->rx.ring->queue_index);
941 else if (q_vector->tx.ring)
047e0030 942 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
943 q_vector->tx.ring->queue_index);
944 else if (q_vector->rx.ring)
047e0030 945 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 946 q_vector->rx.ring->queue_index);
9d5c8243 947 else
047e0030
AD
948 sprintf(q_vector->name, "%s-unused", netdev->name);
949
9d5c8243 950 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 951 igb_msix_ring, 0, q_vector->name,
047e0030 952 q_vector);
9d5c8243 953 if (err)
52285b76 954 goto err_free;
9d5c8243
AK
955 }
956
9d5c8243
AK
957 igb_configure_msix(adapter);
958 return 0;
52285b76
SA
959
960err_free:
961 /* free already assigned IRQs */
962 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963
964 vector--;
965 for (i = 0; i < vector; i++) {
966 free_irq(adapter->msix_entries[free_vector++].vector,
967 adapter->q_vector[i]);
968 }
969err_out:
9d5c8243
AK
970 return err;
971}
972
973static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974{
975 if (adapter->msix_entries) {
976 pci_disable_msix(adapter->pdev);
977 kfree(adapter->msix_entries);
978 adapter->msix_entries = NULL;
047e0030 979 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 980 pci_disable_msi(adapter->pdev);
047e0030 981 }
9d5c8243
AK
982}
983
5536d210
AD
984/**
985 * igb_free_q_vector - Free memory allocated for specific interrupt vector
986 * @adapter: board private structure to initialize
987 * @v_idx: Index of vector to be freed
988 *
989 * This function frees the memory allocated to the q_vector. In addition if
990 * NAPI is enabled it will delete any references to the NAPI struct prior
991 * to freeing the q_vector.
992 **/
993static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994{
995 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996
997 if (q_vector->tx.ring)
998 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999
1000 if (q_vector->rx.ring)
1001 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002
1003 adapter->q_vector[v_idx] = NULL;
1004 netif_napi_del(&q_vector->napi);
1005
1006 /*
1007 * ixgbe_get_stats64() might access the rings on this vector,
1008 * we must wait a grace period before freeing it.
1009 */
1010 kfree_rcu(q_vector, rcu);
1011}
1012
047e0030
AD
1013/**
1014 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015 * @adapter: board private structure to initialize
1016 *
1017 * This function frees the memory allocated to the q_vectors. In addition if
1018 * NAPI is enabled it will delete any references to the NAPI struct prior
1019 * to freeing the q_vector.
1020 **/
1021static void igb_free_q_vectors(struct igb_adapter *adapter)
1022{
5536d210
AD
1023 int v_idx = adapter->num_q_vectors;
1024
1025 adapter->num_tx_queues = 0;
1026 adapter->num_rx_queues = 0;
047e0030 1027 adapter->num_q_vectors = 0;
5536d210
AD
1028
1029 while (v_idx--)
1030 igb_free_q_vector(adapter, v_idx);
047e0030
AD
1031}
1032
1033/**
1034 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035 *
1036 * This function resets the device so that it has 0 rx queues, tx queues, and
1037 * MSI-X interrupts allocated.
1038 */
1039static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040{
047e0030
AD
1041 igb_free_q_vectors(adapter);
1042 igb_reset_interrupt_capability(adapter);
1043}
9d5c8243
AK
1044
1045/**
1046 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047 *
1048 * Attempt to configure interrupts using the best available
1049 * capabilities of the hardware and kernel.
1050 **/
53c7d064 1051static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1052{
1053 int err;
1054 int numvecs, i;
1055
53c7d064
SA
1056 if (!msix)
1057 goto msi_only;
1058
83b7180d 1059 /* Number of supported queues. */
a99955fc 1060 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1061 if (adapter->vfs_allocated_count)
1062 adapter->num_tx_queues = 1;
1063 else
1064 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1065
047e0030
AD
1066 /* start with one vector for every rx queue */
1067 numvecs = adapter->num_rx_queues;
1068
3ad2f3fb 1069 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1070 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071 numvecs += adapter->num_tx_queues;
047e0030
AD
1072
1073 /* store the number of vectors reserved for queues */
1074 adapter->num_q_vectors = numvecs;
1075
1076 /* add 1 vector for link status interrupts */
1077 numvecs++;
9d5c8243
AK
1078 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079 GFP_KERNEL);
f96a8a0b 1080
9d5c8243
AK
1081 if (!adapter->msix_entries)
1082 goto msi_only;
1083
1084 for (i = 0; i < numvecs; i++)
1085 adapter->msix_entries[i].entry = i;
1086
1087 err = pci_enable_msix(adapter->pdev,
1088 adapter->msix_entries,
1089 numvecs);
1090 if (err == 0)
0c2cc02e 1091 return;
9d5c8243
AK
1092
1093 igb_reset_interrupt_capability(adapter);
1094
1095 /* If we can't do MSI-X, try MSI */
1096msi_only:
2a3abf6d
AD
1097#ifdef CONFIG_PCI_IOV
1098 /* disable SR-IOV for non MSI-X configurations */
1099 if (adapter->vf_data) {
1100 struct e1000_hw *hw = &adapter->hw;
1101 /* disable iov and allow time for transactions to clear */
1102 pci_disable_sriov(adapter->pdev);
1103 msleep(500);
1104
1105 kfree(adapter->vf_data);
1106 adapter->vf_data = NULL;
1107 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1108 wrfl();
2a3abf6d
AD
1109 msleep(100);
1110 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111 }
1112#endif
4fc82adf 1113 adapter->vfs_allocated_count = 0;
a99955fc 1114 adapter->rss_queues = 1;
4fc82adf 1115 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1116 adapter->num_rx_queues = 1;
661086df 1117 adapter->num_tx_queues = 1;
047e0030 1118 adapter->num_q_vectors = 1;
9d5c8243 1119 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1120 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1121}
1122
5536d210
AD
1123static void igb_add_ring(struct igb_ring *ring,
1124 struct igb_ring_container *head)
1125{
1126 head->ring = ring;
1127 head->count++;
1128}
1129
047e0030 1130/**
5536d210 1131 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
047e0030 1132 * @adapter: board private structure to initialize
5536d210
AD
1133 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134 * @v_idx: index of vector in adapter struct
1135 * @txr_count: total number of Tx rings to allocate
1136 * @txr_idx: index of first Tx ring to allocate
1137 * @rxr_count: total number of Rx rings to allocate
1138 * @rxr_idx: index of first Rx ring to allocate
047e0030 1139 *
5536d210 1140 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1141 **/
5536d210
AD
1142static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143 int v_count, int v_idx,
1144 int txr_count, int txr_idx,
1145 int rxr_count, int rxr_idx)
047e0030
AD
1146{
1147 struct igb_q_vector *q_vector;
5536d210
AD
1148 struct igb_ring *ring;
1149 int ring_count, size;
047e0030 1150
5536d210
AD
1151 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152 if (txr_count > 1 || rxr_count > 1)
1153 return -ENOMEM;
1154
1155 ring_count = txr_count + rxr_count;
1156 size = sizeof(struct igb_q_vector) +
1157 (sizeof(struct igb_ring) * ring_count);
1158
1159 /* allocate q_vector and rings */
1160 q_vector = kzalloc(size, GFP_KERNEL);
1161 if (!q_vector)
1162 return -ENOMEM;
1163
1164 /* initialize NAPI */
1165 netif_napi_add(adapter->netdev, &q_vector->napi,
1166 igb_poll, 64);
1167
1168 /* tie q_vector and adapter together */
1169 adapter->q_vector[v_idx] = q_vector;
1170 q_vector->adapter = adapter;
1171
1172 /* initialize work limits */
1173 q_vector->tx.work_limit = adapter->tx_work_limit;
1174
1175 /* initialize ITR configuration */
1176 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177 q_vector->itr_val = IGB_START_ITR;
1178
1179 /* initialize pointer to rings */
1180 ring = q_vector->ring;
1181
1182 if (txr_count) {
1183 /* assign generic ring traits */
1184 ring->dev = &adapter->pdev->dev;
1185 ring->netdev = adapter->netdev;
1186
1187 /* configure backlink on ring */
1188 ring->q_vector = q_vector;
1189
1190 /* update q_vector Tx values */
1191 igb_add_ring(ring, &q_vector->tx);
1192
1193 /* For 82575, context index must be unique per ring. */
1194 if (adapter->hw.mac.type == e1000_82575)
1195 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196
1197 /* apply Tx specific ring traits */
1198 ring->count = adapter->tx_ring_count;
1199 ring->queue_index = txr_idx;
1200
1201 /* assign ring to adapter */
1202 adapter->tx_ring[txr_idx] = ring;
1203
1204 /* push pointer to next ring */
1205 ring++;
047e0030 1206 }
81c2fc22 1207
5536d210
AD
1208 if (rxr_count) {
1209 /* assign generic ring traits */
1210 ring->dev = &adapter->pdev->dev;
1211 ring->netdev = adapter->netdev;
047e0030 1212
5536d210
AD
1213 /* configure backlink on ring */
1214 ring->q_vector = q_vector;
047e0030 1215
5536d210
AD
1216 /* update q_vector Rx values */
1217 igb_add_ring(ring, &q_vector->rx);
047e0030 1218
5536d210
AD
1219 /* set flag indicating ring supports SCTP checksum offload */
1220 if (adapter->hw.mac.type >= e1000_82576)
1221 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1222
5536d210
AD
1223 /*
1224 * On i350, i210, and i211, loopback VLAN packets
1225 * have the tag byte-swapped.
1226 * */
1227 if (adapter->hw.mac.type >= e1000_i350)
1228 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1229
5536d210
AD
1230 /* apply Rx specific ring traits */
1231 ring->count = adapter->rx_ring_count;
1232 ring->queue_index = rxr_idx;
1233
1234 /* assign ring to adapter */
1235 adapter->rx_ring[rxr_idx] = ring;
1236 }
1237
1238 return 0;
047e0030
AD
1239}
1240
5536d210 1241
047e0030 1242/**
5536d210
AD
1243 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244 * @adapter: board private structure to initialize
047e0030 1245 *
5536d210
AD
1246 * We allocate one q_vector per queue interrupt. If allocation fails we
1247 * return -ENOMEM.
047e0030 1248 **/
5536d210 1249static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1250{
5536d210
AD
1251 int q_vectors = adapter->num_q_vectors;
1252 int rxr_remaining = adapter->num_rx_queues;
1253 int txr_remaining = adapter->num_tx_queues;
1254 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255 int err;
047e0030 1256
5536d210
AD
1257 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258 for (; rxr_remaining; v_idx++) {
1259 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260 0, 0, 1, rxr_idx);
047e0030 1261
5536d210
AD
1262 if (err)
1263 goto err_out;
1264
1265 /* update counts and index */
1266 rxr_remaining--;
1267 rxr_idx++;
047e0030 1268 }
047e0030 1269 }
5536d210
AD
1270
1271 for (; v_idx < q_vectors; v_idx++) {
1272 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275 tqpv, txr_idx, rqpv, rxr_idx);
1276
1277 if (err)
1278 goto err_out;
1279
1280 /* update counts and index */
1281 rxr_remaining -= rqpv;
1282 txr_remaining -= tqpv;
1283 rxr_idx++;
1284 txr_idx++;
1285 }
1286
047e0030 1287 return 0;
5536d210
AD
1288
1289err_out:
1290 adapter->num_tx_queues = 0;
1291 adapter->num_rx_queues = 0;
1292 adapter->num_q_vectors = 0;
1293
1294 while (v_idx--)
1295 igb_free_q_vector(adapter, v_idx);
1296
1297 return -ENOMEM;
047e0030
AD
1298}
1299
1300/**
1301 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302 *
1303 * This function initializes the interrupts and allocates all of the queues.
1304 **/
53c7d064 1305static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1306{
1307 struct pci_dev *pdev = adapter->pdev;
1308 int err;
1309
53c7d064 1310 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1311
1312 err = igb_alloc_q_vectors(adapter);
1313 if (err) {
1314 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315 goto err_alloc_q_vectors;
1316 }
1317
5536d210 1318 igb_cache_ring_register(adapter);
047e0030
AD
1319
1320 return 0;
5536d210 1321
047e0030
AD
1322err_alloc_q_vectors:
1323 igb_reset_interrupt_capability(adapter);
1324 return err;
1325}
1326
9d5c8243
AK
1327/**
1328 * igb_request_irq - initialize interrupts
1329 *
1330 * Attempts to configure interrupts using the best available
1331 * capabilities of the hardware and kernel.
1332 **/
1333static int igb_request_irq(struct igb_adapter *adapter)
1334{
1335 struct net_device *netdev = adapter->netdev;
047e0030 1336 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1337 int err = 0;
1338
1339 if (adapter->msix_entries) {
1340 err = igb_request_msix(adapter);
844290e5 1341 if (!err)
9d5c8243 1342 goto request_done;
9d5c8243 1343 /* fall back to MSI */
5536d210
AD
1344 igb_free_all_tx_resources(adapter);
1345 igb_free_all_rx_resources(adapter);
53c7d064 1346
047e0030 1347 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1348 err = igb_init_interrupt_scheme(adapter, false);
1349 if (err)
047e0030 1350 goto request_done;
53c7d064 1351
047e0030
AD
1352 igb_setup_all_tx_resources(adapter);
1353 igb_setup_all_rx_resources(adapter);
53c7d064 1354 igb_configure(adapter);
9d5c8243 1355 }
844290e5 1356
c74d588e
AD
1357 igb_assign_vector(adapter->q_vector[0], 0);
1358
7dfc16fa 1359 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1360 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1361 netdev->name, adapter);
9d5c8243
AK
1362 if (!err)
1363 goto request_done;
047e0030 1364
9d5c8243
AK
1365 /* fall back to legacy interrupts */
1366 igb_reset_interrupt_capability(adapter);
7dfc16fa 1367 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1368 }
1369
c74d588e 1370 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1371 netdev->name, adapter);
9d5c8243 1372
6cb5e577 1373 if (err)
c74d588e 1374 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1375 err);
9d5c8243
AK
1376
1377request_done:
1378 return err;
1379}
1380
1381static void igb_free_irq(struct igb_adapter *adapter)
1382{
9d5c8243
AK
1383 if (adapter->msix_entries) {
1384 int vector = 0, i;
1385
047e0030 1386 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1387
0d1ae7f4 1388 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1389 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1390 adapter->q_vector[i]);
047e0030
AD
1391 } else {
1392 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1393 }
9d5c8243
AK
1394}
1395
1396/**
1397 * igb_irq_disable - Mask off interrupt generation on the NIC
1398 * @adapter: board private structure
1399 **/
1400static void igb_irq_disable(struct igb_adapter *adapter)
1401{
1402 struct e1000_hw *hw = &adapter->hw;
1403
25568a53
AD
1404 /*
1405 * we need to be careful when disabling interrupts. The VFs are also
1406 * mapped into these registers and so clearing the bits can cause
1407 * issues on the VF drivers so we only need to clear what we set
1408 */
9d5c8243 1409 if (adapter->msix_entries) {
2dfd1212
AD
1410 u32 regval = rd32(E1000_EIAM);
1411 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412 wr32(E1000_EIMC, adapter->eims_enable_mask);
1413 regval = rd32(E1000_EIAC);
1414 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1415 }
844290e5
PW
1416
1417 wr32(E1000_IAM, 0);
9d5c8243
AK
1418 wr32(E1000_IMC, ~0);
1419 wrfl();
81a61859
ET
1420 if (adapter->msix_entries) {
1421 int i;
1422 for (i = 0; i < adapter->num_q_vectors; i++)
1423 synchronize_irq(adapter->msix_entries[i].vector);
1424 } else {
1425 synchronize_irq(adapter->pdev->irq);
1426 }
9d5c8243
AK
1427}
1428
1429/**
1430 * igb_irq_enable - Enable default interrupt generation settings
1431 * @adapter: board private structure
1432 **/
1433static void igb_irq_enable(struct igb_adapter *adapter)
1434{
1435 struct e1000_hw *hw = &adapter->hw;
1436
1437 if (adapter->msix_entries) {
06218a8d 1438 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1439 u32 regval = rd32(E1000_EIAC);
1440 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441 regval = rd32(E1000_EIAM);
1442 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1443 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1444 if (adapter->vfs_allocated_count) {
4ae196df 1445 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1446 ims |= E1000_IMS_VMMB;
1447 }
1448 wr32(E1000_IMS, ims);
844290e5 1449 } else {
55cac248
AD
1450 wr32(E1000_IMS, IMS_ENABLE_MASK |
1451 E1000_IMS_DRSTA);
1452 wr32(E1000_IAM, IMS_ENABLE_MASK |
1453 E1000_IMS_DRSTA);
844290e5 1454 }
9d5c8243
AK
1455}
1456
1457static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458{
51466239 1459 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1460 u16 vid = adapter->hw.mng_cookie.vlan_id;
1461 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1462
1463 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464 /* add VID to filter table */
1465 igb_vfta_set(hw, vid, true);
1466 adapter->mng_vlan_id = vid;
1467 } else {
1468 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469 }
1470
1471 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472 (vid != old_vid) &&
b2cb09b1 1473 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1474 /* remove VID from filter table */
1475 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1476 }
1477}
1478
1479/**
1480 * igb_release_hw_control - release control of the h/w to f/w
1481 * @adapter: address of board private structure
1482 *
1483 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484 * For ASF and Pass Through versions of f/w this means that the
1485 * driver is no longer loaded.
1486 *
1487 **/
1488static void igb_release_hw_control(struct igb_adapter *adapter)
1489{
1490 struct e1000_hw *hw = &adapter->hw;
1491 u32 ctrl_ext;
1492
1493 /* Let firmware take over control of h/w */
1494 ctrl_ext = rd32(E1000_CTRL_EXT);
1495 wr32(E1000_CTRL_EXT,
1496 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497}
1498
9d5c8243
AK
1499/**
1500 * igb_get_hw_control - get control of the h/w from f/w
1501 * @adapter: address of board private structure
1502 *
1503 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504 * For ASF and Pass Through versions of f/w this means that
1505 * the driver is loaded.
1506 *
1507 **/
1508static void igb_get_hw_control(struct igb_adapter *adapter)
1509{
1510 struct e1000_hw *hw = &adapter->hw;
1511 u32 ctrl_ext;
1512
1513 /* Let firmware know the driver has taken over */
1514 ctrl_ext = rd32(E1000_CTRL_EXT);
1515 wr32(E1000_CTRL_EXT,
1516 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517}
1518
9d5c8243
AK
1519/**
1520 * igb_configure - configure the hardware for RX and TX
1521 * @adapter: private board structure
1522 **/
1523static void igb_configure(struct igb_adapter *adapter)
1524{
1525 struct net_device *netdev = adapter->netdev;
1526 int i;
1527
1528 igb_get_hw_control(adapter);
ff41f8dc 1529 igb_set_rx_mode(netdev);
9d5c8243
AK
1530
1531 igb_restore_vlan(adapter);
9d5c8243 1532
85b430b4 1533 igb_setup_tctl(adapter);
06cf2666 1534 igb_setup_mrqc(adapter);
9d5c8243 1535 igb_setup_rctl(adapter);
85b430b4
AD
1536
1537 igb_configure_tx(adapter);
9d5c8243 1538 igb_configure_rx(adapter);
662d7205
AD
1539
1540 igb_rx_fifo_flush_82575(&adapter->hw);
1541
c493ea45 1542 /* call igb_desc_unused which always leaves
9d5c8243
AK
1543 * at least 1 descriptor unused to make sure
1544 * next_to_use != next_to_clean */
1545 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1546 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1547 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1548 }
9d5c8243
AK
1549}
1550
88a268c1
NN
1551/**
1552 * igb_power_up_link - Power up the phy/serdes link
1553 * @adapter: address of board private structure
1554 **/
1555void igb_power_up_link(struct igb_adapter *adapter)
1556{
76886596
AA
1557 igb_reset_phy(&adapter->hw);
1558
88a268c1
NN
1559 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560 igb_power_up_phy_copper(&adapter->hw);
1561 else
1562 igb_power_up_serdes_link_82575(&adapter->hw);
1563}
1564
1565/**
1566 * igb_power_down_link - Power down the phy/serdes link
1567 * @adapter: address of board private structure
1568 */
1569static void igb_power_down_link(struct igb_adapter *adapter)
1570{
1571 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572 igb_power_down_phy_copper_82575(&adapter->hw);
1573 else
1574 igb_shutdown_serdes_link_82575(&adapter->hw);
1575}
9d5c8243
AK
1576
1577/**
1578 * igb_up - Open the interface and prepare it to handle traffic
1579 * @adapter: board private structure
1580 **/
9d5c8243
AK
1581int igb_up(struct igb_adapter *adapter)
1582{
1583 struct e1000_hw *hw = &adapter->hw;
1584 int i;
1585
1586 /* hardware has been reset, we need to reload some things */
1587 igb_configure(adapter);
1588
1589 clear_bit(__IGB_DOWN, &adapter->state);
1590
0d1ae7f4
AD
1591 for (i = 0; i < adapter->num_q_vectors; i++)
1592 napi_enable(&(adapter->q_vector[i]->napi));
1593
844290e5 1594 if (adapter->msix_entries)
9d5c8243 1595 igb_configure_msix(adapter);
feeb2721
AD
1596 else
1597 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1598
1599 /* Clear any pending interrupts. */
1600 rd32(E1000_ICR);
1601 igb_irq_enable(adapter);
1602
d4960307
AD
1603 /* notify VFs that reset has been completed */
1604 if (adapter->vfs_allocated_count) {
1605 u32 reg_data = rd32(E1000_CTRL_EXT);
1606 reg_data |= E1000_CTRL_EXT_PFRSTD;
1607 wr32(E1000_CTRL_EXT, reg_data);
1608 }
1609
4cb9be7a
JB
1610 netif_tx_start_all_queues(adapter->netdev);
1611
25568a53
AD
1612 /* start the watchdog. */
1613 hw->mac.get_link_status = 1;
1614 schedule_work(&adapter->watchdog_task);
1615
9d5c8243
AK
1616 return 0;
1617}
1618
1619void igb_down(struct igb_adapter *adapter)
1620{
9d5c8243 1621 struct net_device *netdev = adapter->netdev;
330a6d6a 1622 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1623 u32 tctl, rctl;
1624 int i;
1625
1626 /* signal that we're down so the interrupt handler does not
1627 * reschedule our watchdog timer */
1628 set_bit(__IGB_DOWN, &adapter->state);
1629
1630 /* disable receives in the hardware */
1631 rctl = rd32(E1000_RCTL);
1632 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633 /* flush and sleep below */
1634
fd2ea0a7 1635 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1636
1637 /* disable transmits in the hardware */
1638 tctl = rd32(E1000_TCTL);
1639 tctl &= ~E1000_TCTL_EN;
1640 wr32(E1000_TCTL, tctl);
1641 /* flush both disables and wait for them to finish */
1642 wrfl();
1643 msleep(10);
1644
0d1ae7f4
AD
1645 for (i = 0; i < adapter->num_q_vectors; i++)
1646 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1647
9d5c8243
AK
1648 igb_irq_disable(adapter);
1649
1650 del_timer_sync(&adapter->watchdog_timer);
1651 del_timer_sync(&adapter->phy_info_timer);
1652
9d5c8243 1653 netif_carrier_off(netdev);
04fe6358
AD
1654
1655 /* record the stats before reset*/
12dcd86b
ED
1656 spin_lock(&adapter->stats64_lock);
1657 igb_update_stats(adapter, &adapter->stats64);
1658 spin_unlock(&adapter->stats64_lock);
04fe6358 1659
9d5c8243
AK
1660 adapter->link_speed = 0;
1661 adapter->link_duplex = 0;
1662
3023682e
JK
1663 if (!pci_channel_offline(adapter->pdev))
1664 igb_reset(adapter);
9d5c8243
AK
1665 igb_clean_all_tx_rings(adapter);
1666 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1667#ifdef CONFIG_IGB_DCA
1668
1669 /* since we reset the hardware DCA settings were cleared */
1670 igb_setup_dca(adapter);
1671#endif
9d5c8243
AK
1672}
1673
1674void igb_reinit_locked(struct igb_adapter *adapter)
1675{
1676 WARN_ON(in_interrupt());
1677 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678 msleep(1);
1679 igb_down(adapter);
1680 igb_up(adapter);
1681 clear_bit(__IGB_RESETTING, &adapter->state);
1682}
1683
1684void igb_reset(struct igb_adapter *adapter)
1685{
090b1795 1686 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1687 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1688 struct e1000_mac_info *mac = &hw->mac;
1689 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1690 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1691
1692 /* Repartition Pba for greater than 9k mtu
1693 * To take effect CTRL.RST is required.
1694 */
fa4dfae0 1695 switch (mac->type) {
d2ba2ed8 1696 case e1000_i350:
55cac248
AD
1697 case e1000_82580:
1698 pba = rd32(E1000_RXPBS);
1699 pba = igb_rxpbs_adjust_82580(pba);
1700 break;
fa4dfae0 1701 case e1000_82576:
d249be54
AD
1702 pba = rd32(E1000_RXPBS);
1703 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1704 break;
1705 case e1000_82575:
f96a8a0b
CW
1706 case e1000_i210:
1707 case e1000_i211:
fa4dfae0
AD
1708 default:
1709 pba = E1000_PBA_34K;
1710 break;
2d064c06 1711 }
9d5c8243 1712
2d064c06
AD
1713 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714 (mac->type < e1000_82576)) {
9d5c8243
AK
1715 /* adjust PBA for jumbo frames */
1716 wr32(E1000_PBA, pba);
1717
1718 /* To maintain wire speed transmits, the Tx FIFO should be
1719 * large enough to accommodate two full transmit packets,
1720 * rounded up to the next 1KB and expressed in KB. Likewise,
1721 * the Rx FIFO should be large enough to accommodate at least
1722 * one full receive packet and is similarly rounded up and
1723 * expressed in KB. */
1724 pba = rd32(E1000_PBA);
1725 /* upper 16 bits has Tx packet buffer allocation size in KB */
1726 tx_space = pba >> 16;
1727 /* lower 16 bits has Rx packet buffer allocation size in KB */
1728 pba &= 0xffff;
1729 /* the tx fifo also stores 16 bytes of information about the tx
1730 * but don't include ethernet FCS because hardware appends it */
1731 min_tx_space = (adapter->max_frame_size +
85e8d004 1732 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1733 ETH_FCS_LEN) * 2;
1734 min_tx_space = ALIGN(min_tx_space, 1024);
1735 min_tx_space >>= 10;
1736 /* software strips receive CRC, so leave room for it */
1737 min_rx_space = adapter->max_frame_size;
1738 min_rx_space = ALIGN(min_rx_space, 1024);
1739 min_rx_space >>= 10;
1740
1741 /* If current Tx allocation is less than the min Tx FIFO size,
1742 * and the min Tx FIFO size is less than the current Rx FIFO
1743 * allocation, take space away from current Rx allocation */
1744 if (tx_space < min_tx_space &&
1745 ((min_tx_space - tx_space) < pba)) {
1746 pba = pba - (min_tx_space - tx_space);
1747
1748 /* if short on rx space, rx wins and must trump tx
1749 * adjustment */
1750 if (pba < min_rx_space)
1751 pba = min_rx_space;
1752 }
2d064c06 1753 wr32(E1000_PBA, pba);
9d5c8243 1754 }
9d5c8243
AK
1755
1756 /* flow control settings */
1757 /* The high water mark must be low enough to fit one full frame
1758 * (or the size used for early receive) above it in the Rx FIFO.
1759 * Set it to the lower of:
1760 * - 90% of the Rx FIFO size, or
1761 * - the full Rx FIFO size minus one full frame */
1762 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1763 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1764
d48507fe 1765 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1766 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1767 fc->pause_time = 0xFFFF;
1768 fc->send_xon = 1;
0cce119a 1769 fc->current_mode = fc->requested_mode;
9d5c8243 1770
4ae196df
AD
1771 /* disable receive for all VFs and wait one second */
1772 if (adapter->vfs_allocated_count) {
1773 int i;
1774 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1775 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1776
1777 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1778 igb_ping_all_vfs(adapter);
4ae196df
AD
1779
1780 /* disable transmits and receives */
1781 wr32(E1000_VFRE, 0);
1782 wr32(E1000_VFTE, 0);
1783 }
1784
9d5c8243 1785 /* Allow time for pending master requests to run */
330a6d6a 1786 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1787 wr32(E1000_WUC, 0);
1788
330a6d6a 1789 if (hw->mac.ops.init_hw(hw))
090b1795 1790 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1791
a27416bb
MV
1792 /*
1793 * Flow control settings reset on hardware reset, so guarantee flow
1794 * control is off when forcing speed.
1795 */
1796 if (!hw->mac.autoneg)
1797 igb_force_mac_fc(hw);
1798
b6e0c419 1799 igb_init_dmac(adapter, pba);
e428893b
CW
1800#ifdef CONFIG_IGB_HWMON
1801 /* Re-initialize the thermal sensor on i350 devices. */
1802 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804 /* If present, re-initialize the external thermal sensor
1805 * interface.
1806 */
1807 if (adapter->ets)
1808 mac->ops.init_thermal_sensor_thresh(hw);
1809 }
1810 }
1811#endif
88a268c1
NN
1812 if (!netif_running(adapter->netdev))
1813 igb_power_down_link(adapter);
1814
9d5c8243
AK
1815 igb_update_mng_vlan(adapter);
1816
1817 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819
1f6e8178
MV
1820 /* Re-enable PTP, where applicable. */
1821 igb_ptp_reset(adapter);
1f6e8178 1822
330a6d6a 1823 igb_get_phy_info(hw);
9d5c8243
AK
1824}
1825
c8f44aff
MM
1826static netdev_features_t igb_fix_features(struct net_device *netdev,
1827 netdev_features_t features)
b2cb09b1
JP
1828{
1829 /*
1830 * Since there is no support for separate rx/tx vlan accel
1831 * enable/disable make sure tx flag is always in same state as rx.
1832 */
1833 if (features & NETIF_F_HW_VLAN_RX)
1834 features |= NETIF_F_HW_VLAN_TX;
1835 else
1836 features &= ~NETIF_F_HW_VLAN_TX;
1837
1838 return features;
1839}
1840
c8f44aff
MM
1841static int igb_set_features(struct net_device *netdev,
1842 netdev_features_t features)
ac52caa3 1843{
c8f44aff 1844 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1845 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1846
b2cb09b1
JP
1847 if (changed & NETIF_F_HW_VLAN_RX)
1848 igb_vlan_mode(netdev, features);
1849
89eaefb6
BG
1850 if (!(changed & NETIF_F_RXALL))
1851 return 0;
1852
1853 netdev->features = features;
1854
1855 if (netif_running(netdev))
1856 igb_reinit_locked(adapter);
1857 else
1858 igb_reset(adapter);
1859
ac52caa3
MM
1860 return 0;
1861}
1862
2e5c6922 1863static const struct net_device_ops igb_netdev_ops = {
559e9c49 1864 .ndo_open = igb_open,
2e5c6922 1865 .ndo_stop = igb_close,
cd392f5c 1866 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1867 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1868 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1869 .ndo_set_mac_address = igb_set_mac,
1870 .ndo_change_mtu = igb_change_mtu,
1871 .ndo_do_ioctl = igb_ioctl,
1872 .ndo_tx_timeout = igb_tx_timeout,
1873 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1874 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1875 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1876 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1877 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1878 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1879 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1880#ifdef CONFIG_NET_POLL_CONTROLLER
1881 .ndo_poll_controller = igb_netpoll,
1882#endif
b2cb09b1
JP
1883 .ndo_fix_features = igb_fix_features,
1884 .ndo_set_features = igb_set_features,
2e5c6922
SH
1885};
1886
d67974f0
CW
1887/**
1888 * igb_set_fw_version - Configure version string for ethtool
1889 * @adapter: adapter struct
1890 *
1891 **/
1892void igb_set_fw_version(struct igb_adapter *adapter)
1893{
1894 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
1895 struct e1000_fw_version fw;
1896
1897 igb_get_fw_version(hw, &fw);
1898
1899 switch (hw->mac.type) {
1900 case e1000_i211:
d67974f0 1901 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
0b1a6f2e
CW
1902 "%2d.%2d-%d",
1903 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904 break;
1905
1906 default:
1907 /* if option is rom valid, display its version too */
1908 if (fw.or_valid) {
1909 snprintf(adapter->fw_version,
1910 sizeof(adapter->fw_version),
1911 "%d.%d, 0x%08x, %d.%d.%d",
1912 fw.eep_major, fw.eep_minor, fw.etrack_id,
1913 fw.or_major, fw.or_build, fw.or_patch);
1914 /* no option rom */
1915 } else {
1916 snprintf(adapter->fw_version,
1917 sizeof(adapter->fw_version),
1918 "%d.%d, 0x%08x",
1919 fw.eep_major, fw.eep_minor, fw.etrack_id);
1920 }
1921 break;
d67974f0 1922 }
d67974f0
CW
1923 return;
1924}
1925
441fc6fd
CW
1926/* igb_init_i2c - Init I2C interface
1927 * @adapter: pointer to adapter structure
1928 *
1929 */
1930static s32 igb_init_i2c(struct igb_adapter *adapter)
1931{
1932 s32 status = E1000_SUCCESS;
1933
1934 /* I2C interface supported on i350 devices */
1935 if (adapter->hw.mac.type != e1000_i350)
1936 return E1000_SUCCESS;
1937
1938 /* Initialize the i2c bus which is controlled by the registers.
1939 * This bus will use the i2c_algo_bit structue that implements
1940 * the protocol through toggling of the 4 bits in the register.
1941 */
1942 adapter->i2c_adap.owner = THIS_MODULE;
1943 adapter->i2c_algo = igb_i2c_algo;
1944 adapter->i2c_algo.data = adapter;
1945 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1946 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1947 strlcpy(adapter->i2c_adap.name, "igb BB",
1948 sizeof(adapter->i2c_adap.name));
1949 status = i2c_bit_add_bus(&adapter->i2c_adap);
1950 return status;
1951}
1952
9d5c8243
AK
1953/**
1954 * igb_probe - Device Initialization Routine
1955 * @pdev: PCI device information struct
1956 * @ent: entry in igb_pci_tbl
1957 *
1958 * Returns 0 on success, negative on failure
1959 *
1960 * igb_probe initializes an adapter identified by a pci_dev structure.
1961 * The OS initialization, configuring of the adapter private structure,
1962 * and a hardware reset occur.
1963 **/
1dd06ae8 1964static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
1965{
1966 struct net_device *netdev;
1967 struct igb_adapter *adapter;
1968 struct e1000_hw *hw;
4337e993 1969 u16 eeprom_data = 0;
9835fd73 1970 s32 ret_val;
4337e993 1971 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1972 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1973 unsigned long mmio_start, mmio_len;
2d6a5e95 1974 int err, pci_using_dac;
9835fd73 1975 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1976
bded64a7
AG
1977 /* Catch broken hardware that put the wrong VF device ID in
1978 * the PCIe SR-IOV capability.
1979 */
1980 if (pdev->is_virtfn) {
1981 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 1982 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
1983 return -EINVAL;
1984 }
1985
aed5dec3 1986 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1987 if (err)
1988 return err;
1989
1990 pci_using_dac = 0;
59d71989 1991 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1992 if (!err) {
59d71989 1993 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1994 if (!err)
1995 pci_using_dac = 1;
1996 } else {
59d71989 1997 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1998 if (err) {
59d71989 1999 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
2000 if (err) {
2001 dev_err(&pdev->dev, "No usable DMA "
2002 "configuration, aborting\n");
2003 goto err_dma;
2004 }
2005 }
2006 }
2007
aed5dec3
AD
2008 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2009 IORESOURCE_MEM),
2010 igb_driver_name);
9d5c8243
AK
2011 if (err)
2012 goto err_pci_reg;
2013
19d5afd4 2014 pci_enable_pcie_error_reporting(pdev);
40a914fa 2015
9d5c8243 2016 pci_set_master(pdev);
c682fc23 2017 pci_save_state(pdev);
9d5c8243
AK
2018
2019 err = -ENOMEM;
1bfaf07b 2020 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2021 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2022 if (!netdev)
2023 goto err_alloc_etherdev;
2024
2025 SET_NETDEV_DEV(netdev, &pdev->dev);
2026
2027 pci_set_drvdata(pdev, netdev);
2028 adapter = netdev_priv(netdev);
2029 adapter->netdev = netdev;
2030 adapter->pdev = pdev;
2031 hw = &adapter->hw;
2032 hw->back = adapter;
b3f4d599 2033 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243
AK
2034
2035 mmio_start = pci_resource_start(pdev, 0);
2036 mmio_len = pci_resource_len(pdev, 0);
2037
2038 err = -EIO;
28b0759c
AD
2039 hw->hw_addr = ioremap(mmio_start, mmio_len);
2040 if (!hw->hw_addr)
9d5c8243
AK
2041 goto err_ioremap;
2042
2e5c6922 2043 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2044 igb_set_ethtool_ops(netdev);
9d5c8243 2045 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2046
2047 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2048
2049 netdev->mem_start = mmio_start;
2050 netdev->mem_end = mmio_start + mmio_len;
2051
9d5c8243
AK
2052 /* PCI config space info */
2053 hw->vendor_id = pdev->vendor;
2054 hw->device_id = pdev->device;
2055 hw->revision_id = pdev->revision;
2056 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2057 hw->subsystem_device_id = pdev->subsystem_device;
2058
9d5c8243
AK
2059 /* Copy the default MAC, PHY and NVM function pointers */
2060 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2061 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2062 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2063 /* Initialize skew-specific constants */
2064 err = ei->get_invariants(hw);
2065 if (err)
450c87c8 2066 goto err_sw_init;
9d5c8243 2067
450c87c8 2068 /* setup the private structure */
9d5c8243
AK
2069 err = igb_sw_init(adapter);
2070 if (err)
2071 goto err_sw_init;
2072
2073 igb_get_bus_info_pcie(hw);
2074
2075 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2076
2077 /* Copper options */
2078 if (hw->phy.media_type == e1000_media_type_copper) {
2079 hw->phy.mdix = AUTO_ALL_MODES;
2080 hw->phy.disable_polarity_correction = false;
2081 hw->phy.ms_type = e1000_ms_hw_default;
2082 }
2083
2084 if (igb_check_reset_block(hw))
2085 dev_info(&pdev->dev,
2086 "PHY reset is blocked due to SOL/IDER session.\n");
2087
077887c3
AD
2088 /*
2089 * features is initialized to 0 in allocation, it might have bits
2090 * set by igb_sw_init so we should use an or instead of an
2091 * assignment.
2092 */
2093 netdev->features |= NETIF_F_SG |
2094 NETIF_F_IP_CSUM |
2095 NETIF_F_IPV6_CSUM |
2096 NETIF_F_TSO |
2097 NETIF_F_TSO6 |
2098 NETIF_F_RXHASH |
2099 NETIF_F_RXCSUM |
2100 NETIF_F_HW_VLAN_RX |
2101 NETIF_F_HW_VLAN_TX;
2102
2103 /* copy netdev features into list of user selectable features */
2104 netdev->hw_features |= netdev->features;
89eaefb6 2105 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2106
2107 /* set this bit last since it cannot be part of hw_features */
2108 netdev->features |= NETIF_F_HW_VLAN_FILTER;
2109
2110 netdev->vlan_features |= NETIF_F_TSO |
2111 NETIF_F_TSO6 |
2112 NETIF_F_IP_CSUM |
2113 NETIF_F_IPV6_CSUM |
2114 NETIF_F_SG;
48f29ffc 2115
6b8f0922
BG
2116 netdev->priv_flags |= IFF_SUPP_NOFCS;
2117
7b872a55 2118 if (pci_using_dac) {
9d5c8243 2119 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2120 netdev->vlan_features |= NETIF_F_HIGHDMA;
2121 }
9d5c8243 2122
ac52caa3
MM
2123 if (hw->mac.type >= e1000_82576) {
2124 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2125 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2126 }
b9473560 2127
01789349
JP
2128 netdev->priv_flags |= IFF_UNICAST_FLT;
2129
330a6d6a 2130 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2131
2132 /* before reading the NVM, reset the controller to put the device in a
2133 * known good starting state */
2134 hw->mac.ops.reset_hw(hw);
2135
f96a8a0b
CW
2136 /*
2137 * make sure the NVM is good , i211 parts have special NVM that
2138 * doesn't contain a checksum
2139 */
2140 if (hw->mac.type != e1000_i211) {
2141 if (hw->nvm.ops.validate(hw) < 0) {
2142 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2143 err = -EIO;
2144 goto err_eeprom;
2145 }
9d5c8243
AK
2146 }
2147
2148 /* copy the MAC address out of the NVM */
2149 if (hw->mac.ops.read_mac_addr(hw))
2150 dev_err(&pdev->dev, "NVM Read Error\n");
2151
2152 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2153
aaeb6cdf 2154 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2155 dev_err(&pdev->dev, "Invalid MAC Address\n");
2156 err = -EIO;
2157 goto err_eeprom;
2158 }
2159
d67974f0
CW
2160 /* get firmware version for ethtool -i */
2161 igb_set_fw_version(adapter);
2162
c061b18d 2163 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2164 (unsigned long) adapter);
c061b18d 2165 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2166 (unsigned long) adapter);
9d5c8243
AK
2167
2168 INIT_WORK(&adapter->reset_task, igb_reset_task);
2169 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2170
450c87c8 2171 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2172 adapter->fc_autoneg = true;
2173 hw->mac.autoneg = true;
2174 hw->phy.autoneg_advertised = 0x2f;
2175
0cce119a
AD
2176 hw->fc.requested_mode = e1000_fc_default;
2177 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2178
9d5c8243
AK
2179 igb_validate_mdi_setting(hw);
2180
63d4a8f9 2181 /* By default, support wake on port A */
a2cf8b6c 2182 if (hw->bus.func == 0)
63d4a8f9
MV
2183 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2184
2185 /* Check the NVM for wake support on non-port A ports */
2186 if (hw->mac.type >= e1000_82580)
55cac248
AD
2187 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2188 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2189 &eeprom_data);
a2cf8b6c
AD
2190 else if (hw->bus.func == 1)
2191 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2192
63d4a8f9
MV
2193 if (eeprom_data & IGB_EEPROM_APME)
2194 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2195
2196 /* now that we have the eeprom settings, apply the special cases where
2197 * the eeprom may be wrong or the board simply won't support wake on
2198 * lan on a particular port */
2199 switch (pdev->device) {
2200 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2201 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2202 break;
2203 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2204 case E1000_DEV_ID_82576_FIBER:
2205 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2206 /* Wake events only supported on port A for dual fiber
2207 * regardless of eeprom setting */
2208 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2209 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2210 break;
c8ea5ea9 2211 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2212 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2213 /* if quad port adapter, disable WoL on all but port A */
2214 if (global_quad_port_a != 0)
63d4a8f9 2215 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2216 else
2217 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2218 /* Reset for multiple quad port adapters */
2219 if (++global_quad_port_a == 4)
2220 global_quad_port_a = 0;
2221 break;
63d4a8f9
MV
2222 default:
2223 /* If the device can't wake, don't set software support */
2224 if (!device_can_wakeup(&adapter->pdev->dev))
2225 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2226 }
2227
2228 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2229 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2230 adapter->wol |= E1000_WUFC_MAG;
2231
2232 /* Some vendors want WoL disabled by default, but still supported */
2233 if ((hw->mac.type == e1000_i350) &&
2234 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2235 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2236 adapter->wol = 0;
2237 }
2238
2239 device_set_wakeup_enable(&adapter->pdev->dev,
2240 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2241
2242 /* reset the hardware with the new settings */
2243 igb_reset(adapter);
2244
441fc6fd
CW
2245 /* Init the I2C interface */
2246 err = igb_init_i2c(adapter);
2247 if (err) {
2248 dev_err(&pdev->dev, "failed to init i2c interface\n");
2249 goto err_eeprom;
2250 }
2251
9d5c8243
AK
2252 /* let the f/w know that the h/w is now under the control of the
2253 * driver. */
2254 igb_get_hw_control(adapter);
2255
9d5c8243
AK
2256 strcpy(netdev->name, "eth%d");
2257 err = register_netdev(netdev);
2258 if (err)
2259 goto err_register;
2260
b168dfc5
JB
2261 /* carrier off reporting is important to ethtool even BEFORE open */
2262 netif_carrier_off(netdev);
2263
421e02f0 2264#ifdef CONFIG_IGB_DCA
bbd98fe4 2265 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2266 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2267 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2268 igb_setup_dca(adapter);
2269 }
fe4506b6 2270
38c845c7 2271#endif
e428893b
CW
2272#ifdef CONFIG_IGB_HWMON
2273 /* Initialize the thermal sensor on i350 devices. */
2274 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2275 u16 ets_word;
3c89f6d0 2276
e428893b
CW
2277 /*
2278 * Read the NVM to determine if this i350 device supports an
2279 * external thermal sensor.
2280 */
2281 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2282 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2283 adapter->ets = true;
2284 else
2285 adapter->ets = false;
2286 if (igb_sysfs_init(adapter))
2287 dev_err(&pdev->dev,
2288 "failed to allocate sysfs resources\n");
2289 } else {
2290 adapter->ets = false;
2291 }
2292#endif
673b8b70 2293 /* do hw tstamp init after resetting */
7ebae817 2294 igb_ptp_init(adapter);
673b8b70 2295
9d5c8243
AK
2296 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2297 /* print bus type/speed/width info */
7c510e4b 2298 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2299 netdev->name,
559e9c49 2300 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2301 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2302 "unknown"),
59c3de89
AD
2303 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2304 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2305 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2306 "unknown"),
7c510e4b 2307 netdev->dev_addr);
9d5c8243 2308
9835fd73
CW
2309 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2310 if (ret_val)
2311 strcpy(part_str, "Unknown");
2312 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2313 dev_info(&pdev->dev,
2314 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2315 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2316 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2317 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2318 switch (hw->mac.type) {
2319 case e1000_i350:
f96a8a0b
CW
2320 case e1000_i210:
2321 case e1000_i211:
09b068d4
CW
2322 igb_set_eee_i350(hw);
2323 break;
2324 default:
2325 break;
2326 }
749ab2cd
YZ
2327
2328 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2329 return 0;
2330
2331err_register:
2332 igb_release_hw_control(adapter);
441fc6fd 2333 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2334err_eeprom:
2335 if (!igb_check_reset_block(hw))
f5f4cf08 2336 igb_reset_phy(hw);
9d5c8243
AK
2337
2338 if (hw->flash_address)
2339 iounmap(hw->flash_address);
9d5c8243 2340err_sw_init:
047e0030 2341 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2342 iounmap(hw->hw_addr);
2343err_ioremap:
2344 free_netdev(netdev);
2345err_alloc_etherdev:
559e9c49
AD
2346 pci_release_selected_regions(pdev,
2347 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2348err_pci_reg:
2349err_dma:
2350 pci_disable_device(pdev);
2351 return err;
2352}
2353
fa44f2f1
GR
2354#ifdef CONFIG_PCI_IOV
2355static int igb_disable_sriov(struct pci_dev *pdev)
2356{
2357 struct net_device *netdev = pci_get_drvdata(pdev);
2358 struct igb_adapter *adapter = netdev_priv(netdev);
2359 struct e1000_hw *hw = &adapter->hw;
2360
2361 /* reclaim resources allocated to VFs */
2362 if (adapter->vf_data) {
2363 /* disable iov and allow time for transactions to clear */
2364 if (igb_vfs_are_assigned(adapter)) {
2365 dev_warn(&pdev->dev,
2366 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2367 return -EPERM;
2368 } else {
2369 pci_disable_sriov(pdev);
2370 msleep(500);
2371 }
2372
2373 kfree(adapter->vf_data);
2374 adapter->vf_data = NULL;
2375 adapter->vfs_allocated_count = 0;
2376 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2377 wrfl();
2378 msleep(100);
2379 dev_info(&pdev->dev, "IOV Disabled\n");
2380
2381 /* Re-enable DMA Coalescing flag since IOV is turned off */
2382 adapter->flags |= IGB_FLAG_DMAC;
2383 }
2384
2385 return 0;
2386}
2387
2388static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2389{
2390 struct net_device *netdev = pci_get_drvdata(pdev);
2391 struct igb_adapter *adapter = netdev_priv(netdev);
2392 int old_vfs = pci_num_vf(pdev);
2393 int err = 0;
2394 int i;
2395
2396 if (!num_vfs)
2397 goto out;
2398 else if (old_vfs && old_vfs == num_vfs)
2399 goto out;
2400 else if (old_vfs && old_vfs != num_vfs)
2401 err = igb_disable_sriov(pdev);
2402
2403 if (err)
2404 goto out;
2405
2406 if (num_vfs > 7) {
2407 err = -EPERM;
2408 goto out;
2409 }
2410
2411 adapter->vfs_allocated_count = num_vfs;
2412
2413 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2414 sizeof(struct vf_data_storage), GFP_KERNEL);
2415
2416 /* if allocation failed then we do not support SR-IOV */
2417 if (!adapter->vf_data) {
2418 adapter->vfs_allocated_count = 0;
2419 dev_err(&pdev->dev,
2420 "Unable to allocate memory for VF Data Storage\n");
2421 err = -ENOMEM;
2422 goto out;
2423 }
2424
2425 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2426 if (err)
2427 goto err_out;
2428
2429 dev_info(&pdev->dev, "%d VFs allocated\n",
2430 adapter->vfs_allocated_count);
2431 for (i = 0; i < adapter->vfs_allocated_count; i++)
2432 igb_vf_configure(adapter, i);
2433
2434 /* DMA Coalescing is not supported in IOV mode. */
2435 adapter->flags &= ~IGB_FLAG_DMAC;
2436 goto out;
2437
2438err_out:
2439 kfree(adapter->vf_data);
2440 adapter->vf_data = NULL;
2441 adapter->vfs_allocated_count = 0;
2442out:
2443 return err;
2444}
2445
2446#endif
441fc6fd
CW
2447/*
2448 * igb_remove_i2c - Cleanup I2C interface
2449 * @adapter: pointer to adapter structure
2450 *
2451 */
2452static void igb_remove_i2c(struct igb_adapter *adapter)
2453{
2454
2455 /* free the adapter bus structure */
2456 i2c_del_adapter(&adapter->i2c_adap);
2457}
2458
9d5c8243
AK
2459/**
2460 * igb_remove - Device Removal Routine
2461 * @pdev: PCI device information struct
2462 *
2463 * igb_remove is called by the PCI subsystem to alert the driver
2464 * that it should release a PCI device. The could be caused by a
2465 * Hot-Plug event, or because the driver is going to be removed from
2466 * memory.
2467 **/
9f9a12f8 2468static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2469{
2470 struct net_device *netdev = pci_get_drvdata(pdev);
2471 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2472 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2473
749ab2cd 2474 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2475#ifdef CONFIG_IGB_HWMON
2476 igb_sysfs_exit(adapter);
2477#endif
441fc6fd 2478 igb_remove_i2c(adapter);
a79f4f88 2479 igb_ptp_stop(adapter);
760141a5
TH
2480 /*
2481 * The watchdog timer may be rescheduled, so explicitly
2482 * disable watchdog from being rescheduled.
2483 */
9d5c8243
AK
2484 set_bit(__IGB_DOWN, &adapter->state);
2485 del_timer_sync(&adapter->watchdog_timer);
2486 del_timer_sync(&adapter->phy_info_timer);
2487
760141a5
TH
2488 cancel_work_sync(&adapter->reset_task);
2489 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2490
421e02f0 2491#ifdef CONFIG_IGB_DCA
7dfc16fa 2492 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2493 dev_info(&pdev->dev, "DCA disabled\n");
2494 dca_remove_requester(&pdev->dev);
7dfc16fa 2495 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2496 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2497 }
2498#endif
2499
9d5c8243
AK
2500 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2501 * would have already happened in close and is redundant. */
2502 igb_release_hw_control(adapter);
2503
2504 unregister_netdev(netdev);
2505
047e0030 2506 igb_clear_interrupt_scheme(adapter);
9d5c8243 2507
37680117 2508#ifdef CONFIG_PCI_IOV
fa44f2f1 2509 igb_disable_sriov(pdev);
37680117 2510#endif
559e9c49 2511
28b0759c
AD
2512 iounmap(hw->hw_addr);
2513 if (hw->flash_address)
2514 iounmap(hw->flash_address);
559e9c49
AD
2515 pci_release_selected_regions(pdev,
2516 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2517
1128c756 2518 kfree(adapter->shadow_vfta);
9d5c8243
AK
2519 free_netdev(netdev);
2520
19d5afd4 2521 pci_disable_pcie_error_reporting(pdev);
40a914fa 2522
9d5c8243
AK
2523 pci_disable_device(pdev);
2524}
2525
a6b623e0
AD
2526/**
2527 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2528 * @adapter: board private structure to initialize
2529 *
2530 * This function initializes the vf specific data storage and then attempts to
2531 * allocate the VFs. The reason for ordering it this way is because it is much
2532 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2533 * the memory for the VFs.
2534 **/
9f9a12f8 2535static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2536{
2537#ifdef CONFIG_PCI_IOV
2538 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2539 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2540
f96a8a0b
CW
2541 /* Virtualization features not supported on i210 family. */
2542 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2543 return;
2544
fa44f2f1 2545 pci_sriov_set_totalvfs(pdev, 7);
d5e51a10 2546 igb_enable_sriov(pdev, max_vfs);
0224d663 2547
a6b623e0
AD
2548#endif /* CONFIG_PCI_IOV */
2549}
2550
fa44f2f1 2551static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2552{
2553 struct e1000_hw *hw = &adapter->hw;
374a542d 2554 u32 max_rss_queues;
9d5c8243 2555
374a542d 2556 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2557 switch (hw->mac.type) {
374a542d
MV
2558 case e1000_i211:
2559 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2560 break;
2561 case e1000_82575:
f96a8a0b 2562 case e1000_i210:
374a542d
MV
2563 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2564 break;
2565 case e1000_i350:
2566 /* I350 cannot do RSS and SR-IOV at the same time */
2567 if (!!adapter->vfs_allocated_count) {
2568 max_rss_queues = 1;
2569 break;
2570 }
2571 /* fall through */
2572 case e1000_82576:
2573 if (!!adapter->vfs_allocated_count) {
2574 max_rss_queues = 2;
2575 break;
2576 }
2577 /* fall through */
2578 case e1000_82580:
2579 default:
2580 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2581 break;
374a542d
MV
2582 }
2583
2584 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2585
2586 /* Determine if we need to pair queues. */
2587 switch (hw->mac.type) {
2588 case e1000_82575:
f96a8a0b 2589 case e1000_i211:
374a542d 2590 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2591 break;
374a542d
MV
2592 case e1000_82576:
2593 /*
2594 * If VFs are going to be allocated with RSS queues then we
2595 * should pair the queues in order to conserve interrupts due
2596 * to limited supply.
2597 */
2598 if ((adapter->rss_queues > 1) &&
2599 (adapter->vfs_allocated_count > 6))
2600 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2601 /* fall through */
2602 case e1000_82580:
2603 case e1000_i350:
2604 case e1000_i210:
f96a8a0b 2605 default:
374a542d
MV
2606 /*
2607 * If rss_queues > half of max_rss_queues, pair the queues in
2608 * order to conserve interrupts due to limited supply.
2609 */
2610 if (adapter->rss_queues > (max_rss_queues / 2))
2611 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2612 break;
2613 }
fa44f2f1
GR
2614}
2615
2616/**
2617 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2618 * @adapter: board private structure to initialize
2619 *
2620 * igb_sw_init initializes the Adapter private data structure.
2621 * Fields are initialized based on PCI device information and
2622 * OS network device settings (MTU size).
2623 **/
2624static int igb_sw_init(struct igb_adapter *adapter)
2625{
2626 struct e1000_hw *hw = &adapter->hw;
2627 struct net_device *netdev = adapter->netdev;
2628 struct pci_dev *pdev = adapter->pdev;
2629
2630 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2631
2632 /* set default ring sizes */
2633 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2634 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2635
2636 /* set default ITR values */
2637 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2638 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2639
2640 /* set default work limits */
2641 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2642
2643 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2644 VLAN_HLEN;
2645 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2646
2647 spin_lock_init(&adapter->stats64_lock);
2648#ifdef CONFIG_PCI_IOV
2649 switch (hw->mac.type) {
2650 case e1000_82576:
2651 case e1000_i350:
2652 if (max_vfs > 7) {
2653 dev_warn(&pdev->dev,
2654 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 2655 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
2656 } else
2657 adapter->vfs_allocated_count = max_vfs;
2658 if (adapter->vfs_allocated_count)
2659 dev_warn(&pdev->dev,
2660 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2661 break;
2662 default:
2663 break;
2664 }
2665#endif /* CONFIG_PCI_IOV */
2666
2667 igb_init_queue_configuration(adapter);
a99955fc 2668
1128c756 2669 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
2670 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2671 GFP_ATOMIC);
1128c756 2672
a6b623e0 2673 /* This call may decrease the number of queues */
53c7d064 2674 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2675 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2676 return -ENOMEM;
2677 }
2678
a6b623e0
AD
2679 igb_probe_vfs(adapter);
2680
9d5c8243
AK
2681 /* Explicitly disable IRQ since the NIC can be in any state. */
2682 igb_irq_disable(adapter);
2683
f96a8a0b 2684 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2685 adapter->flags &= ~IGB_FLAG_DMAC;
2686
9d5c8243
AK
2687 set_bit(__IGB_DOWN, &adapter->state);
2688 return 0;
2689}
2690
2691/**
2692 * igb_open - Called when a network interface is made active
2693 * @netdev: network interface device structure
2694 *
2695 * Returns 0 on success, negative value on failure
2696 *
2697 * The open entry point is called when a network interface is made
2698 * active by the system (IFF_UP). At this point all resources needed
2699 * for transmit and receive operations are allocated, the interrupt
2700 * handler is registered with the OS, the watchdog timer is started,
2701 * and the stack is notified that the interface is ready.
2702 **/
749ab2cd 2703static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2704{
2705 struct igb_adapter *adapter = netdev_priv(netdev);
2706 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2707 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2708 int err;
2709 int i;
2710
2711 /* disallow open during test */
749ab2cd
YZ
2712 if (test_bit(__IGB_TESTING, &adapter->state)) {
2713 WARN_ON(resuming);
9d5c8243 2714 return -EBUSY;
749ab2cd
YZ
2715 }
2716
2717 if (!resuming)
2718 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2719
b168dfc5
JB
2720 netif_carrier_off(netdev);
2721
9d5c8243
AK
2722 /* allocate transmit descriptors */
2723 err = igb_setup_all_tx_resources(adapter);
2724 if (err)
2725 goto err_setup_tx;
2726
2727 /* allocate receive descriptors */
2728 err = igb_setup_all_rx_resources(adapter);
2729 if (err)
2730 goto err_setup_rx;
2731
88a268c1 2732 igb_power_up_link(adapter);
9d5c8243 2733
9d5c8243
AK
2734 /* before we allocate an interrupt, we must be ready to handle it.
2735 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2736 * as soon as we call pci_request_irq, so we have to setup our
2737 * clean_rx handler before we do so. */
2738 igb_configure(adapter);
2739
2740 err = igb_request_irq(adapter);
2741 if (err)
2742 goto err_req_irq;
2743
0c2cc02e
AD
2744 /* Notify the stack of the actual queue counts. */
2745 err = netif_set_real_num_tx_queues(adapter->netdev,
2746 adapter->num_tx_queues);
2747 if (err)
2748 goto err_set_queues;
2749
2750 err = netif_set_real_num_rx_queues(adapter->netdev,
2751 adapter->num_rx_queues);
2752 if (err)
2753 goto err_set_queues;
2754
9d5c8243
AK
2755 /* From here on the code is the same as igb_up() */
2756 clear_bit(__IGB_DOWN, &adapter->state);
2757
0d1ae7f4
AD
2758 for (i = 0; i < adapter->num_q_vectors; i++)
2759 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2760
2761 /* Clear any pending interrupts. */
2762 rd32(E1000_ICR);
844290e5
PW
2763
2764 igb_irq_enable(adapter);
2765
d4960307
AD
2766 /* notify VFs that reset has been completed */
2767 if (adapter->vfs_allocated_count) {
2768 u32 reg_data = rd32(E1000_CTRL_EXT);
2769 reg_data |= E1000_CTRL_EXT_PFRSTD;
2770 wr32(E1000_CTRL_EXT, reg_data);
2771 }
2772
d55b53ff
JK
2773 netif_tx_start_all_queues(netdev);
2774
749ab2cd
YZ
2775 if (!resuming)
2776 pm_runtime_put(&pdev->dev);
2777
25568a53
AD
2778 /* start the watchdog. */
2779 hw->mac.get_link_status = 1;
2780 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2781
2782 return 0;
2783
0c2cc02e
AD
2784err_set_queues:
2785 igb_free_irq(adapter);
9d5c8243
AK
2786err_req_irq:
2787 igb_release_hw_control(adapter);
88a268c1 2788 igb_power_down_link(adapter);
9d5c8243
AK
2789 igb_free_all_rx_resources(adapter);
2790err_setup_rx:
2791 igb_free_all_tx_resources(adapter);
2792err_setup_tx:
2793 igb_reset(adapter);
749ab2cd
YZ
2794 if (!resuming)
2795 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2796
2797 return err;
2798}
2799
749ab2cd
YZ
2800static int igb_open(struct net_device *netdev)
2801{
2802 return __igb_open(netdev, false);
2803}
2804
9d5c8243
AK
2805/**
2806 * igb_close - Disables a network interface
2807 * @netdev: network interface device structure
2808 *
2809 * Returns 0, this is not allowed to fail
2810 *
2811 * The close entry point is called when an interface is de-activated
2812 * by the OS. The hardware is still under the driver's control, but
2813 * needs to be disabled. A global MAC reset is issued to stop the
2814 * hardware, and all transmit and receive resources are freed.
2815 **/
749ab2cd 2816static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2817{
2818 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2819 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2820
2821 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2822
749ab2cd
YZ
2823 if (!suspending)
2824 pm_runtime_get_sync(&pdev->dev);
2825
2826 igb_down(adapter);
9d5c8243
AK
2827 igb_free_irq(adapter);
2828
2829 igb_free_all_tx_resources(adapter);
2830 igb_free_all_rx_resources(adapter);
2831
749ab2cd
YZ
2832 if (!suspending)
2833 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2834 return 0;
2835}
2836
749ab2cd
YZ
2837static int igb_close(struct net_device *netdev)
2838{
2839 return __igb_close(netdev, false);
2840}
2841
9d5c8243
AK
2842/**
2843 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2844 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2845 *
2846 * Return 0 on success, negative on failure
2847 **/
80785298 2848int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2849{
59d71989 2850 struct device *dev = tx_ring->dev;
9d5c8243
AK
2851 int size;
2852
06034649 2853 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
2854
2855 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2856 if (!tx_ring->tx_buffer_info)
9d5c8243 2857 goto err;
9d5c8243
AK
2858
2859 /* round up to nearest 4K */
85e8d004 2860 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2861 tx_ring->size = ALIGN(tx_ring->size, 4096);
2862
5536d210
AD
2863 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2864 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
2865 if (!tx_ring->desc)
2866 goto err;
2867
9d5c8243
AK
2868 tx_ring->next_to_use = 0;
2869 tx_ring->next_to_clean = 0;
81c2fc22 2870
9d5c8243
AK
2871 return 0;
2872
2873err:
06034649 2874 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
2875 tx_ring->tx_buffer_info = NULL;
2876 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
2877 return -ENOMEM;
2878}
2879
2880/**
2881 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2882 * (Descriptors) for all queues
2883 * @adapter: board private structure
2884 *
2885 * Return 0 on success, negative on failure
2886 **/
2887static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2888{
439705e1 2889 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2890 int i, err = 0;
2891
2892 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2893 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2894 if (err) {
439705e1 2895 dev_err(&pdev->dev,
9d5c8243
AK
2896 "Allocation for Tx Queue %u failed\n", i);
2897 for (i--; i >= 0; i--)
3025a446 2898 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2899 break;
2900 }
2901 }
2902
2903 return err;
2904}
2905
2906/**
85b430b4
AD
2907 * igb_setup_tctl - configure the transmit control registers
2908 * @adapter: Board private structure
9d5c8243 2909 **/
d7ee5b3a 2910void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2911{
9d5c8243
AK
2912 struct e1000_hw *hw = &adapter->hw;
2913 u32 tctl;
9d5c8243 2914
85b430b4
AD
2915 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2916 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2917
2918 /* Program the Transmit Control Register */
9d5c8243
AK
2919 tctl = rd32(E1000_TCTL);
2920 tctl &= ~E1000_TCTL_CT;
2921 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2922 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2923
2924 igb_config_collision_dist(hw);
2925
9d5c8243
AK
2926 /* Enable transmits */
2927 tctl |= E1000_TCTL_EN;
2928
2929 wr32(E1000_TCTL, tctl);
2930}
2931
85b430b4
AD
2932/**
2933 * igb_configure_tx_ring - Configure transmit ring after Reset
2934 * @adapter: board private structure
2935 * @ring: tx ring to configure
2936 *
2937 * Configure a transmit ring after a reset.
2938 **/
d7ee5b3a
AD
2939void igb_configure_tx_ring(struct igb_adapter *adapter,
2940 struct igb_ring *ring)
85b430b4
AD
2941{
2942 struct e1000_hw *hw = &adapter->hw;
a74420e0 2943 u32 txdctl = 0;
85b430b4
AD
2944 u64 tdba = ring->dma;
2945 int reg_idx = ring->reg_idx;
2946
2947 /* disable the queue */
a74420e0 2948 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2949 wrfl();
2950 mdelay(10);
2951
2952 wr32(E1000_TDLEN(reg_idx),
2953 ring->count * sizeof(union e1000_adv_tx_desc));
2954 wr32(E1000_TDBAL(reg_idx),
2955 tdba & 0x00000000ffffffffULL);
2956 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2957
fce99e34 2958 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2959 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2960 writel(0, ring->tail);
85b430b4
AD
2961
2962 txdctl |= IGB_TX_PTHRESH;
2963 txdctl |= IGB_TX_HTHRESH << 8;
2964 txdctl |= IGB_TX_WTHRESH << 16;
2965
2966 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2967 wr32(E1000_TXDCTL(reg_idx), txdctl);
2968}
2969
2970/**
2971 * igb_configure_tx - Configure transmit Unit after Reset
2972 * @adapter: board private structure
2973 *
2974 * Configure the Tx unit of the MAC after a reset.
2975 **/
2976static void igb_configure_tx(struct igb_adapter *adapter)
2977{
2978 int i;
2979
2980 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2981 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2982}
2983
9d5c8243
AK
2984/**
2985 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2986 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2987 *
2988 * Returns 0 on success, negative on failure
2989 **/
80785298 2990int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2991{
59d71989 2992 struct device *dev = rx_ring->dev;
f33005a6 2993 int size;
9d5c8243 2994
06034649 2995 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
2996
2997 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2998 if (!rx_ring->rx_buffer_info)
9d5c8243 2999 goto err;
9d5c8243 3000
9d5c8243 3001 /* Round up to nearest 4K */
f33005a6 3002 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3003 rx_ring->size = ALIGN(rx_ring->size, 4096);
3004
5536d210
AD
3005 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3006 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3007 if (!rx_ring->desc)
3008 goto err;
3009
cbc8e55f 3010 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3011 rx_ring->next_to_clean = 0;
3012 rx_ring->next_to_use = 0;
9d5c8243 3013
9d5c8243
AK
3014 return 0;
3015
3016err:
06034649
AD
3017 vfree(rx_ring->rx_buffer_info);
3018 rx_ring->rx_buffer_info = NULL;
f33005a6 3019 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3020 return -ENOMEM;
3021}
3022
3023/**
3024 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3025 * (Descriptors) for all queues
3026 * @adapter: board private structure
3027 *
3028 * Return 0 on success, negative on failure
3029 **/
3030static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3031{
439705e1 3032 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3033 int i, err = 0;
3034
3035 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3036 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3037 if (err) {
439705e1 3038 dev_err(&pdev->dev,
9d5c8243
AK
3039 "Allocation for Rx Queue %u failed\n", i);
3040 for (i--; i >= 0; i--)
3025a446 3041 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3042 break;
3043 }
3044 }
3045
3046 return err;
3047}
3048
06cf2666
AD
3049/**
3050 * igb_setup_mrqc - configure the multiple receive queue control registers
3051 * @adapter: Board private structure
3052 **/
3053static void igb_setup_mrqc(struct igb_adapter *adapter)
3054{
3055 struct e1000_hw *hw = &adapter->hw;
3056 u32 mrqc, rxcsum;
797fd4be 3057 u32 j, num_rx_queues, shift = 0;
a57fe23e
AD
3058 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3059 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3060 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3061 0xFA01ACBE };
06cf2666
AD
3062
3063 /* Fill out hash function seeds */
a57fe23e
AD
3064 for (j = 0; j < 10; j++)
3065 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 3066
a99955fc 3067 num_rx_queues = adapter->rss_queues;
06cf2666 3068
797fd4be
AD
3069 switch (hw->mac.type) {
3070 case e1000_82575:
3071 shift = 6;
3072 break;
3073 case e1000_82576:
3074 /* 82576 supports 2 RSS queues for SR-IOV */
3075 if (adapter->vfs_allocated_count) {
06cf2666
AD
3076 shift = 3;
3077 num_rx_queues = 2;
06cf2666 3078 }
797fd4be
AD
3079 break;
3080 default:
3081 break;
06cf2666
AD
3082 }
3083
797fd4be
AD
3084 /*
3085 * Populate the indirection table 4 entries at a time. To do this
3086 * we are generating the results for n and n+2 and then interleaving
3087 * those with the results with n+1 and n+3.
3088 */
3089 for (j = 0; j < 32; j++) {
3090 /* first pass generates n and n+2 */
3091 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3092 u32 reta = (base & 0x07800780) >> (7 - shift);
3093
3094 /* second pass generates n+1 and n+3 */
3095 base += 0x00010001 * num_rx_queues;
3096 reta |= (base & 0x07800780) << (1 + shift);
3097
3098 wr32(E1000_RETA(j), reta);
06cf2666
AD
3099 }
3100
3101 /*
3102 * Disable raw packet checksumming so that RSS hash is placed in
3103 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3104 * offloads as they are enabled by default
3105 */
3106 rxcsum = rd32(E1000_RXCSUM);
3107 rxcsum |= E1000_RXCSUM_PCSD;
3108
3109 if (adapter->hw.mac.type >= e1000_82576)
3110 /* Enable Receive Checksum Offload for SCTP */
3111 rxcsum |= E1000_RXCSUM_CRCOFL;
3112
3113 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3114 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3115
039454a8
AA
3116 /* Generate RSS hash based on packet types, TCP/UDP
3117 * port numbers and/or IPv4/v6 src and dst addresses
3118 */
f96a8a0b
CW
3119 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3120 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3121 E1000_MRQC_RSS_FIELD_IPV6 |
3122 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3123 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3124
039454a8
AA
3125 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3126 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3127 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3128 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3129
06cf2666
AD
3130 /* If VMDq is enabled then we set the appropriate mode for that, else
3131 * we default to RSS so that an RSS hash is calculated per packet even
3132 * if we are only using one queue */
3133 if (adapter->vfs_allocated_count) {
3134 if (hw->mac.type > e1000_82575) {
3135 /* Set the default pool for the PF's first queue */
3136 u32 vtctl = rd32(E1000_VT_CTL);
3137 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3138 E1000_VT_CTL_DISABLE_DEF_POOL);
3139 vtctl |= adapter->vfs_allocated_count <<
3140 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3141 wr32(E1000_VT_CTL, vtctl);
3142 }
a99955fc 3143 if (adapter->rss_queues > 1)
f96a8a0b 3144 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3145 else
f96a8a0b 3146 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3147 } else {
f96a8a0b
CW
3148 if (hw->mac.type != e1000_i211)
3149 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3150 }
3151 igb_vmm_control(adapter);
3152
06cf2666
AD
3153 wr32(E1000_MRQC, mrqc);
3154}
3155
9d5c8243
AK
3156/**
3157 * igb_setup_rctl - configure the receive control registers
3158 * @adapter: Board private structure
3159 **/
d7ee5b3a 3160void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3161{
3162 struct e1000_hw *hw = &adapter->hw;
3163 u32 rctl;
9d5c8243
AK
3164
3165 rctl = rd32(E1000_RCTL);
3166
3167 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3168 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3169
69d728ba 3170 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3171 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3172
87cb7e8c
AK
3173 /*
3174 * enable stripping of CRC. It's unlikely this will break BMC
3175 * redirection as it did with e1000. Newer features require
3176 * that the HW strips the CRC.
73cd78f1 3177 */
87cb7e8c 3178 rctl |= E1000_RCTL_SECRC;
9d5c8243 3179
559e9c49 3180 /* disable store bad packets and clear size bits. */
ec54d7d6 3181 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3182
6ec43fe6
AD
3183 /* enable LPE to prevent packets larger than max_frame_size */
3184 rctl |= E1000_RCTL_LPE;
9d5c8243 3185
952f72a8
AD
3186 /* disable queue 0 to prevent tail write w/o re-config */
3187 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3188
e1739522
AD
3189 /* Attention!!! For SR-IOV PF driver operations you must enable
3190 * queue drop for all VF and PF queues to prevent head of line blocking
3191 * if an un-trusted VF does not provide descriptors to hardware.
3192 */
3193 if (adapter->vfs_allocated_count) {
e1739522
AD
3194 /* set all queue drop enable bits */
3195 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3196 }
3197
89eaefb6
BG
3198 /* This is useful for sniffing bad packets. */
3199 if (adapter->netdev->features & NETIF_F_RXALL) {
3200 /* UPE and MPE will be handled by normal PROMISC logic
3201 * in e1000e_set_rx_mode */
3202 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3203 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3204 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3205
3206 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3207 E1000_RCTL_DPF | /* Allow filtered pause */
3208 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3209 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3210 * and that breaks VLANs.
3211 */
3212 }
3213
9d5c8243
AK
3214 wr32(E1000_RCTL, rctl);
3215}
3216
7d5753f0
AD
3217static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3218 int vfn)
3219{
3220 struct e1000_hw *hw = &adapter->hw;
3221 u32 vmolr;
3222
3223 /* if it isn't the PF check to see if VFs are enabled and
3224 * increase the size to support vlan tags */
3225 if (vfn < adapter->vfs_allocated_count &&
3226 adapter->vf_data[vfn].vlans_enabled)
3227 size += VLAN_TAG_SIZE;
3228
3229 vmolr = rd32(E1000_VMOLR(vfn));
3230 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3231 vmolr |= size | E1000_VMOLR_LPE;
3232 wr32(E1000_VMOLR(vfn), vmolr);
3233
3234 return 0;
3235}
3236
e1739522
AD
3237/**
3238 * igb_rlpml_set - set maximum receive packet size
3239 * @adapter: board private structure
3240 *
3241 * Configure maximum receivable packet size.
3242 **/
3243static void igb_rlpml_set(struct igb_adapter *adapter)
3244{
153285f9 3245 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3246 struct e1000_hw *hw = &adapter->hw;
3247 u16 pf_id = adapter->vfs_allocated_count;
3248
e1739522
AD
3249 if (pf_id) {
3250 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3251 /*
3252 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3253 * to our max jumbo frame size, in case we need to enable
3254 * jumbo frames on one of the rings later.
3255 * This will not pass over-length frames into the default
3256 * queue because it's gated by the VMOLR.RLPML.
3257 */
7d5753f0 3258 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3259 }
3260
3261 wr32(E1000_RLPML, max_frame_size);
3262}
3263
8151d294
WM
3264static inline void igb_set_vmolr(struct igb_adapter *adapter,
3265 int vfn, bool aupe)
7d5753f0
AD
3266{
3267 struct e1000_hw *hw = &adapter->hw;
3268 u32 vmolr;
3269
3270 /*
3271 * This register exists only on 82576 and newer so if we are older then
3272 * we should exit and do nothing
3273 */
3274 if (hw->mac.type < e1000_82576)
3275 return;
3276
3277 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3278 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3279 if (aupe)
3280 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3281 else
3282 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3283
3284 /* clear all bits that might not be set */
3285 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3286
a99955fc 3287 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3288 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3289 /*
3290 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3291 * multicast packets
3292 */
3293 if (vfn <= adapter->vfs_allocated_count)
3294 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3295
3296 wr32(E1000_VMOLR(vfn), vmolr);
3297}
3298
85b430b4
AD
3299/**
3300 * igb_configure_rx_ring - Configure a receive ring after Reset
3301 * @adapter: board private structure
3302 * @ring: receive ring to be configured
3303 *
3304 * Configure the Rx unit of the MAC after a reset.
3305 **/
d7ee5b3a
AD
3306void igb_configure_rx_ring(struct igb_adapter *adapter,
3307 struct igb_ring *ring)
85b430b4
AD
3308{
3309 struct e1000_hw *hw = &adapter->hw;
3310 u64 rdba = ring->dma;
3311 int reg_idx = ring->reg_idx;
a74420e0 3312 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3313
3314 /* disable the queue */
a74420e0 3315 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3316
3317 /* Set DMA base address registers */
3318 wr32(E1000_RDBAL(reg_idx),
3319 rdba & 0x00000000ffffffffULL);
3320 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3321 wr32(E1000_RDLEN(reg_idx),
3322 ring->count * sizeof(union e1000_adv_rx_desc));
3323
3324 /* initialize head and tail */
fce99e34 3325 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3326 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3327 writel(0, ring->tail);
85b430b4 3328
952f72a8 3329 /* set descriptor configuration */
44390ca6 3330 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3331 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3332 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3333 if (hw->mac.type >= e1000_82580)
757b77e2 3334 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3335 /* Only set Drop Enable if we are supporting multiple queues */
3336 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3337 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3338
3339 wr32(E1000_SRRCTL(reg_idx), srrctl);
3340
7d5753f0 3341 /* set filtering for VMDQ pools */
8151d294 3342 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3343
85b430b4
AD
3344 rxdctl |= IGB_RX_PTHRESH;
3345 rxdctl |= IGB_RX_HTHRESH << 8;
3346 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3347
3348 /* enable receive descriptor fetching */
3349 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3350 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3351}
3352
9d5c8243
AK
3353/**
3354 * igb_configure_rx - Configure receive Unit after Reset
3355 * @adapter: board private structure
3356 *
3357 * Configure the Rx unit of the MAC after a reset.
3358 **/
3359static void igb_configure_rx(struct igb_adapter *adapter)
3360{
9107584e 3361 int i;
9d5c8243 3362
68d480c4
AD
3363 /* set UTA to appropriate mode */
3364 igb_set_uta(adapter);
3365
26ad9178
AD
3366 /* set the correct pool for the PF default MAC address in entry 0 */
3367 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3368 adapter->vfs_allocated_count);
3369
06cf2666
AD
3370 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3371 * the Base and Length of the Rx Descriptor Ring */
f9d40f6a
AD
3372 for (i = 0; i < adapter->num_rx_queues; i++)
3373 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3374}
3375
3376/**
3377 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3378 * @tx_ring: Tx descriptor ring for a specific queue
3379 *
3380 * Free all transmit software resources
3381 **/
68fd9910 3382void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3383{
3b644cf6 3384 igb_clean_tx_ring(tx_ring);
9d5c8243 3385
06034649
AD
3386 vfree(tx_ring->tx_buffer_info);
3387 tx_ring->tx_buffer_info = NULL;
9d5c8243 3388
439705e1
AD
3389 /* if not set, then don't free */
3390 if (!tx_ring->desc)
3391 return;
3392
59d71989
AD
3393 dma_free_coherent(tx_ring->dev, tx_ring->size,
3394 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3395
3396 tx_ring->desc = NULL;
3397}
3398
3399/**
3400 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3401 * @adapter: board private structure
3402 *
3403 * Free all transmit software resources
3404 **/
3405static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3406{
3407 int i;
3408
3409 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3410 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3411}
3412
ebe42d16
AD
3413void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3414 struct igb_tx_buffer *tx_buffer)
3415{
3416 if (tx_buffer->skb) {
3417 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3418 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3419 dma_unmap_single(ring->dev,
c9f14bf3
AD
3420 dma_unmap_addr(tx_buffer, dma),
3421 dma_unmap_len(tx_buffer, len),
ebe42d16 3422 DMA_TO_DEVICE);
c9f14bf3 3423 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3424 dma_unmap_page(ring->dev,
c9f14bf3
AD
3425 dma_unmap_addr(tx_buffer, dma),
3426 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3427 DMA_TO_DEVICE);
3428 }
3429 tx_buffer->next_to_watch = NULL;
3430 tx_buffer->skb = NULL;
c9f14bf3 3431 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3432 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3433}
3434
3435/**
3436 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3437 * @tx_ring: ring to be cleaned
3438 **/
3b644cf6 3439static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3440{
06034649 3441 struct igb_tx_buffer *buffer_info;
9d5c8243 3442 unsigned long size;
6ad4edfc 3443 u16 i;
9d5c8243 3444
06034649 3445 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3446 return;
3447 /* Free all the Tx ring sk_buffs */
3448
3449 for (i = 0; i < tx_ring->count; i++) {
06034649 3450 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3451 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3452 }
3453
dad8a3b3
JF
3454 netdev_tx_reset_queue(txring_txq(tx_ring));
3455
06034649
AD
3456 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3457 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3458
3459 /* Zero out the descriptor ring */
9d5c8243
AK
3460 memset(tx_ring->desc, 0, tx_ring->size);
3461
3462 tx_ring->next_to_use = 0;
3463 tx_ring->next_to_clean = 0;
9d5c8243
AK
3464}
3465
3466/**
3467 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3468 * @adapter: board private structure
3469 **/
3470static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3471{
3472 int i;
3473
3474 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3475 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3476}
3477
3478/**
3479 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3480 * @rx_ring: ring to clean the resources from
3481 *
3482 * Free all receive software resources
3483 **/
68fd9910 3484void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3485{
3b644cf6 3486 igb_clean_rx_ring(rx_ring);
9d5c8243 3487
06034649
AD
3488 vfree(rx_ring->rx_buffer_info);
3489 rx_ring->rx_buffer_info = NULL;
9d5c8243 3490
439705e1
AD
3491 /* if not set, then don't free */
3492 if (!rx_ring->desc)
3493 return;
3494
59d71989
AD
3495 dma_free_coherent(rx_ring->dev, rx_ring->size,
3496 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3497
3498 rx_ring->desc = NULL;
3499}
3500
3501/**
3502 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3503 * @adapter: board private structure
3504 *
3505 * Free all receive software resources
3506 **/
3507static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3508{
3509 int i;
3510
3511 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3512 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3513}
3514
3515/**
3516 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3517 * @rx_ring: ring to free buffers from
3518 **/
3b644cf6 3519static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3520{
9d5c8243 3521 unsigned long size;
c023cd88 3522 u16 i;
9d5c8243 3523
1a1c225b
AD
3524 if (rx_ring->skb)
3525 dev_kfree_skb(rx_ring->skb);
3526 rx_ring->skb = NULL;
3527
06034649 3528 if (!rx_ring->rx_buffer_info)
9d5c8243 3529 return;
439705e1 3530
9d5c8243
AK
3531 /* Free all the Rx ring sk_buffs */
3532 for (i = 0; i < rx_ring->count; i++) {
06034649 3533 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3534
cbc8e55f
AD
3535 if (!buffer_info->page)
3536 continue;
3537
3538 dma_unmap_page(rx_ring->dev,
3539 buffer_info->dma,
3540 PAGE_SIZE,
3541 DMA_FROM_DEVICE);
3542 __free_page(buffer_info->page);
3543
1a1c225b 3544 buffer_info->page = NULL;
9d5c8243
AK
3545 }
3546
06034649
AD
3547 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3548 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3549
3550 /* Zero out the descriptor ring */
3551 memset(rx_ring->desc, 0, rx_ring->size);
3552
cbc8e55f 3553 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3554 rx_ring->next_to_clean = 0;
3555 rx_ring->next_to_use = 0;
9d5c8243
AK
3556}
3557
3558/**
3559 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3560 * @adapter: board private structure
3561 **/
3562static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3563{
3564 int i;
3565
3566 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3567 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3568}
3569
3570/**
3571 * igb_set_mac - Change the Ethernet Address of the NIC
3572 * @netdev: network interface device structure
3573 * @p: pointer to an address structure
3574 *
3575 * Returns 0 on success, negative on failure
3576 **/
3577static int igb_set_mac(struct net_device *netdev, void *p)
3578{
3579 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3580 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3581 struct sockaddr *addr = p;
3582
3583 if (!is_valid_ether_addr(addr->sa_data))
3584 return -EADDRNOTAVAIL;
3585
3586 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3587 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3588
26ad9178
AD
3589 /* set the correct pool for the new PF MAC address in entry 0 */
3590 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3591 adapter->vfs_allocated_count);
e1739522 3592
9d5c8243
AK
3593 return 0;
3594}
3595
3596/**
68d480c4 3597 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3598 * @netdev: network interface device structure
3599 *
68d480c4
AD
3600 * Writes multicast address list to the MTA hash table.
3601 * Returns: -ENOMEM on failure
3602 * 0 on no addresses written
3603 * X on writing X addresses to MTA
9d5c8243 3604 **/
68d480c4 3605static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3606{
3607 struct igb_adapter *adapter = netdev_priv(netdev);
3608 struct e1000_hw *hw = &adapter->hw;
22bedad3 3609 struct netdev_hw_addr *ha;
68d480c4 3610 u8 *mta_list;
9d5c8243
AK
3611 int i;
3612
4cd24eaf 3613 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3614 /* nothing to program, so clear mc list */
3615 igb_update_mc_addr_list(hw, NULL, 0);
3616 igb_restore_vf_multicasts(adapter);
3617 return 0;
3618 }
9d5c8243 3619
4cd24eaf 3620 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3621 if (!mta_list)
3622 return -ENOMEM;
ff41f8dc 3623
68d480c4 3624 /* The shared function expects a packed array of only addresses. */
48e2f183 3625 i = 0;
22bedad3
JP
3626 netdev_for_each_mc_addr(ha, netdev)
3627 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3628
68d480c4
AD
3629 igb_update_mc_addr_list(hw, mta_list, i);
3630 kfree(mta_list);
3631
4cd24eaf 3632 return netdev_mc_count(netdev);
68d480c4
AD
3633}
3634
3635/**
3636 * igb_write_uc_addr_list - write unicast addresses to RAR table
3637 * @netdev: network interface device structure
3638 *
3639 * Writes unicast address list to the RAR table.
3640 * Returns: -ENOMEM on failure/insufficient address space
3641 * 0 on no addresses written
3642 * X on writing X addresses to the RAR table
3643 **/
3644static int igb_write_uc_addr_list(struct net_device *netdev)
3645{
3646 struct igb_adapter *adapter = netdev_priv(netdev);
3647 struct e1000_hw *hw = &adapter->hw;
3648 unsigned int vfn = adapter->vfs_allocated_count;
3649 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3650 int count = 0;
3651
3652 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3653 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3654 return -ENOMEM;
9d5c8243 3655
32e7bfc4 3656 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3657 struct netdev_hw_addr *ha;
32e7bfc4
JP
3658
3659 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3660 if (!rar_entries)
3661 break;
26ad9178
AD
3662 igb_rar_set_qsel(adapter, ha->addr,
3663 rar_entries--,
68d480c4
AD
3664 vfn);
3665 count++;
ff41f8dc
AD
3666 }
3667 }
3668 /* write the addresses in reverse order to avoid write combining */
3669 for (; rar_entries > 0 ; rar_entries--) {
3670 wr32(E1000_RAH(rar_entries), 0);
3671 wr32(E1000_RAL(rar_entries), 0);
3672 }
3673 wrfl();
3674
68d480c4
AD
3675 return count;
3676}
3677
3678/**
3679 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3680 * @netdev: network interface device structure
3681 *
3682 * The set_rx_mode entry point is called whenever the unicast or multicast
3683 * address lists or the network interface flags are updated. This routine is
3684 * responsible for configuring the hardware for proper unicast, multicast,
3685 * promiscuous mode, and all-multi behavior.
3686 **/
3687static void igb_set_rx_mode(struct net_device *netdev)
3688{
3689 struct igb_adapter *adapter = netdev_priv(netdev);
3690 struct e1000_hw *hw = &adapter->hw;
3691 unsigned int vfn = adapter->vfs_allocated_count;
3692 u32 rctl, vmolr = 0;
3693 int count;
3694
3695 /* Check for Promiscuous and All Multicast modes */
3696 rctl = rd32(E1000_RCTL);
3697
3698 /* clear the effected bits */
3699 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3700
3701 if (netdev->flags & IFF_PROMISC) {
3702 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3703 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3704 } else {
3705 if (netdev->flags & IFF_ALLMULTI) {
3706 rctl |= E1000_RCTL_MPE;
3707 vmolr |= E1000_VMOLR_MPME;
3708 } else {
3709 /*
3710 * Write addresses to the MTA, if the attempt fails
25985edc 3711 * then we should just turn on promiscuous mode so
68d480c4
AD
3712 * that we can at least receive multicast traffic
3713 */
3714 count = igb_write_mc_addr_list(netdev);
3715 if (count < 0) {
3716 rctl |= E1000_RCTL_MPE;
3717 vmolr |= E1000_VMOLR_MPME;
3718 } else if (count) {
3719 vmolr |= E1000_VMOLR_ROMPE;
3720 }
3721 }
3722 /*
3723 * Write addresses to available RAR registers, if there is not
3724 * sufficient space to store all the addresses then enable
25985edc 3725 * unicast promiscuous mode
68d480c4
AD
3726 */
3727 count = igb_write_uc_addr_list(netdev);
3728 if (count < 0) {
3729 rctl |= E1000_RCTL_UPE;
3730 vmolr |= E1000_VMOLR_ROPE;
3731 }
3732 rctl |= E1000_RCTL_VFE;
28fc06f5 3733 }
68d480c4 3734 wr32(E1000_RCTL, rctl);
28fc06f5 3735
68d480c4
AD
3736 /*
3737 * In order to support SR-IOV and eventually VMDq it is necessary to set
3738 * the VMOLR to enable the appropriate modes. Without this workaround
3739 * we will have issues with VLAN tag stripping not being done for frames
3740 * that are only arriving because we are the default pool
3741 */
f96a8a0b 3742 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3743 return;
9d5c8243 3744
68d480c4
AD
3745 vmolr |= rd32(E1000_VMOLR(vfn)) &
3746 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3747 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3748 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3749}
3750
13800469
GR
3751static void igb_check_wvbr(struct igb_adapter *adapter)
3752{
3753 struct e1000_hw *hw = &adapter->hw;
3754 u32 wvbr = 0;
3755
3756 switch (hw->mac.type) {
3757 case e1000_82576:
3758 case e1000_i350:
3759 if (!(wvbr = rd32(E1000_WVBR)))
3760 return;
3761 break;
3762 default:
3763 break;
3764 }
3765
3766 adapter->wvbr |= wvbr;
3767}
3768
3769#define IGB_STAGGERED_QUEUE_OFFSET 8
3770
3771static void igb_spoof_check(struct igb_adapter *adapter)
3772{
3773 int j;
3774
3775 if (!adapter->wvbr)
3776 return;
3777
3778 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3779 if (adapter->wvbr & (1 << j) ||
3780 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3781 dev_warn(&adapter->pdev->dev,
3782 "Spoof event(s) detected on VF %d\n", j);
3783 adapter->wvbr &=
3784 ~((1 << j) |
3785 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3786 }
3787 }
3788}
3789
9d5c8243
AK
3790/* Need to wait a few seconds after link up to get diagnostic information from
3791 * the phy */
3792static void igb_update_phy_info(unsigned long data)
3793{
3794 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3795 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3796}
3797
4d6b725e
AD
3798/**
3799 * igb_has_link - check shared code for link and determine up/down
3800 * @adapter: pointer to driver private info
3801 **/
3145535a 3802bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3803{
3804 struct e1000_hw *hw = &adapter->hw;
3805 bool link_active = false;
3806 s32 ret_val = 0;
3807
3808 /* get_link_status is set on LSC (link status) interrupt or
3809 * rx sequence error interrupt. get_link_status will stay
3810 * false until the e1000_check_for_link establishes link
3811 * for copper adapters ONLY
3812 */
3813 switch (hw->phy.media_type) {
3814 case e1000_media_type_copper:
3815 if (hw->mac.get_link_status) {
3816 ret_val = hw->mac.ops.check_for_link(hw);
3817 link_active = !hw->mac.get_link_status;
3818 } else {
3819 link_active = true;
3820 }
3821 break;
4d6b725e
AD
3822 case e1000_media_type_internal_serdes:
3823 ret_val = hw->mac.ops.check_for_link(hw);
3824 link_active = hw->mac.serdes_has_link;
3825 break;
3826 default:
3827 case e1000_media_type_unknown:
3828 break;
3829 }
3830
3831 return link_active;
3832}
3833
563988dc
SA
3834static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3835{
3836 bool ret = false;
3837 u32 ctrl_ext, thstat;
3838
f96a8a0b 3839 /* check for thermal sensor event on i350 copper only */
563988dc
SA
3840 if (hw->mac.type == e1000_i350) {
3841 thstat = rd32(E1000_THSTAT);
3842 ctrl_ext = rd32(E1000_CTRL_EXT);
3843
3844 if ((hw->phy.media_type == e1000_media_type_copper) &&
3845 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3846 ret = !!(thstat & event);
3847 }
3848 }
3849
3850 return ret;
3851}
3852
9d5c8243
AK
3853/**
3854 * igb_watchdog - Timer Call-back
3855 * @data: pointer to adapter cast into an unsigned long
3856 **/
3857static void igb_watchdog(unsigned long data)
3858{
3859 struct igb_adapter *adapter = (struct igb_adapter *)data;
3860 /* Do the rest outside of interrupt context */
3861 schedule_work(&adapter->watchdog_task);
3862}
3863
3864static void igb_watchdog_task(struct work_struct *work)
3865{
3866 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3867 struct igb_adapter,
3868 watchdog_task);
9d5c8243 3869 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3870 struct net_device *netdev = adapter->netdev;
563988dc 3871 u32 link;
7a6ea550 3872 int i;
9d5c8243 3873
4d6b725e 3874 link = igb_has_link(adapter);
9d5c8243 3875 if (link) {
749ab2cd
YZ
3876 /* Cancel scheduled suspend requests. */
3877 pm_runtime_resume(netdev->dev.parent);
3878
9d5c8243
AK
3879 if (!netif_carrier_ok(netdev)) {
3880 u32 ctrl;
330a6d6a
AD
3881 hw->mac.ops.get_speed_and_duplex(hw,
3882 &adapter->link_speed,
3883 &adapter->link_duplex);
9d5c8243
AK
3884
3885 ctrl = rd32(E1000_CTRL);
527d47c1 3886 /* Links status message must follow this format */
876d2d6f
JK
3887 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3888 "Duplex, Flow Control: %s\n",
559e9c49
AD
3889 netdev->name,
3890 adapter->link_speed,
3891 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3892 "Full" : "Half",
3893 (ctrl & E1000_CTRL_TFCE) &&
3894 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3895 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3896 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3897
563988dc 3898 /* check for thermal sensor event */
876d2d6f
JK
3899 if (igb_thermal_sensor_event(hw,
3900 E1000_THSTAT_LINK_THROTTLE)) {
3901 netdev_info(netdev, "The network adapter link "
3902 "speed was downshifted because it "
3903 "overheated\n");
7ef5ed1c 3904 }
563988dc 3905
d07f3e37 3906 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3907 adapter->tx_timeout_factor = 1;
3908 switch (adapter->link_speed) {
3909 case SPEED_10:
9d5c8243
AK
3910 adapter->tx_timeout_factor = 14;
3911 break;
3912 case SPEED_100:
9d5c8243
AK
3913 /* maybe add some timeout factor ? */
3914 break;
3915 }
3916
3917 netif_carrier_on(netdev);
9d5c8243 3918
4ae196df 3919 igb_ping_all_vfs(adapter);
17dc566c 3920 igb_check_vf_rate_limit(adapter);
4ae196df 3921
4b1a9877 3922 /* link state has changed, schedule phy info update */
9d5c8243
AK
3923 if (!test_bit(__IGB_DOWN, &adapter->state))
3924 mod_timer(&adapter->phy_info_timer,
3925 round_jiffies(jiffies + 2 * HZ));
3926 }
3927 } else {
3928 if (netif_carrier_ok(netdev)) {
3929 adapter->link_speed = 0;
3930 adapter->link_duplex = 0;
563988dc
SA
3931
3932 /* check for thermal sensor event */
876d2d6f
JK
3933 if (igb_thermal_sensor_event(hw,
3934 E1000_THSTAT_PWR_DOWN)) {
3935 netdev_err(netdev, "The network adapter was "
3936 "stopped because it overheated\n");
7ef5ed1c 3937 }
563988dc 3938
527d47c1
AD
3939 /* Links status message must follow this format */
3940 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3941 netdev->name);
9d5c8243 3942 netif_carrier_off(netdev);
4b1a9877 3943
4ae196df
AD
3944 igb_ping_all_vfs(adapter);
3945
4b1a9877 3946 /* link state has changed, schedule phy info update */
9d5c8243
AK
3947 if (!test_bit(__IGB_DOWN, &adapter->state))
3948 mod_timer(&adapter->phy_info_timer,
3949 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3950
3951 pm_schedule_suspend(netdev->dev.parent,
3952 MSEC_PER_SEC * 5);
9d5c8243
AK
3953 }
3954 }
3955
12dcd86b
ED
3956 spin_lock(&adapter->stats64_lock);
3957 igb_update_stats(adapter, &adapter->stats64);
3958 spin_unlock(&adapter->stats64_lock);
9d5c8243 3959
dbabb065 3960 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3961 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3962 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3963 /* We've lost link, so the controller stops DMA,
3964 * but we've got queued Tx work that's never going
3965 * to get done, so reset controller to flush Tx.
3966 * (Do the reset outside of interrupt context). */
dbabb065
AD
3967 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3968 adapter->tx_timeout_count++;
3969 schedule_work(&adapter->reset_task);
3970 /* return immediately since reset is imminent */
3971 return;
3972 }
9d5c8243 3973 }
9d5c8243 3974
dbabb065 3975 /* Force detection of hung controller every watchdog period */
6d095fa8 3976 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3977 }
f7ba205e 3978
9d5c8243 3979 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3980 if (adapter->msix_entries) {
047e0030 3981 u32 eics = 0;
0d1ae7f4
AD
3982 for (i = 0; i < adapter->num_q_vectors; i++)
3983 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
3984 wr32(E1000_EICS, eics);
3985 } else {
3986 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3987 }
9d5c8243 3988
13800469 3989 igb_spoof_check(adapter);
fc580751 3990 igb_ptp_rx_hang(adapter);
13800469 3991
9d5c8243
AK
3992 /* Reset the timer */
3993 if (!test_bit(__IGB_DOWN, &adapter->state))
3994 mod_timer(&adapter->watchdog_timer,
3995 round_jiffies(jiffies + 2 * HZ));
3996}
3997
3998enum latency_range {
3999 lowest_latency = 0,
4000 low_latency = 1,
4001 bulk_latency = 2,
4002 latency_invalid = 255
4003};
4004
6eb5a7f1
AD
4005/**
4006 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4007 *
4008 * Stores a new ITR value based on strictly on packet size. This
4009 * algorithm is less sophisticated than that used in igb_update_itr,
4010 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 4011 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
4012 * were determined based on theoretical maximum wire speed and testing
4013 * data, in order to minimize response time while increasing bulk
4014 * throughput.
4015 * This functionality is controlled by the InterruptThrottleRate module
4016 * parameter (see igb_param.c)
4017 * NOTE: This function is called only when operating in a multiqueue
4018 * receive environment.
047e0030 4019 * @q_vector: pointer to q_vector
6eb5a7f1 4020 **/
047e0030 4021static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4022{
047e0030 4023 int new_val = q_vector->itr_val;
6eb5a7f1 4024 int avg_wire_size = 0;
047e0030 4025 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4026 unsigned int packets;
9d5c8243 4027
6eb5a7f1
AD
4028 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4029 * ints/sec - ITR timer value of 120 ticks.
4030 */
4031 if (adapter->link_speed != SPEED_1000) {
0ba82994 4032 new_val = IGB_4K_ITR;
6eb5a7f1 4033 goto set_itr_val;
9d5c8243 4034 }
047e0030 4035
0ba82994
AD
4036 packets = q_vector->rx.total_packets;
4037 if (packets)
4038 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4039
0ba82994
AD
4040 packets = q_vector->tx.total_packets;
4041 if (packets)
4042 avg_wire_size = max_t(u32, avg_wire_size,
4043 q_vector->tx.total_bytes / packets);
047e0030
AD
4044
4045 /* if avg_wire_size isn't set no work was done */
4046 if (!avg_wire_size)
4047 goto clear_counts;
9d5c8243 4048
6eb5a7f1
AD
4049 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4050 avg_wire_size += 24;
4051
4052 /* Don't starve jumbo frames */
4053 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4054
6eb5a7f1
AD
4055 /* Give a little boost to mid-size frames */
4056 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4057 new_val = avg_wire_size / 3;
4058 else
4059 new_val = avg_wire_size / 2;
9d5c8243 4060
0ba82994
AD
4061 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4062 if (new_val < IGB_20K_ITR &&
4063 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4064 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4065 new_val = IGB_20K_ITR;
abe1c363 4066
6eb5a7f1 4067set_itr_val:
047e0030
AD
4068 if (new_val != q_vector->itr_val) {
4069 q_vector->itr_val = new_val;
4070 q_vector->set_itr = 1;
9d5c8243 4071 }
6eb5a7f1 4072clear_counts:
0ba82994
AD
4073 q_vector->rx.total_bytes = 0;
4074 q_vector->rx.total_packets = 0;
4075 q_vector->tx.total_bytes = 0;
4076 q_vector->tx.total_packets = 0;
9d5c8243
AK
4077}
4078
4079/**
4080 * igb_update_itr - update the dynamic ITR value based on statistics
4081 * Stores a new ITR value based on packets and byte
4082 * counts during the last interrupt. The advantage of per interrupt
4083 * computation is faster updates and more accurate ITR for the current
4084 * traffic pattern. Constants in this function were computed
4085 * based on theoretical maximum wire speed and thresholds were set based
4086 * on testing data as well as attempting to minimize response time
4087 * while increasing bulk throughput.
4088 * this functionality is controlled by the InterruptThrottleRate module
4089 * parameter (see igb_param.c)
4090 * NOTE: These calculations are only valid when operating in a single-
4091 * queue environment.
0ba82994
AD
4092 * @q_vector: pointer to q_vector
4093 * @ring_container: ring info to update the itr for
9d5c8243 4094 **/
0ba82994
AD
4095static void igb_update_itr(struct igb_q_vector *q_vector,
4096 struct igb_ring_container *ring_container)
9d5c8243 4097{
0ba82994
AD
4098 unsigned int packets = ring_container->total_packets;
4099 unsigned int bytes = ring_container->total_bytes;
4100 u8 itrval = ring_container->itr;
9d5c8243 4101
0ba82994 4102 /* no packets, exit with status unchanged */
9d5c8243 4103 if (packets == 0)
0ba82994 4104 return;
9d5c8243 4105
0ba82994 4106 switch (itrval) {
9d5c8243
AK
4107 case lowest_latency:
4108 /* handle TSO and jumbo frames */
4109 if (bytes/packets > 8000)
0ba82994 4110 itrval = bulk_latency;
9d5c8243 4111 else if ((packets < 5) && (bytes > 512))
0ba82994 4112 itrval = low_latency;
9d5c8243
AK
4113 break;
4114 case low_latency: /* 50 usec aka 20000 ints/s */
4115 if (bytes > 10000) {
4116 /* this if handles the TSO accounting */
4117 if (bytes/packets > 8000) {
0ba82994 4118 itrval = bulk_latency;
9d5c8243 4119 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 4120 itrval = bulk_latency;
9d5c8243 4121 } else if ((packets > 35)) {
0ba82994 4122 itrval = lowest_latency;
9d5c8243
AK
4123 }
4124 } else if (bytes/packets > 2000) {
0ba82994 4125 itrval = bulk_latency;
9d5c8243 4126 } else if (packets <= 2 && bytes < 512) {
0ba82994 4127 itrval = lowest_latency;
9d5c8243
AK
4128 }
4129 break;
4130 case bulk_latency: /* 250 usec aka 4000 ints/s */
4131 if (bytes > 25000) {
4132 if (packets > 35)
0ba82994 4133 itrval = low_latency;
1e5c3d21 4134 } else if (bytes < 1500) {
0ba82994 4135 itrval = low_latency;
9d5c8243
AK
4136 }
4137 break;
4138 }
4139
0ba82994
AD
4140 /* clear work counters since we have the values we need */
4141 ring_container->total_bytes = 0;
4142 ring_container->total_packets = 0;
4143
4144 /* write updated itr to ring container */
4145 ring_container->itr = itrval;
9d5c8243
AK
4146}
4147
0ba82994 4148static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4149{
0ba82994 4150 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4151 u32 new_itr = q_vector->itr_val;
0ba82994 4152 u8 current_itr = 0;
9d5c8243
AK
4153
4154 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4155 if (adapter->link_speed != SPEED_1000) {
4156 current_itr = 0;
0ba82994 4157 new_itr = IGB_4K_ITR;
9d5c8243
AK
4158 goto set_itr_now;
4159 }
4160
0ba82994
AD
4161 igb_update_itr(q_vector, &q_vector->tx);
4162 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4163
0ba82994 4164 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4165
6eb5a7f1 4166 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4167 if (current_itr == lowest_latency &&
4168 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4169 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4170 current_itr = low_latency;
4171
9d5c8243
AK
4172 switch (current_itr) {
4173 /* counts and packets in update_itr are dependent on these numbers */
4174 case lowest_latency:
0ba82994 4175 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4176 break;
4177 case low_latency:
0ba82994 4178 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4179 break;
4180 case bulk_latency:
0ba82994 4181 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4182 break;
4183 default:
4184 break;
4185 }
4186
4187set_itr_now:
047e0030 4188 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4189 /* this attempts to bias the interrupt rate towards Bulk
4190 * by adding intermediate steps when interrupt rate is
4191 * increasing */
047e0030
AD
4192 new_itr = new_itr > q_vector->itr_val ?
4193 max((new_itr * q_vector->itr_val) /
4194 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 4195 new_itr) :
9d5c8243
AK
4196 new_itr;
4197 /* Don't write the value here; it resets the adapter's
4198 * internal timer, and causes us to delay far longer than
4199 * we should between interrupts. Instead, we write the ITR
4200 * value at the beginning of the next interrupt so the timing
4201 * ends up being correct.
4202 */
047e0030
AD
4203 q_vector->itr_val = new_itr;
4204 q_vector->set_itr = 1;
9d5c8243 4205 }
9d5c8243
AK
4206}
4207
c50b52a0
SH
4208static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4209 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4210{
4211 struct e1000_adv_tx_context_desc *context_desc;
4212 u16 i = tx_ring->next_to_use;
4213
4214 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4215
4216 i++;
4217 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4218
4219 /* set bits to identify this as an advanced context descriptor */
4220 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4221
4222 /* For 82575, context index must be unique per ring. */
866cff06 4223 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4224 mss_l4len_idx |= tx_ring->reg_idx << 4;
4225
4226 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4227 context_desc->seqnum_seed = 0;
4228 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4229 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4230}
4231
7af40ad9
AD
4232static int igb_tso(struct igb_ring *tx_ring,
4233 struct igb_tx_buffer *first,
4234 u8 *hdr_len)
9d5c8243 4235{
7af40ad9 4236 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4237 u32 vlan_macip_lens, type_tucmd;
4238 u32 mss_l4len_idx, l4len;
4239
ed6aa105
AD
4240 if (skb->ip_summed != CHECKSUM_PARTIAL)
4241 return 0;
4242
7d13a7d0
AD
4243 if (!skb_is_gso(skb))
4244 return 0;
9d5c8243
AK
4245
4246 if (skb_header_cloned(skb)) {
7af40ad9 4247 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4248 if (err)
4249 return err;
4250 }
4251
7d13a7d0
AD
4252 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4253 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4254
7af40ad9 4255 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4256 struct iphdr *iph = ip_hdr(skb);
4257 iph->tot_len = 0;
4258 iph->check = 0;
4259 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4260 iph->daddr, 0,
4261 IPPROTO_TCP,
4262 0);
7d13a7d0 4263 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4264 first->tx_flags |= IGB_TX_FLAGS_TSO |
4265 IGB_TX_FLAGS_CSUM |
4266 IGB_TX_FLAGS_IPV4;
8e1e8a47 4267 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4268 ipv6_hdr(skb)->payload_len = 0;
4269 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4270 &ipv6_hdr(skb)->daddr,
4271 0, IPPROTO_TCP, 0);
7af40ad9
AD
4272 first->tx_flags |= IGB_TX_FLAGS_TSO |
4273 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4274 }
4275
7af40ad9 4276 /* compute header lengths */
7d13a7d0
AD
4277 l4len = tcp_hdrlen(skb);
4278 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4279
7af40ad9
AD
4280 /* update gso size and bytecount with header size */
4281 first->gso_segs = skb_shinfo(skb)->gso_segs;
4282 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4283
9d5c8243 4284 /* MSS L4LEN IDX */
7d13a7d0
AD
4285 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4286 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4287
7d13a7d0
AD
4288 /* VLAN MACLEN IPLEN */
4289 vlan_macip_lens = skb_network_header_len(skb);
4290 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4291 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4292
7d13a7d0 4293 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4294
7d13a7d0 4295 return 1;
9d5c8243
AK
4296}
4297
7af40ad9 4298static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4299{
7af40ad9 4300 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4301 u32 vlan_macip_lens = 0;
4302 u32 mss_l4len_idx = 0;
4303 u32 type_tucmd = 0;
9d5c8243 4304
7d13a7d0 4305 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4306 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4307 return;
7d13a7d0
AD
4308 } else {
4309 u8 l4_hdr = 0;
7af40ad9 4310 switch (first->protocol) {
7d13a7d0
AD
4311 case __constant_htons(ETH_P_IP):
4312 vlan_macip_lens |= skb_network_header_len(skb);
4313 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4314 l4_hdr = ip_hdr(skb)->protocol;
4315 break;
4316 case __constant_htons(ETH_P_IPV6):
4317 vlan_macip_lens |= skb_network_header_len(skb);
4318 l4_hdr = ipv6_hdr(skb)->nexthdr;
4319 break;
4320 default:
4321 if (unlikely(net_ratelimit())) {
4322 dev_warn(tx_ring->dev,
4323 "partial checksum but proto=%x!\n",
7af40ad9 4324 first->protocol);
fa4a7ef3 4325 }
7d13a7d0
AD
4326 break;
4327 }
fa4a7ef3 4328
7d13a7d0
AD
4329 switch (l4_hdr) {
4330 case IPPROTO_TCP:
4331 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4332 mss_l4len_idx = tcp_hdrlen(skb) <<
4333 E1000_ADVTXD_L4LEN_SHIFT;
4334 break;
4335 case IPPROTO_SCTP:
4336 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4337 mss_l4len_idx = sizeof(struct sctphdr) <<
4338 E1000_ADVTXD_L4LEN_SHIFT;
4339 break;
4340 case IPPROTO_UDP:
4341 mss_l4len_idx = sizeof(struct udphdr) <<
4342 E1000_ADVTXD_L4LEN_SHIFT;
4343 break;
4344 default:
4345 if (unlikely(net_ratelimit())) {
4346 dev_warn(tx_ring->dev,
4347 "partial checksum but l4 proto=%x!\n",
4348 l4_hdr);
44b0cda3 4349 }
7d13a7d0 4350 break;
9d5c8243 4351 }
7af40ad9
AD
4352
4353 /* update TX checksum flag */
4354 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4355 }
9d5c8243 4356
7d13a7d0 4357 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4358 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4359
7d13a7d0 4360 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4361}
4362
1d9daf45
AD
4363#define IGB_SET_FLAG(_input, _flag, _result) \
4364 ((_flag <= _result) ? \
4365 ((u32)(_input & _flag) * (_result / _flag)) : \
4366 ((u32)(_input & _flag) / (_flag / _result)))
4367
4368static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4369{
4370 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4371 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4372 E1000_ADVTXD_DCMD_DEXT |
4373 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4374
4375 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4376 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4377 (E1000_ADVTXD_DCMD_VLE));
4378
4379 /* set segmentation bits for TSO */
4380 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4381 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4382
4383 /* set timestamp bit if present */
1d9daf45
AD
4384 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4385 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4386
1d9daf45
AD
4387 /* insert frame checksum */
4388 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4389
4390 return cmd_type;
4391}
4392
7af40ad9
AD
4393static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4394 union e1000_adv_tx_desc *tx_desc,
4395 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4396{
4397 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4398
1d9daf45
AD
4399 /* 82575 requires a unique index per ring */
4400 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4401 olinfo_status |= tx_ring->reg_idx << 4;
4402
4403 /* insert L4 checksum */
1d9daf45
AD
4404 olinfo_status |= IGB_SET_FLAG(tx_flags,
4405 IGB_TX_FLAGS_CSUM,
4406 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4407
1d9daf45
AD
4408 /* insert IPv4 checksum */
4409 olinfo_status |= IGB_SET_FLAG(tx_flags,
4410 IGB_TX_FLAGS_IPV4,
4411 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4412
7af40ad9 4413 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4414}
4415
7af40ad9
AD
4416static void igb_tx_map(struct igb_ring *tx_ring,
4417 struct igb_tx_buffer *first,
ebe42d16 4418 const u8 hdr_len)
9d5c8243 4419{
7af40ad9 4420 struct sk_buff *skb = first->skb;
c9f14bf3 4421 struct igb_tx_buffer *tx_buffer;
ebe42d16 4422 union e1000_adv_tx_desc *tx_desc;
80d0759e 4423 struct skb_frag_struct *frag;
ebe42d16 4424 dma_addr_t dma;
80d0759e 4425 unsigned int data_len, size;
7af40ad9 4426 u32 tx_flags = first->tx_flags;
1d9daf45 4427 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4428 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4429
4430 tx_desc = IGB_TX_DESC(tx_ring, i);
4431
80d0759e
AD
4432 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4433
4434 size = skb_headlen(skb);
4435 data_len = skb->data_len;
ebe42d16
AD
4436
4437 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4438
80d0759e
AD
4439 tx_buffer = first;
4440
4441 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4442 if (dma_mapping_error(tx_ring->dev, dma))
4443 goto dma_error;
4444
4445 /* record length, and DMA address */
4446 dma_unmap_len_set(tx_buffer, len, size);
4447 dma_unmap_addr_set(tx_buffer, dma, dma);
4448
4449 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4450
ebe42d16
AD
4451 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4452 tx_desc->read.cmd_type_len =
1d9daf45 4453 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4454
4455 i++;
4456 tx_desc++;
4457 if (i == tx_ring->count) {
4458 tx_desc = IGB_TX_DESC(tx_ring, 0);
4459 i = 0;
4460 }
80d0759e 4461 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4462
4463 dma += IGB_MAX_DATA_PER_TXD;
4464 size -= IGB_MAX_DATA_PER_TXD;
4465
ebe42d16
AD
4466 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4467 }
4468
4469 if (likely(!data_len))
4470 break;
2bbfebe2 4471
1d9daf45 4472 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4473
65689fef 4474 i++;
ebe42d16
AD
4475 tx_desc++;
4476 if (i == tx_ring->count) {
4477 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4478 i = 0;
ebe42d16 4479 }
80d0759e 4480 tx_desc->read.olinfo_status = 0;
65689fef 4481
9e903e08 4482 size = skb_frag_size(frag);
ebe42d16
AD
4483 data_len -= size;
4484
4485 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4486 size, DMA_TO_DEVICE);
6366ad33 4487
c9f14bf3 4488 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4489 }
4490
ebe42d16 4491 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4492 cmd_type |= size | IGB_TXD_DCMD;
4493 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4494
80d0759e
AD
4495 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4496
8542db05
AD
4497 /* set the timestamp */
4498 first->time_stamp = jiffies;
4499
ebe42d16
AD
4500 /*
4501 * Force memory writes to complete before letting h/w know there
4502 * are new descriptors to fetch. (Only applicable for weak-ordered
4503 * memory model archs, such as IA-64).
4504 *
4505 * We also need this memory barrier to make certain all of the
4506 * status bits have been updated before next_to_watch is written.
4507 */
4508 wmb();
4509
8542db05 4510 /* set next_to_watch value indicating a packet is present */
ebe42d16 4511 first->next_to_watch = tx_desc;
9d5c8243 4512
ebe42d16
AD
4513 i++;
4514 if (i == tx_ring->count)
4515 i = 0;
6366ad33 4516
ebe42d16 4517 tx_ring->next_to_use = i;
6366ad33 4518
ebe42d16 4519 writel(i, tx_ring->tail);
6366ad33 4520
ebe42d16
AD
4521 /* we need this if more than one processor can write to our tail
4522 * at a time, it syncronizes IO on IA64/Altix systems */
4523 mmiowb();
4524
4525 return;
4526
4527dma_error:
4528 dev_err(tx_ring->dev, "TX DMA map failed\n");
4529
4530 /* clear dma mappings for failed tx_buffer_info map */
4531 for (;;) {
c9f14bf3
AD
4532 tx_buffer = &tx_ring->tx_buffer_info[i];
4533 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4534 if (tx_buffer == first)
ebe42d16 4535 break;
a77ff709
NN
4536 if (i == 0)
4537 i = tx_ring->count;
6366ad33 4538 i--;
6366ad33
AD
4539 }
4540
9d5c8243 4541 tx_ring->next_to_use = i;
9d5c8243
AK
4542}
4543
6ad4edfc 4544static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4545{
e694e964
AD
4546 struct net_device *netdev = tx_ring->netdev;
4547
661086df 4548 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4549
9d5c8243
AK
4550 /* Herbert's original patch had:
4551 * smp_mb__after_netif_stop_queue();
4552 * but since that doesn't exist yet, just open code it. */
4553 smp_mb();
4554
4555 /* We need to check again in a case another CPU has just
4556 * made room available. */
c493ea45 4557 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4558 return -EBUSY;
4559
4560 /* A reprieve! */
661086df 4561 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4562
4563 u64_stats_update_begin(&tx_ring->tx_syncp2);
4564 tx_ring->tx_stats.restart_queue2++;
4565 u64_stats_update_end(&tx_ring->tx_syncp2);
4566
9d5c8243
AK
4567 return 0;
4568}
4569
6ad4edfc 4570static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4571{
c493ea45 4572 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4573 return 0;
e694e964 4574 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4575}
4576
cd392f5c
AD
4577netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4578 struct igb_ring *tx_ring)
9d5c8243 4579{
1f6e8178 4580 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
8542db05 4581 struct igb_tx_buffer *first;
ebe42d16 4582 int tso;
91d4ee33 4583 u32 tx_flags = 0;
21ba6fe1 4584 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 4585 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4586 u8 hdr_len = 0;
9d5c8243 4587
21ba6fe1
AD
4588 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4589 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 4590 * + 2 desc gap to keep tail from touching head,
9d5c8243 4591 * + 1 desc for context descriptor,
21ba6fe1
AD
4592 * otherwise try next time
4593 */
4594 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4595 unsigned short f;
4596 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4597 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4598 } else {
4599 count += skb_shinfo(skb)->nr_frags;
4600 }
4601
4602 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 4603 /* this is a hard error */
9d5c8243
AK
4604 return NETDEV_TX_BUSY;
4605 }
33af6bcc 4606
7af40ad9
AD
4607 /* record the location of the first descriptor for this packet */
4608 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4609 first->skb = skb;
4610 first->bytecount = skb->len;
4611 first->gso_segs = 1;
4612
b66e2397
MV
4613 skb_tx_timestamp(skb);
4614
1f6e8178
MV
4615 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4616 !(adapter->ptp_tx_skb))) {
2244d07b 4617 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4618 tx_flags |= IGB_TX_FLAGS_TSTAMP;
1f6e8178
MV
4619
4620 adapter->ptp_tx_skb = skb_get(skb);
428f1f71 4621 adapter->ptp_tx_start = jiffies;
1f6e8178
MV
4622 if (adapter->hw.mac.type == e1000_82576)
4623 schedule_work(&adapter->ptp_tx_work);
33af6bcc 4624 }
9d5c8243 4625
eab6d18d 4626 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4627 tx_flags |= IGB_TX_FLAGS_VLAN;
4628 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4629 }
4630
7af40ad9
AD
4631 /* record initial flags and protocol */
4632 first->tx_flags = tx_flags;
4633 first->protocol = protocol;
cdfd01fc 4634
7af40ad9
AD
4635 tso = igb_tso(tx_ring, first, &hdr_len);
4636 if (tso < 0)
7d13a7d0 4637 goto out_drop;
7af40ad9
AD
4638 else if (!tso)
4639 igb_tx_csum(tx_ring, first);
9d5c8243 4640
7af40ad9 4641 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4642
4643 /* Make sure there is space in the ring for the next send. */
21ba6fe1 4644 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
85ad76b2 4645
9d5c8243 4646 return NETDEV_TX_OK;
7d13a7d0
AD
4647
4648out_drop:
7af40ad9
AD
4649 igb_unmap_and_free_tx_resource(tx_ring, first);
4650
7d13a7d0 4651 return NETDEV_TX_OK;
9d5c8243
AK
4652}
4653
1cc3bd87
AD
4654static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4655 struct sk_buff *skb)
4656{
4657 unsigned int r_idx = skb->queue_mapping;
4658
4659 if (r_idx >= adapter->num_tx_queues)
4660 r_idx = r_idx % adapter->num_tx_queues;
4661
4662 return adapter->tx_ring[r_idx];
4663}
4664
cd392f5c
AD
4665static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4666 struct net_device *netdev)
9d5c8243
AK
4667{
4668 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4669
4670 if (test_bit(__IGB_DOWN, &adapter->state)) {
4671 dev_kfree_skb_any(skb);
4672 return NETDEV_TX_OK;
4673 }
4674
4675 if (skb->len <= 0) {
4676 dev_kfree_skb_any(skb);
4677 return NETDEV_TX_OK;
4678 }
4679
1cc3bd87
AD
4680 /*
4681 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4682 * in order to meet this minimum size requirement.
4683 */
ea5ceeab
TD
4684 if (unlikely(skb->len < 17)) {
4685 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
4686 return NETDEV_TX_OK;
4687 skb->len = 17;
ea5ceeab 4688 skb_set_tail_pointer(skb, 17);
1cc3bd87 4689 }
9d5c8243 4690
1cc3bd87 4691 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4692}
4693
4694/**
4695 * igb_tx_timeout - Respond to a Tx Hang
4696 * @netdev: network interface device structure
4697 **/
4698static void igb_tx_timeout(struct net_device *netdev)
4699{
4700 struct igb_adapter *adapter = netdev_priv(netdev);
4701 struct e1000_hw *hw = &adapter->hw;
4702
4703 /* Do the reset outside of interrupt context */
4704 adapter->tx_timeout_count++;
f7ba205e 4705
06218a8d 4706 if (hw->mac.type >= e1000_82580)
55cac248
AD
4707 hw->dev_spec._82575.global_device_reset = true;
4708
9d5c8243 4709 schedule_work(&adapter->reset_task);
265de409
AD
4710 wr32(E1000_EICS,
4711 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4712}
4713
4714static void igb_reset_task(struct work_struct *work)
4715{
4716 struct igb_adapter *adapter;
4717 adapter = container_of(work, struct igb_adapter, reset_task);
4718
c97ec42a
TI
4719 igb_dump(adapter);
4720 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4721 igb_reinit_locked(adapter);
4722}
4723
4724/**
12dcd86b 4725 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4726 * @netdev: network interface device structure
12dcd86b 4727 * @stats: rtnl_link_stats64 pointer
9d5c8243 4728 *
9d5c8243 4729 **/
12dcd86b
ED
4730static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4731 struct rtnl_link_stats64 *stats)
9d5c8243 4732{
12dcd86b
ED
4733 struct igb_adapter *adapter = netdev_priv(netdev);
4734
4735 spin_lock(&adapter->stats64_lock);
4736 igb_update_stats(adapter, &adapter->stats64);
4737 memcpy(stats, &adapter->stats64, sizeof(*stats));
4738 spin_unlock(&adapter->stats64_lock);
4739
4740 return stats;
9d5c8243
AK
4741}
4742
4743/**
4744 * igb_change_mtu - Change the Maximum Transfer Unit
4745 * @netdev: network interface device structure
4746 * @new_mtu: new value for maximum frame size
4747 *
4748 * Returns 0 on success, negative on failure
4749 **/
4750static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4751{
4752 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4753 struct pci_dev *pdev = adapter->pdev;
153285f9 4754 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4755
c809d227 4756 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4757 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4758 return -EINVAL;
4759 }
4760
153285f9 4761#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4762 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4763 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4764 return -EINVAL;
4765 }
4766
4767 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4768 msleep(1);
73cd78f1 4769
9d5c8243
AK
4770 /* igb_down has a dependency on max_frame_size */
4771 adapter->max_frame_size = max_frame;
559e9c49 4772
4c844851
AD
4773 if (netif_running(netdev))
4774 igb_down(adapter);
9d5c8243 4775
090b1795 4776 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4777 netdev->mtu, new_mtu);
4778 netdev->mtu = new_mtu;
4779
4780 if (netif_running(netdev))
4781 igb_up(adapter);
4782 else
4783 igb_reset(adapter);
4784
4785 clear_bit(__IGB_RESETTING, &adapter->state);
4786
4787 return 0;
4788}
4789
4790/**
4791 * igb_update_stats - Update the board statistics counters
4792 * @adapter: board private structure
4793 **/
4794
12dcd86b
ED
4795void igb_update_stats(struct igb_adapter *adapter,
4796 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4797{
4798 struct e1000_hw *hw = &adapter->hw;
4799 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4800 u32 reg, mpc;
9d5c8243 4801 u16 phy_tmp;
3f9c0164
AD
4802 int i;
4803 u64 bytes, packets;
12dcd86b
ED
4804 unsigned int start;
4805 u64 _bytes, _packets;
9d5c8243
AK
4806
4807#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4808
4809 /*
4810 * Prevent stats update while adapter is being reset, or if the pci
4811 * connection is down.
4812 */
4813 if (adapter->link_speed == 0)
4814 return;
4815 if (pci_channel_offline(pdev))
4816 return;
4817
3f9c0164
AD
4818 bytes = 0;
4819 packets = 0;
4820 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 4821 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 4822 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4823
ae1c07a6
AD
4824 if (rqdpc) {
4825 ring->rx_stats.drops += rqdpc;
4826 net_stats->rx_fifo_errors += rqdpc;
4827 }
12dcd86b
ED
4828
4829 do {
4830 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4831 _bytes = ring->rx_stats.bytes;
4832 _packets = ring->rx_stats.packets;
4833 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4834 bytes += _bytes;
4835 packets += _packets;
3f9c0164
AD
4836 }
4837
128e45eb
AD
4838 net_stats->rx_bytes = bytes;
4839 net_stats->rx_packets = packets;
3f9c0164
AD
4840
4841 bytes = 0;
4842 packets = 0;
4843 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4844 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4845 do {
4846 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4847 _bytes = ring->tx_stats.bytes;
4848 _packets = ring->tx_stats.packets;
4849 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4850 bytes += _bytes;
4851 packets += _packets;
3f9c0164 4852 }
128e45eb
AD
4853 net_stats->tx_bytes = bytes;
4854 net_stats->tx_packets = packets;
3f9c0164
AD
4855
4856 /* read stats registers */
9d5c8243
AK
4857 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4858 adapter->stats.gprc += rd32(E1000_GPRC);
4859 adapter->stats.gorc += rd32(E1000_GORCL);
4860 rd32(E1000_GORCH); /* clear GORCL */
4861 adapter->stats.bprc += rd32(E1000_BPRC);
4862 adapter->stats.mprc += rd32(E1000_MPRC);
4863 adapter->stats.roc += rd32(E1000_ROC);
4864
4865 adapter->stats.prc64 += rd32(E1000_PRC64);
4866 adapter->stats.prc127 += rd32(E1000_PRC127);
4867 adapter->stats.prc255 += rd32(E1000_PRC255);
4868 adapter->stats.prc511 += rd32(E1000_PRC511);
4869 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4870 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4871 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4872 adapter->stats.sec += rd32(E1000_SEC);
4873
fa3d9a6d
MW
4874 mpc = rd32(E1000_MPC);
4875 adapter->stats.mpc += mpc;
4876 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4877 adapter->stats.scc += rd32(E1000_SCC);
4878 adapter->stats.ecol += rd32(E1000_ECOL);
4879 adapter->stats.mcc += rd32(E1000_MCC);
4880 adapter->stats.latecol += rd32(E1000_LATECOL);
4881 adapter->stats.dc += rd32(E1000_DC);
4882 adapter->stats.rlec += rd32(E1000_RLEC);
4883 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4884 adapter->stats.xontxc += rd32(E1000_XONTXC);
4885 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4886 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4887 adapter->stats.fcruc += rd32(E1000_FCRUC);
4888 adapter->stats.gptc += rd32(E1000_GPTC);
4889 adapter->stats.gotc += rd32(E1000_GOTCL);
4890 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4891 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4892 adapter->stats.ruc += rd32(E1000_RUC);
4893 adapter->stats.rfc += rd32(E1000_RFC);
4894 adapter->stats.rjc += rd32(E1000_RJC);
4895 adapter->stats.tor += rd32(E1000_TORH);
4896 adapter->stats.tot += rd32(E1000_TOTH);
4897 adapter->stats.tpr += rd32(E1000_TPR);
4898
4899 adapter->stats.ptc64 += rd32(E1000_PTC64);
4900 adapter->stats.ptc127 += rd32(E1000_PTC127);
4901 adapter->stats.ptc255 += rd32(E1000_PTC255);
4902 adapter->stats.ptc511 += rd32(E1000_PTC511);
4903 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4904 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4905
4906 adapter->stats.mptc += rd32(E1000_MPTC);
4907 adapter->stats.bptc += rd32(E1000_BPTC);
4908
2d0b0f69
NN
4909 adapter->stats.tpt += rd32(E1000_TPT);
4910 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4911
4912 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4913 /* read internal phy specific stats */
4914 reg = rd32(E1000_CTRL_EXT);
4915 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4916 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
4917
4918 /* this stat has invalid values on i210/i211 */
4919 if ((hw->mac.type != e1000_i210) &&
4920 (hw->mac.type != e1000_i211))
4921 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
4922 }
4923
9d5c8243
AK
4924 adapter->stats.tsctc += rd32(E1000_TSCTC);
4925 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4926
4927 adapter->stats.iac += rd32(E1000_IAC);
4928 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4929 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4930 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4931 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4932 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4933 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4934 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4935 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4936
4937 /* Fill out the OS statistics structure */
128e45eb
AD
4938 net_stats->multicast = adapter->stats.mprc;
4939 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4940
4941 /* Rx Errors */
4942
4943 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4944 * our own version based on RUC and ROC */
128e45eb 4945 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4946 adapter->stats.crcerrs + adapter->stats.algnerrc +
4947 adapter->stats.ruc + adapter->stats.roc +
4948 adapter->stats.cexterr;
128e45eb
AD
4949 net_stats->rx_length_errors = adapter->stats.ruc +
4950 adapter->stats.roc;
4951 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4952 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4953 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4954
4955 /* Tx Errors */
128e45eb
AD
4956 net_stats->tx_errors = adapter->stats.ecol +
4957 adapter->stats.latecol;
4958 net_stats->tx_aborted_errors = adapter->stats.ecol;
4959 net_stats->tx_window_errors = adapter->stats.latecol;
4960 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4961
4962 /* Tx Dropped needs to be maintained elsewhere */
4963
4964 /* Phy Stats */
4965 if (hw->phy.media_type == e1000_media_type_copper) {
4966 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4967 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4968 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4969 adapter->phy_stats.idle_errors += phy_tmp;
4970 }
4971 }
4972
4973 /* Management Stats */
4974 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4975 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4976 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4977
4978 /* OS2BMC Stats */
4979 reg = rd32(E1000_MANC);
4980 if (reg & E1000_MANC_EN_BMC2OS) {
4981 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4982 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4983 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4984 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4985 }
9d5c8243
AK
4986}
4987
9d5c8243
AK
4988static irqreturn_t igb_msix_other(int irq, void *data)
4989{
047e0030 4990 struct igb_adapter *adapter = data;
9d5c8243 4991 struct e1000_hw *hw = &adapter->hw;
844290e5 4992 u32 icr = rd32(E1000_ICR);
844290e5 4993 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4994
7f081d40
AD
4995 if (icr & E1000_ICR_DRSTA)
4996 schedule_work(&adapter->reset_task);
4997
047e0030 4998 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4999 /* HW is reporting DMA is out of sync */
5000 adapter->stats.doosync++;
13800469
GR
5001 /* The DMA Out of Sync is also indication of a spoof event
5002 * in IOV mode. Check the Wrong VM Behavior register to
5003 * see if it is really a spoof event. */
5004 igb_check_wvbr(adapter);
dda0e083 5005 }
eebbbdba 5006
4ae196df
AD
5007 /* Check for a mailbox event */
5008 if (icr & E1000_ICR_VMMB)
5009 igb_msg_task(adapter);
5010
5011 if (icr & E1000_ICR_LSC) {
5012 hw->mac.get_link_status = 1;
5013 /* guard against interrupt when we're going down */
5014 if (!test_bit(__IGB_DOWN, &adapter->state))
5015 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5016 }
5017
1f6e8178
MV
5018 if (icr & E1000_ICR_TS) {
5019 u32 tsicr = rd32(E1000_TSICR);
5020
5021 if (tsicr & E1000_TSICR_TXTS) {
5022 /* acknowledge the interrupt */
5023 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5024 /* retrieve hardware timestamp */
5025 schedule_work(&adapter->ptp_tx_work);
5026 }
5027 }
1f6e8178 5028
844290e5 5029 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5030
5031 return IRQ_HANDLED;
5032}
5033
047e0030 5034static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5035{
26b39276 5036 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5037 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5038
047e0030
AD
5039 if (!q_vector->set_itr)
5040 return;
73cd78f1 5041
047e0030
AD
5042 if (!itr_val)
5043 itr_val = 0x4;
661086df 5044
26b39276
AD
5045 if (adapter->hw.mac.type == e1000_82575)
5046 itr_val |= itr_val << 16;
661086df 5047 else
0ba82994 5048 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5049
047e0030
AD
5050 writel(itr_val, q_vector->itr_register);
5051 q_vector->set_itr = 0;
6eb5a7f1
AD
5052}
5053
047e0030 5054static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5055{
047e0030 5056 struct igb_q_vector *q_vector = data;
9d5c8243 5057
047e0030
AD
5058 /* Write the ITR value calculated from the previous interrupt. */
5059 igb_write_itr(q_vector);
9d5c8243 5060
047e0030 5061 napi_schedule(&q_vector->napi);
844290e5 5062
047e0030 5063 return IRQ_HANDLED;
fe4506b6
JC
5064}
5065
421e02f0 5066#ifdef CONFIG_IGB_DCA
6a05004a
AD
5067static void igb_update_tx_dca(struct igb_adapter *adapter,
5068 struct igb_ring *tx_ring,
5069 int cpu)
5070{
5071 struct e1000_hw *hw = &adapter->hw;
5072 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5073
5074 if (hw->mac.type != e1000_82575)
5075 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5076
5077 /*
5078 * We can enable relaxed ordering for reads, but not writes when
5079 * DCA is enabled. This is due to a known issue in some chipsets
5080 * which will cause the DCA tag to be cleared.
5081 */
5082 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5083 E1000_DCA_TXCTRL_DATA_RRO_EN |
5084 E1000_DCA_TXCTRL_DESC_DCA_EN;
5085
5086 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5087}
5088
5089static void igb_update_rx_dca(struct igb_adapter *adapter,
5090 struct igb_ring *rx_ring,
5091 int cpu)
5092{
5093 struct e1000_hw *hw = &adapter->hw;
5094 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5095
5096 if (hw->mac.type != e1000_82575)
5097 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5098
5099 /*
5100 * We can enable relaxed ordering for reads, but not writes when
5101 * DCA is enabled. This is due to a known issue in some chipsets
5102 * which will cause the DCA tag to be cleared.
5103 */
5104 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5105 E1000_DCA_RXCTRL_DESC_DCA_EN;
5106
5107 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5108}
5109
047e0030 5110static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5111{
047e0030 5112 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5113 int cpu = get_cpu();
fe4506b6 5114
047e0030
AD
5115 if (q_vector->cpu == cpu)
5116 goto out_no_update;
5117
6a05004a
AD
5118 if (q_vector->tx.ring)
5119 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5120
5121 if (q_vector->rx.ring)
5122 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5123
047e0030
AD
5124 q_vector->cpu = cpu;
5125out_no_update:
fe4506b6
JC
5126 put_cpu();
5127}
5128
5129static void igb_setup_dca(struct igb_adapter *adapter)
5130{
7e0e99ef 5131 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5132 int i;
5133
7dfc16fa 5134 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5135 return;
5136
7e0e99ef
AD
5137 /* Always use CB2 mode, difference is masked in the CB driver. */
5138 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5139
047e0030 5140 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5141 adapter->q_vector[i]->cpu = -1;
5142 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5143 }
5144}
5145
5146static int __igb_notify_dca(struct device *dev, void *data)
5147{
5148 struct net_device *netdev = dev_get_drvdata(dev);
5149 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5150 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5151 struct e1000_hw *hw = &adapter->hw;
5152 unsigned long event = *(unsigned long *)data;
5153
5154 switch (event) {
5155 case DCA_PROVIDER_ADD:
5156 /* if already enabled, don't do it again */
7dfc16fa 5157 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5158 break;
fe4506b6 5159 if (dca_add_requester(dev) == 0) {
bbd98fe4 5160 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5161 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5162 igb_setup_dca(adapter);
5163 break;
5164 }
5165 /* Fall Through since DCA is disabled. */
5166 case DCA_PROVIDER_REMOVE:
7dfc16fa 5167 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5168 /* without this a class_device is left
047e0030 5169 * hanging around in the sysfs model */
fe4506b6 5170 dca_remove_requester(dev);
090b1795 5171 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5172 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5173 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5174 }
5175 break;
5176 }
bbd98fe4 5177
fe4506b6 5178 return 0;
9d5c8243
AK
5179}
5180
fe4506b6
JC
5181static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5182 void *p)
5183{
5184 int ret_val;
5185
5186 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5187 __igb_notify_dca);
5188
5189 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5190}
421e02f0 5191#endif /* CONFIG_IGB_DCA */
9d5c8243 5192
0224d663
GR
5193#ifdef CONFIG_PCI_IOV
5194static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5195{
5196 unsigned char mac_addr[ETH_ALEN];
0224d663 5197
5ac6f91d 5198 eth_zero_addr(mac_addr);
0224d663
GR
5199 igb_set_vf_mac(adapter, vf, mac_addr);
5200
f557147c 5201 return 0;
0224d663
GR
5202}
5203
f557147c 5204static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
0224d663 5205{
0224d663 5206 struct pci_dev *pdev = adapter->pdev;
f557147c
SA
5207 struct pci_dev *vfdev;
5208 int dev_id;
0224d663
GR
5209
5210 switch (adapter->hw.mac.type) {
5211 case e1000_82576:
f557147c 5212 dev_id = IGB_82576_VF_DEV_ID;
0224d663
GR
5213 break;
5214 case e1000_i350:
f557147c 5215 dev_id = IGB_I350_VF_DEV_ID;
0224d663
GR
5216 break;
5217 default:
f557147c 5218 return false;
0224d663
GR
5219 }
5220
f557147c
SA
5221 /* loop through all the VFs to see if we own any that are assigned */
5222 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5223 while (vfdev) {
5224 /* if we don't own it we don't care */
5225 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5226 /* if it is assigned we cannot release it */
5227 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
0224d663
GR
5228 return true;
5229 }
f557147c
SA
5230
5231 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
0224d663 5232 }
f557147c 5233
0224d663
GR
5234 return false;
5235}
5236
5237#endif
4ae196df
AD
5238static void igb_ping_all_vfs(struct igb_adapter *adapter)
5239{
5240 struct e1000_hw *hw = &adapter->hw;
5241 u32 ping;
5242 int i;
5243
5244 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5245 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5246 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5247 ping |= E1000_VT_MSGTYPE_CTS;
5248 igb_write_mbx(hw, &ping, 1, i);
5249 }
5250}
5251
7d5753f0
AD
5252static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5253{
5254 struct e1000_hw *hw = &adapter->hw;
5255 u32 vmolr = rd32(E1000_VMOLR(vf));
5256 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5257
d85b9004 5258 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
5259 IGB_VF_FLAG_MULTI_PROMISC);
5260 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5261
5262 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5263 vmolr |= E1000_VMOLR_MPME;
d85b9004 5264 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5265 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5266 } else {
5267 /*
5268 * if we have hashes and we are clearing a multicast promisc
5269 * flag we need to write the hashes to the MTA as this step
5270 * was previously skipped
5271 */
5272 if (vf_data->num_vf_mc_hashes > 30) {
5273 vmolr |= E1000_VMOLR_MPME;
5274 } else if (vf_data->num_vf_mc_hashes) {
5275 int j;
5276 vmolr |= E1000_VMOLR_ROMPE;
5277 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5278 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5279 }
5280 }
5281
5282 wr32(E1000_VMOLR(vf), vmolr);
5283
5284 /* there are flags left unprocessed, likely not supported */
5285 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5286 return -EINVAL;
5287
5288 return 0;
5289
5290}
5291
4ae196df
AD
5292static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5293 u32 *msgbuf, u32 vf)
5294{
5295 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5296 u16 *hash_list = (u16 *)&msgbuf[1];
5297 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5298 int i;
5299
7d5753f0 5300 /* salt away the number of multicast addresses assigned
4ae196df
AD
5301 * to this VF for later use to restore when the PF multi cast
5302 * list changes
5303 */
5304 vf_data->num_vf_mc_hashes = n;
5305
7d5753f0
AD
5306 /* only up to 30 hash values supported */
5307 if (n > 30)
5308 n = 30;
5309
5310 /* store the hashes for later use */
4ae196df 5311 for (i = 0; i < n; i++)
a419aef8 5312 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5313
5314 /* Flush and reset the mta with the new values */
ff41f8dc 5315 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5316
5317 return 0;
5318}
5319
5320static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5321{
5322 struct e1000_hw *hw = &adapter->hw;
5323 struct vf_data_storage *vf_data;
5324 int i, j;
5325
5326 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5327 u32 vmolr = rd32(E1000_VMOLR(i));
5328 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5329
4ae196df 5330 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5331
5332 if ((vf_data->num_vf_mc_hashes > 30) ||
5333 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5334 vmolr |= E1000_VMOLR_MPME;
5335 } else if (vf_data->num_vf_mc_hashes) {
5336 vmolr |= E1000_VMOLR_ROMPE;
5337 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5338 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5339 }
5340 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5341 }
5342}
5343
5344static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5345{
5346 struct e1000_hw *hw = &adapter->hw;
5347 u32 pool_mask, reg, vid;
5348 int i;
5349
5350 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5351
5352 /* Find the vlan filter for this id */
5353 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5354 reg = rd32(E1000_VLVF(i));
5355
5356 /* remove the vf from the pool */
5357 reg &= ~pool_mask;
5358
5359 /* if pool is empty then remove entry from vfta */
5360 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5361 (reg & E1000_VLVF_VLANID_ENABLE)) {
5362 reg = 0;
5363 vid = reg & E1000_VLVF_VLANID_MASK;
5364 igb_vfta_set(hw, vid, false);
5365 }
5366
5367 wr32(E1000_VLVF(i), reg);
5368 }
ae641bdc
AD
5369
5370 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5371}
5372
5373static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5374{
5375 struct e1000_hw *hw = &adapter->hw;
5376 u32 reg, i;
5377
51466239
AD
5378 /* The vlvf table only exists on 82576 hardware and newer */
5379 if (hw->mac.type < e1000_82576)
5380 return -1;
5381
5382 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5383 if (!adapter->vfs_allocated_count)
5384 return -1;
5385
5386 /* Find the vlan filter for this id */
5387 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5388 reg = rd32(E1000_VLVF(i));
5389 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5390 vid == (reg & E1000_VLVF_VLANID_MASK))
5391 break;
5392 }
5393
5394 if (add) {
5395 if (i == E1000_VLVF_ARRAY_SIZE) {
5396 /* Did not find a matching VLAN ID entry that was
5397 * enabled. Search for a free filter entry, i.e.
5398 * one without the enable bit set
5399 */
5400 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5401 reg = rd32(E1000_VLVF(i));
5402 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5403 break;
5404 }
5405 }
5406 if (i < E1000_VLVF_ARRAY_SIZE) {
5407 /* Found an enabled/available entry */
5408 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5409
5410 /* if !enabled we need to set this up in vfta */
5411 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5412 /* add VID to filter table */
5413 igb_vfta_set(hw, vid, true);
4ae196df
AD
5414 reg |= E1000_VLVF_VLANID_ENABLE;
5415 }
cad6d05f
AD
5416 reg &= ~E1000_VLVF_VLANID_MASK;
5417 reg |= vid;
4ae196df 5418 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5419
5420 /* do not modify RLPML for PF devices */
5421 if (vf >= adapter->vfs_allocated_count)
5422 return 0;
5423
5424 if (!adapter->vf_data[vf].vlans_enabled) {
5425 u32 size;
5426 reg = rd32(E1000_VMOLR(vf));
5427 size = reg & E1000_VMOLR_RLPML_MASK;
5428 size += 4;
5429 reg &= ~E1000_VMOLR_RLPML_MASK;
5430 reg |= size;
5431 wr32(E1000_VMOLR(vf), reg);
5432 }
ae641bdc 5433
51466239 5434 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5435 }
5436 } else {
5437 if (i < E1000_VLVF_ARRAY_SIZE) {
5438 /* remove vf from the pool */
5439 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5440 /* if pool is empty then remove entry from vfta */
5441 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5442 reg = 0;
5443 igb_vfta_set(hw, vid, false);
5444 }
5445 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5446
5447 /* do not modify RLPML for PF devices */
5448 if (vf >= adapter->vfs_allocated_count)
5449 return 0;
5450
5451 adapter->vf_data[vf].vlans_enabled--;
5452 if (!adapter->vf_data[vf].vlans_enabled) {
5453 u32 size;
5454 reg = rd32(E1000_VMOLR(vf));
5455 size = reg & E1000_VMOLR_RLPML_MASK;
5456 size -= 4;
5457 reg &= ~E1000_VMOLR_RLPML_MASK;
5458 reg |= size;
5459 wr32(E1000_VMOLR(vf), reg);
5460 }
4ae196df
AD
5461 }
5462 }
8151d294
WM
5463 return 0;
5464}
5465
5466static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5467{
5468 struct e1000_hw *hw = &adapter->hw;
5469
5470 if (vid)
5471 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5472 else
5473 wr32(E1000_VMVIR(vf), 0);
5474}
5475
5476static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5477 int vf, u16 vlan, u8 qos)
5478{
5479 int err = 0;
5480 struct igb_adapter *adapter = netdev_priv(netdev);
5481
5482 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5483 return -EINVAL;
5484 if (vlan || qos) {
5485 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5486 if (err)
5487 goto out;
5488 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5489 igb_set_vmolr(adapter, vf, !vlan);
5490 adapter->vf_data[vf].pf_vlan = vlan;
5491 adapter->vf_data[vf].pf_qos = qos;
5492 dev_info(&adapter->pdev->dev,
5493 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5494 if (test_bit(__IGB_DOWN, &adapter->state)) {
5495 dev_warn(&adapter->pdev->dev,
5496 "The VF VLAN has been set,"
5497 " but the PF device is not up.\n");
5498 dev_warn(&adapter->pdev->dev,
5499 "Bring the PF device up before"
5500 " attempting to use the VF device.\n");
5501 }
5502 } else {
5503 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5504 false, vf);
5505 igb_set_vmvir(adapter, vlan, vf);
5506 igb_set_vmolr(adapter, vf, true);
5507 adapter->vf_data[vf].pf_vlan = 0;
5508 adapter->vf_data[vf].pf_qos = 0;
5509 }
5510out:
5511 return err;
4ae196df
AD
5512}
5513
5514static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5515{
5516 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5517 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5518
5519 return igb_vlvf_set(adapter, vid, add, vf);
5520}
5521
f2ca0dbe 5522static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5523{
8fa7e0f7
GR
5524 /* clear flags - except flag that indicates PF has set the MAC */
5525 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5526 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5527
5528 /* reset offloads to defaults */
8151d294 5529 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5530
5531 /* reset vlans for device */
5532 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5533 if (adapter->vf_data[vf].pf_vlan)
5534 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5535 adapter->vf_data[vf].pf_vlan,
5536 adapter->vf_data[vf].pf_qos);
5537 else
5538 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5539
5540 /* reset multicast table array for vf */
5541 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5542
5543 /* Flush and reset the mta with the new values */
ff41f8dc 5544 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5545}
5546
f2ca0dbe
AD
5547static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5548{
5549 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5550
5ac6f91d 5551 /* clear mac address as we were hotplug removed/added */
8151d294 5552 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 5553 eth_zero_addr(vf_mac);
f2ca0dbe
AD
5554
5555 /* process remaining reset events */
5556 igb_vf_reset(adapter, vf);
5557}
5558
5559static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5560{
5561 struct e1000_hw *hw = &adapter->hw;
5562 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5563 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5564 u32 reg, msgbuf[3];
5565 u8 *addr = (u8 *)(&msgbuf[1]);
5566
5567 /* process all the same items cleared in a function level reset */
f2ca0dbe 5568 igb_vf_reset(adapter, vf);
4ae196df
AD
5569
5570 /* set vf mac address */
26ad9178 5571 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5572
5573 /* enable transmit and receive for vf */
5574 reg = rd32(E1000_VFTE);
5575 wr32(E1000_VFTE, reg | (1 << vf));
5576 reg = rd32(E1000_VFRE);
5577 wr32(E1000_VFRE, reg | (1 << vf));
5578
8fa7e0f7 5579 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5580
5581 /* reply to reset with ack and vf mac address */
5582 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5583 memcpy(addr, vf_mac, 6);
5584 igb_write_mbx(hw, msgbuf, 3, vf);
5585}
5586
5587static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5588{
de42edde
GR
5589 /*
5590 * The VF MAC Address is stored in a packed array of bytes
5591 * starting at the second 32 bit word of the msg array
5592 */
f2ca0dbe
AD
5593 unsigned char *addr = (char *)&msg[1];
5594 int err = -1;
4ae196df 5595
f2ca0dbe
AD
5596 if (is_valid_ether_addr(addr))
5597 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5598
f2ca0dbe 5599 return err;
4ae196df
AD
5600}
5601
5602static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5603{
5604 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5605 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5606 u32 msg = E1000_VT_MSGTYPE_NACK;
5607
5608 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5609 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5610 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5611 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5612 vf_data->last_nack = jiffies;
4ae196df
AD
5613 }
5614}
5615
f2ca0dbe 5616static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5617{
f2ca0dbe
AD
5618 struct pci_dev *pdev = adapter->pdev;
5619 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5620 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5621 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5622 s32 retval;
5623
f2ca0dbe 5624 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5625
fef45f4c
AD
5626 if (retval) {
5627 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5628 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5629 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5630 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5631 return;
5632 goto out;
5633 }
4ae196df
AD
5634
5635 /* this is a message we already processed, do nothing */
5636 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5637 return;
4ae196df
AD
5638
5639 /*
5640 * until the vf completes a reset it should not be
5641 * allowed to start any configuration.
5642 */
5643
5644 if (msgbuf[0] == E1000_VF_RESET) {
5645 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5646 return;
4ae196df
AD
5647 }
5648
f2ca0dbe 5649 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5650 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5651 return;
5652 retval = -1;
5653 goto out;
4ae196df
AD
5654 }
5655
5656 switch ((msgbuf[0] & 0xFFFF)) {
5657 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5658 retval = -EINVAL;
5659 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5660 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5661 else
5662 dev_warn(&pdev->dev,
5663 "VF %d attempted to override administratively "
5664 "set MAC address\nReload the VF driver to "
5665 "resume operations\n", vf);
4ae196df 5666 break;
7d5753f0
AD
5667 case E1000_VF_SET_PROMISC:
5668 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5669 break;
4ae196df
AD
5670 case E1000_VF_SET_MULTICAST:
5671 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5672 break;
5673 case E1000_VF_SET_LPE:
5674 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5675 break;
5676 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5677 retval = -1;
5678 if (vf_data->pf_vlan)
5679 dev_warn(&pdev->dev,
5680 "VF %d attempted to override administratively "
5681 "set VLAN tag\nReload the VF driver to "
5682 "resume operations\n", vf);
8151d294
WM
5683 else
5684 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5685 break;
5686 default:
090b1795 5687 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5688 retval = -1;
5689 break;
5690 }
5691
fef45f4c
AD
5692 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5693out:
4ae196df
AD
5694 /* notify the VF of the results of what it sent us */
5695 if (retval)
5696 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5697 else
5698 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5699
4ae196df 5700 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5701}
4ae196df 5702
f2ca0dbe
AD
5703static void igb_msg_task(struct igb_adapter *adapter)
5704{
5705 struct e1000_hw *hw = &adapter->hw;
5706 u32 vf;
5707
5708 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5709 /* process any reset requests */
5710 if (!igb_check_for_rst(hw, vf))
5711 igb_vf_reset_event(adapter, vf);
5712
5713 /* process any messages pending */
5714 if (!igb_check_for_msg(hw, vf))
5715 igb_rcv_msg_from_vf(adapter, vf);
5716
5717 /* process any acks */
5718 if (!igb_check_for_ack(hw, vf))
5719 igb_rcv_ack_from_vf(adapter, vf);
5720 }
4ae196df
AD
5721}
5722
68d480c4
AD
5723/**
5724 * igb_set_uta - Set unicast filter table address
5725 * @adapter: board private structure
5726 *
5727 * The unicast table address is a register array of 32-bit registers.
5728 * The table is meant to be used in a way similar to how the MTA is used
5729 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5730 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5731 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5732 **/
5733static void igb_set_uta(struct igb_adapter *adapter)
5734{
5735 struct e1000_hw *hw = &adapter->hw;
5736 int i;
5737
5738 /* The UTA table only exists on 82576 hardware and newer */
5739 if (hw->mac.type < e1000_82576)
5740 return;
5741
5742 /* we only need to do this if VMDq is enabled */
5743 if (!adapter->vfs_allocated_count)
5744 return;
5745
5746 for (i = 0; i < hw->mac.uta_reg_count; i++)
5747 array_wr32(E1000_UTA, i, ~0);
5748}
5749
9d5c8243
AK
5750/**
5751 * igb_intr_msi - Interrupt Handler
5752 * @irq: interrupt number
5753 * @data: pointer to a network interface device structure
5754 **/
5755static irqreturn_t igb_intr_msi(int irq, void *data)
5756{
047e0030
AD
5757 struct igb_adapter *adapter = data;
5758 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5759 struct e1000_hw *hw = &adapter->hw;
5760 /* read ICR disables interrupts using IAM */
5761 u32 icr = rd32(E1000_ICR);
5762
047e0030 5763 igb_write_itr(q_vector);
9d5c8243 5764
7f081d40
AD
5765 if (icr & E1000_ICR_DRSTA)
5766 schedule_work(&adapter->reset_task);
5767
047e0030 5768 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5769 /* HW is reporting DMA is out of sync */
5770 adapter->stats.doosync++;
5771 }
5772
9d5c8243
AK
5773 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5774 hw->mac.get_link_status = 1;
5775 if (!test_bit(__IGB_DOWN, &adapter->state))
5776 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5777 }
5778
1f6e8178
MV
5779 if (icr & E1000_ICR_TS) {
5780 u32 tsicr = rd32(E1000_TSICR);
5781
5782 if (tsicr & E1000_TSICR_TXTS) {
5783 /* acknowledge the interrupt */
5784 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5785 /* retrieve hardware timestamp */
5786 schedule_work(&adapter->ptp_tx_work);
5787 }
5788 }
1f6e8178 5789
047e0030 5790 napi_schedule(&q_vector->napi);
9d5c8243
AK
5791
5792 return IRQ_HANDLED;
5793}
5794
5795/**
4a3c6433 5796 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5797 * @irq: interrupt number
5798 * @data: pointer to a network interface device structure
5799 **/
5800static irqreturn_t igb_intr(int irq, void *data)
5801{
047e0030
AD
5802 struct igb_adapter *adapter = data;
5803 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5804 struct e1000_hw *hw = &adapter->hw;
5805 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5806 * need for the IMC write */
5807 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5808
5809 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5810 * not set, then the adapter didn't send an interrupt */
5811 if (!(icr & E1000_ICR_INT_ASSERTED))
5812 return IRQ_NONE;
5813
0ba82994
AD
5814 igb_write_itr(q_vector);
5815
7f081d40
AD
5816 if (icr & E1000_ICR_DRSTA)
5817 schedule_work(&adapter->reset_task);
5818
047e0030 5819 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5820 /* HW is reporting DMA is out of sync */
5821 adapter->stats.doosync++;
5822 }
5823
9d5c8243
AK
5824 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5825 hw->mac.get_link_status = 1;
5826 /* guard against interrupt when we're going down */
5827 if (!test_bit(__IGB_DOWN, &adapter->state))
5828 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5829 }
5830
1f6e8178
MV
5831 if (icr & E1000_ICR_TS) {
5832 u32 tsicr = rd32(E1000_TSICR);
5833
5834 if (tsicr & E1000_TSICR_TXTS) {
5835 /* acknowledge the interrupt */
5836 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5837 /* retrieve hardware timestamp */
5838 schedule_work(&adapter->ptp_tx_work);
5839 }
5840 }
1f6e8178 5841
047e0030 5842 napi_schedule(&q_vector->napi);
9d5c8243
AK
5843
5844 return IRQ_HANDLED;
5845}
5846
c50b52a0 5847static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5848{
047e0030 5849 struct igb_adapter *adapter = q_vector->adapter;
46544258 5850 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5851
0ba82994
AD
5852 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5853 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5854 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5855 igb_set_itr(q_vector);
46544258 5856 else
047e0030 5857 igb_update_ring_itr(q_vector);
9d5c8243
AK
5858 }
5859
46544258
AD
5860 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5861 if (adapter->msix_entries)
047e0030 5862 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5863 else
5864 igb_irq_enable(adapter);
5865 }
9d5c8243
AK
5866}
5867
46544258
AD
5868/**
5869 * igb_poll - NAPI Rx polling callback
5870 * @napi: napi polling structure
5871 * @budget: count of how many packets we should handle
5872 **/
5873static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5874{
047e0030
AD
5875 struct igb_q_vector *q_vector = container_of(napi,
5876 struct igb_q_vector,
5877 napi);
16eb8815 5878 bool clean_complete = true;
9d5c8243 5879
421e02f0 5880#ifdef CONFIG_IGB_DCA
047e0030
AD
5881 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5882 igb_update_dca(q_vector);
fe4506b6 5883#endif
0ba82994 5884 if (q_vector->tx.ring)
13fde97a 5885 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5886
0ba82994 5887 if (q_vector->rx.ring)
cd392f5c 5888 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5889
16eb8815
AD
5890 /* If all work not completed, return budget and keep polling */
5891 if (!clean_complete)
5892 return budget;
46544258 5893
9d5c8243 5894 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5895 napi_complete(napi);
5896 igb_ring_irq_enable(q_vector);
9d5c8243 5897
16eb8815 5898 return 0;
9d5c8243 5899}
6d8126f9 5900
9d5c8243
AK
5901/**
5902 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5903 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 5904 *
9d5c8243
AK
5905 * returns true if ring is completely cleaned
5906 **/
047e0030 5907static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5908{
047e0030 5909 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5910 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5911 struct igb_tx_buffer *tx_buffer;
f4128785 5912 union e1000_adv_tx_desc *tx_desc;
9d5c8243 5913 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5914 unsigned int budget = q_vector->tx.work_limit;
8542db05 5915 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5916
13fde97a
AD
5917 if (test_bit(__IGB_DOWN, &adapter->state))
5918 return true;
0e014cb1 5919
06034649 5920 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5921 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5922 i -= tx_ring->count;
9d5c8243 5923
f4128785
AD
5924 do {
5925 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
5926
5927 /* if next_to_watch is not set then there is no work pending */
5928 if (!eop_desc)
5929 break;
13fde97a 5930
f4128785 5931 /* prevent any other reads prior to eop_desc */
70d289bc 5932 read_barrier_depends();
f4128785 5933
13fde97a
AD
5934 /* if DD is not set pending work has not been completed */
5935 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5936 break;
5937
8542db05
AD
5938 /* clear next_to_watch to prevent false hangs */
5939 tx_buffer->next_to_watch = NULL;
9d5c8243 5940
ebe42d16
AD
5941 /* update the statistics for this packet */
5942 total_bytes += tx_buffer->bytecount;
5943 total_packets += tx_buffer->gso_segs;
13fde97a 5944
ebe42d16
AD
5945 /* free the skb */
5946 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 5947
ebe42d16
AD
5948 /* unmap skb header data */
5949 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
5950 dma_unmap_addr(tx_buffer, dma),
5951 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
5952 DMA_TO_DEVICE);
5953
c9f14bf3
AD
5954 /* clear tx_buffer data */
5955 tx_buffer->skb = NULL;
5956 dma_unmap_len_set(tx_buffer, len, 0);
5957
ebe42d16
AD
5958 /* clear last DMA location and unmap remaining buffers */
5959 while (tx_desc != eop_desc) {
13fde97a
AD
5960 tx_buffer++;
5961 tx_desc++;
9d5c8243 5962 i++;
8542db05
AD
5963 if (unlikely(!i)) {
5964 i -= tx_ring->count;
06034649 5965 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5966 tx_desc = IGB_TX_DESC(tx_ring, 0);
5967 }
ebe42d16
AD
5968
5969 /* unmap any remaining paged data */
c9f14bf3 5970 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 5971 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
5972 dma_unmap_addr(tx_buffer, dma),
5973 dma_unmap_len(tx_buffer, len),
ebe42d16 5974 DMA_TO_DEVICE);
c9f14bf3 5975 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
5976 }
5977 }
5978
ebe42d16
AD
5979 /* move us one more past the eop_desc for start of next pkt */
5980 tx_buffer++;
5981 tx_desc++;
5982 i++;
5983 if (unlikely(!i)) {
5984 i -= tx_ring->count;
5985 tx_buffer = tx_ring->tx_buffer_info;
5986 tx_desc = IGB_TX_DESC(tx_ring, 0);
5987 }
f4128785
AD
5988
5989 /* issue prefetch for next Tx descriptor */
5990 prefetch(tx_desc);
5991
5992 /* update budget accounting */
5993 budget--;
5994 } while (likely(budget));
0e014cb1 5995
bdbc0631
ED
5996 netdev_tx_completed_queue(txring_txq(tx_ring),
5997 total_packets, total_bytes);
8542db05 5998 i += tx_ring->count;
9d5c8243 5999 tx_ring->next_to_clean = i;
13fde97a
AD
6000 u64_stats_update_begin(&tx_ring->tx_syncp);
6001 tx_ring->tx_stats.bytes += total_bytes;
6002 tx_ring->tx_stats.packets += total_packets;
6003 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6004 q_vector->tx.total_bytes += total_bytes;
6005 q_vector->tx.total_packets += total_packets;
9d5c8243 6006
6d095fa8 6007 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6008 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6009
9d5c8243
AK
6010 /* Detect a transmit hang in hardware, this serializes the
6011 * check with the clearing of time_stamp and movement of i */
6d095fa8 6012 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6013 if (tx_buffer->next_to_watch &&
8542db05 6014 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6015 (adapter->tx_timeout_factor * HZ)) &&
6016 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6017
9d5c8243 6018 /* detected Tx unit hang */
59d71989 6019 dev_err(tx_ring->dev,
9d5c8243 6020 "Detected Tx Unit Hang\n"
2d064c06 6021 " Tx Queue <%d>\n"
9d5c8243
AK
6022 " TDH <%x>\n"
6023 " TDT <%x>\n"
6024 " next_to_use <%x>\n"
6025 " next_to_clean <%x>\n"
9d5c8243
AK
6026 "buffer_info[next_to_clean]\n"
6027 " time_stamp <%lx>\n"
8542db05 6028 " next_to_watch <%p>\n"
9d5c8243
AK
6029 " jiffies <%lx>\n"
6030 " desc.status <%x>\n",
2d064c06 6031 tx_ring->queue_index,
238ac817 6032 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6033 readl(tx_ring->tail),
9d5c8243
AK
6034 tx_ring->next_to_use,
6035 tx_ring->next_to_clean,
8542db05 6036 tx_buffer->time_stamp,
f4128785 6037 tx_buffer->next_to_watch,
9d5c8243 6038 jiffies,
f4128785 6039 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6040 netif_stop_subqueue(tx_ring->netdev,
6041 tx_ring->queue_index);
6042
6043 /* we are about to reset, no point in enabling stuff */
6044 return true;
9d5c8243
AK
6045 }
6046 }
13fde97a 6047
21ba6fe1 6048#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a
AD
6049 if (unlikely(total_packets &&
6050 netif_carrier_ok(tx_ring->netdev) &&
21ba6fe1 6051 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6052 /* Make sure that anybody stopping the queue after this
6053 * sees the new next_to_clean.
6054 */
6055 smp_mb();
6056 if (__netif_subqueue_stopped(tx_ring->netdev,
6057 tx_ring->queue_index) &&
6058 !(test_bit(__IGB_DOWN, &adapter->state))) {
6059 netif_wake_subqueue(tx_ring->netdev,
6060 tx_ring->queue_index);
6061
6062 u64_stats_update_begin(&tx_ring->tx_syncp);
6063 tx_ring->tx_stats.restart_queue++;
6064 u64_stats_update_end(&tx_ring->tx_syncp);
6065 }
6066 }
6067
6068 return !!budget;
9d5c8243
AK
6069}
6070
cbc8e55f
AD
6071/**
6072 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6073 * @rx_ring: rx descriptor ring to store buffers on
6074 * @old_buff: donor buffer to have page reused
6075 *
6076 * Synchronizes page for reuse by the adapter
6077 **/
6078static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6079 struct igb_rx_buffer *old_buff)
6080{
6081 struct igb_rx_buffer *new_buff;
6082 u16 nta = rx_ring->next_to_alloc;
6083
6084 new_buff = &rx_ring->rx_buffer_info[nta];
6085
6086 /* update, and store next to alloc */
6087 nta++;
6088 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6089
6090 /* transfer page from old buffer to new buffer */
6091 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6092
6093 /* sync the buffer for use by the device */
6094 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6095 old_buff->page_offset,
de78d1f9 6096 IGB_RX_BUFSZ,
cbc8e55f
AD
6097 DMA_FROM_DEVICE);
6098}
6099
74e238ea
AD
6100static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6101 struct page *page,
6102 unsigned int truesize)
6103{
6104 /* avoid re-using remote pages */
6105 if (unlikely(page_to_nid(page) != numa_node_id()))
6106 return false;
6107
6108#if (PAGE_SIZE < 8192)
6109 /* if we are only owner of page we can reuse it */
6110 if (unlikely(page_count(page) != 1))
6111 return false;
6112
6113 /* flip page offset to other buffer */
6114 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6115
6116 /* since we are the only owner of the page and we need to
6117 * increment it, just set the value to 2 in order to avoid
6118 * an unnecessary locked operation
6119 */
6120 atomic_set(&page->_count, 2);
6121#else
6122 /* move offset up to the next cache line */
6123 rx_buffer->page_offset += truesize;
6124
6125 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6126 return false;
6127
6128 /* bump ref count on page before it is given to the stack */
6129 get_page(page);
6130#endif
6131
6132 return true;
6133}
6134
cbc8e55f
AD
6135/**
6136 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6137 * @rx_ring: rx descriptor ring to transact packets on
6138 * @rx_buffer: buffer containing page to add
6139 * @rx_desc: descriptor containing length of buffer written by hardware
6140 * @skb: sk_buff to place the data into
6141 *
6142 * This function will add the data contained in rx_buffer->page to the skb.
6143 * This is done either through a direct copy if the data in the buffer is
6144 * less than the skb header size, otherwise it will just attach the page as
6145 * a frag to the skb.
6146 *
6147 * The function will then update the page offset if necessary and return
6148 * true if the buffer can be reused by the adapter.
6149 **/
6150static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6151 struct igb_rx_buffer *rx_buffer,
6152 union e1000_adv_rx_desc *rx_desc,
6153 struct sk_buff *skb)
6154{
6155 struct page *page = rx_buffer->page;
6156 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6157#if (PAGE_SIZE < 8192)
6158 unsigned int truesize = IGB_RX_BUFSZ;
6159#else
6160 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6161#endif
cbc8e55f
AD
6162
6163 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6164 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6165
cbc8e55f
AD
6166 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6167 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6168 va += IGB_TS_HDR_LEN;
6169 size -= IGB_TS_HDR_LEN;
6170 }
6171
cbc8e55f
AD
6172 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6173
6174 /* we can reuse buffer as-is, just make sure it is local */
6175 if (likely(page_to_nid(page) == numa_node_id()))
6176 return true;
6177
6178 /* this page cannot be reused so discard it */
6179 put_page(page);
6180 return false;
6181 }
6182
6183 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
74e238ea 6184 rx_buffer->page_offset, size, truesize);
cbc8e55f 6185
74e238ea
AD
6186 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6187}
cbc8e55f 6188
2e334eee
AD
6189static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6190 union e1000_adv_rx_desc *rx_desc,
6191 struct sk_buff *skb)
6192{
6193 struct igb_rx_buffer *rx_buffer;
6194 struct page *page;
6195
6196 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6197
2e334eee
AD
6198 page = rx_buffer->page;
6199 prefetchw(page);
6200
6201 if (likely(!skb)) {
6202 void *page_addr = page_address(page) +
6203 rx_buffer->page_offset;
6204
6205 /* prefetch first cache line of first page */
6206 prefetch(page_addr);
6207#if L1_CACHE_BYTES < 128
6208 prefetch(page_addr + L1_CACHE_BYTES);
6209#endif
6210
6211 /* allocate a skb to store the frags */
6212 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6213 IGB_RX_HDR_LEN);
6214 if (unlikely(!skb)) {
6215 rx_ring->rx_stats.alloc_failed++;
6216 return NULL;
6217 }
6218
6219 /*
6220 * we will be copying header into skb->data in
6221 * pskb_may_pull so it is in our interest to prefetch
6222 * it now to avoid a possible cache miss
6223 */
6224 prefetchw(skb->data);
6225 }
6226
6227 /* we are reusing so sync this buffer for CPU use */
6228 dma_sync_single_range_for_cpu(rx_ring->dev,
6229 rx_buffer->dma,
6230 rx_buffer->page_offset,
de78d1f9 6231 IGB_RX_BUFSZ,
2e334eee
AD
6232 DMA_FROM_DEVICE);
6233
6234 /* pull page into skb */
6235 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6236 /* hand second half of page back to the ring */
6237 igb_reuse_rx_page(rx_ring, rx_buffer);
6238 } else {
6239 /* we are not reusing the buffer so unmap it */
6240 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6241 PAGE_SIZE, DMA_FROM_DEVICE);
6242 }
6243
6244 /* clear contents of rx_buffer */
6245 rx_buffer->page = NULL;
6246
6247 return skb;
6248}
6249
cd392f5c 6250static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6251 union e1000_adv_rx_desc *rx_desc,
6252 struct sk_buff *skb)
9d5c8243 6253{
bc8acf2c 6254 skb_checksum_none_assert(skb);
9d5c8243 6255
294e7d78 6256 /* Ignore Checksum bit is set */
3ceb90fd 6257 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6258 return;
6259
6260 /* Rx checksum disabled via ethtool */
6261 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6262 return;
85ad76b2 6263
9d5c8243 6264 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6265 if (igb_test_staterr(rx_desc,
6266 E1000_RXDEXT_STATERR_TCPE |
6267 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
6268 /*
6269 * work around errata with sctp packets where the TCPE aka
6270 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6271 * packets, (aka let the stack check the crc32c)
6272 */
866cff06
AD
6273 if (!((skb->len == 60) &&
6274 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6275 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6276 ring->rx_stats.csum_err++;
12dcd86b
ED
6277 u64_stats_update_end(&ring->rx_syncp);
6278 }
9d5c8243 6279 /* let the stack verify checksum errors */
9d5c8243
AK
6280 return;
6281 }
6282 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6283 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6284 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6285 skb->ip_summed = CHECKSUM_UNNECESSARY;
6286
3ceb90fd
AD
6287 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6288 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6289}
6290
077887c3
AD
6291static inline void igb_rx_hash(struct igb_ring *ring,
6292 union e1000_adv_rx_desc *rx_desc,
6293 struct sk_buff *skb)
6294{
6295 if (ring->netdev->features & NETIF_F_RXHASH)
6296 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6297}
6298
2e334eee
AD
6299/**
6300 * igb_is_non_eop - process handling of non-EOP buffers
6301 * @rx_ring: Rx ring being processed
6302 * @rx_desc: Rx descriptor for current buffer
6303 * @skb: current socket buffer containing buffer in progress
6304 *
6305 * This function updates next to clean. If the buffer is an EOP buffer
6306 * this function exits returning false, otherwise it will place the
6307 * sk_buff in the next buffer to be chained and return true indicating
6308 * that this is in fact a non-EOP buffer.
6309 **/
6310static bool igb_is_non_eop(struct igb_ring *rx_ring,
6311 union e1000_adv_rx_desc *rx_desc)
6312{
6313 u32 ntc = rx_ring->next_to_clean + 1;
6314
6315 /* fetch, update, and store next to clean */
6316 ntc = (ntc < rx_ring->count) ? ntc : 0;
6317 rx_ring->next_to_clean = ntc;
6318
6319 prefetch(IGB_RX_DESC(rx_ring, ntc));
6320
6321 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6322 return false;
6323
6324 return true;
6325}
6326
1a1c225b
AD
6327/**
6328 * igb_get_headlen - determine size of header for LRO/GRO
6329 * @data: pointer to the start of the headers
6330 * @max_len: total length of section to find headers in
6331 *
6332 * This function is meant to determine the length of headers that will
6333 * be recognized by hardware for LRO, and GRO offloads. The main
6334 * motivation of doing this is to only perform one pull for IPv4 TCP
6335 * packets so that we can do basic things like calculating the gso_size
6336 * based on the average data per packet.
6337 **/
6338static unsigned int igb_get_headlen(unsigned char *data,
6339 unsigned int max_len)
6340{
6341 union {
6342 unsigned char *network;
6343 /* l2 headers */
6344 struct ethhdr *eth;
6345 struct vlan_hdr *vlan;
6346 /* l3 headers */
6347 struct iphdr *ipv4;
6348 struct ipv6hdr *ipv6;
6349 } hdr;
6350 __be16 protocol;
6351 u8 nexthdr = 0; /* default to not TCP */
6352 u8 hlen;
6353
6354 /* this should never happen, but better safe than sorry */
6355 if (max_len < ETH_HLEN)
6356 return max_len;
6357
6358 /* initialize network frame pointer */
6359 hdr.network = data;
6360
6361 /* set first protocol and move network header forward */
6362 protocol = hdr.eth->h_proto;
6363 hdr.network += ETH_HLEN;
6364
6365 /* handle any vlan tag if present */
6366 if (protocol == __constant_htons(ETH_P_8021Q)) {
6367 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6368 return max_len;
6369
6370 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6371 hdr.network += VLAN_HLEN;
6372 }
6373
6374 /* handle L3 protocols */
6375 if (protocol == __constant_htons(ETH_P_IP)) {
6376 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6377 return max_len;
6378
6379 /* access ihl as a u8 to avoid unaligned access on ia64 */
6380 hlen = (hdr.network[0] & 0x0F) << 2;
6381
6382 /* verify hlen meets minimum size requirements */
6383 if (hlen < sizeof(struct iphdr))
6384 return hdr.network - data;
6385
f2fb4ab2
AD
6386 /* record next protocol if header is present */
6387 if (!hdr.ipv4->frag_off)
6388 nexthdr = hdr.ipv4->protocol;
1a1c225b
AD
6389 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6390 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6391 return max_len;
6392
6393 /* record next protocol */
6394 nexthdr = hdr.ipv6->nexthdr;
f2fb4ab2 6395 hlen = sizeof(struct ipv6hdr);
1a1c225b
AD
6396 } else {
6397 return hdr.network - data;
6398 }
6399
f2fb4ab2
AD
6400 /* relocate pointer to start of L4 header */
6401 hdr.network += hlen;
6402
1a1c225b
AD
6403 /* finally sort out TCP */
6404 if (nexthdr == IPPROTO_TCP) {
6405 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6406 return max_len;
6407
6408 /* access doff as a u8 to avoid unaligned access on ia64 */
6409 hlen = (hdr.network[12] & 0xF0) >> 2;
6410
6411 /* verify hlen meets minimum size requirements */
6412 if (hlen < sizeof(struct tcphdr))
6413 return hdr.network - data;
6414
6415 hdr.network += hlen;
6416 } else if (nexthdr == IPPROTO_UDP) {
6417 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6418 return max_len;
6419
6420 hdr.network += sizeof(struct udphdr);
6421 }
6422
6423 /*
6424 * If everything has gone correctly hdr.network should be the
6425 * data section of the packet and will be the end of the header.
6426 * If not then it probably represents the end of the last recognized
6427 * header.
6428 */
6429 if ((hdr.network - data) < max_len)
6430 return hdr.network - data;
6431 else
6432 return max_len;
6433}
6434
6435/**
6436 * igb_pull_tail - igb specific version of skb_pull_tail
6437 * @rx_ring: rx descriptor ring packet is being transacted on
cbc8e55f 6438 * @rx_desc: pointer to the EOP Rx descriptor
1a1c225b
AD
6439 * @skb: pointer to current skb being adjusted
6440 *
6441 * This function is an igb specific version of __pskb_pull_tail. The
6442 * main difference between this version and the original function is that
6443 * this function can make several assumptions about the state of things
6444 * that allow for significant optimizations versus the standard function.
6445 * As a result we can do things like drop a frag and maintain an accurate
6446 * truesize for the skb.
6447 */
6448static void igb_pull_tail(struct igb_ring *rx_ring,
6449 union e1000_adv_rx_desc *rx_desc,
6450 struct sk_buff *skb)
2d94d8ab 6451{
1a1c225b
AD
6452 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6453 unsigned char *va;
6454 unsigned int pull_len;
6455
6456 /*
6457 * it is valid to use page_address instead of kmap since we are
6458 * working with pages allocated out of the lomem pool per
6459 * alloc_page(GFP_ATOMIC)
2d94d8ab 6460 */
1a1c225b
AD
6461 va = skb_frag_address(frag);
6462
1a1c225b
AD
6463 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6464 /* retrieve timestamp from buffer */
6465 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6466
6467 /* update pointers to remove timestamp header */
6468 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6469 frag->page_offset += IGB_TS_HDR_LEN;
6470 skb->data_len -= IGB_TS_HDR_LEN;
6471 skb->len -= IGB_TS_HDR_LEN;
6472
6473 /* move va to start of packet data */
6474 va += IGB_TS_HDR_LEN;
6475 }
6476
1a1c225b
AD
6477 /*
6478 * we need the header to contain the greater of either ETH_HLEN or
6479 * 60 bytes if the skb->len is less than 60 for skb_pad.
6480 */
6481 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6482
6483 /* align pull length to size of long to optimize memcpy performance */
6484 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6485
6486 /* update all of the pointers */
6487 skb_frag_size_sub(frag, pull_len);
6488 frag->page_offset += pull_len;
6489 skb->data_len -= pull_len;
6490 skb->tail += pull_len;
6491}
6492
6493/**
6494 * igb_cleanup_headers - Correct corrupted or empty headers
6495 * @rx_ring: rx descriptor ring packet is being transacted on
6496 * @rx_desc: pointer to the EOP Rx descriptor
6497 * @skb: pointer to current skb being fixed
6498 *
6499 * Address the case where we are pulling data in on pages only
6500 * and as such no data is present in the skb header.
6501 *
6502 * In addition if skb is not at least 60 bytes we need to pad it so that
6503 * it is large enough to qualify as a valid Ethernet frame.
6504 *
6505 * Returns true if an error was encountered and skb was freed.
6506 **/
6507static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6508 union e1000_adv_rx_desc *rx_desc,
6509 struct sk_buff *skb)
6510{
6511
6512 if (unlikely((igb_test_staterr(rx_desc,
6513 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6514 struct net_device *netdev = rx_ring->netdev;
6515 if (!(netdev->features & NETIF_F_RXALL)) {
6516 dev_kfree_skb_any(skb);
6517 return true;
6518 }
6519 }
6520
6521 /* place header in linear portion of buffer */
6522 if (skb_is_nonlinear(skb))
6523 igb_pull_tail(rx_ring, rx_desc, skb);
6524
6525 /* if skb_pad returns an error the skb was freed */
6526 if (unlikely(skb->len < 60)) {
6527 int pad_len = 60 - skb->len;
6528
6529 if (skb_pad(skb, pad_len))
6530 return true;
6531 __skb_put(skb, pad_len);
6532 }
6533
6534 return false;
2d94d8ab
AD
6535}
6536
db2ee5bd
AD
6537/**
6538 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6539 * @rx_ring: rx descriptor ring packet is being transacted on
6540 * @rx_desc: pointer to the EOP Rx descriptor
6541 * @skb: pointer to current skb being populated
6542 *
6543 * This function checks the ring, descriptor, and packet information in
6544 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6545 * other fields within the skb.
6546 **/
6547static void igb_process_skb_fields(struct igb_ring *rx_ring,
6548 union e1000_adv_rx_desc *rx_desc,
6549 struct sk_buff *skb)
6550{
6551 struct net_device *dev = rx_ring->netdev;
6552
6553 igb_rx_hash(rx_ring, rx_desc, skb);
6554
6555 igb_rx_checksum(rx_ring, rx_desc, skb);
6556
db2ee5bd 6557 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
db2ee5bd
AD
6558
6559 if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6560 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6561 u16 vid;
6562 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6563 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6564 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6565 else
6566 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6567
6568 __vlan_hwaccel_put_tag(skb, vid);
6569 }
6570
6571 skb_record_rx_queue(skb, rx_ring->queue_index);
6572
6573 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6574}
6575
2e334eee 6576static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6577{
0ba82994 6578 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6579 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6580 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6581 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6582
2e334eee
AD
6583 do {
6584 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6585
2e334eee
AD
6586 /* return some buffers to hardware, one at a time is too slow */
6587 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6588 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6589 cleaned_count = 0;
6590 }
bf36c1a0 6591
2e334eee 6592 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6593
2e334eee
AD
6594 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6595 break;
9d5c8243 6596
74e238ea
AD
6597 /* This memory barrier is needed to keep us from reading
6598 * any other fields out of the rx_desc until we know the
6599 * RXD_STAT_DD bit is set
6600 */
6601 rmb();
6602
2e334eee 6603 /* retrieve a buffer from the ring */
f9d40f6a 6604 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 6605
2e334eee
AD
6606 /* exit if we failed to retrieve a buffer */
6607 if (!skb)
6608 break;
1a1c225b 6609
2e334eee 6610 cleaned_count++;
1a1c225b 6611
2e334eee
AD
6612 /* fetch next buffer in frame if non-eop */
6613 if (igb_is_non_eop(rx_ring, rx_desc))
6614 continue;
1a1c225b
AD
6615
6616 /* verify the packet layout is correct */
6617 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6618 skb = NULL;
6619 continue;
9d5c8243 6620 }
9d5c8243 6621
db2ee5bd 6622 /* probably a little skewed due to removing CRC */
3ceb90fd 6623 total_bytes += skb->len;
3ceb90fd 6624
db2ee5bd
AD
6625 /* populate checksum, timestamp, VLAN, and protocol */
6626 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 6627
b2cb09b1 6628 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6629
1a1c225b
AD
6630 /* reset skb pointer */
6631 skb = NULL;
6632
2e334eee
AD
6633 /* update budget accounting */
6634 total_packets++;
6635 } while (likely(total_packets < budget));
bf36c1a0 6636
1a1c225b
AD
6637 /* place incomplete frames back on ring for completion */
6638 rx_ring->skb = skb;
6639
12dcd86b 6640 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6641 rx_ring->rx_stats.packets += total_packets;
6642 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6643 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6644 q_vector->rx.total_packets += total_packets;
6645 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6646
6647 if (cleaned_count)
cd392f5c 6648 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6649
2e334eee 6650 return (total_packets < budget);
9d5c8243
AK
6651}
6652
c023cd88 6653static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6654 struct igb_rx_buffer *bi)
c023cd88
AD
6655{
6656 struct page *page = bi->page;
cbc8e55f 6657 dma_addr_t dma;
c023cd88 6658
cbc8e55f
AD
6659 /* since we are recycling buffers we should seldom need to alloc */
6660 if (likely(page))
c023cd88
AD
6661 return true;
6662
cbc8e55f
AD
6663 /* alloc new page for storage */
6664 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6665 if (unlikely(!page)) {
6666 rx_ring->rx_stats.alloc_failed++;
6667 return false;
c023cd88
AD
6668 }
6669
cbc8e55f
AD
6670 /* map page for use */
6671 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 6672
cbc8e55f
AD
6673 /*
6674 * if mapping failed free memory back to system since
6675 * there isn't much point in holding memory we can't use
6676 */
1a1c225b 6677 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
6678 __free_page(page);
6679
c023cd88
AD
6680 rx_ring->rx_stats.alloc_failed++;
6681 return false;
6682 }
6683
1a1c225b 6684 bi->dma = dma;
cbc8e55f
AD
6685 bi->page = page;
6686 bi->page_offset = 0;
1a1c225b 6687
c023cd88
AD
6688 return true;
6689}
6690
9d5c8243 6691/**
cd392f5c 6692 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6693 * @adapter: address of board private structure
6694 **/
cd392f5c 6695void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6696{
9d5c8243 6697 union e1000_adv_rx_desc *rx_desc;
06034649 6698 struct igb_rx_buffer *bi;
c023cd88 6699 u16 i = rx_ring->next_to_use;
9d5c8243 6700
cbc8e55f
AD
6701 /* nothing to do */
6702 if (!cleaned_count)
6703 return;
6704
60136906 6705 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6706 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6707 i -= rx_ring->count;
9d5c8243 6708
cbc8e55f 6709 do {
1a1c225b 6710 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 6711 break;
9d5c8243 6712
cbc8e55f
AD
6713 /*
6714 * Refresh the desc even if buffer_addrs didn't change
6715 * because each write-back erases this info.
6716 */
f9d40f6a 6717 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 6718
c023cd88
AD
6719 rx_desc++;
6720 bi++;
9d5c8243 6721 i++;
c023cd88 6722 if (unlikely(!i)) {
60136906 6723 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6724 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6725 i -= rx_ring->count;
6726 }
6727
6728 /* clear the hdr_addr for the next_to_use descriptor */
6729 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
6730
6731 cleaned_count--;
6732 } while (cleaned_count);
9d5c8243 6733
c023cd88
AD
6734 i += rx_ring->count;
6735
9d5c8243 6736 if (rx_ring->next_to_use != i) {
cbc8e55f 6737 /* record the next descriptor to use */
9d5c8243 6738 rx_ring->next_to_use = i;
9d5c8243 6739
cbc8e55f
AD
6740 /* update next to alloc since we have filled the ring */
6741 rx_ring->next_to_alloc = i;
6742
6743 /*
6744 * Force memory writes to complete before letting h/w
9d5c8243
AK
6745 * know there are new descriptors to fetch. (Only
6746 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
6747 * such as IA-64).
6748 */
9d5c8243 6749 wmb();
fce99e34 6750 writel(i, rx_ring->tail);
9d5c8243
AK
6751 }
6752}
6753
6754/**
6755 * igb_mii_ioctl -
6756 * @netdev:
6757 * @ifreq:
6758 * @cmd:
6759 **/
6760static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6761{
6762 struct igb_adapter *adapter = netdev_priv(netdev);
6763 struct mii_ioctl_data *data = if_mii(ifr);
6764
6765 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6766 return -EOPNOTSUPP;
6767
6768 switch (cmd) {
6769 case SIOCGMIIPHY:
6770 data->phy_id = adapter->hw.phy.addr;
6771 break;
6772 case SIOCGMIIREG:
f5f4cf08
AD
6773 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6774 &data->val_out))
9d5c8243
AK
6775 return -EIO;
6776 break;
6777 case SIOCSMIIREG:
6778 default:
6779 return -EOPNOTSUPP;
6780 }
6781 return 0;
6782}
6783
6784/**
6785 * igb_ioctl -
6786 * @netdev:
6787 * @ifreq:
6788 * @cmd:
6789 **/
6790static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6791{
6792 switch (cmd) {
6793 case SIOCGMIIPHY:
6794 case SIOCGMIIREG:
6795 case SIOCSMIIREG:
6796 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b 6797 case SIOCSHWTSTAMP:
a79f4f88 6798 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6799 default:
6800 return -EOPNOTSUPP;
6801 }
6802}
6803
009bc06e
AD
6804s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6805{
6806 struct igb_adapter *adapter = hw->back;
009bc06e 6807
23d028cc 6808 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
6809 return -E1000_ERR_CONFIG;
6810
009bc06e
AD
6811 return 0;
6812}
6813
6814s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6815{
6816 struct igb_adapter *adapter = hw->back;
009bc06e 6817
23d028cc 6818 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
6819 return -E1000_ERR_CONFIG;
6820
009bc06e
AD
6821 return 0;
6822}
6823
c8f44aff 6824static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6825{
6826 struct igb_adapter *adapter = netdev_priv(netdev);
6827 struct e1000_hw *hw = &adapter->hw;
6828 u32 ctrl, rctl;
5faf030c 6829 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6830
5faf030c 6831 if (enable) {
9d5c8243
AK
6832 /* enable VLAN tag insert/strip */
6833 ctrl = rd32(E1000_CTRL);
6834 ctrl |= E1000_CTRL_VME;
6835 wr32(E1000_CTRL, ctrl);
6836
51466239 6837 /* Disable CFI check */
9d5c8243 6838 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6839 rctl &= ~E1000_RCTL_CFIEN;
6840 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6841 } else {
6842 /* disable VLAN tag insert/strip */
6843 ctrl = rd32(E1000_CTRL);
6844 ctrl &= ~E1000_CTRL_VME;
6845 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6846 }
6847
e1739522 6848 igb_rlpml_set(adapter);
9d5c8243
AK
6849}
6850
8e586137 6851static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6852{
6853 struct igb_adapter *adapter = netdev_priv(netdev);
6854 struct e1000_hw *hw = &adapter->hw;
4ae196df 6855 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6856
51466239
AD
6857 /* attempt to add filter to vlvf array */
6858 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6859
51466239
AD
6860 /* add the filter since PF can receive vlans w/o entry in vlvf */
6861 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6862
6863 set_bit(vid, adapter->active_vlans);
8e586137
JP
6864
6865 return 0;
9d5c8243
AK
6866}
6867
8e586137 6868static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6869{
6870 struct igb_adapter *adapter = netdev_priv(netdev);
6871 struct e1000_hw *hw = &adapter->hw;
4ae196df 6872 int pf_id = adapter->vfs_allocated_count;
51466239 6873 s32 err;
9d5c8243 6874
51466239
AD
6875 /* remove vlan from VLVF table array */
6876 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6877
51466239
AD
6878 /* if vid was not present in VLVF just remove it from table */
6879 if (err)
4ae196df 6880 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6881
6882 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6883
6884 return 0;
9d5c8243
AK
6885}
6886
6887static void igb_restore_vlan(struct igb_adapter *adapter)
6888{
b2cb09b1 6889 u16 vid;
9d5c8243 6890
5faf030c
AD
6891 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6892
b2cb09b1
JP
6893 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6894 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6895}
6896
14ad2513 6897int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6898{
090b1795 6899 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6900 struct e1000_mac_info *mac = &adapter->hw.mac;
6901
6902 mac->autoneg = 0;
6903
14ad2513
DD
6904 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6905 * for the switch() below to work */
6906 if ((spd & 1) || (dplx & ~1))
6907 goto err_inval;
6908
cd2638a8
CW
6909 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6910 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6911 spd != SPEED_1000 &&
6912 dplx != DUPLEX_FULL)
6913 goto err_inval;
cd2638a8 6914
14ad2513 6915 switch (spd + dplx) {
9d5c8243
AK
6916 case SPEED_10 + DUPLEX_HALF:
6917 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6918 break;
6919 case SPEED_10 + DUPLEX_FULL:
6920 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6921 break;
6922 case SPEED_100 + DUPLEX_HALF:
6923 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6924 break;
6925 case SPEED_100 + DUPLEX_FULL:
6926 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6927 break;
6928 case SPEED_1000 + DUPLEX_FULL:
6929 mac->autoneg = 1;
6930 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6931 break;
6932 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6933 default:
14ad2513 6934 goto err_inval;
9d5c8243 6935 }
8376dad0
JB
6936
6937 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6938 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6939
9d5c8243 6940 return 0;
14ad2513
DD
6941
6942err_inval:
6943 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6944 return -EINVAL;
9d5c8243
AK
6945}
6946
749ab2cd
YZ
6947static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6948 bool runtime)
9d5c8243
AK
6949{
6950 struct net_device *netdev = pci_get_drvdata(pdev);
6951 struct igb_adapter *adapter = netdev_priv(netdev);
6952 struct e1000_hw *hw = &adapter->hw;
2d064c06 6953 u32 ctrl, rctl, status;
749ab2cd 6954 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
6955#ifdef CONFIG_PM
6956 int retval = 0;
6957#endif
6958
6959 netif_device_detach(netdev);
6960
a88f10ec 6961 if (netif_running(netdev))
749ab2cd 6962 __igb_close(netdev, true);
a88f10ec 6963
047e0030 6964 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6965
6966#ifdef CONFIG_PM
6967 retval = pci_save_state(pdev);
6968 if (retval)
6969 return retval;
6970#endif
6971
6972 status = rd32(E1000_STATUS);
6973 if (status & E1000_STATUS_LU)
6974 wufc &= ~E1000_WUFC_LNKC;
6975
6976 if (wufc) {
6977 igb_setup_rctl(adapter);
ff41f8dc 6978 igb_set_rx_mode(netdev);
9d5c8243
AK
6979
6980 /* turn on all-multi mode if wake on multicast is enabled */
6981 if (wufc & E1000_WUFC_MC) {
6982 rctl = rd32(E1000_RCTL);
6983 rctl |= E1000_RCTL_MPE;
6984 wr32(E1000_RCTL, rctl);
6985 }
6986
6987 ctrl = rd32(E1000_CTRL);
6988 /* advertise wake from D3Cold */
6989 #define E1000_CTRL_ADVD3WUC 0x00100000
6990 /* phy power management enable */
6991 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6992 ctrl |= E1000_CTRL_ADVD3WUC;
6993 wr32(E1000_CTRL, ctrl);
6994
9d5c8243 6995 /* Allow time for pending master requests to run */
330a6d6a 6996 igb_disable_pcie_master(hw);
9d5c8243
AK
6997
6998 wr32(E1000_WUC, E1000_WUC_PME_EN);
6999 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7000 } else {
7001 wr32(E1000_WUC, 0);
7002 wr32(E1000_WUFC, 0);
9d5c8243
AK
7003 }
7004
3fe7c4c9
RW
7005 *enable_wake = wufc || adapter->en_mng_pt;
7006 if (!*enable_wake)
88a268c1
NN
7007 igb_power_down_link(adapter);
7008 else
7009 igb_power_up_link(adapter);
9d5c8243
AK
7010
7011 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7012 * would have already happened in close and is redundant. */
7013 igb_release_hw_control(adapter);
7014
7015 pci_disable_device(pdev);
7016
9d5c8243
AK
7017 return 0;
7018}
7019
7020#ifdef CONFIG_PM
d9dd966d 7021#ifdef CONFIG_PM_SLEEP
749ab2cd 7022static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7023{
7024 int retval;
7025 bool wake;
749ab2cd 7026 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7027
749ab2cd 7028 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7029 if (retval)
7030 return retval;
7031
7032 if (wake) {
7033 pci_prepare_to_sleep(pdev);
7034 } else {
7035 pci_wake_from_d3(pdev, false);
7036 pci_set_power_state(pdev, PCI_D3hot);
7037 }
7038
7039 return 0;
7040}
d9dd966d 7041#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7042
749ab2cd 7043static int igb_resume(struct device *dev)
9d5c8243 7044{
749ab2cd 7045 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7046 struct net_device *netdev = pci_get_drvdata(pdev);
7047 struct igb_adapter *adapter = netdev_priv(netdev);
7048 struct e1000_hw *hw = &adapter->hw;
7049 u32 err;
7050
7051 pci_set_power_state(pdev, PCI_D0);
7052 pci_restore_state(pdev);
b94f2d77 7053 pci_save_state(pdev);
42bfd33a 7054
aed5dec3 7055 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7056 if (err) {
7057 dev_err(&pdev->dev,
7058 "igb: Cannot enable PCI device from suspend\n");
7059 return err;
7060 }
7061 pci_set_master(pdev);
7062
7063 pci_enable_wake(pdev, PCI_D3hot, 0);
7064 pci_enable_wake(pdev, PCI_D3cold, 0);
7065
53c7d064 7066 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7067 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7068 return -ENOMEM;
9d5c8243
AK
7069 }
7070
9d5c8243 7071 igb_reset(adapter);
a8564f03
AD
7072
7073 /* let the f/w know that the h/w is now under the control of the
7074 * driver. */
7075 igb_get_hw_control(adapter);
7076
9d5c8243
AK
7077 wr32(E1000_WUS, ~0);
7078
749ab2cd 7079 if (netdev->flags & IFF_UP) {
0c2cc02e 7080 rtnl_lock();
749ab2cd 7081 err = __igb_open(netdev, true);
0c2cc02e 7082 rtnl_unlock();
a88f10ec
AD
7083 if (err)
7084 return err;
7085 }
9d5c8243
AK
7086
7087 netif_device_attach(netdev);
749ab2cd
YZ
7088 return 0;
7089}
7090
7091#ifdef CONFIG_PM_RUNTIME
7092static int igb_runtime_idle(struct device *dev)
7093{
7094 struct pci_dev *pdev = to_pci_dev(dev);
7095 struct net_device *netdev = pci_get_drvdata(pdev);
7096 struct igb_adapter *adapter = netdev_priv(netdev);
7097
7098 if (!igb_has_link(adapter))
7099 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7100
7101 return -EBUSY;
7102}
7103
7104static int igb_runtime_suspend(struct device *dev)
7105{
7106 struct pci_dev *pdev = to_pci_dev(dev);
7107 int retval;
7108 bool wake;
7109
7110 retval = __igb_shutdown(pdev, &wake, 1);
7111 if (retval)
7112 return retval;
7113
7114 if (wake) {
7115 pci_prepare_to_sleep(pdev);
7116 } else {
7117 pci_wake_from_d3(pdev, false);
7118 pci_set_power_state(pdev, PCI_D3hot);
7119 }
9d5c8243 7120
9d5c8243
AK
7121 return 0;
7122}
749ab2cd
YZ
7123
7124static int igb_runtime_resume(struct device *dev)
7125{
7126 return igb_resume(dev);
7127}
7128#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
7129#endif
7130
7131static void igb_shutdown(struct pci_dev *pdev)
7132{
3fe7c4c9
RW
7133 bool wake;
7134
749ab2cd 7135 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7136
7137 if (system_state == SYSTEM_POWER_OFF) {
7138 pci_wake_from_d3(pdev, wake);
7139 pci_set_power_state(pdev, PCI_D3hot);
7140 }
9d5c8243
AK
7141}
7142
fa44f2f1
GR
7143#ifdef CONFIG_PCI_IOV
7144static int igb_sriov_reinit(struct pci_dev *dev)
7145{
7146 struct net_device *netdev = pci_get_drvdata(dev);
7147 struct igb_adapter *adapter = netdev_priv(netdev);
7148 struct pci_dev *pdev = adapter->pdev;
7149
7150 rtnl_lock();
7151
7152 if (netif_running(netdev))
7153 igb_close(netdev);
7154
7155 igb_clear_interrupt_scheme(adapter);
7156
7157 igb_init_queue_configuration(adapter);
7158
7159 if (igb_init_interrupt_scheme(adapter, true)) {
7160 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7161 return -ENOMEM;
7162 }
7163
7164 if (netif_running(netdev))
7165 igb_open(netdev);
7166
7167 rtnl_unlock();
7168
7169 return 0;
7170}
7171
7172static int igb_pci_disable_sriov(struct pci_dev *dev)
7173{
7174 int err = igb_disable_sriov(dev);
7175
7176 if (!err)
7177 err = igb_sriov_reinit(dev);
7178
7179 return err;
7180}
7181
7182static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7183{
7184 int err = igb_enable_sriov(dev, num_vfs);
7185
7186 if (err)
7187 goto out;
7188
7189 err = igb_sriov_reinit(dev);
7190 if (!err)
7191 return num_vfs;
7192
7193out:
7194 return err;
7195}
7196
7197#endif
7198static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7199{
7200#ifdef CONFIG_PCI_IOV
7201 if (num_vfs == 0)
7202 return igb_pci_disable_sriov(dev);
7203 else
7204 return igb_pci_enable_sriov(dev, num_vfs);
7205#endif
7206 return 0;
7207}
7208
9d5c8243
AK
7209#ifdef CONFIG_NET_POLL_CONTROLLER
7210/*
7211 * Polling 'interrupt' - used by things like netconsole to send skbs
7212 * without having to re-enable interrupts. It's not called while
7213 * the interrupt routine is executing.
7214 */
7215static void igb_netpoll(struct net_device *netdev)
7216{
7217 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7218 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7219 struct igb_q_vector *q_vector;
9d5c8243 7220 int i;
9d5c8243 7221
047e0030 7222 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
7223 q_vector = adapter->q_vector[i];
7224 if (adapter->msix_entries)
7225 wr32(E1000_EIMC, q_vector->eims_value);
7226 else
7227 igb_irq_disable(adapter);
047e0030 7228 napi_schedule(&q_vector->napi);
eebbbdba 7229 }
9d5c8243
AK
7230}
7231#endif /* CONFIG_NET_POLL_CONTROLLER */
7232
7233/**
7234 * igb_io_error_detected - called when PCI error is detected
7235 * @pdev: Pointer to PCI device
7236 * @state: The current pci connection state
7237 *
7238 * This function is called after a PCI bus error affecting
7239 * this device has been detected.
7240 */
7241static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7242 pci_channel_state_t state)
7243{
7244 struct net_device *netdev = pci_get_drvdata(pdev);
7245 struct igb_adapter *adapter = netdev_priv(netdev);
7246
7247 netif_device_detach(netdev);
7248
59ed6eec
AD
7249 if (state == pci_channel_io_perm_failure)
7250 return PCI_ERS_RESULT_DISCONNECT;
7251
9d5c8243
AK
7252 if (netif_running(netdev))
7253 igb_down(adapter);
7254 pci_disable_device(pdev);
7255
7256 /* Request a slot slot reset. */
7257 return PCI_ERS_RESULT_NEED_RESET;
7258}
7259
7260/**
7261 * igb_io_slot_reset - called after the pci bus has been reset.
7262 * @pdev: Pointer to PCI device
7263 *
7264 * Restart the card from scratch, as if from a cold-boot. Implementation
7265 * resembles the first-half of the igb_resume routine.
7266 */
7267static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7268{
7269 struct net_device *netdev = pci_get_drvdata(pdev);
7270 struct igb_adapter *adapter = netdev_priv(netdev);
7271 struct e1000_hw *hw = &adapter->hw;
40a914fa 7272 pci_ers_result_t result;
42bfd33a 7273 int err;
9d5c8243 7274
aed5dec3 7275 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7276 dev_err(&pdev->dev,
7277 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7278 result = PCI_ERS_RESULT_DISCONNECT;
7279 } else {
7280 pci_set_master(pdev);
7281 pci_restore_state(pdev);
b94f2d77 7282 pci_save_state(pdev);
9d5c8243 7283
40a914fa
AD
7284 pci_enable_wake(pdev, PCI_D3hot, 0);
7285 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7286
40a914fa
AD
7287 igb_reset(adapter);
7288 wr32(E1000_WUS, ~0);
7289 result = PCI_ERS_RESULT_RECOVERED;
7290 }
9d5c8243 7291
ea943d41
JK
7292 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7293 if (err) {
7294 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7295 "failed 0x%0x\n", err);
7296 /* non-fatal, continue */
7297 }
40a914fa
AD
7298
7299 return result;
9d5c8243
AK
7300}
7301
7302/**
7303 * igb_io_resume - called when traffic can start flowing again.
7304 * @pdev: Pointer to PCI device
7305 *
7306 * This callback is called when the error recovery driver tells us that
7307 * its OK to resume normal operation. Implementation resembles the
7308 * second-half of the igb_resume routine.
7309 */
7310static void igb_io_resume(struct pci_dev *pdev)
7311{
7312 struct net_device *netdev = pci_get_drvdata(pdev);
7313 struct igb_adapter *adapter = netdev_priv(netdev);
7314
9d5c8243
AK
7315 if (netif_running(netdev)) {
7316 if (igb_up(adapter)) {
7317 dev_err(&pdev->dev, "igb_up failed after reset\n");
7318 return;
7319 }
7320 }
7321
7322 netif_device_attach(netdev);
7323
7324 /* let the f/w know that the h/w is now under the control of the
7325 * driver. */
7326 igb_get_hw_control(adapter);
9d5c8243
AK
7327}
7328
26ad9178
AD
7329static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7330 u8 qsel)
7331{
7332 u32 rar_low, rar_high;
7333 struct e1000_hw *hw = &adapter->hw;
7334
7335 /* HW expects these in little endian so we reverse the byte order
7336 * from network order (big endian) to little endian
7337 */
7338 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7339 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7340 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7341
7342 /* Indicate to hardware the Address is Valid. */
7343 rar_high |= E1000_RAH_AV;
7344
7345 if (hw->mac.type == e1000_82575)
7346 rar_high |= E1000_RAH_POOL_1 * qsel;
7347 else
7348 rar_high |= E1000_RAH_POOL_1 << qsel;
7349
7350 wr32(E1000_RAL(index), rar_low);
7351 wrfl();
7352 wr32(E1000_RAH(index), rar_high);
7353 wrfl();
7354}
7355
4ae196df
AD
7356static int igb_set_vf_mac(struct igb_adapter *adapter,
7357 int vf, unsigned char *mac_addr)
7358{
7359 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
7360 /* VF MAC addresses start at end of receive addresses and moves
7361 * torwards the first, as a result a collision should not be possible */
7362 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7363
37680117 7364 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7365
26ad9178 7366 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7367
7368 return 0;
7369}
7370
8151d294
WM
7371static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7372{
7373 struct igb_adapter *adapter = netdev_priv(netdev);
7374 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7375 return -EINVAL;
7376 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7377 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7378 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7379 " change effective.");
7380 if (test_bit(__IGB_DOWN, &adapter->state)) {
7381 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7382 " but the PF device is not up.\n");
7383 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7384 " attempting to use the VF device.\n");
7385 }
7386 return igb_set_vf_mac(adapter, vf, mac);
7387}
7388
17dc566c
LL
7389static int igb_link_mbps(int internal_link_speed)
7390{
7391 switch (internal_link_speed) {
7392 case SPEED_100:
7393 return 100;
7394 case SPEED_1000:
7395 return 1000;
7396 default:
7397 return 0;
7398 }
7399}
7400
7401static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7402 int link_speed)
7403{
7404 int rf_dec, rf_int;
7405 u32 bcnrc_val;
7406
7407 if (tx_rate != 0) {
7408 /* Calculate the rate factor values to set */
7409 rf_int = link_speed / tx_rate;
7410 rf_dec = (link_speed - (rf_int * tx_rate));
7411 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7412
7413 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7414 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7415 E1000_RTTBCNRC_RF_INT_MASK);
7416 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7417 } else {
7418 bcnrc_val = 0;
7419 }
7420
7421 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
f00b0da7
LL
7422 /*
7423 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7424 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7425 */
7426 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7427 wr32(E1000_RTTBCNRC, bcnrc_val);
7428}
7429
7430static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7431{
7432 int actual_link_speed, i;
7433 bool reset_rate = false;
7434
7435 /* VF TX rate limit was not set or not supported */
7436 if ((adapter->vf_rate_link_speed == 0) ||
7437 (adapter->hw.mac.type != e1000_82576))
7438 return;
7439
7440 actual_link_speed = igb_link_mbps(adapter->link_speed);
7441 if (actual_link_speed != adapter->vf_rate_link_speed) {
7442 reset_rate = true;
7443 adapter->vf_rate_link_speed = 0;
7444 dev_info(&adapter->pdev->dev,
7445 "Link speed has been changed. VF Transmit "
7446 "rate is disabled\n");
7447 }
7448
7449 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7450 if (reset_rate)
7451 adapter->vf_data[i].tx_rate = 0;
7452
7453 igb_set_vf_rate_limit(&adapter->hw, i,
7454 adapter->vf_data[i].tx_rate,
7455 actual_link_speed);
7456 }
7457}
7458
8151d294
WM
7459static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7460{
17dc566c
LL
7461 struct igb_adapter *adapter = netdev_priv(netdev);
7462 struct e1000_hw *hw = &adapter->hw;
7463 int actual_link_speed;
7464
7465 if (hw->mac.type != e1000_82576)
7466 return -EOPNOTSUPP;
7467
7468 actual_link_speed = igb_link_mbps(adapter->link_speed);
7469 if ((vf >= adapter->vfs_allocated_count) ||
7470 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7471 (tx_rate < 0) || (tx_rate > actual_link_speed))
7472 return -EINVAL;
7473
7474 adapter->vf_rate_link_speed = actual_link_speed;
7475 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7476 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7477
7478 return 0;
8151d294
WM
7479}
7480
7481static int igb_ndo_get_vf_config(struct net_device *netdev,
7482 int vf, struct ifla_vf_info *ivi)
7483{
7484 struct igb_adapter *adapter = netdev_priv(netdev);
7485 if (vf >= adapter->vfs_allocated_count)
7486 return -EINVAL;
7487 ivi->vf = vf;
7488 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7489 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7490 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7491 ivi->qos = adapter->vf_data[vf].pf_qos;
7492 return 0;
7493}
7494
4ae196df
AD
7495static void igb_vmm_control(struct igb_adapter *adapter)
7496{
7497 struct e1000_hw *hw = &adapter->hw;
10d8e907 7498 u32 reg;
4ae196df 7499
52a1dd4d
AD
7500 switch (hw->mac.type) {
7501 case e1000_82575:
f96a8a0b
CW
7502 case e1000_i210:
7503 case e1000_i211:
52a1dd4d
AD
7504 default:
7505 /* replication is not supported for 82575 */
4ae196df 7506 return;
52a1dd4d
AD
7507 case e1000_82576:
7508 /* notify HW that the MAC is adding vlan tags */
7509 reg = rd32(E1000_DTXCTL);
7510 reg |= E1000_DTXCTL_VLAN_ADDED;
7511 wr32(E1000_DTXCTL, reg);
7512 case e1000_82580:
7513 /* enable replication vlan tag stripping */
7514 reg = rd32(E1000_RPLOLR);
7515 reg |= E1000_RPLOLR_STRVLAN;
7516 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7517 case e1000_i350:
7518 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7519 break;
7520 }
10d8e907 7521
d4960307
AD
7522 if (adapter->vfs_allocated_count) {
7523 igb_vmdq_set_loopback_pf(hw, true);
7524 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
7525 igb_vmdq_set_anti_spoofing_pf(hw, true,
7526 adapter->vfs_allocated_count);
d4960307
AD
7527 } else {
7528 igb_vmdq_set_loopback_pf(hw, false);
7529 igb_vmdq_set_replication_pf(hw, false);
7530 }
4ae196df
AD
7531}
7532
b6e0c419
CW
7533static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7534{
7535 struct e1000_hw *hw = &adapter->hw;
7536 u32 dmac_thr;
7537 u16 hwm;
7538
7539 if (hw->mac.type > e1000_82580) {
7540 if (adapter->flags & IGB_FLAG_DMAC) {
7541 u32 reg;
7542
7543 /* force threshold to 0. */
7544 wr32(E1000_DMCTXTH, 0);
7545
7546 /*
e8c626e9
MV
7547 * DMA Coalescing high water mark needs to be greater
7548 * than the Rx threshold. Set hwm to PBA - max frame
7549 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7550 */
e8c626e9
MV
7551 hwm = 64 * pba - adapter->max_frame_size / 16;
7552 if (hwm < 64 * (pba - 6))
7553 hwm = 64 * (pba - 6);
7554 reg = rd32(E1000_FCRTC);
7555 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7556 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7557 & E1000_FCRTC_RTH_COAL_MASK);
7558 wr32(E1000_FCRTC, reg);
7559
7560 /*
7561 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7562 * frame size, capping it at PBA - 10KB.
7563 */
7564 dmac_thr = pba - adapter->max_frame_size / 512;
7565 if (dmac_thr < pba - 10)
7566 dmac_thr = pba - 10;
b6e0c419
CW
7567 reg = rd32(E1000_DMACR);
7568 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7569 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7570 & E1000_DMACR_DMACTHR_MASK);
7571
7572 /* transition to L0x or L1 if available..*/
7573 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7574
7575 /* watchdog timer= +-1000 usec in 32usec intervals */
7576 reg |= (1000 >> 5);
0c02dd98
MV
7577
7578 /* Disable BMC-to-OS Watchdog Enable */
7579 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
b6e0c419
CW
7580 wr32(E1000_DMACR, reg);
7581
7582 /*
7583 * no lower threshold to disable
7584 * coalescing(smart fifb)-UTRESH=0
7585 */
7586 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7587
7588 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7589
7590 wr32(E1000_DMCTLX, reg);
7591
7592 /*
7593 * free space in tx packet buffer to wake from
7594 * DMA coal
7595 */
7596 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7597 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7598
7599 /*
7600 * make low power state decision controlled
7601 * by DMA coal
7602 */
7603 reg = rd32(E1000_PCIEMISC);
7604 reg &= ~E1000_PCIEMISC_LX_DECISION;
7605 wr32(E1000_PCIEMISC, reg);
7606 } /* endif adapter->dmac is not disabled */
7607 } else if (hw->mac.type == e1000_82580) {
7608 u32 reg = rd32(E1000_PCIEMISC);
7609 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7610 wr32(E1000_DMACR, 0);
7611 }
7612}
7613
441fc6fd
CW
7614/* igb_read_i2c_byte - Reads 8 bit word over I2C
7615 * @hw: pointer to hardware structure
7616 * @byte_offset: byte offset to read
7617 * @dev_addr: device address
7618 * @data: value read
7619 *
7620 * Performs byte read operation over I2C interface at
7621 * a specified device address.
7622 */
7623s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7624 u8 dev_addr, u8 *data)
7625{
7626 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7627 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7628 s32 status;
7629 u16 swfw_mask = 0;
7630
7631 if (!this_client)
7632 return E1000_ERR_I2C;
7633
7634 swfw_mask = E1000_SWFW_PHY0_SM;
7635
7636 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7637 != E1000_SUCCESS)
7638 return E1000_ERR_SWFW_SYNC;
7639
7640 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7641 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7642
7643 if (status < 0)
7644 return E1000_ERR_I2C;
7645 else {
7646 *data = status;
7647 return E1000_SUCCESS;
7648 }
7649}
7650
7651/* igb_write_i2c_byte - Writes 8 bit word over I2C
7652 * @hw: pointer to hardware structure
7653 * @byte_offset: byte offset to write
7654 * @dev_addr: device address
7655 * @data: value to write
7656 *
7657 * Performs byte write operation over I2C interface at
7658 * a specified device address.
7659 */
7660s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7661 u8 dev_addr, u8 data)
7662{
7663 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7664 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7665 s32 status;
7666 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7667
7668 if (!this_client)
7669 return E1000_ERR_I2C;
7670
7671 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7672 return E1000_ERR_SWFW_SYNC;
7673 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7674 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7675
7676 if (status)
7677 return E1000_ERR_I2C;
7678 else
7679 return E1000_SUCCESS;
7680
7681}
9d5c8243 7682/* igb_main.c */