virtio_net: Fix mis-merge.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / chelsio / sge.c
CommitLineData
8199d3a7
CL
1/*****************************************************************************
2 * *
3 * File: sge.c *
559fb51b
SB
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
8199d3a7
CL
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40#include "common.h"
41
8199d3a7
CL
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/pci.h>
f1d3d38a 45#include <linux/ktime.h>
8199d3a7
CL
46#include <linux/netdevice.h>
47#include <linux/etherdevice.h>
48#include <linux/if_vlan.h>
49#include <linux/skbuff.h>
50#include <linux/init.h>
51#include <linux/mm.h>
f1d3d38a 52#include <linux/tcp.h>
8199d3a7
CL
53#include <linux/ip.h>
54#include <linux/in.h>
55#include <linux/if_arp.h>
5a0e3ad6 56#include <linux/slab.h>
8199d3a7
CL
57
58#include "cpl5_cmd.h"
59#include "sge.h"
60#include "regs.h"
61#include "espi.h"
62
f1d3d38a
SH
63/* This belongs in if_ether.h */
64#define ETH_P_CPL5 0xf
8199d3a7
CL
65
66#define SGE_CMDQ_N 2
67#define SGE_FREELQ_N 2
559fb51b 68#define SGE_CMDQ0_E_N 1024
8199d3a7
CL
69#define SGE_CMDQ1_E_N 128
70#define SGE_FREEL_SIZE 4096
71#define SGE_JUMBO_FREEL_SIZE 512
72#define SGE_FREEL_REFILL_THRESH 16
73#define SGE_RESPQ_E_N 1024
559fb51b 74#define SGE_INTRTIMER_NRES 1000
8199d3a7 75#define SGE_RX_SM_BUF_SIZE 1536
f1d3d38a 76#define SGE_TX_DESC_MAX_PLEN 16384
8199d3a7 77
559fb51b
SB
78#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
79
80/*
81 * Period of the TX buffer reclaim timer. This timer does not need to run
82 * frequently as TX buffers are usually reclaimed by new TX packets.
83 */
84#define TX_RECLAIM_PERIOD (HZ / 4)
8199d3a7 85
559fb51b
SB
86#define M_CMD_LEN 0x7fffffff
87#define V_CMD_LEN(v) (v)
88#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
89#define V_CMD_GEN1(v) ((v) << 31)
90#define V_CMD_GEN2(v) (v)
91#define F_CMD_DATAVALID (1 << 1)
92#define F_CMD_SOP (1 << 2)
93#define V_CMD_EOP(v) ((v) << 3)
94
8199d3a7 95/*
559fb51b 96 * Command queue, receive buffer list, and response queue descriptors.
8199d3a7
CL
97 */
98#if defined(__BIG_ENDIAN_BITFIELD)
99struct cmdQ_e {
559fb51b
SB
100 u32 addr_lo;
101 u32 len_gen;
102 u32 flags;
103 u32 addr_hi;
8199d3a7
CL
104};
105
106struct freelQ_e {
559fb51b
SB
107 u32 addr_lo;
108 u32 len_gen;
109 u32 gen2;
110 u32 addr_hi;
8199d3a7
CL
111};
112
113struct respQ_e {
114 u32 Qsleeping : 4;
115 u32 Cmdq1CreditReturn : 5;
116 u32 Cmdq1DmaComplete : 5;
117 u32 Cmdq0CreditReturn : 5;
118 u32 Cmdq0DmaComplete : 5;
119 u32 FreelistQid : 2;
120 u32 CreditValid : 1;
121 u32 DataValid : 1;
122 u32 Offload : 1;
123 u32 Eop : 1;
124 u32 Sop : 1;
125 u32 GenerationBit : 1;
126 u32 BufferLength;
127};
8199d3a7
CL
128#elif defined(__LITTLE_ENDIAN_BITFIELD)
129struct cmdQ_e {
559fb51b
SB
130 u32 len_gen;
131 u32 addr_lo;
132 u32 addr_hi;
133 u32 flags;
8199d3a7
CL
134};
135
136struct freelQ_e {
559fb51b
SB
137 u32 len_gen;
138 u32 addr_lo;
139 u32 addr_hi;
140 u32 gen2;
8199d3a7
CL
141};
142
143struct respQ_e {
144 u32 BufferLength;
145 u32 GenerationBit : 1;
146 u32 Sop : 1;
147 u32 Eop : 1;
148 u32 Offload : 1;
149 u32 DataValid : 1;
150 u32 CreditValid : 1;
151 u32 FreelistQid : 2;
152 u32 Cmdq0DmaComplete : 5;
153 u32 Cmdq0CreditReturn : 5;
154 u32 Cmdq1DmaComplete : 5;
155 u32 Cmdq1CreditReturn : 5;
156 u32 Qsleeping : 4;
157} ;
158#endif
159
160/*
161 * SW Context Command and Freelist Queue Descriptors
162 */
163struct cmdQ_ce {
164 struct sk_buff *skb;
094f92a6
FT
165 DEFINE_DMA_UNMAP_ADDR(dma_addr);
166 DEFINE_DMA_UNMAP_LEN(dma_len);
8199d3a7
CL
167};
168
169struct freelQ_ce {
170 struct sk_buff *skb;
094f92a6
FT
171 DEFINE_DMA_UNMAP_ADDR(dma_addr);
172 DEFINE_DMA_UNMAP_LEN(dma_len);
8199d3a7
CL
173};
174
175/*
559fb51b 176 * SW command, freelist and response rings
8199d3a7
CL
177 */
178struct cmdQ {
559fb51b
SB
179 unsigned long status; /* HW DMA fetch status */
180 unsigned int in_use; /* # of in-use command descriptors */
181 unsigned int size; /* # of descriptors */
f1d3d38a
SH
182 unsigned int processed; /* total # of descs HW has processed */
183 unsigned int cleaned; /* total # of descs SW has reclaimed */
184 unsigned int stop_thres; /* SW TX queue suspend threshold */
559fb51b
SB
185 u16 pidx; /* producer index (SW) */
186 u16 cidx; /* consumer index (HW) */
187 u8 genbit; /* current generation (=valid) bit */
f1d3d38a 188 u8 sop; /* is next entry start of packet? */
559fb51b
SB
189 struct cmdQ_e *entries; /* HW command descriptor Q */
190 struct cmdQ_ce *centries; /* SW command context descriptor Q */
559fb51b 191 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
356bd146 192 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
8199d3a7
CL
193};
194
195struct freelQ {
559fb51b
SB
196 unsigned int credits; /* # of available RX buffers */
197 unsigned int size; /* free list capacity */
198 u16 pidx; /* producer index (SW) */
199 u16 cidx; /* consumer index (HW) */
8199d3a7 200 u16 rx_buffer_size; /* Buffer size on this free list */
f1d3d38a
SH
201 u16 dma_offset; /* DMA offset to align IP headers */
202 u16 recycleq_idx; /* skb recycle q to use */
559fb51b
SB
203 u8 genbit; /* current generation (=valid) bit */
204 struct freelQ_e *entries; /* HW freelist descriptor Q */
205 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
206 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
8199d3a7
CL
207};
208
209struct respQ {
559fb51b
SB
210 unsigned int credits; /* credits to be returned to SGE */
211 unsigned int size; /* # of response Q descriptors */
212 u16 cidx; /* consumer index (SW) */
213 u8 genbit; /* current generation(=valid) bit */
8199d3a7 214 struct respQ_e *entries; /* HW response descriptor Q */
559fb51b
SB
215 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
216};
217
218/* Bit flags for cmdQ.status */
219enum {
220 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
221 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
8199d3a7
CL
222};
223
f1d3d38a
SH
224/* T204 TX SW scheduler */
225
226/* Per T204 TX port */
227struct sched_port {
228 unsigned int avail; /* available bits - quota */
229 unsigned int drain_bits_per_1024ns; /* drain rate */
230 unsigned int speed; /* drain rate, mbps */
231 unsigned int mtu; /* mtu size */
232 struct sk_buff_head skbq; /* pending skbs */
233};
234
235/* Per T204 device */
236struct sched {
237 ktime_t last_updated; /* last time quotas were computed */
356bd146
FR
238 unsigned int max_avail; /* max bits to be sent to any port */
239 unsigned int port; /* port index (round robin ports) */
240 unsigned int num; /* num skbs in per port queues */
f1d3d38a
SH
241 struct sched_port p[MAX_NPORTS];
242 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
243};
244static void restart_sched(unsigned long);
245
246
8199d3a7
CL
247/*
248 * Main SGE data structure
249 *
250 * Interrupts are handled by a single CPU and it is likely that on a MP system
251 * the application is migrated to another CPU. In that scenario, we try to
3ad2f3fb 252 * separate the RX(in irq context) and TX state in order to decrease memory
8199d3a7
CL
253 * contention.
254 */
255struct sge {
356bd146 256 struct adapter *adapter; /* adapter backpointer */
559fb51b 257 struct net_device *netdev; /* netdevice backpointer */
356bd146
FR
258 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
259 struct respQ respQ; /* response Q */
559fb51b 260 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
8199d3a7
CL
261 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
262 unsigned int jumbo_fl; /* jumbo freelist Q index */
559fb51b 263 unsigned int intrtimer_nres; /* no-resource interrupt timer */
f1d3d38a 264 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
559fb51b
SB
265 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
266 struct timer_list espibug_timer;
f1d3d38a
SH
267 unsigned long espibug_timeout;
268 struct sk_buff *espibug_skb[MAX_NPORTS];
559fb51b
SB
269 u32 sge_control; /* shadow value of sge control reg */
270 struct sge_intr_counts stats;
47d74275 271 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
f1d3d38a 272 struct sched *tx_sched;
559fb51b 273 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
8199d3a7
CL
274};
275
f1d3d38a
SH
276/*
277 * stop tasklet and free all pending skb's
278 */
279static void tx_sched_stop(struct sge *sge)
280{
281 struct sched *s = sge->tx_sched;
282 int i;
283
284 tasklet_kill(&s->sched_tsk);
285
286 for (i = 0; i < MAX_NPORTS; i++)
287 __skb_queue_purge(&s->p[s->port].skbq);
288}
289
290/*
291 * t1_sched_update_parms() is called when the MTU or link speed changes. It
292 * re-computes scheduler parameters to scope with the change.
293 */
294unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
295 unsigned int mtu, unsigned int speed)
296{
297 struct sched *s = sge->tx_sched;
298 struct sched_port *p = &s->p[port];
299 unsigned int max_avail_segs;
300
301 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
302 if (speed)
303 p->speed = speed;
304 if (mtu)
305 p->mtu = mtu;
306
307 if (speed || mtu) {
308 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
309 do_div(drain, (p->mtu + 50) * 1000);
310 p->drain_bits_per_1024ns = (unsigned int) drain;
311
312 if (p->speed < 1000)
313 p->drain_bits_per_1024ns =
314 90 * p->drain_bits_per_1024ns / 100;
315 }
316
317 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
318 p->drain_bits_per_1024ns -= 16;
319 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
320 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
321 } else {
322 s->max_avail = 16384;
323 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
324 }
325
326 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
327 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
328 p->speed, s->max_avail, max_avail_segs,
329 p->drain_bits_per_1024ns);
330
331 return max_avail_segs * (p->mtu - 40);
332}
333
68d579fb
AB
334#if 0
335
f1d3d38a
SH
336/*
337 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
338 * data that can be pushed per port.
339 */
340void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
341{
342 struct sched *s = sge->tx_sched;
343 unsigned int i;
344
345 s->max_avail = val;
346 for (i = 0; i < MAX_NPORTS; i++)
347 t1_sched_update_parms(sge, i, 0, 0);
348}
349
350/*
351 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
352 * is draining.
353 */
354void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
355 unsigned int val)
356{
357 struct sched *s = sge->tx_sched;
358 struct sched_port *p = &s->p[port];
359 p->drain_bits_per_1024ns = val * 1024 / 1000;
360 t1_sched_update_parms(sge, port, 0, 0);
361}
362
68d579fb
AB
363#endif /* 0 */
364
f1d3d38a
SH
365
366/*
367 * get_clock() implements a ns clock (see ktime_get)
368 */
369static inline ktime_t get_clock(void)
370{
371 struct timespec ts;
372
373 ktime_get_ts(&ts);
374 return timespec_to_ktime(ts);
375}
376
377/*
378 * tx_sched_init() allocates resources and does basic initialization.
379 */
380static int tx_sched_init(struct sge *sge)
381{
382 struct sched *s;
383 int i;
384
385 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
386 if (!s)
387 return -ENOMEM;
388
389 pr_debug("tx_sched_init\n");
390 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
391 sge->tx_sched = s;
392
393 for (i = 0; i < MAX_NPORTS; i++) {
394 skb_queue_head_init(&s->p[i].skbq);
395 t1_sched_update_parms(sge, i, 1500, 1000);
396 }
397
398 return 0;
399}
400
401/*
402 * sched_update_avail() computes the delta since the last time it was called
403 * and updates the per port quota (number of bits that can be sent to the any
404 * port).
405 */
406static inline int sched_update_avail(struct sge *sge)
407{
408 struct sched *s = sge->tx_sched;
409 ktime_t now = get_clock();
410 unsigned int i;
411 long long delta_time_ns;
412
413 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
414
415 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
416 if (delta_time_ns < 15000)
417 return 0;
418
419 for (i = 0; i < MAX_NPORTS; i++) {
420 struct sched_port *p = &s->p[i];
421 unsigned int delta_avail;
422
423 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
424 p->avail = min(p->avail + delta_avail, s->max_avail);
425 }
426
427 s->last_updated = now;
428
429 return 1;
430}
431
432/*
433 * sched_skb() is called from two different places. In the tx path, any
434 * packet generating load on an output port will call sched_skb()
435 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
436 * context (skb == NULL).
437 * The scheduler only returns a skb (which will then be sent) if the
438 * length of the skb is <= the current quota of the output port.
439 */
440static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
441 unsigned int credits)
442{
443 struct sched *s = sge->tx_sched;
444 struct sk_buff_head *skbq;
445 unsigned int i, len, update = 1;
446
447 pr_debug("sched_skb %p\n", skb);
448 if (!skb) {
449 if (!s->num)
450 return NULL;
451 } else {
452 skbq = &s->p[skb->dev->if_port].skbq;
453 __skb_queue_tail(skbq, skb);
454 s->num++;
455 skb = NULL;
456 }
457
458 if (credits < MAX_SKB_FRAGS + 1)
459 goto out;
460
356bd146 461again:
f1d3d38a 462 for (i = 0; i < MAX_NPORTS; i++) {
18d777a5 463 s->port = (s->port + 1) & (MAX_NPORTS - 1);
f1d3d38a
SH
464 skbq = &s->p[s->port].skbq;
465
466 skb = skb_peek(skbq);
467
468 if (!skb)
469 continue;
470
471 len = skb->len;
472 if (len <= s->p[s->port].avail) {
473 s->p[s->port].avail -= len;
474 s->num--;
475 __skb_unlink(skb, skbq);
476 goto out;
477 }
478 skb = NULL;
479 }
480
481 if (update-- && sched_update_avail(sge))
482 goto again;
483
356bd146
FR
484out:
485 /* If there are more pending skbs, we use the hardware to schedule us
f1d3d38a
SH
486 * again.
487 */
488 if (s->num && !skb) {
489 struct cmdQ *q = &sge->cmdQ[0];
490 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
491 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
492 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
493 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
494 }
495 }
496 pr_debug("sched_skb ret %p\n", skb);
497
498 return skb;
499}
500
8199d3a7
CL
501/*
502 * PIO to indicate that memory mapped Q contains valid descriptor(s).
503 */
559fb51b 504static inline void doorbell_pio(struct adapter *adapter, u32 val)
8199d3a7
CL
505{
506 wmb();
559fb51b 507 writel(val, adapter->regs + A_SG_DOORBELL);
8199d3a7
CL
508}
509
510/*
511 * Frees all RX buffers on the freelist Q. The caller must make sure that
512 * the SGE is turned off before calling this function.
513 */
559fb51b 514static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
8199d3a7 515{
559fb51b 516 unsigned int cidx = q->cidx;
8199d3a7 517
559fb51b
SB
518 while (q->credits--) {
519 struct freelQ_ce *ce = &q->centries[cidx];
8199d3a7 520
094f92a6
FT
521 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
522 dma_unmap_len(ce, dma_len),
8199d3a7
CL
523 PCI_DMA_FROMDEVICE);
524 dev_kfree_skb(ce->skb);
525 ce->skb = NULL;
559fb51b 526 if (++cidx == q->size)
8199d3a7
CL
527 cidx = 0;
528 }
529}
530
531/*
532 * Free RX free list and response queue resources.
533 */
534static void free_rx_resources(struct sge *sge)
535{
536 struct pci_dev *pdev = sge->adapter->pdev;
537 unsigned int size, i;
538
539 if (sge->respQ.entries) {
559fb51b 540 size = sizeof(struct respQ_e) * sge->respQ.size;
8199d3a7
CL
541 pci_free_consistent(pdev, size, sge->respQ.entries,
542 sge->respQ.dma_addr);
543 }
544
545 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b 546 struct freelQ *q = &sge->freelQ[i];
8199d3a7 547
559fb51b
SB
548 if (q->centries) {
549 free_freelQ_buffers(pdev, q);
550 kfree(q->centries);
8199d3a7 551 }
559fb51b
SB
552 if (q->entries) {
553 size = sizeof(struct freelQ_e) * q->size;
554 pci_free_consistent(pdev, size, q->entries,
555 q->dma_addr);
8199d3a7
CL
556 }
557 }
558}
559
560/*
561 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
559fb51b 562 * response queue.
8199d3a7
CL
563 */
564static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
565{
566 struct pci_dev *pdev = sge->adapter->pdev;
567 unsigned int size, i;
568
569 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b
SB
570 struct freelQ *q = &sge->freelQ[i];
571
572 q->genbit = 1;
573 q->size = p->freelQ_size[i];
574 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
575 size = sizeof(struct freelQ_e) * q->size;
3e0f75be 576 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
559fb51b 577 if (!q->entries)
8199d3a7 578 goto err_no_mem;
3e0f75be 579
559fb51b 580 size = sizeof(struct freelQ_ce) * q->size;
cbee9f91 581 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 582 if (!q->centries)
8199d3a7
CL
583 goto err_no_mem;
584 }
585
586 /*
587 * Calculate the buffer sizes for the two free lists. FL0 accommodates
588 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
589 * including all the sk_buff overhead.
590 *
591 * Note: For T2 FL0 and FL1 are reversed.
592 */
593 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
594 sizeof(struct cpl_rx_data) +
595 sge->freelQ[!sge->jumbo_fl].dma_offset;
f1d3d38a
SH
596
597 size = (16 * 1024) -
598 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
599
600 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
8199d3a7 601
559fb51b
SB
602 /*
603 * Setup which skb recycle Q should be used when recycling buffers from
604 * each free list.
605 */
606 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
607 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
608
8199d3a7 609 sge->respQ.genbit = 1;
559fb51b
SB
610 sge->respQ.size = SGE_RESPQ_E_N;
611 sge->respQ.credits = 0;
612 size = sizeof(struct respQ_e) * sge->respQ.size;
3e0f75be 613 sge->respQ.entries =
8199d3a7
CL
614 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
615 if (!sge->respQ.entries)
616 goto err_no_mem;
8199d3a7
CL
617 return 0;
618
619err_no_mem:
620 free_rx_resources(sge);
621 return -ENOMEM;
622}
623
624/*
559fb51b 625 * Reclaims n TX descriptors and frees the buffers associated with them.
8199d3a7 626 */
559fb51b 627static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
8199d3a7 628{
559fb51b 629 struct cmdQ_ce *ce;
8199d3a7 630 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b 631 unsigned int cidx = q->cidx;
8199d3a7 632
559fb51b
SB
633 q->in_use -= n;
634 ce = &q->centries[cidx];
635 while (n--) {
094f92a6
FT
636 if (likely(dma_unmap_len(ce, dma_len))) {
637 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
638 dma_unmap_len(ce, dma_len),
3e0f75be
FR
639 PCI_DMA_TODEVICE);
640 if (q->sop)
f1d3d38a 641 q->sop = 0;
f1d3d38a 642 }
559fb51b 643 if (ce->skb) {
f1d3d38a 644 dev_kfree_skb_any(ce->skb);
559fb51b
SB
645 q->sop = 1;
646 }
8199d3a7 647 ce++;
559fb51b 648 if (++cidx == q->size) {
8199d3a7 649 cidx = 0;
559fb51b 650 ce = q->centries;
8199d3a7
CL
651 }
652 }
559fb51b 653 q->cidx = cidx;
8199d3a7
CL
654}
655
656/*
657 * Free TX resources.
658 *
659 * Assumes that SGE is stopped and all interrupts are disabled.
660 */
661static void free_tx_resources(struct sge *sge)
662{
663 struct pci_dev *pdev = sge->adapter->pdev;
664 unsigned int size, i;
665
666 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b 667 struct cmdQ *q = &sge->cmdQ[i];
8199d3a7 668
559fb51b
SB
669 if (q->centries) {
670 if (q->in_use)
671 free_cmdQ_buffers(sge, q, q->in_use);
672 kfree(q->centries);
8199d3a7 673 }
559fb51b
SB
674 if (q->entries) {
675 size = sizeof(struct cmdQ_e) * q->size;
676 pci_free_consistent(pdev, size, q->entries,
677 q->dma_addr);
8199d3a7
CL
678 }
679 }
680}
681
682/*
683 * Allocates basic TX resources, consisting of memory mapped command Qs.
684 */
685static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
686{
687 struct pci_dev *pdev = sge->adapter->pdev;
688 unsigned int size, i;
689
690 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b
SB
691 struct cmdQ *q = &sge->cmdQ[i];
692
693 q->genbit = 1;
694 q->sop = 1;
695 q->size = p->cmdQ_size[i];
696 q->in_use = 0;
697 q->status = 0;
698 q->processed = q->cleaned = 0;
699 q->stop_thres = 0;
700 spin_lock_init(&q->lock);
701 size = sizeof(struct cmdQ_e) * q->size;
3e0f75be 702 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
559fb51b 703 if (!q->entries)
8199d3a7 704 goto err_no_mem;
3e0f75be 705
559fb51b 706 size = sizeof(struct cmdQ_ce) * q->size;
cbee9f91 707 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 708 if (!q->centries)
8199d3a7
CL
709 goto err_no_mem;
710 }
711
559fb51b
SB
712 /*
713 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
714 * only. For queue 0 set the stop threshold so we can handle one more
715 * packet from each port, plus reserve an additional 24 entries for
716 * Ethernet packets only. Queue 1 never suspends nor do we reserve
717 * space for Ethernet packets.
718 */
719 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
720 (MAX_SKB_FRAGS + 1);
8199d3a7
CL
721 return 0;
722
723err_no_mem:
724 free_tx_resources(sge);
725 return -ENOMEM;
726}
727
728static inline void setup_ring_params(struct adapter *adapter, u64 addr,
729 u32 size, int base_reg_lo,
730 int base_reg_hi, int size_reg)
731{
559fb51b
SB
732 writel((u32)addr, adapter->regs + base_reg_lo);
733 writel(addr >> 32, adapter->regs + base_reg_hi);
734 writel(size, adapter->regs + size_reg);
8199d3a7
CL
735}
736
737/*
738 * Enable/disable VLAN acceleration.
739 */
740void t1_set_vlan_accel(struct adapter *adapter, int on_off)
741{
742 struct sge *sge = adapter->sge;
743
744 sge->sge_control &= ~F_VLAN_XTRACT;
745 if (on_off)
746 sge->sge_control |= F_VLAN_XTRACT;
747 if (adapter->open_device_map) {
559fb51b 748 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
f1d3d38a 749 readl(adapter->regs + A_SG_CONTROL); /* flush */
8199d3a7
CL
750 }
751}
752
8199d3a7
CL
753/*
754 * Programs the various SGE registers. However, the engine is not yet enabled,
755 * but sge->sge_control is setup and ready to go.
756 */
757static void configure_sge(struct sge *sge, struct sge_params *p)
758{
759 struct adapter *ap = sge->adapter;
356bd146 760
559fb51b
SB
761 writel(0, ap->regs + A_SG_CONTROL);
762 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
8199d3a7 763 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
559fb51b 764 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
8199d3a7
CL
765 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
766 setup_ring_params(ap, sge->freelQ[0].dma_addr,
559fb51b 767 sge->freelQ[0].size, A_SG_FL0BASELWR,
8199d3a7
CL
768 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
769 setup_ring_params(ap, sge->freelQ[1].dma_addr,
559fb51b 770 sge->freelQ[1].size, A_SG_FL1BASELWR,
8199d3a7
CL
771 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
772
773 /* The threshold comparison uses <. */
559fb51b 774 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
8199d3a7 775
559fb51b
SB
776 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
777 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
778 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
8199d3a7
CL
779
780 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
781 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
782 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
783 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
784
785#if defined(__BIG_ENDIAN_BITFIELD)
786 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
787#endif
788
559fb51b
SB
789 /* Initialize no-resource timer */
790 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
791
792 t1_sge_set_coalesce_params(sge, p);
8199d3a7
CL
793}
794
795/*
796 * Return the payload capacity of the jumbo free-list buffers.
797 */
798static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
799{
800 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
559fb51b
SB
801 sge->freelQ[sge->jumbo_fl].dma_offset -
802 sizeof(struct cpl_rx_data);
8199d3a7
CL
803}
804
805/*
806 * Frees all SGE related resources and the sge structure itself
807 */
808void t1_sge_destroy(struct sge *sge)
809{
56f643c2
SH
810 int i;
811
812 for_each_port(sge->adapter, i)
813 free_percpu(sge->port_stats[i]);
814
f1d3d38a 815 kfree(sge->tx_sched);
8199d3a7
CL
816 free_tx_resources(sge);
817 free_rx_resources(sge);
818 kfree(sge);
819}
820
821/*
822 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
823 * context Q) until the Q is full or alloc_skb fails.
824 *
825 * It is possible that the generation bits already match, indicating that the
826 * buffer is already valid and nothing needs to be done. This happens when we
827 * copied a received buffer into a new sk_buff during the interrupt processing.
828 *
829 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
830 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
831 * aligned.
832 */
559fb51b 833static void refill_free_list(struct sge *sge, struct freelQ *q)
8199d3a7
CL
834{
835 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b
SB
836 struct freelQ_ce *ce = &q->centries[q->pidx];
837 struct freelQ_e *e = &q->entries[q->pidx];
838 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
8199d3a7 839
559fb51b
SB
840 while (q->credits < q->size) {
841 struct sk_buff *skb;
842 dma_addr_t mapping;
8199d3a7 843
559fb51b
SB
844 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
845 if (!skb)
846 break;
847
848 skb_reserve(skb, q->dma_offset);
849 mapping = pci_map_single(pdev, skb->data, dma_len,
850 PCI_DMA_FROMDEVICE);
24a427cf
SH
851 skb_reserve(skb, sge->rx_pkt_pad);
852
559fb51b 853 ce->skb = skb;
094f92a6
FT
854 dma_unmap_addr_set(ce, dma_addr, mapping);
855 dma_unmap_len_set(ce, dma_len, dma_len);
559fb51b
SB
856 e->addr_lo = (u32)mapping;
857 e->addr_hi = (u64)mapping >> 32;
858 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
859 wmb();
860 e->gen2 = V_CMD_GEN2(q->genbit);
8199d3a7
CL
861
862 e++;
863 ce++;
559fb51b
SB
864 if (++q->pidx == q->size) {
865 q->pidx = 0;
866 q->genbit ^= 1;
867 ce = q->centries;
868 e = q->entries;
8199d3a7 869 }
559fb51b 870 q->credits++;
8199d3a7 871 }
8199d3a7
CL
872}
873
874/*
559fb51b
SB
875 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
876 * of both rings, we go into 'few interrupt mode' in order to give the system
877 * time to free up resources.
8199d3a7
CL
878 */
879static void freelQs_empty(struct sge *sge)
880{
559fb51b
SB
881 struct adapter *adapter = sge->adapter;
882 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
883 u32 irqholdoff_reg;
884
885 refill_free_list(sge, &sge->freelQ[0]);
886 refill_free_list(sge, &sge->freelQ[1]);
887
559fb51b
SB
888 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
889 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
8199d3a7 890 irq_reg |= F_FL_EXHAUSTED;
559fb51b 891 irqholdoff_reg = sge->fixed_intrtimer;
8199d3a7
CL
892 } else {
893 /* Clear the F_FL_EXHAUSTED interrupts for now */
894 irq_reg &= ~F_FL_EXHAUSTED;
895 irqholdoff_reg = sge->intrtimer_nres;
896 }
559fb51b
SB
897 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
898 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
899
900 /* We reenable the Qs to force a freelist GTS interrupt later */
559fb51b 901 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
8199d3a7
CL
902}
903
904#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
905#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
906#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
907 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
908
909/*
910 * Disable SGE Interrupts
911 */
912void t1_sge_intr_disable(struct sge *sge)
913{
559fb51b 914 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7 915
559fb51b
SB
916 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
917 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
918}
919
920/*
921 * Enable SGE interrupts.
922 */
923void t1_sge_intr_enable(struct sge *sge)
924{
925 u32 en = SGE_INT_ENABLE;
559fb51b 926 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
927
928 if (sge->adapter->flags & TSO_CAPABLE)
929 en &= ~F_PACKET_TOO_BIG;
559fb51b
SB
930 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
931 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
932}
933
934/*
935 * Clear SGE interrupts.
936 */
937void t1_sge_intr_clear(struct sge *sge)
938{
559fb51b
SB
939 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
940 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
941}
942
943/*
944 * SGE 'Error' interrupt handler
945 */
946int t1_sge_intr_error_handler(struct sge *sge)
947{
948 struct adapter *adapter = sge->adapter;
559fb51b 949 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
950
951 if (adapter->flags & TSO_CAPABLE)
952 cause &= ~F_PACKET_TOO_BIG;
953 if (cause & F_RESPQ_EXHAUSTED)
559fb51b 954 sge->stats.respQ_empty++;
8199d3a7 955 if (cause & F_RESPQ_OVERFLOW) {
559fb51b 956 sge->stats.respQ_overflow++;
c1f51212 957 pr_alert("%s: SGE response queue overflow\n",
8199d3a7
CL
958 adapter->name);
959 }
960 if (cause & F_FL_EXHAUSTED) {
559fb51b 961 sge->stats.freelistQ_empty++;
8199d3a7
CL
962 freelQs_empty(sge);
963 }
964 if (cause & F_PACKET_TOO_BIG) {
559fb51b 965 sge->stats.pkt_too_big++;
c1f51212 966 pr_alert("%s: SGE max packet size exceeded\n",
8199d3a7
CL
967 adapter->name);
968 }
969 if (cause & F_PACKET_MISMATCH) {
559fb51b 970 sge->stats.pkt_mismatch++;
c1f51212 971 pr_alert("%s: SGE packet mismatch\n", adapter->name);
8199d3a7
CL
972 }
973 if (cause & SGE_INT_FATAL)
974 t1_fatal_err(adapter);
975
559fb51b 976 writel(cause, adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
977 return 0;
978}
979
56f643c2 980const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
559fb51b
SB
981{
982 return &sge->stats;
983}
984
56f643c2
SH
985void t1_sge_get_port_stats(const struct sge *sge, int port,
986 struct sge_port_stats *ss)
559fb51b 987{
56f643c2
SH
988 int cpu;
989
990 memset(ss, 0, sizeof(*ss));
991 for_each_possible_cpu(cpu) {
992 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
993
56f643c2 994 ss->rx_cso_good += st->rx_cso_good;
56f643c2
SH
995 ss->tx_cso += st->tx_cso;
996 ss->tx_tso += st->tx_tso;
7832ee03 997 ss->tx_need_hdrroom += st->tx_need_hdrroom;
56f643c2
SH
998 ss->vlan_xtract += st->vlan_xtract;
999 ss->vlan_insert += st->vlan_insert;
1000 }
559fb51b
SB
1001}
1002
1003/**
1004 * recycle_fl_buf - recycle a free list buffer
1005 * @fl: the free list
1006 * @idx: index of buffer to recycle
8199d3a7 1007 *
559fb51b
SB
1008 * Recycles the specified buffer on the given free list by adding it at
1009 * the next available slot on the list.
8199d3a7 1010 */
559fb51b 1011static void recycle_fl_buf(struct freelQ *fl, int idx)
8199d3a7 1012{
559fb51b
SB
1013 struct freelQ_e *from = &fl->entries[idx];
1014 struct freelQ_e *to = &fl->entries[fl->pidx];
8199d3a7 1015
559fb51b
SB
1016 fl->centries[fl->pidx] = fl->centries[idx];
1017 to->addr_lo = from->addr_lo;
1018 to->addr_hi = from->addr_hi;
1019 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1020 wmb();
1021 to->gen2 = V_CMD_GEN2(fl->genbit);
1022 fl->credits++;
8199d3a7 1023
559fb51b
SB
1024 if (++fl->pidx == fl->size) {
1025 fl->pidx = 0;
1026 fl->genbit ^= 1;
8199d3a7 1027 }
559fb51b 1028}
8199d3a7 1029
24a427cf
SH
1030static int copybreak __read_mostly = 256;
1031module_param(copybreak, int, 0);
1032MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1033
559fb51b
SB
1034/**
1035 * get_packet - return the next ingress packet buffer
1036 * @pdev: the PCI device that received the packet
1037 * @fl: the SGE free list holding the packet
1038 * @len: the actual packet length, excluding any SGE padding
559fb51b
SB
1039 *
1040 * Get the next packet from a free list and complete setup of the
1041 * sk_buff. If the packet is small we make a copy and recycle the
1042 * original buffer, otherwise we use the original buffer itself. If a
1043 * positive drop threshold is supplied packets are dropped and their
1044 * buffers recycled if (a) the number of remaining buffers is under the
1045 * threshold and the packet is too big to copy, or (b) the packet should
1046 * be copied but there is no memory for the copy.
1047 */
1048static inline struct sk_buff *get_packet(struct pci_dev *pdev,
24a427cf 1049 struct freelQ *fl, unsigned int len)
559fb51b
SB
1050{
1051 struct sk_buff *skb;
24a427cf 1052 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
559fb51b 1053
24a427cf
SH
1054 if (len < copybreak) {
1055 skb = alloc_skb(len + 2, GFP_ATOMIC);
1056 if (!skb)
1057 goto use_orig_buf;
1058
1059 skb_reserve(skb, 2); /* align IP header */
1060 skb_put(skb, len);
1061 pci_dma_sync_single_for_cpu(pdev,
094f92a6
FT
1062 dma_unmap_addr(ce, dma_addr),
1063 dma_unmap_len(ce, dma_len),
559fb51b 1064 PCI_DMA_FROMDEVICE);
d626f62b 1065 skb_copy_from_linear_data(ce->skb, skb->data, len);
24a427cf 1066 pci_dma_sync_single_for_device(pdev,
094f92a6
FT
1067 dma_unmap_addr(ce, dma_addr),
1068 dma_unmap_len(ce, dma_len),
24a427cf 1069 PCI_DMA_FROMDEVICE);
559fb51b
SB
1070 recycle_fl_buf(fl, fl->cidx);
1071 return skb;
8199d3a7
CL
1072 }
1073
24a427cf
SH
1074use_orig_buf:
1075 if (fl->credits < 2) {
559fb51b
SB
1076 recycle_fl_buf(fl, fl->cidx);
1077 return NULL;
1078 }
8199d3a7 1079
094f92a6
FT
1080 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1081 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
559fb51b 1082 skb = ce->skb;
24a427cf
SH
1083 prefetch(skb->data);
1084
559fb51b
SB
1085 skb_put(skb, len);
1086 return skb;
1087}
8199d3a7 1088
559fb51b
SB
1089/**
1090 * unexpected_offload - handle an unexpected offload packet
1091 * @adapter: the adapter
1092 * @fl: the free list that received the packet
1093 *
1094 * Called when we receive an unexpected offload packet (e.g., the TOE
1095 * function is disabled or the card is a NIC). Prints a message and
1096 * recycles the buffer.
1097 */
1098static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1099{
1100 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1101 struct sk_buff *skb = ce->skb;
1102
094f92a6
FT
1103 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1104 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
c1f51212 1105 pr_err("%s: unexpected offload packet, cmd %u\n",
559fb51b
SB
1106 adapter->name, *skb->data);
1107 recycle_fl_buf(fl, fl->cidx);
8199d3a7
CL
1108}
1109
f1d3d38a
SH
1110/*
1111 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1112 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1113 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1114 * Note that the *_large_page_tx_descs stuff will be optimized out when
1115 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1116 *
1117 * compute_large_page_descs() computes how many additional descriptors are
1118 * required to break down the stack's request.
1119 */
1120static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1121{
1122 unsigned int count = 0;
356bd146 1123
f1d3d38a
SH
1124 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1125 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1126 unsigned int i, len = skb->len - skb->data_len;
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1130 }
1131 for (i = 0; nfrags--; i++) {
1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133 len = frag->size;
1134 while (len > SGE_TX_DESC_MAX_PLEN) {
1135 count++;
1136 len -= SGE_TX_DESC_MAX_PLEN;
1137 }
1138 }
1139 }
1140 return count;
1141}
1142
1143/*
1144 * Write a cmdQ entry.
1145 *
1146 * Since this function writes the 'flags' field, it must not be used to
1147 * write the first cmdQ entry.
1148 */
1149static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1150 unsigned int len, unsigned int gen,
1151 unsigned int eop)
1152{
0ee904c3
AB
1153 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1154
f1d3d38a
SH
1155 e->addr_lo = (u32)mapping;
1156 e->addr_hi = (u64)mapping >> 32;
1157 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1158 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1159}
1160
1161/*
1162 * See comment for previous function.
1163 *
1164 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1165 * *desc_len exceeds HW's capability.
1166 */
1167static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168 struct cmdQ_e **e,
1169 struct cmdQ_ce **ce,
1170 unsigned int *gen,
1171 dma_addr_t *desc_mapping,
1172 unsigned int *desc_len,
1173 unsigned int nfrags,
1174 struct cmdQ *q)
1175{
1176 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1177 struct cmdQ_e *e1 = *e;
1178 struct cmdQ_ce *ce1 = *ce;
1179
1180 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1181 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1182 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1183 *gen, nfrags == 0 && *desc_len == 0);
1184 ce1->skb = NULL;
094f92a6 1185 dma_unmap_len_set(ce1, dma_len, 0);
f1d3d38a
SH
1186 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1187 if (*desc_len) {
1188 ce1++;
1189 e1++;
1190 if (++pidx == q->size) {
1191 pidx = 0;
1192 *gen ^= 1;
1193 ce1 = q->centries;
1194 e1 = q->entries;
1195 }
1196 }
1197 }
1198 *e = e1;
1199 *ce = ce1;
1200 }
1201 return pidx;
1202}
1203
8199d3a7 1204/*
559fb51b
SB
1205 * Write the command descriptors to transmit the given skb starting at
1206 * descriptor pidx with the given generation.
8199d3a7 1207 */
559fb51b
SB
1208static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1209 unsigned int pidx, unsigned int gen,
1210 struct cmdQ *q)
8199d3a7 1211{
f1d3d38a 1212 dma_addr_t mapping, desc_mapping;
559fb51b
SB
1213 struct cmdQ_e *e, *e1;
1214 struct cmdQ_ce *ce;
f1d3d38a
SH
1215 unsigned int i, flags, first_desc_len, desc_len,
1216 nfrags = skb_shinfo(skb)->nr_frags;
559fb51b 1217
f1d3d38a 1218 e = e1 = &q->entries[pidx];
559fb51b 1219 ce = &q->centries[pidx];
f1d3d38a
SH
1220
1221 mapping = pci_map_single(adapter->pdev, skb->data,
1222 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1223
1224 desc_mapping = mapping;
1225 desc_len = skb->len - skb->data_len;
1226
1227 flags = F_CMD_DATAVALID | F_CMD_SOP |
1228 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229 V_CMD_GEN2(gen);
1230 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1231 desc_len : SGE_TX_DESC_MAX_PLEN;
1232 e->addr_lo = (u32)desc_mapping;
1233 e->addr_hi = (u64)desc_mapping >> 32;
1234 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235 ce->skb = NULL;
094f92a6 1236 dma_unmap_len_set(ce, dma_len, 0);
f1d3d38a
SH
1237
1238 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1239 desc_len > SGE_TX_DESC_MAX_PLEN) {
1240 desc_mapping += first_desc_len;
1241 desc_len -= first_desc_len;
1242 e1++;
1243 ce++;
1244 if (++pidx == q->size) {
1245 pidx = 0;
1246 gen ^= 1;
1247 e1 = q->entries;
1248 ce = q->centries;
1249 }
1250 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251 &desc_mapping, &desc_len,
1252 nfrags, q);
1253
1254 if (likely(desc_len))
1255 write_tx_desc(e1, desc_mapping, desc_len, gen,
1256 nfrags == 0);
1257 }
1258
559fb51b 1259 ce->skb = NULL;
094f92a6
FT
1260 dma_unmap_addr_set(ce, dma_addr, mapping);
1261 dma_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
8199d3a7 1262
f1d3d38a 1263 for (i = 0; nfrags--; i++) {
559fb51b 1264 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
559fb51b 1265 e1++;
f1d3d38a 1266 ce++;
559fb51b
SB
1267 if (++pidx == q->size) {
1268 pidx = 0;
1269 gen ^= 1;
559fb51b 1270 e1 = q->entries;
f1d3d38a 1271 ce = q->centries;
8199d3a7 1272 }
8199d3a7 1273
559fb51b
SB
1274 mapping = pci_map_page(adapter->pdev, frag->page,
1275 frag->page_offset, frag->size,
1276 PCI_DMA_TODEVICE);
f1d3d38a
SH
1277 desc_mapping = mapping;
1278 desc_len = frag->size;
1279
1280 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1281 &desc_mapping, &desc_len,
1282 nfrags, q);
1283 if (likely(desc_len))
1284 write_tx_desc(e1, desc_mapping, desc_len, gen,
1285 nfrags == 0);
559fb51b 1286 ce->skb = NULL;
094f92a6
FT
1287 dma_unmap_addr_set(ce, dma_addr, mapping);
1288 dma_unmap_len_set(ce, dma_len, frag->size);
8199d3a7 1289 }
559fb51b
SB
1290 ce->skb = skb;
1291 wmb();
1292 e->flags = flags;
1293}
8199d3a7 1294
559fb51b
SB
1295/*
1296 * Clean up completed Tx buffers.
1297 */
1298static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1299{
1300 unsigned int reclaim = q->processed - q->cleaned;
8199d3a7 1301
559fb51b 1302 if (reclaim) {
f1d3d38a
SH
1303 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1304 q->processed, q->cleaned);
559fb51b
SB
1305 free_cmdQ_buffers(sge, q, reclaim);
1306 q->cleaned += reclaim;
8199d3a7 1307 }
559fb51b 1308}
8199d3a7 1309
f1d3d38a
SH
1310/*
1311 * Called from tasklet. Checks the scheduler for any
1312 * pending skbs that can be sent.
1313 */
1314static void restart_sched(unsigned long arg)
1315{
1316 struct sge *sge = (struct sge *) arg;
1317 struct adapter *adapter = sge->adapter;
1318 struct cmdQ *q = &sge->cmdQ[0];
1319 struct sk_buff *skb;
1320 unsigned int credits, queued_skb = 0;
1321
1322 spin_lock(&q->lock);
1323 reclaim_completed_tx(sge, q);
1324
1325 credits = q->size - q->in_use;
1326 pr_debug("restart_sched credits=%d\n", credits);
1327 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1328 unsigned int genbit, pidx, count;
1329 count = 1 + skb_shinfo(skb)->nr_frags;
356bd146 1330 count += compute_large_page_tx_descs(skb);
f1d3d38a
SH
1331 q->in_use += count;
1332 genbit = q->genbit;
1333 pidx = q->pidx;
1334 q->pidx += count;
1335 if (q->pidx >= q->size) {
1336 q->pidx -= q->size;
1337 q->genbit ^= 1;
1338 }
1339 write_tx_descs(adapter, skb, pidx, genbit, q);
1340 credits = q->size - q->in_use;
1341 queued_skb = 1;
1342 }
1343
1344 if (queued_skb) {
1345 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1347 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1349 }
1350 }
1351 spin_unlock(&q->lock);
1352}
8199d3a7 1353
559fb51b
SB
1354/**
1355 * sge_rx - process an ingress ethernet packet
1356 * @sge: the sge structure
1357 * @fl: the free list that contains the packet buffer
1358 * @len: the packet length
8199d3a7 1359 *
559fb51b 1360 * Process an ingress ethernet pakcet and deliver it to the stack.
8199d3a7 1361 */
24a427cf 1362static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
8199d3a7 1363{
559fb51b 1364 struct sk_buff *skb;
24a427cf 1365 const struct cpl_rx_pkt *p;
559fb51b 1366 struct adapter *adapter = sge->adapter;
56f643c2 1367 struct sge_port_stats *st;
8199d3a7 1368
24a427cf 1369 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
56f643c2
SH
1370 if (unlikely(!skb)) {
1371 sge->stats.rx_drops++;
24a427cf 1372 return;
8199d3a7 1373 }
559fb51b 1374
24a427cf 1375 p = (const struct cpl_rx_pkt *) skb->data;
f1d3d38a
SH
1376 if (p->iff >= adapter->params.nports) {
1377 kfree_skb(skb);
24a427cf 1378 return;
f1d3d38a 1379 }
24a427cf 1380 __skb_pull(skb, sizeof(*p));
f1d3d38a 1381
ca0c9584 1382 st = this_cpu_ptr(sge->port_stats[p->iff]);
56f643c2 1383
4c13eb66 1384 skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
559fb51b
SB
1385 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1386 skb->protocol == htons(ETH_P_IP) &&
1387 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
56f643c2 1388 ++st->rx_cso_good;
559fb51b
SB
1389 skb->ip_summed = CHECKSUM_UNNECESSARY;
1390 } else
1391 skb->ip_summed = CHECKSUM_NONE;
1392
1393 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
56f643c2 1394 st->vlan_xtract++;
4422b003
FR
1395 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1396 ntohs(p->vlan));
1397 } else
559fb51b 1398 netif_receive_skb(skb);
8199d3a7
CL
1399}
1400
1401/*
559fb51b 1402 * Returns true if a command queue has enough available descriptors that
8199d3a7
CL
1403 * we can resume Tx operation after temporarily disabling its packet queue.
1404 */
559fb51b 1405static inline int enough_free_Tx_descs(const struct cmdQ *q)
8199d3a7 1406{
559fb51b
SB
1407 unsigned int r = q->processed - q->cleaned;
1408
1409 return q->in_use - r < (q->size >> 1);
8199d3a7
CL
1410}
1411
1412/*
559fb51b
SB
1413 * Called when sufficient space has become available in the SGE command queues
1414 * after the Tx packet schedulers have been suspended to restart the Tx path.
8199d3a7 1415 */
559fb51b 1416static void restart_tx_queues(struct sge *sge)
8199d3a7 1417{
559fb51b 1418 struct adapter *adap = sge->adapter;
3e0f75be 1419 int i;
8199d3a7 1420
3e0f75be
FR
1421 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1422 return;
559fb51b 1423
3e0f75be
FR
1424 for_each_port(adap, i) {
1425 struct net_device *nd = adap->port[i].dev;
559fb51b 1426
3e0f75be
FR
1427 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1428 netif_running(nd)) {
1429 sge->stats.cmdQ_restarted[2]++;
1430 netif_wake_queue(nd);
559fb51b
SB
1431 }
1432 }
1433}
1434
1435/*
356bd146 1436 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
559fb51b
SB
1437 * information.
1438 */
356bd146
FR
1439static unsigned int update_tx_info(struct adapter *adapter,
1440 unsigned int flags,
559fb51b
SB
1441 unsigned int pr0)
1442{
1443 struct sge *sge = adapter->sge;
1444 struct cmdQ *cmdq = &sge->cmdQ[0];
8199d3a7 1445
559fb51b 1446 cmdq->processed += pr0;
f1d3d38a
SH
1447 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1448 freelQs_empty(sge);
1449 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1450 }
559fb51b
SB
1451 if (flags & F_CMDQ0_ENABLE) {
1452 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
f1d3d38a 1453
559fb51b
SB
1454 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1455 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1456 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1457 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1458 }
f1d3d38a
SH
1459 if (sge->tx_sched)
1460 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1461
1462 flags &= ~F_CMDQ0_ENABLE;
559fb51b 1463 }
f1d3d38a 1464
559fb51b
SB
1465 if (unlikely(sge->stopped_tx_queues != 0))
1466 restart_tx_queues(sge);
8199d3a7 1467
559fb51b
SB
1468 return flags;
1469}
8199d3a7 1470
559fb51b
SB
1471/*
1472 * Process SGE responses, up to the supplied budget. Returns the number of
1473 * responses processed. A negative budget is effectively unlimited.
1474 */
1475static int process_responses(struct adapter *adapter, int budget)
1476{
1477 struct sge *sge = adapter->sge;
1478 struct respQ *q = &sge->respQ;
1479 struct respQ_e *e = &q->entries[q->cidx];
24a427cf 1480 int done = 0;
559fb51b
SB
1481 unsigned int flags = 0;
1482 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
356bd146 1483
24a427cf 1484 while (done < budget && e->GenerationBit == q->genbit) {
559fb51b 1485 flags |= e->Qsleeping;
356bd146 1486
559fb51b
SB
1487 cmdq_processed[0] += e->Cmdq0CreditReturn;
1488 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1489
559fb51b
SB
1490 /* We batch updates to the TX side to avoid cacheline
1491 * ping-pong of TX state information on MP where the sender
1492 * might run on a different CPU than this function...
1493 */
24a427cf 1494 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
559fb51b
SB
1495 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1496 cmdq_processed[0] = 0;
1497 }
24a427cf 1498
559fb51b
SB
1499 if (unlikely(cmdq_processed[1] > 16)) {
1500 sge->cmdQ[1].processed += cmdq_processed[1];
1501 cmdq_processed[1] = 0;
8199d3a7 1502 }
24a427cf 1503
8199d3a7 1504 if (likely(e->DataValid)) {
559fb51b
SB
1505 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1506
5d9428de 1507 BUG_ON(!e->Sop || !e->Eop);
559fb51b
SB
1508 if (unlikely(e->Offload))
1509 unexpected_offload(adapter, fl);
1510 else
1511 sge_rx(sge, fl, e->BufferLength);
1512
24a427cf
SH
1513 ++done;
1514
559fb51b
SB
1515 /*
1516 * Note: this depends on each packet consuming a
1517 * single free-list buffer; cf. the BUG above.
1518 */
1519 if (++fl->cidx == fl->size)
1520 fl->cidx = 0;
24a427cf
SH
1521 prefetch(fl->centries[fl->cidx].skb);
1522
559fb51b
SB
1523 if (unlikely(--fl->credits <
1524 fl->size - SGE_FREEL_REFILL_THRESH))
1525 refill_free_list(sge, fl);
1526 } else
1527 sge->stats.pure_rsps++;
8199d3a7 1528
8199d3a7 1529 e++;
559fb51b
SB
1530 if (unlikely(++q->cidx == q->size)) {
1531 q->cidx = 0;
1532 q->genbit ^= 1;
1533 e = q->entries;
1534 }
1535 prefetch(e);
1536
1537 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1538 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1539 q->credits = 0;
8199d3a7
CL
1540 }
1541 }
1542
356bd146 1543 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1544 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1545
24a427cf 1546 return done;
559fb51b 1547}
8199d3a7 1548
3de00b89
SH
1549static inline int responses_pending(const struct adapter *adapter)
1550{
1551 const struct respQ *Q = &adapter->sge->respQ;
1552 const struct respQ_e *e = &Q->entries[Q->cidx];
1553
1554 return (e->GenerationBit == Q->genbit);
1555}
1556
559fb51b
SB
1557/*
1558 * A simpler version of process_responses() that handles only pure (i.e.,
1559 * non data-carrying) responses. Such respones are too light-weight to justify
1560 * calling a softirq when using NAPI, so we handle them specially in hard
1561 * interrupt context. The function is called with a pointer to a response,
1562 * which the caller must ensure is a valid pure response. Returns 1 if it
1563 * encounters a valid data-carrying response, 0 otherwise.
1564 */
3de00b89 1565static int process_pure_responses(struct adapter *adapter)
559fb51b
SB
1566{
1567 struct sge *sge = adapter->sge;
1568 struct respQ *q = &sge->respQ;
3de00b89 1569 struct respQ_e *e = &q->entries[q->cidx];
24a427cf 1570 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
559fb51b
SB
1571 unsigned int flags = 0;
1572 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
8199d3a7 1573
24a427cf 1574 prefetch(fl->centries[fl->cidx].skb);
3de00b89
SH
1575 if (e->DataValid)
1576 return 1;
24a427cf 1577
559fb51b
SB
1578 do {
1579 flags |= e->Qsleeping;
8199d3a7 1580
559fb51b
SB
1581 cmdq_processed[0] += e->Cmdq0CreditReturn;
1582 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1583
559fb51b
SB
1584 e++;
1585 if (unlikely(++q->cidx == q->size)) {
1586 q->cidx = 0;
1587 q->genbit ^= 1;
1588 e = q->entries;
8199d3a7 1589 }
559fb51b 1590 prefetch(e);
8199d3a7 1591
559fb51b
SB
1592 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1593 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1594 q->credits = 0;
8199d3a7 1595 }
559fb51b
SB
1596 sge->stats.pure_rsps++;
1597 } while (e->GenerationBit == q->genbit && !e->DataValid);
8199d3a7 1598
356bd146 1599 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1600 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1601
559fb51b 1602 return e->GenerationBit == q->genbit;
8199d3a7
CL
1603}
1604
1605/*
559fb51b
SB
1606 * Handler for new data events when using NAPI. This does not need any locking
1607 * or protection from interrupts as data interrupts are off at this point and
1608 * other adapter interrupts do not interfere.
8199d3a7 1609 */
bea3348e 1610int t1_poll(struct napi_struct *napi, int budget)
8199d3a7 1611{
bea3348e 1612 struct adapter *adapter = container_of(napi, struct adapter, napi);
445cf803 1613 int work_done = process_responses(adapter, budget);
7fe26a60 1614
445cf803 1615 if (likely(work_done < budget)) {
288379f0 1616 napi_complete(napi);
bea3348e
SH
1617 writel(adapter->sge->respQ.cidx,
1618 adapter->regs + A_SG_SLEEPING);
1619 }
1620 return work_done;
559fb51b 1621}
8199d3a7 1622
7fe26a60 1623irqreturn_t t1_interrupt(int irq, void *data)
559fb51b 1624{
559fb51b
SB
1625 struct adapter *adapter = data;
1626 struct sge *sge = adapter->sge;
3de00b89 1627 int handled;
559fb51b 1628
3de00b89 1629 if (likely(responses_pending(adapter))) {
356bd146 1630 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
7fe26a60 1631
bea3348e 1632 if (napi_schedule_prep(&adapter->napi)) {
3de00b89 1633 if (process_pure_responses(adapter))
288379f0 1634 __napi_schedule(&adapter->napi);
3de00b89
SH
1635 else {
1636 /* no data, no NAPI needed */
1637 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
4422b003
FR
1638 /* undo schedule_prep */
1639 napi_enable(&adapter->napi);
7fe26a60 1640 }
7fe26a60 1641 }
3de00b89
SH
1642 return IRQ_HANDLED;
1643 }
1644
1645 spin_lock(&adapter->async_lock);
1646 handled = t1_slow_intr_handler(adapter);
1647 spin_unlock(&adapter->async_lock);
7fe26a60 1648
559fb51b
SB
1649 if (!handled)
1650 sge->stats.unhandled_irqs++;
3de00b89 1651
559fb51b
SB
1652 return IRQ_RETVAL(handled != 0);
1653}
8199d3a7 1654
559fb51b
SB
1655/*
1656 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1657 *
1658 * The code figures out how many entries the sk_buff will require in the
1659 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1660 * has complete. Then, it doesn't access the global structure anymore, but
1661 * uses the corresponding fields on the stack. In conjuction with a spinlock
1662 * around that code, we can make the function reentrant without holding the
1663 * lock when we actually enqueue (which might be expensive, especially on
1664 * architectures with IO MMUs).
1665 *
1666 * This runs with softirqs disabled.
1667 */
aa84505f
SH
1668static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1669 unsigned int qid, struct net_device *dev)
559fb51b
SB
1670{
1671 struct sge *sge = adapter->sge;
1672 struct cmdQ *q = &sge->cmdQ[qid];
f1d3d38a 1673 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
559fb51b 1674
cabdfb37
SH
1675 if (!spin_trylock(&q->lock))
1676 return NETDEV_TX_LOCKED;
1677
559fb51b
SB
1678 reclaim_completed_tx(sge, q);
1679
1680 pidx = q->pidx;
1681 credits = q->size - q->in_use;
1682 count = 1 + skb_shinfo(skb)->nr_frags;
f1d3d38a 1683 count += compute_large_page_tx_descs(skb);
559fb51b 1684
f1d3d38a
SH
1685 /* Ethernet packet */
1686 if (unlikely(credits < count)) {
1687 if (!netif_queue_stopped(dev)) {
559fb51b
SB
1688 netif_stop_queue(dev);
1689 set_bit(dev->if_port, &sge->stopped_tx_queues);
232a347a 1690 sge->stats.cmdQ_full[2]++;
c1f51212 1691 pr_err("%s: Tx ring full while queue awake!\n",
f1d3d38a 1692 adapter->name);
8199d3a7 1693 }
f1d3d38a
SH
1694 spin_unlock(&q->lock);
1695 return NETDEV_TX_BUSY;
1696 }
1697
1698 if (unlikely(credits - count < q->stop_thres)) {
1699 netif_stop_queue(dev);
1700 set_bit(dev->if_port, &sge->stopped_tx_queues);
1701 sge->stats.cmdQ_full[2]++;
1702 }
1703
1704 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1705 * through the scheduler.
1706 */
1707 if (sge->tx_sched && !qid && skb->dev) {
356bd146 1708use_sched:
f1d3d38a
SH
1709 use_sched_skb = 1;
1710 /* Note that the scheduler might return a different skb than
1711 * the one passed in.
1712 */
1713 skb = sched_skb(sge, skb, credits);
1714 if (!skb) {
1715 spin_unlock(&q->lock);
1716 return NETDEV_TX_OK;
559fb51b 1717 }
f1d3d38a
SH
1718 pidx = q->pidx;
1719 count = 1 + skb_shinfo(skb)->nr_frags;
1720 count += compute_large_page_tx_descs(skb);
559fb51b 1721 }
f1d3d38a 1722
559fb51b
SB
1723 q->in_use += count;
1724 genbit = q->genbit;
f1d3d38a 1725 pidx = q->pidx;
559fb51b
SB
1726 q->pidx += count;
1727 if (q->pidx >= q->size) {
1728 q->pidx -= q->size;
1729 q->genbit ^= 1;
8199d3a7 1730 }
559fb51b 1731 spin_unlock(&q->lock);
8199d3a7 1732
559fb51b 1733 write_tx_descs(adapter, skb, pidx, genbit, q);
8199d3a7
CL
1734
1735 /*
1736 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1737 * the doorbell if the Q is asleep. There is a natural race, where
1738 * the hardware is going to sleep just after we checked, however,
1739 * then the interrupt handler will detect the outstanding TX packet
1740 * and ring the doorbell for us.
1741 */
559fb51b
SB
1742 if (qid)
1743 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1744 else {
1745 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1746 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1747 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1748 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1749 }
8199d3a7 1750 }
f1d3d38a
SH
1751
1752 if (use_sched_skb) {
1753 if (spin_trylock(&q->lock)) {
1754 credits = q->size - q->in_use;
1755 skb = NULL;
1756 goto use_sched;
1757 }
1758 }
aa84505f 1759 return NETDEV_TX_OK;
8199d3a7
CL
1760}
1761
1762#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1763
559fb51b
SB
1764/*
1765 * eth_hdr_len - return the length of an Ethernet header
1766 * @data: pointer to the start of the Ethernet header
1767 *
1768 * Returns the length of an Ethernet header, including optional VLAN tag.
1769 */
1770static inline int eth_hdr_len(const void *data)
1771{
1772 const struct ethhdr *e = data;
1773
1774 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1775}
1776
8199d3a7
CL
1777/*
1778 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1779 */
61357325 1780netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
8199d3a7 1781{
c3ccc123 1782 struct adapter *adapter = dev->ml_priv;
559fb51b 1783 struct sge *sge = adapter->sge;
ca0c9584 1784 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
8199d3a7 1785 struct cpl_tx_pkt *cpl;
cabdfb37
SH
1786 struct sk_buff *orig_skb = skb;
1787 int ret;
8199d3a7 1788
f1d3d38a
SH
1789 if (skb->protocol == htons(ETH_P_CPL5))
1790 goto send;
1791
7832ee03
DLR
1792 /*
1793 * We are using a non-standard hard_header_len.
1794 * Allocate more header room in the rare cases it is not big enough.
1795 */
1796 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1797 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1798 ++st->tx_need_hdrroom;
1799 dev_kfree_skb_any(orig_skb);
1800 if (!skb)
1801 return NETDEV_TX_OK;
1802 }
1803
f1d3d38a 1804 if (skb_shinfo(skb)->gso_size) {
8199d3a7
CL
1805 int eth_type;
1806 struct cpl_tx_pkt_lso *hdr;
1807
56f643c2 1808 ++st->tx_tso;
559fb51b 1809
bbe735e4 1810 eth_type = skb_network_offset(skb) == ETH_HLEN ?
8199d3a7
CL
1811 CPL_ETH_II : CPL_ETH_II_VLAN;
1812
1813 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1814 hdr->opcode = CPL_TX_PKT_LSO;
1815 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
eddc9ec5 1816 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
aa8223c7 1817 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
8199d3a7 1818 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
f1d3d38a 1819 skb_shinfo(skb)->gso_size));
8199d3a7
CL
1820 hdr->len = htonl(skb->len - sizeof(*hdr));
1821 cpl = (struct cpl_tx_pkt *)hdr;
f1d3d38a 1822 } else {
8199d3a7 1823 /*
356bd146 1824 * Packets shorter than ETH_HLEN can break the MAC, drop them
559fb51b
SB
1825 * early. Also, we may get oversized packets because some
1826 * parts of the kernel don't handle our unusual hard_header_len
1827 * right, drop those too.
8199d3a7 1828 */
559fb51b
SB
1829 if (unlikely(skb->len < ETH_HLEN ||
1830 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
f1d3d38a
SH
1831 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1832 skb->len, eth_hdr_len(skb->data), dev->mtu);
559fb51b 1833 dev_kfree_skb_any(skb);
aa84505f 1834 return NETDEV_TX_OK;
559fb51b
SB
1835 }
1836
8199d3a7 1837 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
84fa7933 1838 skb->ip_summed == CHECKSUM_PARTIAL &&
eddc9ec5 1839 ip_hdr(skb)->protocol == IPPROTO_UDP) {
84fa7933 1840 if (unlikely(skb_checksum_help(skb))) {
f1d3d38a 1841 pr_debug("%s: unable to do udp checksum\n", dev->name);
559fb51b 1842 dev_kfree_skb_any(skb);
aa84505f 1843 return NETDEV_TX_OK;
559fb51b 1844 }
f1d3d38a 1845 }
8199d3a7 1846
559fb51b
SB
1847 /* Hmmm, assuming to catch the gratious arp... and we'll use
1848 * it to flush out stuck espi packets...
f1d3d38a
SH
1849 */
1850 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
8199d3a7 1851 if (skb->protocol == htons(ETH_P_ARP) &&
d0a92be0 1852 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
f1d3d38a 1853 adapter->sge->espibug_skb[dev->if_port] = skb;
559fb51b
SB
1854 /* We want to re-use this skb later. We
1855 * simply bump the reference count and it
1856 * will not be freed...
1857 */
1858 skb = skb_get(skb);
1859 }
8199d3a7 1860 }
559fb51b
SB
1861
1862 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
8199d3a7
CL
1863 cpl->opcode = CPL_TX_PKT;
1864 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
84fa7933 1865 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
8199d3a7 1866 /* the length field isn't used so don't bother setting it */
559fb51b 1867
84fa7933 1868 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
8199d3a7
CL
1869 }
1870 cpl->iff = dev->if_port;
1871
1872#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1873 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1874 cpl->vlan_valid = 1;
1875 cpl->vlan = htons(vlan_tx_tag_get(skb));
559fb51b 1876 st->vlan_insert++;
8199d3a7
CL
1877 } else
1878#endif
1879 cpl->vlan_valid = 0;
1880
f1d3d38a 1881send:
cabdfb37
SH
1882 ret = t1_sge_tx(skb, adapter, 0, dev);
1883
1884 /* If transmit busy, and we reallocated skb's due to headroom limit,
1885 * then silently discard to avoid leak.
1886 */
1887 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
356bd146 1888 dev_kfree_skb_any(skb);
cabdfb37 1889 ret = NETDEV_TX_OK;
356bd146 1890 }
cabdfb37 1891 return ret;
559fb51b 1892}
8199d3a7 1893
559fb51b
SB
1894/*
1895 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1896 */
1897static void sge_tx_reclaim_cb(unsigned long data)
1898{
1899 int i;
1900 struct sge *sge = (struct sge *)data;
1901
1902 for (i = 0; i < SGE_CMDQ_N; ++i) {
1903 struct cmdQ *q = &sge->cmdQ[i];
1904
1905 if (!spin_trylock(&q->lock))
1906 continue;
8199d3a7 1907
559fb51b 1908 reclaim_completed_tx(sge, q);
f1d3d38a
SH
1909 if (i == 0 && q->in_use) { /* flush pending credits */
1910 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1911 }
559fb51b
SB
1912 spin_unlock(&q->lock);
1913 }
1914 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1915}
1916
1917/*
1918 * Propagate changes of the SGE coalescing parameters to the HW.
1919 */
1920int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1921{
559fb51b
SB
1922 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1923 core_ticks_per_usec(sge->adapter);
1924 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
8199d3a7
CL
1925 return 0;
1926}
1927
559fb51b
SB
1928/*
1929 * Allocates both RX and TX resources and configures the SGE. However,
1930 * the hardware is not enabled yet.
1931 */
1932int t1_sge_configure(struct sge *sge, struct sge_params *p)
8199d3a7 1933{
559fb51b
SB
1934 if (alloc_rx_resources(sge, p))
1935 return -ENOMEM;
1936 if (alloc_tx_resources(sge, p)) {
1937 free_rx_resources(sge);
1938 return -ENOMEM;
1939 }
1940 configure_sge(sge, p);
1941
1942 /*
1943 * Now that we have sized the free lists calculate the payload
1944 * capacity of the large buffers. Other parts of the driver use
1945 * this to set the max offload coalescing size so that RX packets
1946 * do not overflow our large buffers.
1947 */
1948 p->large_buf_capacity = jumbo_payload_capacity(sge);
1949 return 0;
1950}
8199d3a7 1951
559fb51b
SB
1952/*
1953 * Disables the DMA engine.
1954 */
1955void t1_sge_stop(struct sge *sge)
1956{
f1d3d38a 1957 int i;
559fb51b 1958 writel(0, sge->adapter->regs + A_SG_CONTROL);
f1d3d38a
SH
1959 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1960
559fb51b
SB
1961 if (is_T2(sge->adapter))
1962 del_timer_sync(&sge->espibug_timer);
f1d3d38a 1963
559fb51b 1964 del_timer_sync(&sge->tx_reclaim_timer);
f1d3d38a
SH
1965 if (sge->tx_sched)
1966 tx_sched_stop(sge);
1967
1968 for (i = 0; i < MAX_NPORTS; i++)
f4fe5a9c 1969 kfree_skb(sge->espibug_skb[i]);
8199d3a7
CL
1970}
1971
559fb51b
SB
1972/*
1973 * Enables the DMA engine.
1974 */
1975void t1_sge_start(struct sge *sge)
8199d3a7 1976{
559fb51b
SB
1977 refill_free_list(sge, &sge->freelQ[0]);
1978 refill_free_list(sge, &sge->freelQ[1]);
1979
1980 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1981 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
f1d3d38a 1982 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
559fb51b
SB
1983
1984 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1985
f1d3d38a 1986 if (is_T2(sge->adapter))
559fb51b
SB
1987 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1988}
1989
1990/*
1991 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1992 */
f1d3d38a 1993static void espibug_workaround_t204(unsigned long data)
559fb51b
SB
1994{
1995 struct adapter *adapter = (struct adapter *)data;
8199d3a7 1996 struct sge *sge = adapter->sge;
f1d3d38a
SH
1997 unsigned int nports = adapter->params.nports;
1998 u32 seop[MAX_NPORTS];
8199d3a7 1999
f1d3d38a
SH
2000 if (adapter->open_device_map & PORT_MASK) {
2001 int i;
356bd146
FR
2002
2003 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
f1d3d38a 2004 return;
356bd146 2005
f1d3d38a 2006 for (i = 0; i < nports; i++) {
356bd146
FR
2007 struct sk_buff *skb = sge->espibug_skb[i];
2008
2009 if (!netif_running(adapter->port[i].dev) ||
2010 netif_queue_stopped(adapter->port[i].dev) ||
2011 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2012 continue;
2013
2014 if (!skb->cb[0]) {
2015 u8 ch_mac_addr[ETH_ALEN] = {
2016 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2017 };
2018
27d7ff46
ACM
2019 skb_copy_to_linear_data_offset(skb,
2020 sizeof(struct cpl_tx_pkt),
2021 ch_mac_addr,
2022 ETH_ALEN);
2023 skb_copy_to_linear_data_offset(skb,
2024 skb->len - 10,
2025 ch_mac_addr,
2026 ETH_ALEN);
356bd146 2027 skb->cb[0] = 0xff;
559fb51b 2028 }
356bd146
FR
2029
2030 /* bump the reference count to avoid freeing of
2031 * the skb once the DMA has completed.
2032 */
2033 skb = skb_get(skb);
2034 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
559fb51b
SB
2035 }
2036 }
2037 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
8199d3a7
CL
2038}
2039
f1d3d38a
SH
2040static void espibug_workaround(unsigned long data)
2041{
2042 struct adapter *adapter = (struct adapter *)data;
2043 struct sge *sge = adapter->sge;
2044
2045 if (netif_running(adapter->port[0].dev)) {
2046 struct sk_buff *skb = sge->espibug_skb[0];
2047 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2048
2049 if ((seop & 0xfff0fff) == 0xfff && skb) {
2050 if (!skb->cb[0]) {
2051 u8 ch_mac_addr[ETH_ALEN] =
2052 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
27d7ff46
ACM
2053 skb_copy_to_linear_data_offset(skb,
2054 sizeof(struct cpl_tx_pkt),
2055 ch_mac_addr,
2056 ETH_ALEN);
2057 skb_copy_to_linear_data_offset(skb,
2058 skb->len - 10,
2059 ch_mac_addr,
2060 ETH_ALEN);
f1d3d38a
SH
2061 skb->cb[0] = 0xff;
2062 }
2063
2064 /* bump the reference count to avoid freeing of the
2065 * skb once the DMA has completed.
2066 */
2067 skb = skb_get(skb);
2068 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2069 }
2070 }
2071 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2072}
2073
559fb51b
SB
2074/*
2075 * Creates a t1_sge structure and returns suggested resource parameters.
2076 */
2077struct sge * __devinit t1_sge_create(struct adapter *adapter,
2078 struct sge_params *p)
2079{
cbee9f91 2080 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
56f643c2 2081 int i;
559fb51b
SB
2082
2083 if (!sge)
2084 return NULL;
559fb51b
SB
2085
2086 sge->adapter = adapter;
2087 sge->netdev = adapter->port[0].dev;
2088 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2089 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2090
56f643c2
SH
2091 for_each_port(adapter, i) {
2092 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2093 if (!sge->port_stats[i])
2094 goto nomem_port;
2095 }
2096
559fb51b
SB
2097 init_timer(&sge->tx_reclaim_timer);
2098 sge->tx_reclaim_timer.data = (unsigned long)sge;
2099 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2100
2101 if (is_T2(sge->adapter)) {
2102 init_timer(&sge->espibug_timer);
f1d3d38a
SH
2103
2104 if (adapter->params.nports > 1) {
2105 tx_sched_init(sge);
2106 sge->espibug_timer.function = espibug_workaround_t204;
d7487421 2107 } else
f1d3d38a 2108 sge->espibug_timer.function = espibug_workaround;
559fb51b 2109 sge->espibug_timer.data = (unsigned long)sge->adapter;
f1d3d38a 2110
559fb51b 2111 sge->espibug_timeout = 1;
f1d3d38a
SH
2112 /* for T204, every 10ms */
2113 if (adapter->params.nports > 1)
2114 sge->espibug_timeout = HZ/100;
559fb51b 2115 }
356bd146 2116
559fb51b
SB
2117
2118 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2119 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2120 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2121 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
f1d3d38a
SH
2122 if (sge->tx_sched) {
2123 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2124 p->rx_coalesce_usecs = 15;
2125 else
2126 p->rx_coalesce_usecs = 50;
2127 } else
2128 p->rx_coalesce_usecs = 50;
2129
559fb51b
SB
2130 p->coalesce_enable = 0;
2131 p->sample_interval_usecs = 0;
559fb51b
SB
2132
2133 return sge;
56f643c2
SH
2134nomem_port:
2135 while (i >= 0) {
2136 free_percpu(sge->port_stats[i]);
2137 --i;
2138 }
2139 kfree(sge);
2140 return NULL;
2141
559fb51b 2142}