Merge branches 'devel-hwspinlock' and 'devel-mcspi' into omap-for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
12#include <linux/dma-mapping.h>
13#include <linux/delay.h>
c276aca4 14#include <linux/jiffies.h>
15#include <linux/sched.h>
67ce04bf
VS
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/nand.h>
18#include <linux/mtd/partitions.h>
19#include <linux/io.h>
5a0e3ad6 20#include <linux/slab.h>
67ce04bf 21
ce491cf8
TL
22#include <plat/dma.h>
23#include <plat/gpmc.h>
24#include <plat/nand.h>
67ce04bf 25
67ce04bf
VS
26#define DRIVER_NAME "omap2-nand"
27
67ce04bf
VS
28#define NAND_Ecc_P1e (1 << 0)
29#define NAND_Ecc_P2e (1 << 1)
30#define NAND_Ecc_P4e (1 << 2)
31#define NAND_Ecc_P8e (1 << 3)
32#define NAND_Ecc_P16e (1 << 4)
33#define NAND_Ecc_P32e (1 << 5)
34#define NAND_Ecc_P64e (1 << 6)
35#define NAND_Ecc_P128e (1 << 7)
36#define NAND_Ecc_P256e (1 << 8)
37#define NAND_Ecc_P512e (1 << 9)
38#define NAND_Ecc_P1024e (1 << 10)
39#define NAND_Ecc_P2048e (1 << 11)
40
41#define NAND_Ecc_P1o (1 << 16)
42#define NAND_Ecc_P2o (1 << 17)
43#define NAND_Ecc_P4o (1 << 18)
44#define NAND_Ecc_P8o (1 << 19)
45#define NAND_Ecc_P16o (1 << 20)
46#define NAND_Ecc_P32o (1 << 21)
47#define NAND_Ecc_P64o (1 << 22)
48#define NAND_Ecc_P128o (1 << 23)
49#define NAND_Ecc_P256o (1 << 24)
50#define NAND_Ecc_P512o (1 << 25)
51#define NAND_Ecc_P1024o (1 << 26)
52#define NAND_Ecc_P2048o (1 << 27)
53
54#define TF(value) (value ? 1 : 0)
55
56#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
57#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
58#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
59#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
60#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
61#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
62#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
63#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
64
65#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
66#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
67#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
68#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
69#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
70#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
71#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
72#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
73
74#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
75#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
76#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
77#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
78#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
79#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
80#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
81#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
82
83#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
84#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
85#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
86#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
87#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
88#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
89#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
90#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
91
92#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
93#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
94
95#ifdef CONFIG_MTD_PARTITIONS
96static const char *part_probes[] = { "cmdlinepart", NULL };
97#endif
98
59e9c5ae 99#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
100static int use_prefetch = 1;
101
102/* "modprobe ... use_prefetch=0" etc */
103module_param(use_prefetch, bool, 0);
104MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH");
dfe32893 105
106#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
107static int use_dma = 1;
108
109/* "modprobe ... use_dma=0" etc */
110module_param(use_dma, bool, 0);
111MODULE_PARM_DESC(use_dma, "enable/disable use of DMA");
112#else
733daa52 113static const int use_dma;
dfe32893 114#endif
59e9c5ae 115#else
116const int use_prefetch;
733daa52 117static const int use_dma;
59e9c5ae 118#endif
119
67ce04bf
VS
120struct omap_nand_info {
121 struct nand_hw_control controller;
122 struct omap_nand_platform_data *pdata;
123 struct mtd_info mtd;
124 struct mtd_partition *parts;
125 struct nand_chip nand;
126 struct platform_device *pdev;
127
128 int gpmc_cs;
129 unsigned long phys_base;
dfe32893 130 struct completion comp;
131 int dma_ch;
67ce04bf
VS
132};
133
67ce04bf
VS
134/**
135 * omap_hwcontrol - hardware specific access to control-lines
136 * @mtd: MTD device structure
137 * @cmd: command to device
138 * @ctrl:
139 * NAND_NCE: bit 0 -> don't care
140 * NAND_CLE: bit 1 -> Command Latch
141 * NAND_ALE: bit 2 -> Address Latch
142 *
143 * NOTE: boards may use different bits for these!!
144 */
145static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
146{
147 struct omap_nand_info *info = container_of(mtd,
148 struct omap_nand_info, mtd);
67ce04bf 149
2c01946c
SG
150 if (cmd != NAND_CMD_NONE) {
151 if (ctrl & NAND_CLE)
152 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
153
154 else if (ctrl & NAND_ALE)
155 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
156
157 else /* NAND_NCE */
158 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
159 }
67ce04bf
VS
160}
161
59e9c5ae 162/**
163 * omap_read_buf8 - read data from NAND controller into buffer
164 * @mtd: MTD device structure
165 * @buf: buffer to store date
166 * @len: number of bytes to read
167 */
168static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
169{
170 struct nand_chip *nand = mtd->priv;
171
172 ioread8_rep(nand->IO_ADDR_R, buf, len);
173}
174
175/**
176 * omap_write_buf8 - write buffer to NAND controller
177 * @mtd: MTD device structure
178 * @buf: data buffer
179 * @len: number of bytes to write
180 */
181static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
182{
183 struct omap_nand_info *info = container_of(mtd,
184 struct omap_nand_info, mtd);
185 u_char *p = (u_char *)buf;
2c01946c 186 u32 status = 0;
59e9c5ae 187
188 while (len--) {
189 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
190 /* wait until buffer is available for write */
191 do {
192 status = gpmc_read_status(GPMC_STATUS_BUFFER);
193 } while (!status);
59e9c5ae 194 }
195}
196
67ce04bf
VS
197/**
198 * omap_read_buf16 - read data from NAND controller into buffer
199 * @mtd: MTD device structure
200 * @buf: buffer to store date
201 * @len: number of bytes to read
202 */
203static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
204{
205 struct nand_chip *nand = mtd->priv;
206
59e9c5ae 207 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
208}
209
210/**
211 * omap_write_buf16 - write buffer to NAND controller
212 * @mtd: MTD device structure
213 * @buf: data buffer
214 * @len: number of bytes to write
215 */
216static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
217{
218 struct omap_nand_info *info = container_of(mtd,
219 struct omap_nand_info, mtd);
220 u16 *p = (u16 *) buf;
2c01946c 221 u32 status = 0;
67ce04bf
VS
222 /* FIXME try bursts of writesw() or DMA ... */
223 len >>= 1;
224
225 while (len--) {
59e9c5ae 226 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
227 /* wait until buffer is available for write */
228 do {
229 status = gpmc_read_status(GPMC_STATUS_BUFFER);
230 } while (!status);
67ce04bf
VS
231 }
232}
59e9c5ae 233
234/**
235 * omap_read_buf_pref - read data from NAND controller into buffer
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
239 */
240static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
241{
242 struct omap_nand_info *info = container_of(mtd,
243 struct omap_nand_info, mtd);
2c01946c 244 uint32_t r_count = 0;
59e9c5ae 245 int ret = 0;
246 u32 *p = (u32 *)buf;
247
248 /* take care of subpage reads */
c3341d0c
VS
249 if (len % 4) {
250 if (info->nand.options & NAND_BUSWIDTH_16)
251 omap_read_buf16(mtd, buf, len % 4);
252 else
253 omap_read_buf8(mtd, buf, len % 4);
254 p = (u32 *) (buf + len % 4);
255 len -= len % 4;
59e9c5ae 256 }
59e9c5ae 257
258 /* configure and start prefetch transfer */
259 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0);
260 if (ret) {
261 /* PFPW engine is busy, use cpu copy method */
262 if (info->nand.options & NAND_BUSWIDTH_16)
263 omap_read_buf16(mtd, buf, len);
264 else
265 omap_read_buf8(mtd, buf, len);
266 } else {
2c01946c 267 p = (u32 *) buf;
59e9c5ae 268 do {
2c01946c
SG
269 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
270 r_count = r_count >> 2;
271 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 272 p += r_count;
273 len -= r_count << 2;
274 } while (len);
59e9c5ae 275 /* disable and stop the PFPW engine */
948d38e7 276 gpmc_prefetch_reset(info->gpmc_cs);
59e9c5ae 277 }
278}
279
280/**
281 * omap_write_buf_pref - write buffer to NAND controller
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
285 */
286static void omap_write_buf_pref(struct mtd_info *mtd,
287 const u_char *buf, int len)
288{
289 struct omap_nand_info *info = container_of(mtd,
290 struct omap_nand_info, mtd);
2c01946c 291 uint32_t pref_count = 0, w_count = 0;
59e9c5ae 292 int i = 0, ret = 0;
2c01946c 293 u16 *p;
59e9c5ae 294
295 /* take care of subpage writes */
296 if (len % 2 != 0) {
2c01946c 297 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 298 p = (u16 *)(buf + 1);
299 len--;
300 }
301
302 /* configure and start prefetch transfer */
303 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1);
304 if (ret) {
305 /* PFPW engine is busy, use cpu copy method */
306 if (info->nand.options & NAND_BUSWIDTH_16)
307 omap_write_buf16(mtd, buf, len);
308 else
309 omap_write_buf8(mtd, buf, len);
310 } else {
2c01946c
SG
311 p = (u16 *) buf;
312 while (len) {
313 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
314 w_count = w_count >> 1;
59e9c5ae 315 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 316 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 317 }
2c01946c
SG
318 /* wait for data to flushed-out before reset the prefetch */
319 do {
320 pref_count = gpmc_read_status(GPMC_PREFETCH_COUNT);
321 } while (pref_count);
59e9c5ae 322 /* disable and stop the PFPW engine */
948d38e7 323 gpmc_prefetch_reset(info->gpmc_cs);
59e9c5ae 324 }
325}
326
dfe32893 327#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
328/*
329 * omap_nand_dma_cb: callback on the completion of dma transfer
330 * @lch: logical channel
331 * @ch_satuts: channel status
332 * @data: pointer to completion data structure
333 */
334static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
335{
336 complete((struct completion *) data);
337}
338
339/*
340 * omap_nand_dma_transfer: configer and start dma transfer
341 * @mtd: MTD device structure
342 * @addr: virtual address in RAM of source/destination
343 * @len: number of data bytes to be transferred
344 * @is_write: flag for read/write operation
345 */
346static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
347 unsigned int len, int is_write)
348{
349 struct omap_nand_info *info = container_of(mtd,
350 struct omap_nand_info, mtd);
351 uint32_t prefetch_status = 0;
352 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
353 DMA_FROM_DEVICE;
354 dma_addr_t dma_addr;
355 int ret;
356
357 /* The fifo depth is 64 bytes. We have a sync at each frame and frame
358 * length is 64 bytes.
359 */
360 int buf_len = len >> 6;
361
362 if (addr >= high_memory) {
363 struct page *p1;
364
365 if (((size_t)addr & PAGE_MASK) !=
366 ((size_t)(addr + len - 1) & PAGE_MASK))
367 goto out_copy;
368 p1 = vmalloc_to_page(addr);
369 if (!p1)
370 goto out_copy;
371 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
372 }
373
374 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
375 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
376 dev_err(&info->pdev->dev,
377 "Couldn't DMA map a %d byte buffer\n", len);
378 goto out_copy;
379 }
380
381 if (is_write) {
382 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
383 info->phys_base, 0, 0);
384 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
385 dma_addr, 0, 0);
386 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
387 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
388 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
389 } else {
390 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
391 info->phys_base, 0, 0);
392 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
393 dma_addr, 0, 0);
394 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
395 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
396 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
397 }
398 /* configure and start prefetch transfer */
399 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write);
400 if (ret)
401 /* PFPW engine is busy, use cpu copy methode */
402 goto out_copy;
403
404 init_completion(&info->comp);
405
406 omap_start_dma(info->dma_ch);
407
408 /* setup and start DMA using dma_addr */
409 wait_for_completion(&info->comp);
410
2c01946c
SG
411 do {
412 prefetch_status = gpmc_read_status(GPMC_PREFETCH_COUNT);
413 } while (prefetch_status);
dfe32893 414 /* disable and stop the PFPW engine */
f12f662f 415 gpmc_prefetch_reset(info->gpmc_cs);
dfe32893 416
417 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
418 return 0;
419
420out_copy:
421 if (info->nand.options & NAND_BUSWIDTH_16)
422 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
423 : omap_write_buf16(mtd, (u_char *) addr, len);
424 else
425 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
426 : omap_write_buf8(mtd, (u_char *) addr, len);
427 return 0;
428}
429#else
430static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {}
431static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
432 unsigned int len, int is_write)
433{
434 return 0;
435}
436#endif
437
438/**
439 * omap_read_buf_dma_pref - read data from NAND controller into buffer
440 * @mtd: MTD device structure
441 * @buf: buffer to store date
442 * @len: number of bytes to read
443 */
444static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
445{
446 if (len <= mtd->oobsize)
447 omap_read_buf_pref(mtd, buf, len);
448 else
449 /* start transfer in DMA mode */
450 omap_nand_dma_transfer(mtd, buf, len, 0x0);
451}
452
453/**
454 * omap_write_buf_dma_pref - write buffer to NAND controller
455 * @mtd: MTD device structure
456 * @buf: data buffer
457 * @len: number of bytes to write
458 */
459static void omap_write_buf_dma_pref(struct mtd_info *mtd,
460 const u_char *buf, int len)
461{
462 if (len <= mtd->oobsize)
463 omap_write_buf_pref(mtd, buf, len);
464 else
465 /* start transfer in DMA mode */
bdaefc41 466 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 467}
468
67ce04bf
VS
469/**
470 * omap_verify_buf - Verify chip data against buffer
471 * @mtd: MTD device structure
472 * @buf: buffer containing the data to compare
473 * @len: number of bytes to compare
474 */
475static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
476{
477 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
478 mtd);
479 u16 *p = (u16 *) buf;
480
481 len >>= 1;
482 while (len--) {
483 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
484 return -EFAULT;
485 }
486
487 return 0;
488}
489
490#ifdef CONFIG_MTD_NAND_OMAP_HWECC
67ce04bf
VS
491
492/**
493 * gen_true_ecc - This function will generate true ECC value
494 * @ecc_buf: buffer to store ecc code
495 *
496 * This generated true ECC value can be used when correcting
497 * data read from NAND flash memory core
498 */
499static void gen_true_ecc(u8 *ecc_buf)
500{
501 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
502 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
503
504 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
505 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
506 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
507 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
508 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
509 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
510}
511
512/**
513 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
514 * @ecc_data1: ecc code from nand spare area
515 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
516 * @page_data: page data
517 *
518 * This function compares two ECC's and indicates if there is an error.
519 * If the error can be corrected it will be corrected to the buffer.
520 */
521static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
522 u8 *ecc_data2, /* read from register */
523 u8 *page_data)
524{
525 uint i;
526 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
527 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
528 u8 ecc_bit[24];
529 u8 ecc_sum = 0;
530 u8 find_bit = 0;
531 uint find_byte = 0;
532 int isEccFF;
533
534 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
535
536 gen_true_ecc(ecc_data1);
537 gen_true_ecc(ecc_data2);
538
539 for (i = 0; i <= 2; i++) {
540 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
541 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
542 }
543
544 for (i = 0; i < 8; i++) {
545 tmp0_bit[i] = *ecc_data1 % 2;
546 *ecc_data1 = *ecc_data1 / 2;
547 }
548
549 for (i = 0; i < 8; i++) {
550 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
551 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
552 }
553
554 for (i = 0; i < 8; i++) {
555 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
556 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
557 }
558
559 for (i = 0; i < 8; i++) {
560 comp0_bit[i] = *ecc_data2 % 2;
561 *ecc_data2 = *ecc_data2 / 2;
562 }
563
564 for (i = 0; i < 8; i++) {
565 comp1_bit[i] = *(ecc_data2 + 1) % 2;
566 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
567 }
568
569 for (i = 0; i < 8; i++) {
570 comp2_bit[i] = *(ecc_data2 + 2) % 2;
571 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
572 }
573
574 for (i = 0; i < 6; i++)
575 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
576
577 for (i = 0; i < 8; i++)
578 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
579
580 for (i = 0; i < 8; i++)
581 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
582
583 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
584 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
585
586 for (i = 0; i < 24; i++)
587 ecc_sum += ecc_bit[i];
588
589 switch (ecc_sum) {
590 case 0:
591 /* Not reached because this function is not called if
592 * ECC values are equal
593 */
594 return 0;
595
596 case 1:
597 /* Uncorrectable error */
598 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
599 return -1;
600
601 case 11:
602 /* UN-Correctable error */
603 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
604 return -1;
605
606 case 12:
607 /* Correctable error */
608 find_byte = (ecc_bit[23] << 8) +
609 (ecc_bit[21] << 7) +
610 (ecc_bit[19] << 6) +
611 (ecc_bit[17] << 5) +
612 (ecc_bit[15] << 4) +
613 (ecc_bit[13] << 3) +
614 (ecc_bit[11] << 2) +
615 (ecc_bit[9] << 1) +
616 ecc_bit[7];
617
618 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
619
620 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
621 "offset: %d, bit: %d\n", find_byte, find_bit);
622
623 page_data[find_byte] ^= (1 << find_bit);
624
625 return 0;
626 default:
627 if (isEccFF) {
628 if (ecc_data2[0] == 0 &&
629 ecc_data2[1] == 0 &&
630 ecc_data2[2] == 0)
631 return 0;
632 }
633 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
634 return -1;
635 }
636}
637
638/**
639 * omap_correct_data - Compares the ECC read with HW generated ECC
640 * @mtd: MTD device structure
641 * @dat: page data
642 * @read_ecc: ecc read from nand flash
643 * @calc_ecc: ecc read from HW ECC registers
644 *
645 * Compares the ecc read from nand spare area with ECC registers values
646 * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
647 * and correction.
648 */
649static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
650 u_char *read_ecc, u_char *calc_ecc)
651{
652 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
653 mtd);
654 int blockCnt = 0, i = 0, ret = 0;
655
656 /* Ex NAND_ECC_HW12_2048 */
657 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
658 (info->nand.ecc.size == 2048))
659 blockCnt = 4;
660 else
661 blockCnt = 1;
662
663 for (i = 0; i < blockCnt; i++) {
664 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
665 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
666 if (ret < 0)
667 return ret;
668 }
669 read_ecc += 3;
670 calc_ecc += 3;
671 dat += 512;
672 }
673 return 0;
674}
675
676/**
677 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
678 * @mtd: MTD device structure
679 * @dat: The pointer to data on which ecc is computed
680 * @ecc_code: The ecc_code buffer
681 *
682 * Using noninverted ECC can be considered ugly since writing a blank
683 * page ie. padding will clear the ECC bytes. This is no problem as long
684 * nobody is trying to write data on the seemingly unused page. Reading
685 * an erased page will produce an ECC mismatch between generated and read
686 * ECC bytes that has to be dealt with separately.
687 */
688static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
689 u_char *ecc_code)
690{
691 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
692 mtd);
2c01946c 693 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
67ce04bf
VS
694}
695
696/**
697 * omap_enable_hwecc - This function enables the hardware ecc functionality
698 * @mtd: MTD device structure
699 * @mode: Read/Write mode
700 */
701static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
702{
703 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
704 mtd);
705 struct nand_chip *chip = mtd->priv;
706 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
67ce04bf 707
2c01946c 708 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
67ce04bf 709}
2c01946c 710
67ce04bf
VS
711#endif
712
713/**
714 * omap_wait - wait until the command is done
715 * @mtd: MTD device structure
716 * @chip: NAND Chip structure
717 *
718 * Wait function is called during Program and erase operations and
719 * the way it is called from MTD layer, we should wait till the NAND
720 * chip is ready after the programming/erase operation has completed.
721 *
722 * Erase can take up to 400ms and program up to 20ms according to
723 * general NAND and SmartMedia specs
724 */
725static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
726{
727 struct nand_chip *this = mtd->priv;
728 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
729 mtd);
730 unsigned long timeo = jiffies;
c276aca4 731 int status = NAND_STATUS_FAIL, state = this->state;
67ce04bf
VS
732
733 if (state == FL_ERASING)
734 timeo += (HZ * 400) / 1000;
735 else
736 timeo += (HZ * 20) / 1000;
737
2c01946c
SG
738 gpmc_nand_write(info->gpmc_cs,
739 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
67ce04bf 740 while (time_before(jiffies, timeo)) {
2c01946c 741 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
c276aca4 742 if (status & NAND_STATUS_READY)
67ce04bf 743 break;
c276aca4 744 cond_resched();
67ce04bf
VS
745 }
746 return status;
747}
748
749/**
750 * omap_dev_ready - calls the platform specific dev_ready function
751 * @mtd: MTD device structure
752 */
753static int omap_dev_ready(struct mtd_info *mtd)
754{
2c01946c 755 unsigned int val = 0;
67ce04bf
VS
756 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
757 mtd);
67ce04bf 758
2c01946c 759 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
67ce04bf
VS
760 if ((val & 0x100) == 0x100) {
761 /* Clear IRQ Interrupt */
762 val |= 0x100;
763 val &= ~(0x0);
2c01946c 764 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
67ce04bf
VS
765 } else {
766 unsigned int cnt = 0;
767 while (cnt++ < 0x1FF) {
768 if ((val & 0x100) == 0x100)
769 return 0;
2c01946c 770 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
67ce04bf
VS
771 }
772 }
773
774 return 1;
775}
776
777static int __devinit omap_nand_probe(struct platform_device *pdev)
778{
779 struct omap_nand_info *info;
780 struct omap_nand_platform_data *pdata;
781 int err;
67ce04bf
VS
782
783 pdata = pdev->dev.platform_data;
784 if (pdata == NULL) {
785 dev_err(&pdev->dev, "platform data missing\n");
786 return -ENODEV;
787 }
788
789 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
790 if (!info)
791 return -ENOMEM;
792
793 platform_set_drvdata(pdev, info);
794
795 spin_lock_init(&info->controller.lock);
796 init_waitqueue_head(&info->controller.wq);
797
798 info->pdev = pdev;
799
800 info->gpmc_cs = pdata->cs;
2f70a1e9 801 info->phys_base = pdata->phys_base;
67ce04bf
VS
802
803 info->mtd.priv = &info->nand;
804 info->mtd.name = dev_name(&pdev->dev);
805 info->mtd.owner = THIS_MODULE;
806
2f70a1e9
VS
807 info->nand.options |= pdata->devsize ? NAND_BUSWIDTH_16 : 0;
808 info->nand.options |= NAND_SKIP_BBTSCAN;
67ce04bf
VS
809
810 /* NAND write protect off */
2c01946c 811 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
67ce04bf
VS
812
813 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
814 pdev->dev.driver->name)) {
815 err = -EBUSY;
2f70a1e9 816 goto out_free_info;
67ce04bf
VS
817 }
818
819 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
820 if (!info->nand.IO_ADDR_R) {
821 err = -ENOMEM;
822 goto out_release_mem_region;
823 }
59e9c5ae 824
67ce04bf
VS
825 info->nand.controller = &info->controller;
826
827 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
828 info->nand.cmd_ctrl = omap_hwcontrol;
829
67ce04bf
VS
830 /*
831 * If RDY/BSY line is connected to OMAP then use the omap ready
832 * funcrtion and the generic nand_wait function which reads the status
833 * register after monitoring the RDY/BSY line.Otherwise use a standard
834 * chip delay which is slightly more than tR (AC Timing) of the NAND
835 * device and read status register until you get a failure or success
836 */
837 if (pdata->dev_ready) {
838 info->nand.dev_ready = omap_dev_ready;
839 info->nand.chip_delay = 0;
840 } else {
841 info->nand.waitfunc = omap_wait;
842 info->nand.chip_delay = 50;
843 }
844
59e9c5ae 845 if (use_prefetch) {
59e9c5ae 846
847 info->nand.read_buf = omap_read_buf_pref;
848 info->nand.write_buf = omap_write_buf_pref;
dfe32893 849 if (use_dma) {
850 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
851 omap_nand_dma_cb, &info->comp, &info->dma_ch);
852 if (err < 0) {
853 info->dma_ch = -1;
854 printk(KERN_WARNING "DMA request failed."
855 " Non-dma data transfer mode\n");
856 } else {
857 omap_set_dma_dest_burst_mode(info->dma_ch,
858 OMAP_DMA_DATA_BURST_16);
859 omap_set_dma_src_burst_mode(info->dma_ch,
860 OMAP_DMA_DATA_BURST_16);
861
862 info->nand.read_buf = omap_read_buf_dma_pref;
863 info->nand.write_buf = omap_write_buf_dma_pref;
864 }
865 }
59e9c5ae 866 } else {
867 if (info->nand.options & NAND_BUSWIDTH_16) {
868 info->nand.read_buf = omap_read_buf16;
869 info->nand.write_buf = omap_write_buf16;
870 } else {
871 info->nand.read_buf = omap_read_buf8;
872 info->nand.write_buf = omap_write_buf8;
873 }
874 }
875 info->nand.verify_buf = omap_verify_buf;
876
67ce04bf
VS
877#ifdef CONFIG_MTD_NAND_OMAP_HWECC
878 info->nand.ecc.bytes = 3;
879 info->nand.ecc.size = 512;
880 info->nand.ecc.calculate = omap_calculate_ecc;
881 info->nand.ecc.hwctl = omap_enable_hwecc;
882 info->nand.ecc.correct = omap_correct_data;
883 info->nand.ecc.mode = NAND_ECC_HW;
884
67ce04bf
VS
885#else
886 info->nand.ecc.mode = NAND_ECC_SOFT;
887#endif
888
889 /* DIP switches on some boards change between 8 and 16 bit
890 * bus widths for flash. Try the other width if the first try fails.
891 */
892 if (nand_scan(&info->mtd, 1)) {
893 info->nand.options ^= NAND_BUSWIDTH_16;
894 if (nand_scan(&info->mtd, 1)) {
895 err = -ENXIO;
896 goto out_release_mem_region;
897 }
898 }
899
900#ifdef CONFIG_MTD_PARTITIONS
901 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
902 if (err > 0)
903 add_mtd_partitions(&info->mtd, info->parts, err);
904 else if (pdata->parts)
905 add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
906 else
907#endif
908 add_mtd_device(&info->mtd);
909
910 platform_set_drvdata(pdev, &info->mtd);
911
912 return 0;
913
914out_release_mem_region:
915 release_mem_region(info->phys_base, NAND_IO_SIZE);
67ce04bf
VS
916out_free_info:
917 kfree(info);
918
919 return err;
920}
921
922static int omap_nand_remove(struct platform_device *pdev)
923{
924 struct mtd_info *mtd = platform_get_drvdata(pdev);
f35b6eda
VS
925 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
926 mtd);
67ce04bf
VS
927
928 platform_set_drvdata(pdev, NULL);
dfe32893 929 if (use_dma)
930 omap_free_dma(info->dma_ch);
931
67ce04bf
VS
932 /* Release NAND device, its internal structures and partitions */
933 nand_release(&info->mtd);
2c01946c 934 iounmap(info->nand.IO_ADDR_R);
67ce04bf
VS
935 kfree(&info->mtd);
936 return 0;
937}
938
939static struct platform_driver omap_nand_driver = {
940 .probe = omap_nand_probe,
941 .remove = omap_nand_remove,
942 .driver = {
943 .name = DRIVER_NAME,
944 .owner = THIS_MODULE,
945 },
946};
947
948static int __init omap_nand_init(void)
949{
950 printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
dfe32893 951
952 /* This check is required if driver is being
953 * loaded run time as a module
954 */
955 if ((1 == use_dma) && (0 == use_prefetch)) {
956 printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 "
957 "without use_prefetch'. Prefetch will not be"
958 " used in either mode (mpu or dma)\n");
959 }
67ce04bf
VS
960 return platform_driver_register(&omap_nand_driver);
961}
962
963static void __exit omap_nand_exit(void)
964{
965 platform_driver_unregister(&omap_nand_driver);
966}
967
968module_init(omap_nand_init);
969module_exit(omap_nand_exit);
970
971MODULE_ALIAS(DRIVER_NAME);
972MODULE_LICENSE("GPL");
973MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");