[MTD] NAND: Use arrays of needed size instead of constant-sized.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / diskonchip.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 *
dfd61294 19 * $Id: diskonchip.c,v 1.49 2005/02/22 21:48:21 gleixner Exp $
1da177e4
LT
20 */
21
22#include <linux/kernel.h>
23#include <linux/init.h>
24#include <linux/sched.h>
25#include <linux/delay.h>
26#include <linux/rslib.h>
27#include <linux/moduleparam.h>
28#include <asm/io.h>
29
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/doc2000.h>
33#include <linux/mtd/compatmac.h>
34#include <linux/mtd/partitions.h>
35#include <linux/mtd/inftl.h>
36
37/* Where to look for the devices? */
651078ba
TG
38#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
1da177e4
LT
40#endif
41
42static unsigned long __initdata doc_locations[] = {
43#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
651078ba 44#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
1da177e4
LT
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50#else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56#endif /* CONFIG_MTD_DOCPROBE_HIGH */
57#elif defined(__PPC__)
58 0xe4000000,
59#elif defined(CONFIG_MOMENCO_OCELOT)
60 0x2f000000,
61 0xff000000,
62#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
63 0xff000000,
64##else
65#warning Unknown architecture for DiskOnChip. No default probe locations defined
66#endif
67 0xffffffff };
68
69static struct mtd_info *doclist = NULL;
70
71struct doc_priv {
72 void __iomem *virtadr;
73 unsigned long physadr;
74 u_char ChipID;
75 u_char CDSNControl;
76 int chips_per_floor; /* The number of chips detected on each floor */
77 int curfloor;
78 int curchip;
79 int mh0_page;
80 int mh1_page;
81 struct mtd_info *nextdoc;
82};
83
84/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
85 MediaHeader. The spec says to just keep going, I think, but that's just
86 silly. */
87#define MAX_MEDIAHEADER_SCAN 8
88
89/* This is the syndrome computed by the HW ecc generator upon reading an empty
90 page, one with all 0xff for data and stored ecc code. */
91static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
92/* This is the ecc value computed by the HW ecc generator upon writing an empty
93 page, one with all 0xff for data. */
94static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
95
96#define INFTL_BBT_RESERVED_BLOCKS 4
97
98#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
99#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
100#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
101
102static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
103static void doc200x_select_chip(struct mtd_info *mtd, int chip);
104
105static int debug=0;
106module_param(debug, int, 0);
107
108static int try_dword=1;
109module_param(try_dword, int, 0);
110
111static int no_ecc_failures=0;
112module_param(no_ecc_failures, int, 0);
113
114#ifdef CONFIG_MTD_PARTITIONS
115static int no_autopart=0;
116module_param(no_autopart, int, 0);
117#endif
118
119#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
120static int inftl_bbt_write=1;
121#else
122static int inftl_bbt_write=0;
123#endif
124module_param(inftl_bbt_write, int, 0);
125
651078ba 126static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
1da177e4
LT
127module_param(doc_config_location, ulong, 0);
128MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
129
130
131/* Sector size for HW ECC */
132#define SECTOR_SIZE 512
133/* The sector bytes are packed into NB_DATA 10 bit words */
134#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
135/* Number of roots */
136#define NROOTS 4
137/* First consective root */
138#define FCR 510
139/* Number of symbols */
140#define NN 1023
141
142/* the Reed Solomon control structure */
143static struct rs_control *rs_decoder;
144
145/*
146 * The HW decoder in the DoC ASIC's provides us a error syndrome,
147 * which we must convert to a standard syndrom usable by the generic
148 * Reed-Solomon library code.
149 *
150 * Fabrice Bellard figured this out in the old docecc code. I added
151 * some comments, improved a minor bit and converted it to make use
152 * of the generic Reed-Solomon libary. tglx
153 */
154static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
155{
156 int i, j, nerr, errpos[8];
157 uint8_t parity;
158 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
159
160 /* Convert the ecc bytes into words */
161 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
162 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
163 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
164 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
165 parity = ecc[1];
166
167 /* Initialize the syndrom buffer */
168 for (i = 0; i < NROOTS; i++)
169 s[i] = ds[0];
170 /*
171 * Evaluate
172 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
173 * where x = alpha^(FCR + i)
174 */
175 for(j = 1; j < NROOTS; j++) {
176 if(ds[j] == 0)
177 continue;
178 tmp = rs->index_of[ds[j]];
179 for(i = 0; i < NROOTS; i++)
180 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
181 }
182
183 /* Calc s[i] = s[i] / alpha^(v + i) */
184 for (i = 0; i < NROOTS; i++) {
185 if (syn[i])
186 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
187 }
188 /* Call the decoder library */
189 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
190
191 /* Incorrectable errors ? */
192 if (nerr < 0)
193 return nerr;
194
195 /*
196 * Correct the errors. The bitpositions are a bit of magic,
197 * but they are given by the design of the de/encoder circuit
198 * in the DoC ASIC's.
199 */
200 for(i = 0;i < nerr; i++) {
201 int index, bitpos, pos = 1015 - errpos[i];
202 uint8_t val;
203 if (pos >= NB_DATA && pos < 1019)
204 continue;
205 if (pos < NB_DATA) {
206 /* extract bit position (MSB first) */
207 pos = 10 * (NB_DATA - 1 - pos) - 6;
208 /* now correct the following 10 bits. At most two bytes
209 can be modified since pos is even */
210 index = (pos >> 3) ^ 1;
211 bitpos = pos & 7;
212 if ((index >= 0 && index < SECTOR_SIZE) ||
213 index == (SECTOR_SIZE + 1)) {
214 val = (uint8_t) (errval[i] >> (2 + bitpos));
215 parity ^= val;
216 if (index < SECTOR_SIZE)
217 data[index] ^= val;
218 }
219 index = ((pos >> 3) + 1) ^ 1;
220 bitpos = (bitpos + 10) & 7;
221 if (bitpos == 0)
222 bitpos = 8;
223 if ((index >= 0 && index < SECTOR_SIZE) ||
224 index == (SECTOR_SIZE + 1)) {
225 val = (uint8_t)(errval[i] << (8 - bitpos));
226 parity ^= val;
227 if (index < SECTOR_SIZE)
228 data[index] ^= val;
229 }
230 }
231 }
232 /* If the parity is wrong, no rescue possible */
233 return parity ? -1 : nerr;
234}
235
236static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
237{
238 volatile char dummy;
239 int i;
240
241 for (i = 0; i < cycles; i++) {
242 if (DoC_is_Millennium(doc))
243 dummy = ReadDOC(doc->virtadr, NOP);
244 else if (DoC_is_MillenniumPlus(doc))
245 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
246 else
247 dummy = ReadDOC(doc->virtadr, DOCStatus);
248 }
249
250}
251
252#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
253
254/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
255static int _DoC_WaitReady(struct doc_priv *doc)
256{
257 void __iomem *docptr = doc->virtadr;
258 unsigned long timeo = jiffies + (HZ * 10);
259
260 if(debug) printk("_DoC_WaitReady...\n");
261 /* Out-of-line routine to wait for chip response */
262 if (DoC_is_MillenniumPlus(doc)) {
263 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
264 if (time_after(jiffies, timeo)) {
265 printk("_DoC_WaitReady timed out.\n");
266 return -EIO;
267 }
268 udelay(1);
269 cond_resched();
270 }
271 } else {
272 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
273 if (time_after(jiffies, timeo)) {
274 printk("_DoC_WaitReady timed out.\n");
275 return -EIO;
276 }
277 udelay(1);
278 cond_resched();
279 }
280 }
281
282 return 0;
283}
284
285static inline int DoC_WaitReady(struct doc_priv *doc)
286{
287 void __iomem *docptr = doc->virtadr;
288 int ret = 0;
289
290 if (DoC_is_MillenniumPlus(doc)) {
291 DoC_Delay(doc, 4);
292
293 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
294 /* Call the out-of-line routine to wait */
295 ret = _DoC_WaitReady(doc);
296 } else {
297 DoC_Delay(doc, 4);
298
299 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
300 /* Call the out-of-line routine to wait */
301 ret = _DoC_WaitReady(doc);
302 DoC_Delay(doc, 2);
303 }
304
305 if(debug) printk("DoC_WaitReady OK\n");
306 return ret;
307}
308
309static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
310{
311 struct nand_chip *this = mtd->priv;
312 struct doc_priv *doc = this->priv;
313 void __iomem *docptr = doc->virtadr;
314
315 if(debug)printk("write_byte %02x\n", datum);
316 WriteDOC(datum, docptr, CDSNSlowIO);
317 WriteDOC(datum, docptr, 2k_CDSN_IO);
318}
319
320static u_char doc2000_read_byte(struct mtd_info *mtd)
321{
322 struct nand_chip *this = mtd->priv;
323 struct doc_priv *doc = this->priv;
324 void __iomem *docptr = doc->virtadr;
325 u_char ret;
326
327 ReadDOC(docptr, CDSNSlowIO);
328 DoC_Delay(doc, 2);
329 ret = ReadDOC(docptr, 2k_CDSN_IO);
330 if (debug) printk("read_byte returns %02x\n", ret);
331 return ret;
332}
333
334static void doc2000_writebuf(struct mtd_info *mtd,
335 const u_char *buf, int len)
336{
337 struct nand_chip *this = mtd->priv;
338 struct doc_priv *doc = this->priv;
339 void __iomem *docptr = doc->virtadr;
340 int i;
341 if (debug)printk("writebuf of %d bytes: ", len);
342 for (i=0; i < len; i++) {
343 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
344 if (debug && i < 16)
345 printk("%02x ", buf[i]);
346 }
347 if (debug) printk("\n");
348}
349
350static void doc2000_readbuf(struct mtd_info *mtd,
351 u_char *buf, int len)
352{
353 struct nand_chip *this = mtd->priv;
354 struct doc_priv *doc = this->priv;
355 void __iomem *docptr = doc->virtadr;
356 int i;
357
358 if (debug)printk("readbuf of %d bytes: ", len);
359
360 for (i=0; i < len; i++) {
361 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
362 }
363}
364
365static void doc2000_readbuf_dword(struct mtd_info *mtd,
366 u_char *buf, int len)
367{
368 struct nand_chip *this = mtd->priv;
369 struct doc_priv *doc = this->priv;
370 void __iomem *docptr = doc->virtadr;
371 int i;
372
373 if (debug) printk("readbuf_dword of %d bytes: ", len);
374
375 if (unlikely((((unsigned long)buf)|len) & 3)) {
376 for (i=0; i < len; i++) {
377 *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
378 }
379 } else {
380 for (i=0; i < len; i+=4) {
381 *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
382 }
383 }
384}
385
386static int doc2000_verifybuf(struct mtd_info *mtd,
387 const u_char *buf, int len)
388{
389 struct nand_chip *this = mtd->priv;
390 struct doc_priv *doc = this->priv;
391 void __iomem *docptr = doc->virtadr;
392 int i;
393
394 for (i=0; i < len; i++)
395 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
396 return -EFAULT;
397 return 0;
398}
399
400static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
401{
402 struct nand_chip *this = mtd->priv;
403 struct doc_priv *doc = this->priv;
404 uint16_t ret;
405
406 doc200x_select_chip(mtd, nr);
407 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
408 this->write_byte(mtd, NAND_CMD_READID);
409 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
410 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
411 this->write_byte(mtd, 0);
412 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
dfd61294
TG
413
414 /* We cant' use dev_ready here, but at least we wait for the
415 * command to complete
416 */
417 udelay(50);
418
1da177e4
LT
419 ret = this->read_byte(mtd) << 8;
420 ret |= this->read_byte(mtd);
421
422 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
423 /* First chip probe. See if we get same results by 32-bit access */
424 union {
425 uint32_t dword;
426 uint8_t byte[4];
427 } ident;
428 void __iomem *docptr = doc->virtadr;
429
430 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
431 doc2000_write_byte(mtd, NAND_CMD_READID);
432 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
433 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
434 doc2000_write_byte(mtd, 0);
435 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
436
dfd61294
TG
437 udelay(50);
438
1da177e4
LT
439 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
440 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
441 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
442 this->read_buf = &doc2000_readbuf_dword;
443 }
444 }
445
446 return ret;
447}
448
449static void __init doc2000_count_chips(struct mtd_info *mtd)
450{
451 struct nand_chip *this = mtd->priv;
452 struct doc_priv *doc = this->priv;
453 uint16_t mfrid;
454 int i;
455
456 /* Max 4 chips per floor on DiskOnChip 2000 */
457 doc->chips_per_floor = 4;
458
459 /* Find out what the first chip is */
460 mfrid = doc200x_ident_chip(mtd, 0);
461
462 /* Find how many chips in each floor. */
463 for (i = 1; i < 4; i++) {
464 if (doc200x_ident_chip(mtd, i) != mfrid)
465 break;
466 }
467 doc->chips_per_floor = i;
468 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
469}
470
471static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
472{
473 struct doc_priv *doc = this->priv;
474
475 int status;
476
477 DoC_WaitReady(doc);
478 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
479 DoC_WaitReady(doc);
480 status = (int)this->read_byte(mtd);
481
482 return status;
483}
484
485static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
486{
487 struct nand_chip *this = mtd->priv;
488 struct doc_priv *doc = this->priv;
489 void __iomem *docptr = doc->virtadr;
490
491 WriteDOC(datum, docptr, CDSNSlowIO);
492 WriteDOC(datum, docptr, Mil_CDSN_IO);
493 WriteDOC(datum, docptr, WritePipeTerm);
494}
495
496static u_char doc2001_read_byte(struct mtd_info *mtd)
497{
498 struct nand_chip *this = mtd->priv;
499 struct doc_priv *doc = this->priv;
500 void __iomem *docptr = doc->virtadr;
501
502 //ReadDOC(docptr, CDSNSlowIO);
503 /* 11.4.5 -- delay twice to allow extended length cycle */
504 DoC_Delay(doc, 2);
505 ReadDOC(docptr, ReadPipeInit);
506 //return ReadDOC(docptr, Mil_CDSN_IO);
507 return ReadDOC(docptr, LastDataRead);
508}
509
510static void doc2001_writebuf(struct mtd_info *mtd,
511 const u_char *buf, int len)
512{
513 struct nand_chip *this = mtd->priv;
514 struct doc_priv *doc = this->priv;
515 void __iomem *docptr = doc->virtadr;
516 int i;
517
518 for (i=0; i < len; i++)
519 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
520 /* Terminate write pipeline */
521 WriteDOC(0x00, docptr, WritePipeTerm);
522}
523
524static void doc2001_readbuf(struct mtd_info *mtd,
525 u_char *buf, int len)
526{
527 struct nand_chip *this = mtd->priv;
528 struct doc_priv *doc = this->priv;
529 void __iomem *docptr = doc->virtadr;
530 int i;
531
532 /* Start read pipeline */
533 ReadDOC(docptr, ReadPipeInit);
534
535 for (i=0; i < len-1; i++)
536 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
537
538 /* Terminate read pipeline */
539 buf[i] = ReadDOC(docptr, LastDataRead);
540}
541
542static int doc2001_verifybuf(struct mtd_info *mtd,
543 const u_char *buf, int len)
544{
545 struct nand_chip *this = mtd->priv;
546 struct doc_priv *doc = this->priv;
547 void __iomem *docptr = doc->virtadr;
548 int i;
549
550 /* Start read pipeline */
551 ReadDOC(docptr, ReadPipeInit);
552
553 for (i=0; i < len-1; i++)
554 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
555 ReadDOC(docptr, LastDataRead);
556 return i;
557 }
558 if (buf[i] != ReadDOC(docptr, LastDataRead))
559 return i;
560 return 0;
561}
562
563static u_char doc2001plus_read_byte(struct mtd_info *mtd)
564{
565 struct nand_chip *this = mtd->priv;
566 struct doc_priv *doc = this->priv;
567 void __iomem *docptr = doc->virtadr;
568 u_char ret;
569
570 ReadDOC(docptr, Mplus_ReadPipeInit);
571 ReadDOC(docptr, Mplus_ReadPipeInit);
572 ret = ReadDOC(docptr, Mplus_LastDataRead);
573 if (debug) printk("read_byte returns %02x\n", ret);
574 return ret;
575}
576
577static void doc2001plus_writebuf(struct mtd_info *mtd,
578 const u_char *buf, int len)
579{
580 struct nand_chip *this = mtd->priv;
581 struct doc_priv *doc = this->priv;
582 void __iomem *docptr = doc->virtadr;
583 int i;
584
585 if (debug)printk("writebuf of %d bytes: ", len);
586 for (i=0; i < len; i++) {
587 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
588 if (debug && i < 16)
589 printk("%02x ", buf[i]);
590 }
591 if (debug) printk("\n");
592}
593
594static void doc2001plus_readbuf(struct mtd_info *mtd,
595 u_char *buf, int len)
596{
597 struct nand_chip *this = mtd->priv;
598 struct doc_priv *doc = this->priv;
599 void __iomem *docptr = doc->virtadr;
600 int i;
601
602 if (debug)printk("readbuf of %d bytes: ", len);
603
604 /* Start read pipeline */
605 ReadDOC(docptr, Mplus_ReadPipeInit);
606 ReadDOC(docptr, Mplus_ReadPipeInit);
607
608 for (i=0; i < len-2; i++) {
609 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
610 if (debug && i < 16)
611 printk("%02x ", buf[i]);
612 }
613
614 /* Terminate read pipeline */
615 buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
616 if (debug && i < 16)
617 printk("%02x ", buf[len-2]);
618 buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
619 if (debug && i < 16)
620 printk("%02x ", buf[len-1]);
621 if (debug) printk("\n");
622}
623
624static int doc2001plus_verifybuf(struct mtd_info *mtd,
625 const u_char *buf, int len)
626{
627 struct nand_chip *this = mtd->priv;
628 struct doc_priv *doc = this->priv;
629 void __iomem *docptr = doc->virtadr;
630 int i;
631
632 if (debug)printk("verifybuf of %d bytes: ", len);
633
634 /* Start read pipeline */
635 ReadDOC(docptr, Mplus_ReadPipeInit);
636 ReadDOC(docptr, Mplus_ReadPipeInit);
637
638 for (i=0; i < len-2; i++)
639 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
640 ReadDOC(docptr, Mplus_LastDataRead);
641 ReadDOC(docptr, Mplus_LastDataRead);
642 return i;
643 }
644 if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
645 return len-2;
646 if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
647 return len-1;
648 return 0;
649}
650
651static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
652{
653 struct nand_chip *this = mtd->priv;
654 struct doc_priv *doc = this->priv;
655 void __iomem *docptr = doc->virtadr;
656 int floor = 0;
657
658 if(debug)printk("select chip (%d)\n", chip);
659
660 if (chip == -1) {
661 /* Disable flash internally */
662 WriteDOC(0, docptr, Mplus_FlashSelect);
663 return;
664 }
665
666 floor = chip / doc->chips_per_floor;
667 chip -= (floor * doc->chips_per_floor);
668
669 /* Assert ChipEnable and deassert WriteProtect */
670 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
671 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
672
673 doc->curchip = chip;
674 doc->curfloor = floor;
675}
676
677static void doc200x_select_chip(struct mtd_info *mtd, int chip)
678{
679 struct nand_chip *this = mtd->priv;
680 struct doc_priv *doc = this->priv;
681 void __iomem *docptr = doc->virtadr;
682 int floor = 0;
683
684 if(debug)printk("select chip (%d)\n", chip);
685
686 if (chip == -1)
687 return;
688
689 floor = chip / doc->chips_per_floor;
690 chip -= (floor * doc->chips_per_floor);
691
692 /* 11.4.4 -- deassert CE before changing chip */
693 doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
694
695 WriteDOC(floor, docptr, FloorSelect);
696 WriteDOC(chip, docptr, CDSNDeviceSelect);
697
698 doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
699
700 doc->curchip = chip;
701 doc->curfloor = floor;
702}
703
704static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
705{
706 struct nand_chip *this = mtd->priv;
707 struct doc_priv *doc = this->priv;
708 void __iomem *docptr = doc->virtadr;
709
710 switch(cmd) {
711 case NAND_CTL_SETNCE:
712 doc->CDSNControl |= CDSN_CTRL_CE;
713 break;
714 case NAND_CTL_CLRNCE:
715 doc->CDSNControl &= ~CDSN_CTRL_CE;
716 break;
717 case NAND_CTL_SETCLE:
718 doc->CDSNControl |= CDSN_CTRL_CLE;
719 break;
720 case NAND_CTL_CLRCLE:
721 doc->CDSNControl &= ~CDSN_CTRL_CLE;
722 break;
723 case NAND_CTL_SETALE:
724 doc->CDSNControl |= CDSN_CTRL_ALE;
725 break;
726 case NAND_CTL_CLRALE:
727 doc->CDSNControl &= ~CDSN_CTRL_ALE;
728 break;
729 case NAND_CTL_SETWP:
730 doc->CDSNControl |= CDSN_CTRL_WP;
731 break;
732 case NAND_CTL_CLRWP:
733 doc->CDSNControl &= ~CDSN_CTRL_WP;
734 break;
735 }
736 if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
737 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
738 /* 11.4.3 -- 4 NOPs after CSDNControl write */
739 DoC_Delay(doc, 4);
740}
741
742static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
743{
744 struct nand_chip *this = mtd->priv;
745 struct doc_priv *doc = this->priv;
746 void __iomem *docptr = doc->virtadr;
747
748 /*
749 * Must terminate write pipeline before sending any commands
750 * to the device.
751 */
752 if (command == NAND_CMD_PAGEPROG) {
753 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
754 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
755 }
756
757 /*
758 * Write out the command to the device.
759 */
760 if (command == NAND_CMD_SEQIN) {
761 int readcmd;
762
763 if (column >= mtd->oobblock) {
764 /* OOB area */
765 column -= mtd->oobblock;
766 readcmd = NAND_CMD_READOOB;
767 } else if (column < 256) {
768 /* First 256 bytes --> READ0 */
769 readcmd = NAND_CMD_READ0;
770 } else {
771 column -= 256;
772 readcmd = NAND_CMD_READ1;
773 }
774 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
775 }
776 WriteDOC(command, docptr, Mplus_FlashCmd);
777 WriteDOC(0, docptr, Mplus_WritePipeTerm);
778 WriteDOC(0, docptr, Mplus_WritePipeTerm);
779
780 if (column != -1 || page_addr != -1) {
781 /* Serially input address */
782 if (column != -1) {
783 /* Adjust columns for 16 bit buswidth */
784 if (this->options & NAND_BUSWIDTH_16)
785 column >>= 1;
786 WriteDOC(column, docptr, Mplus_FlashAddress);
787 }
788 if (page_addr != -1) {
789 WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
790 WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
791 /* One more address cycle for higher density devices */
792 if (this->chipsize & 0x0c000000) {
793 WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
794 printk("high density\n");
795 }
796 }
797 WriteDOC(0, docptr, Mplus_WritePipeTerm);
798 WriteDOC(0, docptr, Mplus_WritePipeTerm);
799 /* deassert ALE */
800 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
801 WriteDOC(0, docptr, Mplus_FlashControl);
802 }
803
804 /*
805 * program and erase have their own busy handlers
806 * status and sequential in needs no delay
807 */
808 switch (command) {
809
810 case NAND_CMD_PAGEPROG:
811 case NAND_CMD_ERASE1:
812 case NAND_CMD_ERASE2:
813 case NAND_CMD_SEQIN:
814 case NAND_CMD_STATUS:
815 return;
816
817 case NAND_CMD_RESET:
818 if (this->dev_ready)
819 break;
820 udelay(this->chip_delay);
821 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
822 WriteDOC(0, docptr, Mplus_WritePipeTerm);
823 WriteDOC(0, docptr, Mplus_WritePipeTerm);
824 while ( !(this->read_byte(mtd) & 0x40));
825 return;
826
827 /* This applies to read commands */
828 default:
829 /*
830 * If we don't have access to the busy pin, we apply the given
831 * command delay
832 */
833 if (!this->dev_ready) {
834 udelay (this->chip_delay);
835 return;
836 }
837 }
838
839 /* Apply this short delay always to ensure that we do wait tWB in
840 * any case on any machine. */
841 ndelay (100);
842 /* wait until command is processed */
843 while (!this->dev_ready(mtd));
844}
845
846static int doc200x_dev_ready(struct mtd_info *mtd)
847{
848 struct nand_chip *this = mtd->priv;
849 struct doc_priv *doc = this->priv;
850 void __iomem *docptr = doc->virtadr;
851
852 if (DoC_is_MillenniumPlus(doc)) {
853 /* 11.4.2 -- must NOP four times before checking FR/B# */
854 DoC_Delay(doc, 4);
855 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
856 if(debug)
857 printk("not ready\n");
858 return 0;
859 }
860 if (debug)printk("was ready\n");
861 return 1;
862 } else {
863 /* 11.4.2 -- must NOP four times before checking FR/B# */
864 DoC_Delay(doc, 4);
865 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
866 if(debug)
867 printk("not ready\n");
868 return 0;
869 }
870 /* 11.4.2 -- Must NOP twice if it's ready */
871 DoC_Delay(doc, 2);
872 if (debug)printk("was ready\n");
873 return 1;
874 }
875}
876
877static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
878{
879 /* This is our last resort if we couldn't find or create a BBT. Just
880 pretend all blocks are good. */
881 return 0;
882}
883
884static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
885{
886 struct nand_chip *this = mtd->priv;
887 struct doc_priv *doc = this->priv;
888 void __iomem *docptr = doc->virtadr;
889
890 /* Prime the ECC engine */
891 switch(mode) {
892 case NAND_ECC_READ:
893 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
894 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
895 break;
896 case NAND_ECC_WRITE:
897 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
898 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
899 break;
900 }
901}
902
903static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
904{
905 struct nand_chip *this = mtd->priv;
906 struct doc_priv *doc = this->priv;
907 void __iomem *docptr = doc->virtadr;
908
909 /* Prime the ECC engine */
910 switch(mode) {
911 case NAND_ECC_READ:
912 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
913 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
914 break;
915 case NAND_ECC_WRITE:
916 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
917 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
918 break;
919 }
920}
921
922/* This code is only called on write */
923static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
924 unsigned char *ecc_code)
925{
926 struct nand_chip *this = mtd->priv;
927 struct doc_priv *doc = this->priv;
928 void __iomem *docptr = doc->virtadr;
929 int i;
930 int emptymatch = 1;
931
932 /* flush the pipeline */
933 if (DoC_is_2000(doc)) {
934 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
935 WriteDOC(0, docptr, 2k_CDSN_IO);
936 WriteDOC(0, docptr, 2k_CDSN_IO);
937 WriteDOC(0, docptr, 2k_CDSN_IO);
938 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
939 } else if (DoC_is_MillenniumPlus(doc)) {
940 WriteDOC(0, docptr, Mplus_NOP);
941 WriteDOC(0, docptr, Mplus_NOP);
942 WriteDOC(0, docptr, Mplus_NOP);
943 } else {
944 WriteDOC(0, docptr, NOP);
945 WriteDOC(0, docptr, NOP);
946 WriteDOC(0, docptr, NOP);
947 }
948
949 for (i = 0; i < 6; i++) {
950 if (DoC_is_MillenniumPlus(doc))
951 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
952 else
953 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
954 if (ecc_code[i] != empty_write_ecc[i])
955 emptymatch = 0;
956 }
957 if (DoC_is_MillenniumPlus(doc))
958 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
959 else
960 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
961#if 0
962 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
963 if (emptymatch) {
964 /* Note: this somewhat expensive test should not be triggered
965 often. It could be optimized away by examining the data in
966 the writebuf routine, and remembering the result. */
967 for (i = 0; i < 512; i++) {
968 if (dat[i] == 0xff) continue;
969 emptymatch = 0;
970 break;
971 }
972 }
973 /* If emptymatch still =1, we do have an all-0xff data buffer.
974 Return all-0xff ecc value instead of the computed one, so
975 it'll look just like a freshly-erased page. */
976 if (emptymatch) memset(ecc_code, 0xff, 6);
977#endif
978 return 0;
979}
980
981static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
982{
983 int i, ret = 0;
984 struct nand_chip *this = mtd->priv;
985 struct doc_priv *doc = this->priv;
986 void __iomem *docptr = doc->virtadr;
987 volatile u_char dummy;
988 int emptymatch = 1;
989
990 /* flush the pipeline */
991 if (DoC_is_2000(doc)) {
992 dummy = ReadDOC(docptr, 2k_ECCStatus);
993 dummy = ReadDOC(docptr, 2k_ECCStatus);
994 dummy = ReadDOC(docptr, 2k_ECCStatus);
995 } else if (DoC_is_MillenniumPlus(doc)) {
996 dummy = ReadDOC(docptr, Mplus_ECCConf);
997 dummy = ReadDOC(docptr, Mplus_ECCConf);
998 dummy = ReadDOC(docptr, Mplus_ECCConf);
999 } else {
1000 dummy = ReadDOC(docptr, ECCConf);
1001 dummy = ReadDOC(docptr, ECCConf);
1002 dummy = ReadDOC(docptr, ECCConf);
1003 }
1004
1005 /* Error occured ? */
1006 if (dummy & 0x80) {
1007 for (i = 0; i < 6; i++) {
1008 if (DoC_is_MillenniumPlus(doc))
1009 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1010 else
1011 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1012 if (calc_ecc[i] != empty_read_syndrome[i])
1013 emptymatch = 0;
1014 }
1015 /* If emptymatch=1, the read syndrome is consistent with an
1016 all-0xff data and stored ecc block. Check the stored ecc. */
1017 if (emptymatch) {
1018 for (i = 0; i < 6; i++) {
1019 if (read_ecc[i] == 0xff) continue;
1020 emptymatch = 0;
1021 break;
1022 }
1023 }
1024 /* If emptymatch still =1, check the data block. */
1025 if (emptymatch) {
1026 /* Note: this somewhat expensive test should not be triggered
1027 often. It could be optimized away by examining the data in
1028 the readbuf routine, and remembering the result. */
1029 for (i = 0; i < 512; i++) {
1030 if (dat[i] == 0xff) continue;
1031 emptymatch = 0;
1032 break;
1033 }
1034 }
1035 /* If emptymatch still =1, this is almost certainly a freshly-
1036 erased block, in which case the ECC will not come out right.
1037 We'll suppress the error and tell the caller everything's
1038 OK. Because it is. */
1039 if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
1040 if (ret > 0)
1041 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1042 }
1043 if (DoC_is_MillenniumPlus(doc))
1044 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1045 else
1046 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1047 if (no_ecc_failures && (ret == -1)) {
1048 printk(KERN_ERR "suppressing ECC failure\n");
1049 ret = 0;
1050 }
1051 return ret;
1052}
1053
1054//u_char mydatabuf[528];
1055
1056static struct nand_oobinfo doc200x_oobinfo = {
1057 .useecc = MTD_NANDECC_AUTOPLACE,
1058 .eccbytes = 6,
1059 .eccpos = {0, 1, 2, 3, 4, 5},
1060 .oobfree = { {8, 8} }
1061};
1062
1063/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1064 On sucessful return, buf will contain a copy of the media header for
1065 further processing. id is the string to scan for, and will presumably be
1066 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1067 header. The page #s of the found media headers are placed in mh0_page and
1068 mh1_page in the DOC private structure. */
1069static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
1070 const char *id, int findmirror)
1071{
1072 struct nand_chip *this = mtd->priv;
1073 struct doc_priv *doc = this->priv;
1074 unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
1075 int ret;
1076 size_t retlen;
1077
1078 end = min(end, mtd->size); // paranoia
1079 for (offs = 0; offs < end; offs += mtd->erasesize) {
1080 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1081 if (retlen != mtd->oobblock) continue;
1082 if (ret) {
1083 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
1084 offs);
1085 }
1086 if (memcmp(buf, id, 6)) continue;
1087 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1088 if (doc->mh0_page == -1) {
1089 doc->mh0_page = offs >> this->page_shift;
1090 if (!findmirror) return 1;
1091 continue;
1092 }
1093 doc->mh1_page = offs >> this->page_shift;
1094 return 2;
1095 }
1096 if (doc->mh0_page == -1) {
1097 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1098 return 0;
1099 }
1100 /* Only one mediaheader was found. We want buf to contain a
1101 mediaheader on return, so we'll have to re-read the one we found. */
1102 offs = doc->mh0_page << this->page_shift;
1103 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1104 if (retlen != mtd->oobblock) {
1105 /* Insanity. Give up. */
1106 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1107 return 0;
1108 }
1109 return 1;
1110}
1111
1112static inline int __init nftl_partscan(struct mtd_info *mtd,
1113 struct mtd_partition *parts)
1114{
1115 struct nand_chip *this = mtd->priv;
1116 struct doc_priv *doc = this->priv;
1117 int ret = 0;
1118 u_char *buf;
1119 struct NFTLMediaHeader *mh;
1120 const unsigned psize = 1 << this->page_shift;
1121 unsigned blocks, maxblocks;
1122 int offs, numheaders;
1123
1124 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1125 if (!buf) {
1126 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1127 return 0;
1128 }
1129 if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
1130 mh = (struct NFTLMediaHeader *) buf;
1131
f29a4b86
TG
1132 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1133 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1134 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1135
1da177e4
LT
1136 printk(KERN_INFO " DataOrgID = %s\n"
1137 " NumEraseUnits = %d\n"
1138 " FirstPhysicalEUN = %d\n"
1139 " FormattedSize = %d\n"
1140 " UnitSizeFactor = %d\n",
1141 mh->DataOrgID, mh->NumEraseUnits,
1142 mh->FirstPhysicalEUN, mh->FormattedSize,
1143 mh->UnitSizeFactor);
1da177e4
LT
1144
1145 blocks = mtd->size >> this->phys_erase_shift;
1146 maxblocks = min(32768U, mtd->erasesize - psize);
1147
1148 if (mh->UnitSizeFactor == 0x00) {
1149 /* Auto-determine UnitSizeFactor. The constraints are:
1150 - There can be at most 32768 virtual blocks.
1151 - There can be at most (virtual block size - page size)
1152 virtual blocks (because MediaHeader+BBT must fit in 1).
1153 */
1154 mh->UnitSizeFactor = 0xff;
1155 while (blocks > maxblocks) {
1156 blocks >>= 1;
1157 maxblocks = min(32768U, (maxblocks << 1) + psize);
1158 mh->UnitSizeFactor--;
1159 }
1160 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1161 }
1162
1163 /* NOTE: The lines below modify internal variables of the NAND and MTD
1164 layers; variables with have already been configured by nand_scan.
1165 Unfortunately, we didn't know before this point what these values
1166 should be. Thus, this code is somewhat dependant on the exact
1167 implementation of the NAND layer. */
1168 if (mh->UnitSizeFactor != 0xff) {
1169 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1170 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1171 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1172 blocks = mtd->size >> this->bbt_erase_shift;
1173 maxblocks = min(32768U, mtd->erasesize - psize);
1174 }
1175
1176 if (blocks > maxblocks) {
1177 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1178 goto out;
1179 }
1180
1181 /* Skip past the media headers. */
1182 offs = max(doc->mh0_page, doc->mh1_page);
1183 offs <<= this->page_shift;
1184 offs += mtd->erasesize;
1185
1da177e4
LT
1186 parts[0].name = " DiskOnChip BDTL partition";
1187 parts[0].offset = offs;
1188 parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1189
1190 offs += parts[0].size;
1191 if (offs < mtd->size) {
1192 parts[1].name = " DiskOnChip Remainder partition";
1193 parts[1].offset = offs;
1194 parts[1].size = mtd->size - offs;
1195 ret = 2;
1196 goto out;
1197 }
1198 ret = 1;
1199out:
1200 kfree(buf);
1201 return ret;
1202}
1203
1204/* This is a stripped-down copy of the code in inftlmount.c */
1205static inline int __init inftl_partscan(struct mtd_info *mtd,
1206 struct mtd_partition *parts)
1207{
1208 struct nand_chip *this = mtd->priv;
1209 struct doc_priv *doc = this->priv;
1210 int ret = 0;
1211 u_char *buf;
1212 struct INFTLMediaHeader *mh;
1213 struct INFTLPartition *ip;
1214 int numparts = 0;
1215 int blocks;
1216 int vshift, lastvunit = 0;
1217 int i;
1218 int end = mtd->size;
1219
1220 if (inftl_bbt_write)
1221 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1222
1223 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1224 if (!buf) {
1225 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1226 return 0;
1227 }
1228
1229 if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
1230 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1231 mh = (struct INFTLMediaHeader *) buf;
1232
1233 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1234 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1235 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1236 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1237 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1238 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1239
1da177e4
LT
1240 printk(KERN_INFO " bootRecordID = %s\n"
1241 " NoOfBootImageBlocks = %d\n"
1242 " NoOfBinaryPartitions = %d\n"
1243 " NoOfBDTLPartitions = %d\n"
1244 " BlockMultiplerBits = %d\n"
1245 " FormatFlgs = %d\n"
1246 " OsakVersion = %d.%d.%d.%d\n"
1247 " PercentUsed = %d\n",
1248 mh->bootRecordID, mh->NoOfBootImageBlocks,
1249 mh->NoOfBinaryPartitions,
1250 mh->NoOfBDTLPartitions,
1251 mh->BlockMultiplierBits, mh->FormatFlags,
1252 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1253 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1254 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1255 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1256 mh->PercentUsed);
1da177e4
LT
1257
1258 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1259
1260 blocks = mtd->size >> vshift;
1261 if (blocks > 32768) {
1262 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1263 goto out;
1264 }
1265
1266 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1267 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1268 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1269 goto out;
1270 }
1271
1272 /* Scan the partitions */
1273 for (i = 0; (i < 4); i++) {
1274 ip = &(mh->Partitions[i]);
1275 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1276 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1277 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1278 ip->flags = le32_to_cpu(ip->flags);
1279 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1280 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1281
1da177e4
LT
1282 printk(KERN_INFO " PARTITION[%d] ->\n"
1283 " virtualUnits = %d\n"
1284 " firstUnit = %d\n"
1285 " lastUnit = %d\n"
1286 " flags = 0x%x\n"
1287 " spareUnits = %d\n",
1288 i, ip->virtualUnits, ip->firstUnit,
1289 ip->lastUnit, ip->flags,
1290 ip->spareUnits);
1da177e4 1291
39605398 1292#if 0
1da177e4
LT
1293 if ((i == 0) && (ip->firstUnit > 0)) {
1294 parts[0].name = " DiskOnChip IPL / Media Header partition";
1295 parts[0].offset = 0;
1296 parts[0].size = mtd->erasesize * ip->firstUnit;
1297 numparts = 1;
1298 }
39605398 1299#endif
1da177e4
LT
1300
1301 if (ip->flags & INFTL_BINARY)
1302 parts[numparts].name = " DiskOnChip BDK partition";
1303 else
1304 parts[numparts].name = " DiskOnChip BDTL partition";
1305 parts[numparts].offset = ip->firstUnit << vshift;
1306 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1307 numparts++;
1308 if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
1309 if (ip->flags & INFTL_LAST) break;
1310 }
1311 lastvunit++;
1312 if ((lastvunit << vshift) < end) {
1313 parts[numparts].name = " DiskOnChip Remainder partition";
1314 parts[numparts].offset = lastvunit << vshift;
1315 parts[numparts].size = end - parts[numparts].offset;
1316 numparts++;
1317 }
1318 ret = numparts;
1319out:
1320 kfree(buf);
1321 return ret;
1322}
1323
1324static int __init nftl_scan_bbt(struct mtd_info *mtd)
1325{
1326 int ret, numparts;
1327 struct nand_chip *this = mtd->priv;
1328 struct doc_priv *doc = this->priv;
1329 struct mtd_partition parts[2];
1330
1331 memset((char *) parts, 0, sizeof(parts));
1332 /* On NFTL, we have to find the media headers before we can read the
1333 BBTs, since they're stored in the media header eraseblocks. */
1334 numparts = nftl_partscan(mtd, parts);
1335 if (!numparts) return -EIO;
1336 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1337 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1338 NAND_BBT_VERSION;
1339 this->bbt_td->veroffs = 7;
1340 this->bbt_td->pages[0] = doc->mh0_page + 1;
1341 if (doc->mh1_page != -1) {
1342 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1343 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1344 NAND_BBT_VERSION;
1345 this->bbt_md->veroffs = 7;
1346 this->bbt_md->pages[0] = doc->mh1_page + 1;
1347 } else {
1348 this->bbt_md = NULL;
1349 }
1350
1351 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1352 At least as nand_bbt.c is currently written. */
1353 if ((ret = nand_scan_bbt(mtd, NULL)))
1354 return ret;
1355 add_mtd_device(mtd);
1356#ifdef CONFIG_MTD_PARTITIONS
1357 if (!no_autopart)
1358 add_mtd_partitions(mtd, parts, numparts);
1359#endif
1360 return 0;
1361}
1362
1363static int __init inftl_scan_bbt(struct mtd_info *mtd)
1364{
1365 int ret, numparts;
1366 struct nand_chip *this = mtd->priv;
1367 struct doc_priv *doc = this->priv;
1368 struct mtd_partition parts[5];
1369
1370 if (this->numchips > doc->chips_per_floor) {
1371 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1372 return -EIO;
1373 }
1374
1375 if (DoC_is_MillenniumPlus(doc)) {
1376 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1377 if (inftl_bbt_write)
1378 this->bbt_td->options |= NAND_BBT_WRITE;
1379 this->bbt_td->pages[0] = 2;
1380 this->bbt_md = NULL;
1381 } else {
1382 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1383 NAND_BBT_VERSION;
1384 if (inftl_bbt_write)
1385 this->bbt_td->options |= NAND_BBT_WRITE;
1386 this->bbt_td->offs = 8;
1387 this->bbt_td->len = 8;
1388 this->bbt_td->veroffs = 7;
1389 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1390 this->bbt_td->reserved_block_code = 0x01;
1391 this->bbt_td->pattern = "MSYS_BBT";
1392
1393 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1394 NAND_BBT_VERSION;
1395 if (inftl_bbt_write)
1396 this->bbt_md->options |= NAND_BBT_WRITE;
1397 this->bbt_md->offs = 8;
1398 this->bbt_md->len = 8;
1399 this->bbt_md->veroffs = 7;
1400 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1401 this->bbt_md->reserved_block_code = 0x01;
1402 this->bbt_md->pattern = "TBB_SYSM";
1403 }
1404
1405 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1406 At least as nand_bbt.c is currently written. */
1407 if ((ret = nand_scan_bbt(mtd, NULL)))
1408 return ret;
1409 memset((char *) parts, 0, sizeof(parts));
1410 numparts = inftl_partscan(mtd, parts);
1411 /* At least for now, require the INFTL Media Header. We could probably
1412 do without it for non-INFTL use, since all it gives us is
1413 autopartitioning, but I want to give it more thought. */
1414 if (!numparts) return -EIO;
1415 add_mtd_device(mtd);
1416#ifdef CONFIG_MTD_PARTITIONS
1417 if (!no_autopart)
1418 add_mtd_partitions(mtd, parts, numparts);
1419#endif
1420 return 0;
1421}
1422
1423static inline int __init doc2000_init(struct mtd_info *mtd)
1424{
1425 struct nand_chip *this = mtd->priv;
1426 struct doc_priv *doc = this->priv;
1427
1428 this->write_byte = doc2000_write_byte;
1429 this->read_byte = doc2000_read_byte;
1430 this->write_buf = doc2000_writebuf;
1431 this->read_buf = doc2000_readbuf;
1432 this->verify_buf = doc2000_verifybuf;
1433 this->scan_bbt = nftl_scan_bbt;
1434
1435 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1436 doc2000_count_chips(mtd);
1437 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1438 return (4 * doc->chips_per_floor);
1439}
1440
1441static inline int __init doc2001_init(struct mtd_info *mtd)
1442{
1443 struct nand_chip *this = mtd->priv;
1444 struct doc_priv *doc = this->priv;
1445
1446 this->write_byte = doc2001_write_byte;
1447 this->read_byte = doc2001_read_byte;
1448 this->write_buf = doc2001_writebuf;
1449 this->read_buf = doc2001_readbuf;
1450 this->verify_buf = doc2001_verifybuf;
1451
1452 ReadDOC(doc->virtadr, ChipID);
1453 ReadDOC(doc->virtadr, ChipID);
1454 ReadDOC(doc->virtadr, ChipID);
1455 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1456 /* It's not a Millennium; it's one of the newer
1457 DiskOnChip 2000 units with a similar ASIC.
1458 Treat it like a Millennium, except that it
1459 can have multiple chips. */
1460 doc2000_count_chips(mtd);
1461 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1462 this->scan_bbt = inftl_scan_bbt;
1463 return (4 * doc->chips_per_floor);
1464 } else {
1465 /* Bog-standard Millennium */
1466 doc->chips_per_floor = 1;
1467 mtd->name = "DiskOnChip Millennium";
1468 this->scan_bbt = nftl_scan_bbt;
1469 return 1;
1470 }
1471}
1472
1473static inline int __init doc2001plus_init(struct mtd_info *mtd)
1474{
1475 struct nand_chip *this = mtd->priv;
1476 struct doc_priv *doc = this->priv;
1477
1478 this->write_byte = NULL;
1479 this->read_byte = doc2001plus_read_byte;
1480 this->write_buf = doc2001plus_writebuf;
1481 this->read_buf = doc2001plus_readbuf;
1482 this->verify_buf = doc2001plus_verifybuf;
1483 this->scan_bbt = inftl_scan_bbt;
1484 this->hwcontrol = NULL;
1485 this->select_chip = doc2001plus_select_chip;
1486 this->cmdfunc = doc2001plus_command;
1487 this->enable_hwecc = doc2001plus_enable_hwecc;
1488
1489 doc->chips_per_floor = 1;
1490 mtd->name = "DiskOnChip Millennium Plus";
1491
1492 return 1;
1493}
1494
1495static inline int __init doc_probe(unsigned long physadr)
1496{
1497 unsigned char ChipID;
1498 struct mtd_info *mtd;
1499 struct nand_chip *nand;
1500 struct doc_priv *doc;
1501 void __iomem *virtadr;
1502 unsigned char save_control;
1503 unsigned char tmp, tmpb, tmpc;
1504 int reg, len, numchips;
1505 int ret = 0;
1506
1507 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1508 if (!virtadr) {
1509 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1510 return -EIO;
1511 }
1512
1513 /* It's not possible to cleanly detect the DiskOnChip - the
1514 * bootup procedure will put the device into reset mode, and
1515 * it's not possible to talk to it without actually writing
1516 * to the DOCControl register. So we store the current contents
1517 * of the DOCControl register's location, in case we later decide
1518 * that it's not a DiskOnChip, and want to put it back how we
1519 * found it.
1520 */
1521 save_control = ReadDOC(virtadr, DOCControl);
1522
1523 /* Reset the DiskOnChip ASIC */
1524 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1525 virtadr, DOCControl);
1526 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1527 virtadr, DOCControl);
1528
1529 /* Enable the DiskOnChip ASIC */
1530 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1531 virtadr, DOCControl);
1532 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1533 virtadr, DOCControl);
1534
1535 ChipID = ReadDOC(virtadr, ChipID);
1536
1537 switch(ChipID) {
1538 case DOC_ChipID_Doc2k:
1539 reg = DoC_2k_ECCStatus;
1540 break;
1541 case DOC_ChipID_DocMil:
1542 reg = DoC_ECCConf;
1543 break;
1544 case DOC_ChipID_DocMilPlus16:
1545 case DOC_ChipID_DocMilPlus32:
1546 case 0:
1547 /* Possible Millennium Plus, need to do more checks */
1548 /* Possibly release from power down mode */
1549 for (tmp = 0; (tmp < 4); tmp++)
1550 ReadDOC(virtadr, Mplus_Power);
1551
1552 /* Reset the Millennium Plus ASIC */
1553 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1554 DOC_MODE_BDECT;
1555 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1556 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1557
1558 mdelay(1);
1559 /* Enable the Millennium Plus ASIC */
1560 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1561 DOC_MODE_BDECT;
1562 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1563 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1564 mdelay(1);
1565
1566 ChipID = ReadDOC(virtadr, ChipID);
1567
1568 switch (ChipID) {
1569 case DOC_ChipID_DocMilPlus16:
1570 reg = DoC_Mplus_Toggle;
1571 break;
1572 case DOC_ChipID_DocMilPlus32:
1573 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1574 default:
1575 ret = -ENODEV;
1576 goto notfound;
1577 }
1578 break;
1579
1580 default:
1581 ret = -ENODEV;
1582 goto notfound;
1583 }
1584 /* Check the TOGGLE bit in the ECC register */
1585 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1586 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1587 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1588 if ((tmp == tmpb) || (tmp != tmpc)) {
1589 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1590 ret = -ENODEV;
1591 goto notfound;
1592 }
1593
1594 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1595 unsigned char oldval;
1596 unsigned char newval;
1597 nand = mtd->priv;
1598 doc = nand->priv;
1599 /* Use the alias resolution register to determine if this is
1600 in fact the same DOC aliased to a new address. If writes
1601 to one chip's alias resolution register change the value on
1602 the other chip, they're the same chip. */
1603 if (ChipID == DOC_ChipID_DocMilPlus16) {
1604 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1605 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1606 } else {
1607 oldval = ReadDOC(doc->virtadr, AliasResolution);
1608 newval = ReadDOC(virtadr, AliasResolution);
1609 }
1610 if (oldval != newval)
1611 continue;
1612 if (ChipID == DOC_ChipID_DocMilPlus16) {
1613 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1614 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1615 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1616 } else {
1617 WriteDOC(~newval, virtadr, AliasResolution);
1618 oldval = ReadDOC(doc->virtadr, AliasResolution);
1619 WriteDOC(newval, virtadr, AliasResolution); // restore it
1620 }
1621 newval = ~newval;
1622 if (oldval == newval) {
1623 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1624 goto notfound;
1625 }
1626 }
1627
1628 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1629
1630 len = sizeof(struct mtd_info) +
1631 sizeof(struct nand_chip) +
1632 sizeof(struct doc_priv) +
1633 (2 * sizeof(struct nand_bbt_descr));
1634 mtd = kmalloc(len, GFP_KERNEL);
1635 if (!mtd) {
1636 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1637 ret = -ENOMEM;
1638 goto fail;
1639 }
1640 memset(mtd, 0, len);
1641
1642 nand = (struct nand_chip *) (mtd + 1);
1643 doc = (struct doc_priv *) (nand + 1);
1644 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1645 nand->bbt_md = nand->bbt_td + 1;
1646
1647 mtd->priv = nand;
1648 mtd->owner = THIS_MODULE;
1649
1650 nand->priv = doc;
1651 nand->select_chip = doc200x_select_chip;
1652 nand->hwcontrol = doc200x_hwcontrol;
1653 nand->dev_ready = doc200x_dev_ready;
1654 nand->waitfunc = doc200x_wait;
1655 nand->block_bad = doc200x_block_bad;
1656 nand->enable_hwecc = doc200x_enable_hwecc;
1657 nand->calculate_ecc = doc200x_calculate_ecc;
1658 nand->correct_data = doc200x_correct_data;
1659
1660 nand->autooob = &doc200x_oobinfo;
1661 nand->eccmode = NAND_ECC_HW6_512;
1662 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1663
1664 doc->physadr = physadr;
1665 doc->virtadr = virtadr;
1666 doc->ChipID = ChipID;
1667 doc->curfloor = -1;
1668 doc->curchip = -1;
1669 doc->mh0_page = -1;
1670 doc->mh1_page = -1;
1671 doc->nextdoc = doclist;
1672
1673 if (ChipID == DOC_ChipID_Doc2k)
1674 numchips = doc2000_init(mtd);
1675 else if (ChipID == DOC_ChipID_DocMilPlus16)
1676 numchips = doc2001plus_init(mtd);
1677 else
1678 numchips = doc2001_init(mtd);
1679
1680 if ((ret = nand_scan(mtd, numchips))) {
1681 /* DBB note: i believe nand_release is necessary here, as
1682 buffers may have been allocated in nand_base. Check with
1683 Thomas. FIX ME! */
1684 /* nand_release will call del_mtd_device, but we haven't yet
1685 added it. This is handled without incident by
1686 del_mtd_device, as far as I can tell. */
1687 nand_release(mtd);
1688 kfree(mtd);
1689 goto fail;
1690 }
1691
1692 /* Success! */
1693 doclist = mtd;
1694 return 0;
1695
1696notfound:
1697 /* Put back the contents of the DOCControl register, in case it's not
1698 actually a DiskOnChip. */
1699 WriteDOC(save_control, virtadr, DOCControl);
1700fail:
1701 iounmap(virtadr);
1702 return ret;
1703}
1704
1705static void release_nanddoc(void)
1706{
1707 struct mtd_info *mtd, *nextmtd;
1708 struct nand_chip *nand;
1709 struct doc_priv *doc;
1710
1711 for (mtd = doclist; mtd; mtd = nextmtd) {
1712 nand = mtd->priv;
1713 doc = nand->priv;
1714
1715 nextmtd = doc->nextdoc;
1716 nand_release(mtd);
1717 iounmap(doc->virtadr);
1718 kfree(mtd);
1719 }
1720}
1721
1722static int __init init_nanddoc(void)
1723{
1724 int i, ret = 0;
1725
1726 /* We could create the decoder on demand, if memory is a concern.
1727 * This way we have it handy, if an error happens
1728 *
1729 * Symbolsize is 10 (bits)
1730 * Primitve polynomial is x^10+x^3+1
1731 * first consecutive root is 510
1732 * primitve element to generate roots = 1
1733 * generator polinomial degree = 4
1734 */
1735 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1736 if (!rs_decoder) {
1737 printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1738 return -ENOMEM;
1739 }
1740
1741 if (doc_config_location) {
1742 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1743 ret = doc_probe(doc_config_location);
1744 if (ret < 0)
1745 goto outerr;
1746 } else {
1747 for (i=0; (doc_locations[i] != 0xffffffff); i++) {
1748 doc_probe(doc_locations[i]);
1749 }
1750 }
1751 /* No banner message any more. Print a message if no DiskOnChip
1752 found, so the user knows we at least tried. */
1753 if (!doclist) {
1754 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1755 ret = -ENODEV;
1756 goto outerr;
1757 }
1758 return 0;
1759outerr:
1760 free_rs(rs_decoder);
1761 return ret;
1762}
1763
1764static void __exit cleanup_nanddoc(void)
1765{
1766 /* Cleanup the nand/DoC resources */
1767 release_nanddoc();
1768
1769 /* Free the reed solomon resources */
1770 if (rs_decoder) {
1771 free_rs(rs_decoder);
1772 }
1773}
1774
1775module_init(init_nanddoc);
1776module_exit(cleanup_nanddoc);
1777
1778MODULE_LICENSE("GPL");
1779MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1780MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");