Merge tag 'v3.10.97' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / persistent-data / dm-btree.c
CommitLineData
3241b1d3
JT
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree-internal.h"
8#include "dm-space-map.h"
9#include "dm-transaction-manager.h"
10
1944ce60 11#include <linux/export.h>
3241b1d3
JT
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19static void memcpy_disk(void *dest, const void *src, size_t len)
20 __dm_written_to_disk(src)
21{
22 memcpy(dest, src, len);
23 __dm_unbless_for_disk(src);
24}
25
26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 unsigned index, void *elt)
28 __dm_written_to_disk(elt)
29{
30 if (index < nr_elts)
31 memmove(base + (elt_size * (index + 1)),
32 base + (elt_size * index),
33 (nr_elts - index) * elt_size);
34
35 memcpy_disk(base + (elt_size * index), elt, elt_size);
36}
37
38/*----------------------------------------------------------------*/
39
40/* makes the assumption that no two keys are the same. */
550929fa 41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
3241b1d3
JT
42{
43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45 while (hi - lo > 1) {
46 int mid = lo + ((hi - lo) / 2);
47 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49 if (mid_key == key)
50 return mid;
51
52 if (mid_key < key)
53 lo = mid;
54 else
55 hi = mid;
56 }
57
58 return want_hi ? hi : lo;
59}
60
550929fa 61int lower_bound(struct btree_node *n, uint64_t key)
3241b1d3
JT
62{
63 return bsearch(n, key, 0);
64}
65
550929fa 66void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
3241b1d3
JT
67 struct dm_btree_value_type *vt)
68{
69 unsigned i;
70 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
71
72 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
73 for (i = 0; i < nr_entries; i++)
74 dm_tm_inc(tm, value64(n, i));
75 else if (vt->inc)
76 for (i = 0; i < nr_entries; i++)
a3aefb39 77 vt->inc(vt->context, value_ptr(n, i));
3241b1d3
JT
78}
79
550929fa 80static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
3241b1d3
JT
81 uint64_t key, void *value)
82 __dm_written_to_disk(value)
83{
84 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
85 __le64 key_le = cpu_to_le64(key);
86
87 if (index > nr_entries ||
88 index >= le32_to_cpu(node->header.max_entries)) {
89 DMERR("too many entries in btree node for insert");
90 __dm_unbless_for_disk(value);
91 return -ENOMEM;
92 }
93
94 __dm_bless_for_disk(&key_le);
95
96 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
97 array_insert(value_base(node), value_size, nr_entries, index, value);
98 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
99
100 return 0;
101}
102
103/*----------------------------------------------------------------*/
104
105/*
106 * We want 3n entries (for some n). This works more nicely for repeated
107 * insert remove loops than (2n + 1).
108 */
109static uint32_t calc_max_entries(size_t value_size, size_t block_size)
110{
111 uint32_t total, n;
112 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
113
114 block_size -= sizeof(struct node_header);
115 total = block_size / elt_size;
116 n = total / 3; /* rounds down */
117
118 return 3 * n;
119}
120
121int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
122{
123 int r;
124 struct dm_block *b;
550929fa 125 struct btree_node *n;
3241b1d3
JT
126 size_t block_size;
127 uint32_t max_entries;
128
129 r = new_block(info, &b);
130 if (r < 0)
131 return r;
132
133 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
134 max_entries = calc_max_entries(info->value_type.size, block_size);
135
136 n = dm_block_data(b);
137 memset(n, 0, block_size);
138 n->header.flags = cpu_to_le32(LEAF_NODE);
139 n->header.nr_entries = cpu_to_le32(0);
140 n->header.max_entries = cpu_to_le32(max_entries);
141 n->header.value_size = cpu_to_le32(info->value_type.size);
142
143 *root = dm_block_location(b);
144 return unlock_block(info, b);
145}
146EXPORT_SYMBOL_GPL(dm_btree_empty);
147
148/*----------------------------------------------------------------*/
149
150/*
151 * Deletion uses a recursive algorithm, since we have limited stack space
152 * we explicitly manage our own stack on the heap.
153 */
154#define MAX_SPINE_DEPTH 64
155struct frame {
156 struct dm_block *b;
550929fa 157 struct btree_node *n;
3241b1d3
JT
158 unsigned level;
159 unsigned nr_children;
160 unsigned current_child;
161};
162
163struct del_stack {
164 struct dm_transaction_manager *tm;
165 int top;
166 struct frame spine[MAX_SPINE_DEPTH];
167};
168
169static int top_frame(struct del_stack *s, struct frame **f)
170{
171 if (s->top < 0) {
172 DMERR("btree deletion stack empty");
173 return -EINVAL;
174 }
175
176 *f = s->spine + s->top;
177
178 return 0;
179}
180
181static int unprocessed_frames(struct del_stack *s)
182{
183 return s->top >= 0;
184}
185
186static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
187{
188 int r;
189 uint32_t ref_count;
190
191 if (s->top >= MAX_SPINE_DEPTH - 1) {
192 DMERR("btree deletion stack out of memory");
193 return -ENOMEM;
194 }
195
196 r = dm_tm_ref(s->tm, b, &ref_count);
197 if (r)
198 return r;
199
200 if (ref_count > 1)
201 /*
202 * This is a shared node, so we can just decrement it's
203 * reference counter and leave the children.
204 */
205 dm_tm_dec(s->tm, b);
206
207 else {
208 struct frame *f = s->spine + ++s->top;
209
210 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
211 if (r) {
212 s->top--;
213 return r;
214 }
215
216 f->n = dm_block_data(f->b);
217 f->level = level;
218 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
219 f->current_child = 0;
220 }
221
222 return 0;
223}
224
225static void pop_frame(struct del_stack *s)
226{
227 struct frame *f = s->spine + s->top--;
228
229 dm_tm_dec(s->tm, dm_block_location(f->b));
230 dm_tm_unlock(s->tm, f->b);
231}
232
e3cbf945
JT
233static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
234{
235 return f->level < (info->levels - 1);
236}
237
3241b1d3
JT
238int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
239{
240 int r;
241 struct del_stack *s;
242
2554f6d1 243 s = kmalloc(sizeof(*s), GFP_NOIO);
3241b1d3
JT
244 if (!s)
245 return -ENOMEM;
246 s->tm = info->tm;
247 s->top = -1;
248
e3cbf945 249 r = push_frame(s, root, 0);
3241b1d3
JT
250 if (r)
251 goto out;
252
253 while (unprocessed_frames(s)) {
254 uint32_t flags;
255 struct frame *f;
256 dm_block_t b;
257
258 r = top_frame(s, &f);
259 if (r)
260 goto out;
261
262 if (f->current_child >= f->nr_children) {
263 pop_frame(s);
264 continue;
265 }
266
267 flags = le32_to_cpu(f->n->header.flags);
268 if (flags & INTERNAL_NODE) {
269 b = value64(f->n, f->current_child);
270 f->current_child++;
271 r = push_frame(s, b, f->level);
272 if (r)
273 goto out;
274
e3cbf945 275 } else if (is_internal_level(info, f)) {
3241b1d3
JT
276 b = value64(f->n, f->current_child);
277 f->current_child++;
278 r = push_frame(s, b, f->level + 1);
279 if (r)
280 goto out;
281
282 } else {
283 if (info->value_type.dec) {
284 unsigned i;
285
286 for (i = 0; i < f->nr_children; i++)
287 info->value_type.dec(info->value_type.context,
a3aefb39 288 value_ptr(f->n, i));
3241b1d3
JT
289 }
290 f->current_child = f->nr_children;
291 }
292 }
293
294out:
295 kfree(s);
296 return r;
297}
298EXPORT_SYMBOL_GPL(dm_btree_del);
299
300/*----------------------------------------------------------------*/
301
302static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
550929fa 303 int (*search_fn)(struct btree_node *, uint64_t),
3241b1d3
JT
304 uint64_t *result_key, void *v, size_t value_size)
305{
306 int i, r;
307 uint32_t flags, nr_entries;
308
309 do {
310 r = ro_step(s, block);
311 if (r < 0)
312 return r;
313
314 i = search_fn(ro_node(s), key);
315
316 flags = le32_to_cpu(ro_node(s)->header.flags);
317 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
318 if (i < 0 || i >= nr_entries)
319 return -ENODATA;
320
321 if (flags & INTERNAL_NODE)
322 block = value64(ro_node(s), i);
323
324 } while (!(flags & LEAF_NODE));
325
326 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
a3aefb39 327 memcpy(v, value_ptr(ro_node(s), i), value_size);
3241b1d3
JT
328
329 return 0;
330}
331
332int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
333 uint64_t *keys, void *value_le)
334{
335 unsigned level, last_level = info->levels - 1;
336 int r = -ENODATA;
337 uint64_t rkey;
338 __le64 internal_value_le;
339 struct ro_spine spine;
340
341 init_ro_spine(&spine, info);
342 for (level = 0; level < info->levels; level++) {
343 size_t size;
344 void *value_p;
345
346 if (level == last_level) {
347 value_p = value_le;
348 size = info->value_type.size;
349
350 } else {
351 value_p = &internal_value_le;
352 size = sizeof(uint64_t);
353 }
354
355 r = btree_lookup_raw(&spine, root, keys[level],
356 lower_bound, &rkey,
357 value_p, size);
358
359 if (!r) {
360 if (rkey != keys[level]) {
361 exit_ro_spine(&spine);
362 return -ENODATA;
363 }
364 } else {
365 exit_ro_spine(&spine);
366 return r;
367 }
368
369 root = le64_to_cpu(internal_value_le);
370 }
371 exit_ro_spine(&spine);
372
373 return r;
374}
375EXPORT_SYMBOL_GPL(dm_btree_lookup);
376
377/*
378 * Splits a node by creating a sibling node and shifting half the nodes
379 * contents across. Assumes there is a parent node, and it has room for
380 * another child.
381 *
382 * Before:
383 * +--------+
384 * | Parent |
385 * +--------+
386 * |
387 * v
388 * +----------+
389 * | A ++++++ |
390 * +----------+
391 *
392 *
393 * After:
394 * +--------+
395 * | Parent |
396 * +--------+
397 * | |
398 * v +------+
399 * +---------+ |
400 * | A* +++ | v
401 * +---------+ +-------+
402 * | B +++ |
403 * +-------+
404 *
405 * Where A* is a shadow of A.
406 */
407static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
408 unsigned parent_index, uint64_t key)
409{
410 int r;
411 size_t size;
412 unsigned nr_left, nr_right;
413 struct dm_block *left, *right, *parent;
550929fa 414 struct btree_node *ln, *rn, *pn;
3241b1d3
JT
415 __le64 location;
416
417 left = shadow_current(s);
418
419 r = new_block(s->info, &right);
420 if (r < 0)
421 return r;
422
423 ln = dm_block_data(left);
424 rn = dm_block_data(right);
425
426 nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
427 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
428
429 ln->header.nr_entries = cpu_to_le32(nr_left);
430
431 rn->header.flags = ln->header.flags;
432 rn->header.nr_entries = cpu_to_le32(nr_right);
433 rn->header.max_entries = ln->header.max_entries;
434 rn->header.value_size = ln->header.value_size;
435 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
436
437 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
438 sizeof(uint64_t) : s->info->value_type.size;
a3aefb39 439 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
3241b1d3
JT
440 size * nr_right);
441
442 /*
443 * Patch up the parent
444 */
445 parent = shadow_parent(s);
446
447 pn = dm_block_data(parent);
448 location = cpu_to_le64(dm_block_location(left));
449 __dm_bless_for_disk(&location);
a3aefb39 450 memcpy_disk(value_ptr(pn, parent_index),
3241b1d3
JT
451 &location, sizeof(__le64));
452
453 location = cpu_to_le64(dm_block_location(right));
454 __dm_bless_for_disk(&location);
455
456 r = insert_at(sizeof(__le64), pn, parent_index + 1,
457 le64_to_cpu(rn->keys[0]), &location);
d6671b05
MS
458 if (r) {
459 unlock_block(s->info, right);
3241b1d3 460 return r;
d6671b05 461 }
3241b1d3
JT
462
463 if (key < le64_to_cpu(rn->keys[0])) {
464 unlock_block(s->info, right);
465 s->nodes[1] = left;
466 } else {
467 unlock_block(s->info, left);
468 s->nodes[1] = right;
469 }
470
471 return 0;
472}
473
474/*
475 * Splits a node by creating two new children beneath the given node.
476 *
477 * Before:
478 * +----------+
479 * | A ++++++ |
480 * +----------+
481 *
482 *
483 * After:
484 * +------------+
485 * | A (shadow) |
486 * +------------+
487 * | |
488 * +------+ +----+
489 * | |
490 * v v
491 * +-------+ +-------+
492 * | B +++ | | C +++ |
493 * +-------+ +-------+
494 */
495static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
496{
497 int r;
498 size_t size;
499 unsigned nr_left, nr_right;
500 struct dm_block *left, *right, *new_parent;
550929fa 501 struct btree_node *pn, *ln, *rn;
3241b1d3
JT
502 __le64 val;
503
504 new_parent = shadow_current(s);
505
506 r = new_block(s->info, &left);
507 if (r < 0)
508 return r;
509
510 r = new_block(s->info, &right);
511 if (r < 0) {
0dcb59bb 512 unlock_block(s->info, left);
3241b1d3
JT
513 return r;
514 }
515
516 pn = dm_block_data(new_parent);
517 ln = dm_block_data(left);
518 rn = dm_block_data(right);
519
520 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
521 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
522
523 ln->header.flags = pn->header.flags;
524 ln->header.nr_entries = cpu_to_le32(nr_left);
525 ln->header.max_entries = pn->header.max_entries;
526 ln->header.value_size = pn->header.value_size;
527
528 rn->header.flags = pn->header.flags;
529 rn->header.nr_entries = cpu_to_le32(nr_right);
530 rn->header.max_entries = pn->header.max_entries;
531 rn->header.value_size = pn->header.value_size;
532
533 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
534 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
535
536 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
537 sizeof(__le64) : s->info->value_type.size;
a3aefb39
JT
538 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
539 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
3241b1d3
JT
540 nr_right * size);
541
542 /* new_parent should just point to l and r now */
543 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
544 pn->header.nr_entries = cpu_to_le32(2);
545 pn->header.max_entries = cpu_to_le32(
546 calc_max_entries(sizeof(__le64),
547 dm_bm_block_size(
548 dm_tm_get_bm(s->info->tm))));
549 pn->header.value_size = cpu_to_le32(sizeof(__le64));
550
551 val = cpu_to_le64(dm_block_location(left));
552 __dm_bless_for_disk(&val);
553 pn->keys[0] = ln->keys[0];
a3aefb39 554 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
3241b1d3
JT
555
556 val = cpu_to_le64(dm_block_location(right));
557 __dm_bless_for_disk(&val);
558 pn->keys[1] = rn->keys[0];
a3aefb39 559 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
3241b1d3
JT
560
561 /*
562 * rejig the spine. This is ugly, since it knows too
563 * much about the spine
564 */
565 if (s->nodes[0] != new_parent) {
566 unlock_block(s->info, s->nodes[0]);
567 s->nodes[0] = new_parent;
568 }
569 if (key < le64_to_cpu(rn->keys[0])) {
570 unlock_block(s->info, right);
571 s->nodes[1] = left;
572 } else {
573 unlock_block(s->info, left);
574 s->nodes[1] = right;
575 }
576 s->count = 2;
577
578 return 0;
579}
580
581static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
582 struct dm_btree_value_type *vt,
583 uint64_t key, unsigned *index)
584{
585 int r, i = *index, top = 1;
550929fa 586 struct btree_node *node;
3241b1d3
JT
587
588 for (;;) {
589 r = shadow_step(s, root, vt);
590 if (r < 0)
591 return r;
592
593 node = dm_block_data(shadow_current(s));
594
595 /*
596 * We have to patch up the parent node, ugly, but I don't
597 * see a way to do this automatically as part of the spine
598 * op.
599 */
600 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
601 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
602
603 __dm_bless_for_disk(&location);
a3aefb39 604 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
3241b1d3
JT
605 &location, sizeof(__le64));
606 }
607
608 node = dm_block_data(shadow_current(s));
609
610 if (node->header.nr_entries == node->header.max_entries) {
611 if (top)
612 r = btree_split_beneath(s, key);
613 else
614 r = btree_split_sibling(s, root, i, key);
615
616 if (r < 0)
617 return r;
618 }
619
620 node = dm_block_data(shadow_current(s));
621
622 i = lower_bound(node, key);
623
624 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
625 break;
626
627 if (i < 0) {
628 /* change the bounds on the lowest key */
629 node->keys[0] = cpu_to_le64(key);
630 i = 0;
631 }
632
633 root = value64(node, i);
634 top = 0;
635 }
636
637 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
638 i++;
639
640 *index = i;
641 return 0;
642}
643
644static int insert(struct dm_btree_info *info, dm_block_t root,
645 uint64_t *keys, void *value, dm_block_t *new_root,
646 int *inserted)
647 __dm_written_to_disk(value)
648{
649 int r, need_insert;
650 unsigned level, index = -1, last_level = info->levels - 1;
651 dm_block_t block = root;
652 struct shadow_spine spine;
550929fa 653 struct btree_node *n;
3241b1d3
JT
654 struct dm_btree_value_type le64_type;
655
249fbae3 656 init_le64_type(info->tm, &le64_type);
3241b1d3
JT
657 init_shadow_spine(&spine, info);
658
659 for (level = 0; level < (info->levels - 1); level++) {
660 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
661 if (r < 0)
662 goto bad;
663
664 n = dm_block_data(shadow_current(&spine));
665 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
666 (le64_to_cpu(n->keys[index]) != keys[level]));
667
668 if (need_insert) {
669 dm_block_t new_tree;
670 __le64 new_le;
671
672 r = dm_btree_empty(info, &new_tree);
673 if (r < 0)
674 goto bad;
675
676 new_le = cpu_to_le64(new_tree);
677 __dm_bless_for_disk(&new_le);
678
679 r = insert_at(sizeof(uint64_t), n, index,
680 keys[level], &new_le);
681 if (r)
682 goto bad;
683 }
684
685 if (level < last_level)
686 block = value64(n, index);
687 }
688
689 r = btree_insert_raw(&spine, block, &info->value_type,
690 keys[level], &index);
691 if (r < 0)
692 goto bad;
693
694 n = dm_block_data(shadow_current(&spine));
695 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
696 (le64_to_cpu(n->keys[index]) != keys[level]));
697
698 if (need_insert) {
699 if (inserted)
700 *inserted = 1;
701
702 r = insert_at(info->value_type.size, n, index,
703 keys[level], value);
704 if (r)
705 goto bad_unblessed;
706 } else {
707 if (inserted)
708 *inserted = 0;
709
710 if (info->value_type.dec &&
711 (!info->value_type.equal ||
712 !info->value_type.equal(
713 info->value_type.context,
a3aefb39 714 value_ptr(n, index),
3241b1d3
JT
715 value))) {
716 info->value_type.dec(info->value_type.context,
a3aefb39 717 value_ptr(n, index));
3241b1d3 718 }
a3aefb39 719 memcpy_disk(value_ptr(n, index),
3241b1d3
JT
720 value, info->value_type.size);
721 }
722
723 *new_root = shadow_root(&spine);
724 exit_shadow_spine(&spine);
725
726 return 0;
727
728bad:
729 __dm_unbless_for_disk(value);
730bad_unblessed:
731 exit_shadow_spine(&spine);
732 return r;
733}
734
735int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
736 uint64_t *keys, void *value, dm_block_t *new_root)
737 __dm_written_to_disk(value)
738{
739 return insert(info, root, keys, value, new_root, NULL);
740}
741EXPORT_SYMBOL_GPL(dm_btree_insert);
742
743int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
744 uint64_t *keys, void *value, dm_block_t *new_root,
745 int *inserted)
746 __dm_written_to_disk(value)
747{
748 return insert(info, root, keys, value, new_root, inserted);
749}
750EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
751
752/*----------------------------------------------------------------*/
753
754static int find_highest_key(struct ro_spine *s, dm_block_t block,
755 uint64_t *result_key, dm_block_t *next_block)
756{
757 int i, r;
758 uint32_t flags;
759
760 do {
761 r = ro_step(s, block);
762 if (r < 0)
763 return r;
764
765 flags = le32_to_cpu(ro_node(s)->header.flags);
766 i = le32_to_cpu(ro_node(s)->header.nr_entries);
767 if (!i)
768 return -ENODATA;
769 else
770 i--;
771
772 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
773 if (next_block || flags & INTERNAL_NODE)
774 block = value64(ro_node(s), i);
775
776 } while (flags & INTERNAL_NODE);
777
778 if (next_block)
779 *next_block = block;
780 return 0;
781}
782
783int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
784 uint64_t *result_keys)
785{
786 int r = 0, count = 0, level;
787 struct ro_spine spine;
788
789 init_ro_spine(&spine, info);
790 for (level = 0; level < info->levels; level++) {
791 r = find_highest_key(&spine, root, result_keys + level,
792 level == info->levels - 1 ? NULL : &root);
793 if (r == -ENODATA) {
794 r = 0;
795 break;
796
797 } else if (r)
798 break;
799
800 count++;
801 }
802 exit_ro_spine(&spine);
803
804 return r ? r : count;
805}
806EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
4e7f1f90
JT
807
808/*
809 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
810 * space. Also this only works for single level trees.
811 */
fe30b804 812static int walk_node(struct dm_btree_info *info, dm_block_t block,
4e7f1f90
JT
813 int (*fn)(void *context, uint64_t *keys, void *leaf),
814 void *context)
815{
816 int r;
817 unsigned i, nr;
fe30b804 818 struct dm_block *node;
4e7f1f90
JT
819 struct btree_node *n;
820 uint64_t keys;
821
fe30b804
JT
822 r = bn_read_lock(info, block, &node);
823 if (r)
824 return r;
825
826 n = dm_block_data(node);
4e7f1f90
JT
827
828 nr = le32_to_cpu(n->header.nr_entries);
829 for (i = 0; i < nr; i++) {
830 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
fe30b804 831 r = walk_node(info, value64(n, i), fn, context);
4e7f1f90
JT
832 if (r)
833 goto out;
834 } else {
835 keys = le64_to_cpu(*key_ptr(n, i));
836 r = fn(context, &keys, value_ptr(n, i));
837 if (r)
838 goto out;
839 }
840 }
841
842out:
fe30b804 843 dm_tm_unlock(info->tm, node);
4e7f1f90
JT
844 return r;
845}
846
847int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
848 int (*fn)(void *context, uint64_t *keys, void *leaf),
849 void *context)
850{
4e7f1f90 851 BUG_ON(info->levels > 1);
fe30b804 852 return walk_node(info, root, fn, context);
4e7f1f90
JT
853}
854EXPORT_SYMBOL_GPL(dm_btree_walk);