include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / input / keyboard / lm8323.c
CommitLineData
a48b2d4a
FB
1/*
2 * drivers/i2c/chips/lm8323.c
3 *
4 * Copyright (C) 2007-2009 Nokia Corporation
5 *
6 * Written by Daniel Stone <daniel.stone@nokia.com>
7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
8 *
9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation (version 2 of the License only).
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25#include <linux/module.h>
26#include <linux/i2c.h>
27#include <linux/interrupt.h>
28#include <linux/sched.h>
29#include <linux/mutex.h>
30#include <linux/delay.h>
31#include <linux/input.h>
32#include <linux/leds.h>
33#include <linux/i2c/lm8323.h>
5a0e3ad6 34#include <linux/slab.h>
a48b2d4a
FB
35
36/* Commands to send to the chip. */
37#define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
38#define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
39#define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
40#define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
41#define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
42#define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
43#define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
44#define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
45#define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
46#define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
47#define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
48#define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
49#define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
50#define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
51#define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
52#define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
53#define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
54#define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
55#define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
56#define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
57#define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
58#define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
59
60/* Interrupt status. */
61#define INT_KEYPAD 0x01 /* Key event. */
62#define INT_ROTATOR 0x02 /* Rotator event. */
63#define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
64#define INT_NOINIT 0x10 /* Lost configuration. */
65#define INT_PWM1 0x20 /* PWM1 stopped. */
66#define INT_PWM2 0x40 /* PWM2 stopped. */
67#define INT_PWM3 0x80 /* PWM3 stopped. */
68
69/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
70#define ERR_BADPAR 0x01 /* Bad parameter. */
71#define ERR_CMDUNK 0x02 /* Unknown command. */
72#define ERR_KEYOVR 0x04 /* Too many keys pressed. */
73#define ERR_FIFOOVER 0x40 /* FIFO overflow. */
74
75/* Configuration keys (CMD_{WRITE,READ}_CFG). */
76#define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
77#define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
78#define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
79#define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
80#define CFG_PSIZE 0x20 /* Package size (must be 0). */
81#define CFG_ROTEN 0x40 /* Enable rotator. */
82
83/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
84#define CLK_RCPWM_INTERNAL 0x00
85#define CLK_RCPWM_EXTERNAL 0x03
86#define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
87#define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
88
89/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
90#define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
91#define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
92#define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
93#define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
94
95/* Key event fifo length */
96#define LM8323_FIFO_LEN 15
97
98/* Commands for PWM engine; feed in with PWM_WRITE. */
99/* Load ramp counter from duty cycle field (range 0 - 0xff). */
100#define PWM_SET(v) (0x4000 | ((v) & 0xff))
101/* Go to start of script. */
102#define PWM_GOTOSTART 0x0000
103/*
104 * Stop engine (generates interrupt). If reset is 1, clear the program
105 * counter, else leave it.
106 */
107#define PWM_END(reset) (0xc000 | (!!(reset) << 11))
108/*
109 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
110 * Take t clock scales (up to 63) per step, for n steps (up to 126).
111 * If u is set, ramp up, else ramp down.
112 */
113#define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
114 ((n) & 0x7f) | ((u) ? 0 : 0x80))
115/*
116 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
117 * If cnt is zero, execute until PWM_END is encountered.
118 */
119#define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
120 ((pos) & 0x3f))
121/*
122 * Wait for trigger. Argument is a mask of channels, shifted by the channel
123 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
124 * from 1, not 0.
125 */
126#define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
127/* Send trigger. Argument is same as PWM_WAIT_TRIG. */
128#define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
129
130struct lm8323_pwm {
131 int id;
132 int fade_time;
133 int brightness;
134 int desired_brightness;
135 bool enabled;
136 bool running;
137 /* pwm lock */
138 struct mutex lock;
139 struct work_struct work;
140 struct led_classdev cdev;
141 struct lm8323_chip *chip;
142};
143
144struct lm8323_chip {
145 /* device lock */
146 struct mutex lock;
147 struct i2c_client *client;
148 struct work_struct work;
149 struct input_dev *idev;
150 bool kp_enabled;
151 bool pm_suspend;
152 unsigned keys_down;
153 char phys[32];
154 unsigned short keymap[LM8323_KEYMAP_SIZE];
155 int size_x;
156 int size_y;
157 int debounce_time;
158 int active_time;
159 struct lm8323_pwm pwm[LM8323_NUM_PWMS];
160};
161
162#define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
163#define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
164#define work_to_lm8323(w) container_of(w, struct lm8323_chip, work)
165#define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
166#define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
167
168#define LM8323_MAX_DATA 8
169
170/*
171 * To write, we just access the chip's address in write mode, and dump the
172 * command and data out on the bus. The command byte and data are taken as
173 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
174 */
175static int lm8323_write(struct lm8323_chip *lm, int len, ...)
176{
177 int ret, i;
178 va_list ap;
179 u8 data[LM8323_MAX_DATA];
180
181 va_start(ap, len);
182
183 if (unlikely(len > LM8323_MAX_DATA)) {
184 dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
185 va_end(ap);
186 return 0;
187 }
188
189 for (i = 0; i < len; i++)
190 data[i] = va_arg(ap, int);
191
192 va_end(ap);
193
194 /*
195 * If the host is asleep while we send the data, we can get a NACK
196 * back while it wakes up, so try again, once.
197 */
198 ret = i2c_master_send(lm->client, data, len);
199 if (unlikely(ret == -EREMOTEIO))
200 ret = i2c_master_send(lm->client, data, len);
201 if (unlikely(ret != len))
202 dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
203 len, ret);
204
205 return ret;
206}
207
208/*
209 * To read, we first send the command byte to the chip and end the transaction,
210 * then access the chip in read mode, at which point it will send the data.
211 */
212static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
213{
214 int ret;
215
216 /*
217 * If the host is asleep while we send the byte, we can get a NACK
218 * back while it wakes up, so try again, once.
219 */
220 ret = i2c_master_send(lm->client, &cmd, 1);
221 if (unlikely(ret == -EREMOTEIO))
222 ret = i2c_master_send(lm->client, &cmd, 1);
223 if (unlikely(ret != 1)) {
224 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
225 cmd);
226 return 0;
227 }
228
229 ret = i2c_master_recv(lm->client, buf, len);
230 if (unlikely(ret != len))
231 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
232 len, ret);
233
234 return ret;
235}
236
237/*
238 * Set the chip active time (idle time before it enters halt).
239 */
240static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
241{
242 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
243}
244
245/*
246 * The signals are AT-style: the low 7 bits are the keycode, and the top
247 * bit indicates the state (1 for down, 0 for up).
248 */
249static inline u8 lm8323_whichkey(u8 event)
250{
251 return event & 0x7f;
252}
253
254static inline int lm8323_ispress(u8 event)
255{
256 return (event & 0x80) ? 1 : 0;
257}
258
259static void process_keys(struct lm8323_chip *lm)
260{
261 u8 event;
262 u8 key_fifo[LM8323_FIFO_LEN + 1];
263 int old_keys_down = lm->keys_down;
264 int ret;
265 int i = 0;
266
267 /*
268 * Read all key events from the FIFO at once. Next READ_FIFO clears the
269 * FIFO even if we didn't read all events previously.
270 */
271 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
272
273 if (ret < 0) {
274 dev_err(&lm->client->dev, "Failed reading fifo \n");
275 return;
276 }
277 key_fifo[ret] = 0;
278
279 while ((event = key_fifo[i++])) {
280 u8 key = lm8323_whichkey(event);
281 int isdown = lm8323_ispress(event);
282 unsigned short keycode = lm->keymap[key];
283
284 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
285 key, isdown ? "down" : "up");
286
287 if (lm->kp_enabled) {
288 input_event(lm->idev, EV_MSC, MSC_SCAN, key);
289 input_report_key(lm->idev, keycode, isdown);
290 input_sync(lm->idev);
291 }
292
293 if (isdown)
294 lm->keys_down++;
295 else
296 lm->keys_down--;
297 }
298
299 /*
300 * Errata: We need to ensure that the chip never enters halt mode
301 * during a keypress, so set active time to 0. When it's released,
302 * we can enter halt again, so set the active time back to normal.
303 */
304 if (!old_keys_down && lm->keys_down)
305 lm8323_set_active_time(lm, 0);
306 if (old_keys_down && !lm->keys_down)
307 lm8323_set_active_time(lm, lm->active_time);
308}
309
310static void lm8323_process_error(struct lm8323_chip *lm)
311{
312 u8 error;
313
314 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
315 if (error & ERR_FIFOOVER)
316 dev_vdbg(&lm->client->dev, "fifo overflow!\n");
317 if (error & ERR_KEYOVR)
318 dev_vdbg(&lm->client->dev,
319 "more than two keys pressed\n");
320 if (error & ERR_CMDUNK)
321 dev_vdbg(&lm->client->dev,
322 "unknown command submitted\n");
323 if (error & ERR_BADPAR)
324 dev_vdbg(&lm->client->dev, "bad command parameter\n");
325 }
326}
327
328static void lm8323_reset(struct lm8323_chip *lm)
329{
330 /* The docs say we must pass 0xAA as the data byte. */
331 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
332}
333
334static int lm8323_configure(struct lm8323_chip *lm)
335{
336 int keysize = (lm->size_x << 4) | lm->size_y;
337 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
338 int debounce = lm->debounce_time >> 2;
339 int active = lm->active_time >> 2;
340
341 /*
342 * Active time must be greater than the debounce time: if it's
343 * a close-run thing, give ourselves a 12ms buffer.
344 */
345 if (debounce >= active)
346 active = debounce + 3;
347
348 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
349 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
350 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
351 lm8323_set_active_time(lm, lm->active_time);
352 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
353 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
354 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
355
356 /*
357 * Not much we can do about errors at this point, so just hope
358 * for the best.
359 */
360
361 return 0;
362}
363
364static void pwm_done(struct lm8323_pwm *pwm)
365{
366 mutex_lock(&pwm->lock);
367 pwm->running = false;
368 if (pwm->desired_brightness != pwm->brightness)
369 schedule_work(&pwm->work);
370 mutex_unlock(&pwm->lock);
371}
372
373/*
374 * Bottom half: handle the interrupt by posting key events, or dealing with
375 * errors appropriately.
376 */
377static void lm8323_work(struct work_struct *work)
378{
379 struct lm8323_chip *lm = work_to_lm8323(work);
380 u8 ints;
381 int i;
382
383 mutex_lock(&lm->lock);
384
385 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
386 if (likely(ints & INT_KEYPAD))
387 process_keys(lm);
388 if (ints & INT_ROTATOR) {
389 /* We don't currently support the rotator. */
390 dev_vdbg(&lm->client->dev, "rotator fired\n");
391 }
392 if (ints & INT_ERROR) {
393 dev_vdbg(&lm->client->dev, "error!\n");
394 lm8323_process_error(lm);
395 }
396 if (ints & INT_NOINIT) {
397 dev_err(&lm->client->dev, "chip lost config; "
398 "reinitialising\n");
399 lm8323_configure(lm);
400 }
401 for (i = 0; i < LM8323_NUM_PWMS; i++) {
402 if (ints & (1 << (INT_PWM1 + i))) {
403 dev_vdbg(&lm->client->dev,
404 "pwm%d engine completed\n", i);
405 pwm_done(&lm->pwm[i]);
406 }
407 }
408 }
409
410 mutex_unlock(&lm->lock);
411}
412
413/*
414 * We cannot use I2C in interrupt context, so we just schedule work.
415 */
416static irqreturn_t lm8323_irq(int irq, void *data)
417{
418 struct lm8323_chip *lm = data;
419
420 schedule_work(&lm->work);
421
422 return IRQ_HANDLED;
423}
424
425/*
426 * Read the chip ID.
427 */
428static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
429{
430 int bytes;
431
432 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
433 if (unlikely(bytes != 2))
434 return -EIO;
435
436 return 0;
437}
438
439static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
440{
441 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
442 (cmd & 0xff00) >> 8, cmd & 0x00ff);
443}
444
445/*
446 * Write a script into a given PWM engine, concluding with PWM_END.
447 * If 'kill' is nonzero, the engine will be shut down at the end
448 * of the script, producing a zero output. Otherwise the engine
449 * will be kept running at the final PWM level indefinitely.
450 */
451static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
452 int len, const u16 *cmds)
453{
454 int i;
455
456 for (i = 0; i < len; i++)
457 lm8323_write_pwm_one(pwm, i, cmds[i]);
458
459 lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
460 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
461 pwm->running = true;
462}
463
464static void lm8323_pwm_work(struct work_struct *work)
465{
466 struct lm8323_pwm *pwm = work_to_pwm(work);
467 int div512, perstep, steps, hz, up, kill;
468 u16 pwm_cmds[3];
469 int num_cmds = 0;
470
471 mutex_lock(&pwm->lock);
472
473 /*
474 * Do nothing if we're already at the requested level,
475 * or previous setting is not yet complete. In the latter
476 * case we will be called again when the previous PWM script
477 * finishes.
478 */
479 if (pwm->running || pwm->desired_brightness == pwm->brightness)
480 goto out;
481
482 kill = (pwm->desired_brightness == 0);
483 up = (pwm->desired_brightness > pwm->brightness);
484 steps = abs(pwm->desired_brightness - pwm->brightness);
485
486 /*
487 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
488 * 32768Hz), and number of ticks per step.
489 */
490 if ((pwm->fade_time / steps) > (32768 / 512)) {
491 div512 = 1;
492 hz = 32768 / 512;
493 } else {
494 div512 = 0;
495 hz = 32768 / 16;
496 }
497
498 perstep = (hz * pwm->fade_time) / (steps * 1000);
499
500 if (perstep == 0)
501 perstep = 1;
502 else if (perstep > 63)
503 perstep = 63;
504
505 while (steps) {
506 int s;
507
508 s = min(126, steps);
509 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
510 steps -= s;
511 }
512
513 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
514 pwm->brightness = pwm->desired_brightness;
515
516 out:
517 mutex_unlock(&pwm->lock);
518}
519
520static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
521 enum led_brightness brightness)
522{
523 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
524 struct lm8323_chip *lm = pwm->chip;
525
526 mutex_lock(&pwm->lock);
527 pwm->desired_brightness = brightness;
528 mutex_unlock(&pwm->lock);
529
530 if (in_interrupt()) {
531 schedule_work(&pwm->work);
532 } else {
533 /*
534 * Schedule PWM work as usual unless we are going into suspend
535 */
536 mutex_lock(&lm->lock);
537 if (likely(!lm->pm_suspend))
538 schedule_work(&pwm->work);
539 else
540 lm8323_pwm_work(&pwm->work);
541 mutex_unlock(&lm->lock);
542 }
543}
544
545static ssize_t lm8323_pwm_show_time(struct device *dev,
546 struct device_attribute *attr, char *buf)
547{
548 struct led_classdev *led_cdev = dev_get_drvdata(dev);
549 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
550
551 return sprintf(buf, "%d\n", pwm->fade_time);
552}
553
554static ssize_t lm8323_pwm_store_time(struct device *dev,
555 struct device_attribute *attr, const char *buf, size_t len)
556{
557 struct led_classdev *led_cdev = dev_get_drvdata(dev);
558 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
559 int ret;
560 unsigned long time;
561
562 ret = strict_strtoul(buf, 10, &time);
563 /* Numbers only, please. */
564 if (ret)
565 return -EINVAL;
566
567 pwm->fade_time = time;
568
569 return strlen(buf);
570}
571static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
572
573static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
574 const char *name)
575{
576 struct lm8323_pwm *pwm;
577
578 BUG_ON(id > 3);
579
580 pwm = &lm->pwm[id - 1];
581
582 pwm->id = id;
583 pwm->fade_time = 0;
584 pwm->brightness = 0;
585 pwm->desired_brightness = 0;
586 pwm->running = false;
587 pwm->enabled = false;
588 INIT_WORK(&pwm->work, lm8323_pwm_work);
589 mutex_init(&pwm->lock);
590 pwm->chip = lm;
591
592 if (name) {
593 pwm->cdev.name = name;
594 pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
595 if (led_classdev_register(dev, &pwm->cdev) < 0) {
596 dev_err(dev, "couldn't register PWM %d\n", id);
597 return -1;
598 }
599 if (device_create_file(pwm->cdev.dev,
600 &dev_attr_time) < 0) {
601 dev_err(dev, "couldn't register time attribute\n");
602 led_classdev_unregister(&pwm->cdev);
603 return -1;
604 }
605 pwm->enabled = true;
606 }
607
608 return 0;
609}
610
611static struct i2c_driver lm8323_i2c_driver;
612
613static ssize_t lm8323_show_disable(struct device *dev,
614 struct device_attribute *attr, char *buf)
615{
616 struct lm8323_chip *lm = dev_get_drvdata(dev);
617
618 return sprintf(buf, "%u\n", !lm->kp_enabled);
619}
620
621static ssize_t lm8323_set_disable(struct device *dev,
622 struct device_attribute *attr,
623 const char *buf, size_t count)
624{
625 struct lm8323_chip *lm = dev_get_drvdata(dev);
626 int ret;
627 unsigned long i;
628
629 ret = strict_strtoul(buf, 10, &i);
630
631 mutex_lock(&lm->lock);
632 lm->kp_enabled = !i;
633 mutex_unlock(&lm->lock);
634
635 return count;
636}
637static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
638
639static int __devinit lm8323_probe(struct i2c_client *client,
640 const struct i2c_device_id *id)
641{
642 struct lm8323_platform_data *pdata = client->dev.platform_data;
643 struct input_dev *idev;
644 struct lm8323_chip *lm;
645 int i, err;
646 unsigned long tmo;
647 u8 data[2];
648
649 if (!pdata || !pdata->size_x || !pdata->size_y) {
650 dev_err(&client->dev, "missing platform_data\n");
651 return -EINVAL;
652 }
653
654 if (pdata->size_x > 8) {
655 dev_err(&client->dev, "invalid x size %d specified\n",
656 pdata->size_x);
657 return -EINVAL;
658 }
659
660 if (pdata->size_y > 12) {
661 dev_err(&client->dev, "invalid y size %d specified\n",
662 pdata->size_y);
663 return -EINVAL;
664 }
665
666 lm = kzalloc(sizeof *lm, GFP_KERNEL);
667 idev = input_allocate_device();
668 if (!lm || !idev) {
669 err = -ENOMEM;
670 goto fail1;
671 }
672
673 i2c_set_clientdata(client, lm);
674
675 lm->client = client;
676 lm->idev = idev;
677 mutex_init(&lm->lock);
678 INIT_WORK(&lm->work, lm8323_work);
679
680 lm->size_x = pdata->size_x;
681 lm->size_y = pdata->size_y;
682 dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
683 lm->size_x, lm->size_y);
684
685 lm->debounce_time = pdata->debounce_time;
686 lm->active_time = pdata->active_time;
687
688 lm8323_reset(lm);
689
690 /* Nothing's set up to service the IRQ yet, so just spin for max.
691 * 100ms until we can configure. */
692 tmo = jiffies + msecs_to_jiffies(100);
693 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
694 if (data[0] & INT_NOINIT)
695 break;
696
697 if (time_after(jiffies, tmo)) {
698 dev_err(&client->dev,
699 "timeout waiting for initialisation\n");
700 break;
701 }
702
703 msleep(1);
704 }
705
706 lm8323_configure(lm);
707
708 /* If a true probe check the device */
709 if (lm8323_read_id(lm, data) != 0) {
710 dev_err(&client->dev, "device not found\n");
711 err = -ENODEV;
712 goto fail1;
713 }
714
715 for (i = 0; i < LM8323_NUM_PWMS; i++) {
716 err = init_pwm(lm, i + 1, &client->dev, pdata->pwm_names[i]);
717 if (err < 0)
718 goto fail2;
719 }
720
721 lm->kp_enabled = true;
722 err = device_create_file(&client->dev, &dev_attr_disable_kp);
723 if (err < 0)
724 goto fail2;
725
726 idev->name = pdata->name ? : "LM8323 keypad";
727 snprintf(lm->phys, sizeof(lm->phys),
728 "%s/input-kp", dev_name(&client->dev));
729 idev->phys = lm->phys;
730
731 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
732 __set_bit(MSC_SCAN, idev->mscbit);
733 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
734 __set_bit(pdata->keymap[i], idev->keybit);
735 lm->keymap[i] = pdata->keymap[i];
736 }
737 __clear_bit(KEY_RESERVED, idev->keybit);
738
739 if (pdata->repeat)
740 __set_bit(EV_REP, idev->evbit);
741
742 err = input_register_device(idev);
743 if (err) {
744 dev_dbg(&client->dev, "error registering input device\n");
745 goto fail3;
746 }
747
748 err = request_irq(client->irq, lm8323_irq,
749 IRQF_TRIGGER_FALLING | IRQF_DISABLED,
750 "lm8323", lm);
751 if (err) {
752 dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
753 goto fail4;
754 }
755
756 device_init_wakeup(&client->dev, 1);
757 enable_irq_wake(client->irq);
758
759 return 0;
760
761fail4:
762 input_unregister_device(idev);
763 idev = NULL;
764fail3:
765 device_remove_file(&client->dev, &dev_attr_disable_kp);
766fail2:
767 while (--i >= 0)
768 if (lm->pwm[i].enabled)
769 led_classdev_unregister(&lm->pwm[i].cdev);
770fail1:
771 input_free_device(idev);
772 kfree(lm);
773 return err;
774}
775
776static int __devexit lm8323_remove(struct i2c_client *client)
777{
778 struct lm8323_chip *lm = i2c_get_clientdata(client);
779 int i;
780
781 disable_irq_wake(client->irq);
782 free_irq(client->irq, lm);
783 cancel_work_sync(&lm->work);
784
785 input_unregister_device(lm->idev);
786
787 device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
788
789 for (i = 0; i < 3; i++)
790 if (lm->pwm[i].enabled)
791 led_classdev_unregister(&lm->pwm[i].cdev);
792
793 kfree(lm);
794
795 return 0;
796}
797
798#ifdef CONFIG_PM
799/*
800 * We don't need to explicitly suspend the chip, as it already switches off
801 * when there's no activity.
802 */
803static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg)
804{
805 struct lm8323_chip *lm = i2c_get_clientdata(client);
806 int i;
807
808 set_irq_wake(client->irq, 0);
809 disable_irq(client->irq);
810
811 mutex_lock(&lm->lock);
812 lm->pm_suspend = true;
813 mutex_unlock(&lm->lock);
814
815 for (i = 0; i < 3; i++)
816 if (lm->pwm[i].enabled)
817 led_classdev_suspend(&lm->pwm[i].cdev);
818
819 return 0;
820}
821
822static int lm8323_resume(struct i2c_client *client)
823{
824 struct lm8323_chip *lm = i2c_get_clientdata(client);
825 int i;
826
827 mutex_lock(&lm->lock);
828 lm->pm_suspend = false;
829 mutex_unlock(&lm->lock);
830
831 for (i = 0; i < 3; i++)
832 if (lm->pwm[i].enabled)
833 led_classdev_resume(&lm->pwm[i].cdev);
834
835 enable_irq(client->irq);
836 set_irq_wake(client->irq, 1);
837
838 return 0;
839}
840#else
841#define lm8323_suspend NULL
842#define lm8323_resume NULL
843#endif
844
845static const struct i2c_device_id lm8323_id[] = {
846 { "lm8323", 0 },
847 { }
848};
849
850static struct i2c_driver lm8323_i2c_driver = {
851 .driver = {
852 .name = "lm8323",
853 },
854 .probe = lm8323_probe,
855 .remove = __devexit_p(lm8323_remove),
856 .suspend = lm8323_suspend,
857 .resume = lm8323_resume,
858 .id_table = lm8323_id,
859};
860MODULE_DEVICE_TABLE(i2c, lm8323_id);
861
862static int __init lm8323_init(void)
863{
864 return i2c_add_driver(&lm8323_i2c_driver);
865}
866module_init(lm8323_init);
867
868static void __exit lm8323_exit(void)
869{
870 i2c_del_driver(&lm8323_i2c_driver);
871}
872module_exit(lm8323_exit);
873
874MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
875MODULE_AUTHOR("Daniel Stone");
876MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
877MODULE_DESCRIPTION("LM8323 keypad driver");
878MODULE_LICENSE("GPL");
879