Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / input / input.c
CommitLineData
1da177e4
LT
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
da0c4901
JP
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
1da177e4 15#include <linux/init.h>
ffd0db97 16#include <linux/types.h>
7f8d4cad 17#include <linux/idr.h>
47c78e89 18#include <linux/input/mt.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/random.h>
22#include <linux/major.h>
23#include <linux/proc_fs.h>
a99bbaf5 24#include <linux/sched.h>
969b21cd 25#include <linux/seq_file.h>
1da177e4
LT
26#include <linux/poll.h>
27#include <linux/device.h>
e676c232 28#include <linux/mutex.h>
8006479c 29#include <linux/rcupdate.h>
15e184af 30#include "input-compat.h"
1da177e4
LT
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
7f8d4cad
DT
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
1da177e4
LT
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
8006479c
DT
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
4369c64c
HR
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
8006479c
DT
53static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
1da177e4 55{
8006479c
DT
56 return code <= max && test_bit(code, bm);
57}
1da177e4 58
8006479c
DT
59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60{
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
1da177e4 64
8006479c
DT
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
1da177e4 67
8006479c
DT
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
1da177e4 71
8006479c
DT
72 return value;
73}
1da177e4 74
352ac4bd
HR
75static void input_start_autorepeat(struct input_dev *dev, int code)
76{
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84}
85
86static void input_stop_autorepeat(struct input_dev *dev)
87{
88 del_timer(&dev->timer);
89}
90
8006479c 91/*
ef7995f4
DT
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
82ba56c2 94 * dev->event_lock held and interrupts disabled.
8006479c 95 */
4369c64c
HR
96static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
8006479c 98{
4369c64c
HR
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
82ba56c2 102
4369c64c
HR
103 for (v = vals; v != vals + count; v++) {
104 if (handler->filter &&
105 handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
1da177e4 111
4369c64c
HR
112 count = end - vals;
113 if (!count)
114 return 0;
ef7995f4 115
4369c64c
HR
116 if (handler->events)
117 handler->events(handle, vals, count);
118 else if (handler->event)
119 for (v = vals; v != end; v++)
120 handler->event(handle, v->type, v->code, v->value);
ef7995f4 121
4369c64c
HR
122 return count;
123}
ef7995f4 124
4369c64c
HR
125/*
126 * Pass values first through all filters and then, if event has not been
127 * filtered out, through all open handles. This function is called with
128 * dev->event_lock held and interrupts disabled.
129 */
130static void input_pass_values(struct input_dev *dev,
131 struct input_value *vals, unsigned int count)
8006479c 132{
82ba56c2 133 struct input_handle *handle;
4369c64c 134 struct input_value *v;
ef7995f4 135
4369c64c
HR
136 if (!count)
137 return;
82ba56c2
DT
138
139 rcu_read_lock();
1da177e4 140
82ba56c2 141 handle = rcu_dereference(dev->grab);
4369c64c
HR
142 if (handle) {
143 count = input_to_handler(handle, vals, count);
144 } else {
145 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146 if (handle->open)
147 count = input_to_handler(handle, vals, count);
ef7995f4 148 }
ef7995f4 149
82ba56c2 150 rcu_read_unlock();
ef7995f4 151
4369c64c 152 add_input_randomness(vals->type, vals->code, vals->value);
ef7995f4 153
352ac4bd 154 /* trigger auto repeat for key events */
4369c64c
HR
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
ef7995f4
DT
161 }
162 }
4369c64c 163}
ef7995f4 164
4369c64c
HR
165static void input_pass_event(struct input_dev *dev,
166 unsigned int type, unsigned int code, int value)
167{
168 struct input_value vals[] = { { type, code, value } };
169
170 input_pass_values(dev, vals, ARRAY_SIZE(vals));
8006479c 171}
1da177e4 172
8006479c
DT
173/*
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
177 */
178static void input_repeat_key(unsigned long data)
179{
180 struct input_dev *dev = (void *) data;
181 unsigned long flags;
1da177e4 182
8006479c 183 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 184
8006479c
DT
185 if (test_bit(dev->repeat_key, dev->key) &&
186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
4369c64c
HR
187 struct input_value vals[] = {
188 { EV_KEY, dev->repeat_key, 2 },
189 input_value_sync
190 };
1da177e4 191
4369c64c 192 input_pass_values(dev, vals, ARRAY_SIZE(vals));
31581066 193
8006479c
DT
194 if (dev->rep[REP_PERIOD])
195 mod_timer(&dev->timer, jiffies +
196 msecs_to_jiffies(dev->rep[REP_PERIOD]));
197 }
31581066 198
8006479c
DT
199 spin_unlock_irqrestore(&dev->event_lock, flags);
200}
31581066 201
8006479c
DT
202#define INPUT_IGNORE_EVENT 0
203#define INPUT_PASS_TO_HANDLERS 1
204#define INPUT_PASS_TO_DEVICE 2
4369c64c
HR
205#define INPUT_SLOT 4
206#define INPUT_FLUSH 8
8006479c 207#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
1da177e4 208
40d007e7
HR
209static int input_handle_abs_event(struct input_dev *dev,
210 unsigned int code, int *pval)
211{
8d18fba2 212 struct input_mt *mt = dev->mt;
40d007e7
HR
213 bool is_mt_event;
214 int *pold;
215
216 if (code == ABS_MT_SLOT) {
217 /*
218 * "Stage" the event; we'll flush it later, when we
144c0f88 219 * get actual touch data.
40d007e7 220 */
8d18fba2
HR
221 if (mt && *pval >= 0 && *pval < mt->num_slots)
222 mt->slot = *pval;
40d007e7
HR
223
224 return INPUT_IGNORE_EVENT;
225 }
226
b89529a1 227 is_mt_event = input_is_mt_value(code);
40d007e7
HR
228
229 if (!is_mt_event) {
d31b2865 230 pold = &dev->absinfo[code].value;
8d18fba2
HR
231 } else if (mt) {
232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
40d007e7
HR
233 } else {
234 /*
144c0f88 235 * Bypass filtering for multi-touch events when
40d007e7
HR
236 * not employing slots.
237 */
238 pold = NULL;
239 }
240
241 if (pold) {
242 *pval = input_defuzz_abs_event(*pval, *pold,
d31b2865 243 dev->absinfo[code].fuzz);
40d007e7
HR
244 if (*pold == *pval)
245 return INPUT_IGNORE_EVENT;
246
247 *pold = *pval;
248 }
249
250 /* Flush pending "slot" event */
8d18fba2
HR
251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
4369c64c 253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
40d007e7
HR
254 }
255
256 return INPUT_PASS_TO_HANDLERS;
257}
258
4369c64c 259static int input_get_disposition(struct input_dev *dev,
6d53522c 260 unsigned int type, unsigned int code, int *pval)
8006479c
DT
261{
262 int disposition = INPUT_IGNORE_EVENT;
6d53522c 263 int value = *pval;
1da177e4 264
8006479c 265 switch (type) {
1da177e4 266
8006479c
DT
267 case EV_SYN:
268 switch (code) {
269 case SYN_CONFIG:
270 disposition = INPUT_PASS_TO_ALL;
271 break;
1da177e4 272
8006479c 273 case SYN_REPORT:
4369c64c 274 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
1da177e4 275 break;
5e5ee686 276 case SYN_MT_REPORT:
5e5ee686
HR
277 disposition = INPUT_PASS_TO_HANDLERS;
278 break;
8006479c
DT
279 }
280 break;
1da177e4 281
8006479c 282 case EV_KEY:
0672120a 283 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
1da177e4 284
0672120a
HR
285 /* auto-repeat bypasses state updates */
286 if (value == 2) {
287 disposition = INPUT_PASS_TO_HANDLERS;
288 break;
8006479c 289 }
1da177e4 290
0672120a 291 if (!!test_bit(code, dev->key) != !!value) {
1da177e4 292
8006479c 293 __change_bit(code, dev->key);
0672120a 294 disposition = INPUT_PASS_TO_HANDLERS;
8006479c 295 }
8006479c
DT
296 }
297 break;
1da177e4 298
8006479c
DT
299 case EV_SW:
300 if (is_event_supported(code, dev->swbit, SW_MAX) &&
0672120a 301 !!test_bit(code, dev->sw) != !!value) {
1da177e4 302
8006479c
DT
303 __change_bit(code, dev->sw);
304 disposition = INPUT_PASS_TO_HANDLERS;
305 }
306 break;
1da177e4 307
8006479c 308 case EV_ABS:
40d007e7 309 if (is_event_supported(code, dev->absbit, ABS_MAX))
9ae4345a 310 disposition = input_handle_abs_event(dev, code, &value);
61994a61 311
8006479c 312 break;
1da177e4 313
8006479c
DT
314 case EV_REL:
315 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
316 disposition = INPUT_PASS_TO_HANDLERS;
1da177e4 317
8006479c 318 break;
1e0afb28 319
8006479c
DT
320 case EV_MSC:
321 if (is_event_supported(code, dev->mscbit, MSC_MAX))
322 disposition = INPUT_PASS_TO_ALL;
1da177e4 323
8006479c 324 break;
1da177e4 325
8006479c
DT
326 case EV_LED:
327 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
0672120a 328 !!test_bit(code, dev->led) != !!value) {
1da177e4 329
8006479c
DT
330 __change_bit(code, dev->led);
331 disposition = INPUT_PASS_TO_ALL;
332 }
333 break;
334
335 case EV_SND:
336 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
1da177e4 337
8fdc1948 338 if (!!test_bit(code, dev->snd) != !!value)
8006479c
DT
339 __change_bit(code, dev->snd);
340 disposition = INPUT_PASS_TO_ALL;
341 }
342 break;
8fdc1948 343
8006479c
DT
344 case EV_REP:
345 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
346 dev->rep[code] = value;
347 disposition = INPUT_PASS_TO_ALL;
348 }
349 break;
1da177e4 350
8006479c
DT
351 case EV_FF:
352 if (value >= 0)
353 disposition = INPUT_PASS_TO_ALL;
354 break;
ed2fa4dd
RP
355
356 case EV_PWR:
357 disposition = INPUT_PASS_TO_ALL;
358 break;
8006479c 359 }
1da177e4 360
6d53522c 361 *pval = value;
4369c64c
HR
362 return disposition;
363}
364
365static void input_handle_event(struct input_dev *dev,
366 unsigned int type, unsigned int code, int value)
367{
368 int disposition;
369
6d53522c 370 disposition = input_get_disposition(dev, type, code, &value);
1da177e4 371
8006479c
DT
372 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
373 dev->event(dev, type, code, value);
1da177e4 374
4369c64c
HR
375 if (!dev->vals)
376 return;
377
378 if (disposition & INPUT_PASS_TO_HANDLERS) {
379 struct input_value *v;
380
381 if (disposition & INPUT_SLOT) {
382 v = &dev->vals[dev->num_vals++];
383 v->type = EV_ABS;
384 v->code = ABS_MT_SLOT;
385 v->value = dev->mt->slot;
386 }
387
388 v = &dev->vals[dev->num_vals++];
389 v->type = type;
390 v->code = code;
391 v->value = value;
392 }
393
394 if (disposition & INPUT_FLUSH) {
395 if (dev->num_vals >= 2)
396 input_pass_values(dev, dev->vals, dev->num_vals);
397 dev->num_vals = 0;
398 } else if (dev->num_vals >= dev->max_vals - 2) {
399 dev->vals[dev->num_vals++] = input_value_sync;
400 input_pass_values(dev, dev->vals, dev->num_vals);
401 dev->num_vals = 0;
402 }
403
8006479c 404}
1da177e4 405
8006479c
DT
406/**
407 * input_event() - report new input event
408 * @dev: device that generated the event
409 * @type: type of the event
410 * @code: event code
411 * @value: value of the event
412 *
413 * This function should be used by drivers implementing various input
df2d4637
DT
414 * devices to report input events. See also input_inject_event().
415 *
416 * NOTE: input_event() may be safely used right after input device was
417 * allocated with input_allocate_device(), even before it is registered
418 * with input_register_device(), but the event will not reach any of the
419 * input handlers. Such early invocation of input_event() may be used
420 * to 'seed' initial state of a switch or initial position of absolute
421 * axis, etc.
8006479c 422 */
8006479c
DT
423void input_event(struct input_dev *dev,
424 unsigned int type, unsigned int code, int value)
425{
426 unsigned long flags;
509ca1a9 427
8006479c 428 if (is_event_supported(type, dev->evbit, EV_MAX)) {
509ca1a9 429
8006479c 430 spin_lock_irqsave(&dev->event_lock, flags);
9ae4345a 431 input_handle_event(dev, type, code, value);
8006479c 432 spin_unlock_irqrestore(&dev->event_lock, flags);
1da177e4 433 }
1da177e4 434}
ca56fe07 435EXPORT_SYMBOL(input_event);
1da177e4 436
0e739d28
DT
437/**
438 * input_inject_event() - send input event from input handler
439 * @handle: input handle to send event through
440 * @type: type of the event
441 * @code: event code
442 * @value: value of the event
443 *
8006479c
DT
444 * Similar to input_event() but will ignore event if device is
445 * "grabbed" and handle injecting event is not the one that owns
446 * the device.
0e739d28 447 */
8006479c
DT
448void input_inject_event(struct input_handle *handle,
449 unsigned int type, unsigned int code, int value)
1da177e4 450{
8006479c
DT
451 struct input_dev *dev = handle->dev;
452 struct input_handle *grab;
453 unsigned long flags;
1da177e4 454
8006479c
DT
455 if (is_event_supported(type, dev->evbit, EV_MAX)) {
456 spin_lock_irqsave(&dev->event_lock, flags);
1da177e4 457
82ba56c2 458 rcu_read_lock();
8006479c
DT
459 grab = rcu_dereference(dev->grab);
460 if (!grab || grab == handle)
9ae4345a 461 input_handle_event(dev, type, code, value);
82ba56c2 462 rcu_read_unlock();
1da177e4 463
8006479c
DT
464 spin_unlock_irqrestore(&dev->event_lock, flags);
465 }
1da177e4 466}
8006479c 467EXPORT_SYMBOL(input_inject_event);
1da177e4 468
d31b2865
DM
469/**
470 * input_alloc_absinfo - allocates array of input_absinfo structs
471 * @dev: the input device emitting absolute events
472 *
473 * If the absinfo struct the caller asked for is already allocated, this
474 * functions will not do anything.
475 */
476void input_alloc_absinfo(struct input_dev *dev)
477{
478 if (!dev->absinfo)
479 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
480 GFP_KERNEL);
481
482 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
483}
484EXPORT_SYMBOL(input_alloc_absinfo);
485
486void input_set_abs_params(struct input_dev *dev, unsigned int axis,
487 int min, int max, int fuzz, int flat)
488{
489 struct input_absinfo *absinfo;
490
491 input_alloc_absinfo(dev);
492 if (!dev->absinfo)
493 return;
494
495 absinfo = &dev->absinfo[axis];
496 absinfo->minimum = min;
497 absinfo->maximum = max;
498 absinfo->fuzz = fuzz;
499 absinfo->flat = flat;
500
501 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
502}
503EXPORT_SYMBOL(input_set_abs_params);
504
505
8006479c
DT
506/**
507 * input_grab_device - grabs device for exclusive use
508 * @handle: input handle that wants to own the device
509 *
510 * When a device is grabbed by an input handle all events generated by
511 * the device are delivered only to this handle. Also events injected
512 * by other input handles are ignored while device is grabbed.
513 */
1da177e4
LT
514int input_grab_device(struct input_handle *handle)
515{
8006479c
DT
516 struct input_dev *dev = handle->dev;
517 int retval;
1da177e4 518
8006479c
DT
519 retval = mutex_lock_interruptible(&dev->mutex);
520 if (retval)
521 return retval;
522
523 if (dev->grab) {
524 retval = -EBUSY;
525 goto out;
526 }
527
528 rcu_assign_pointer(dev->grab, handle);
8006479c
DT
529
530 out:
531 mutex_unlock(&dev->mutex);
532 return retval;
1da177e4 533}
ca56fe07 534EXPORT_SYMBOL(input_grab_device);
1da177e4 535
8006479c 536static void __input_release_device(struct input_handle *handle)
1da177e4 537{
a2b2ed2c 538 struct input_dev *dev = handle->dev;
adc4633c 539 struct input_handle *grabber;
c7e8dc6e 540
adc4633c
DT
541 grabber = rcu_dereference_protected(dev->grab,
542 lockdep_is_held(&dev->mutex));
543 if (grabber == handle) {
8006479c
DT
544 rcu_assign_pointer(dev->grab, NULL);
545 /* Make sure input_pass_event() notices that grab is gone */
82ba56c2 546 synchronize_rcu();
a2b2ed2c
AM
547
548 list_for_each_entry(handle, &dev->h_list, d_node)
8006479c 549 if (handle->open && handle->handler->start)
c7e8dc6e
DT
550 handle->handler->start(handle);
551 }
1da177e4 552}
8006479c
DT
553
554/**
555 * input_release_device - release previously grabbed device
556 * @handle: input handle that owns the device
557 *
558 * Releases previously grabbed device so that other input handles can
559 * start receiving input events. Upon release all handlers attached
560 * to the device have their start() method called so they have a change
561 * to synchronize device state with the rest of the system.
562 */
563void input_release_device(struct input_handle *handle)
564{
565 struct input_dev *dev = handle->dev;
566
567 mutex_lock(&dev->mutex);
568 __input_release_device(handle);
569 mutex_unlock(&dev->mutex);
570}
ca56fe07 571EXPORT_SYMBOL(input_release_device);
1da177e4 572
8006479c
DT
573/**
574 * input_open_device - open input device
575 * @handle: handle through which device is being accessed
576 *
577 * This function should be called by input handlers when they
578 * want to start receive events from given input device.
579 */
1da177e4
LT
580int input_open_device(struct input_handle *handle)
581{
0fbf87ca 582 struct input_dev *dev = handle->dev;
8006479c 583 int retval;
0fbf87ca 584
8006479c
DT
585 retval = mutex_lock_interruptible(&dev->mutex);
586 if (retval)
587 return retval;
588
589 if (dev->going_away) {
590 retval = -ENODEV;
591 goto out;
592 }
0fbf87ca 593
1da177e4 594 handle->open++;
0fbf87ca
DT
595
596 if (!dev->users++ && dev->open)
8006479c
DT
597 retval = dev->open(dev);
598
599 if (retval) {
600 dev->users--;
601 if (!--handle->open) {
602 /*
603 * Make sure we are not delivering any more events
604 * through this handle
605 */
82ba56c2 606 synchronize_rcu();
8006479c
DT
607 }
608 }
0fbf87ca 609
8006479c 610 out:
e676c232 611 mutex_unlock(&dev->mutex);
8006479c 612 return retval;
1da177e4 613}
ca56fe07 614EXPORT_SYMBOL(input_open_device);
1da177e4 615
8006479c 616int input_flush_device(struct input_handle *handle, struct file *file)
1da177e4 617{
8006479c
DT
618 struct input_dev *dev = handle->dev;
619 int retval;
1da177e4 620
8006479c
DT
621 retval = mutex_lock_interruptible(&dev->mutex);
622 if (retval)
623 return retval;
624
625 if (dev->flush)
626 retval = dev->flush(dev, file);
627
628 mutex_unlock(&dev->mutex);
629 return retval;
1da177e4 630}
ca56fe07 631EXPORT_SYMBOL(input_flush_device);
1da177e4 632
8006479c
DT
633/**
634 * input_close_device - close input device
635 * @handle: handle through which device is being accessed
636 *
637 * This function should be called by input handlers when they
638 * want to stop receive events from given input device.
639 */
1da177e4
LT
640void input_close_device(struct input_handle *handle)
641{
0fbf87ca
DT
642 struct input_dev *dev = handle->dev;
643
e676c232 644 mutex_lock(&dev->mutex);
0fbf87ca 645
8006479c
DT
646 __input_release_device(handle);
647
0fbf87ca
DT
648 if (!--dev->users && dev->close)
649 dev->close(dev);
8006479c
DT
650
651 if (!--handle->open) {
652 /*
82ba56c2 653 * synchronize_rcu() makes sure that input_pass_event()
8006479c
DT
654 * completed and that no more input events are delivered
655 * through this handle
656 */
82ba56c2 657 synchronize_rcu();
8006479c 658 }
0fbf87ca 659
e676c232 660 mutex_unlock(&dev->mutex);
1da177e4 661}
ca56fe07 662EXPORT_SYMBOL(input_close_device);
1da177e4 663
866d7d7b
ON
664/*
665 * Simulate keyup events for all keys that are marked as pressed.
666 * The function must be called with dev->event_lock held.
667 */
668static void input_dev_release_keys(struct input_dev *dev)
669{
6fa3eb70 670// int code;
866d7d7b
ON
671
672 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
6fa3eb70
S
673/* fixed long press key is interrupted */
674#if 0
866d7d7b
ON
675 for (code = 0; code <= KEY_MAX; code++) {
676 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
677 __test_and_clear_bit(code, dev->key)) {
9ae4345a 678 input_pass_event(dev, EV_KEY, code, 0);
866d7d7b
ON
679 }
680 }
6fa3eb70 681#endif
9ae4345a 682 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
866d7d7b
ON
683 }
684}
685
8006479c
DT
686/*
687 * Prepare device for unregistering
688 */
689static void input_disconnect_device(struct input_dev *dev)
690{
691 struct input_handle *handle;
8006479c
DT
692
693 /*
694 * Mark device as going away. Note that we take dev->mutex here
695 * not to protect access to dev->going_away but rather to ensure
696 * that there are no threads in the middle of input_open_device()
697 */
698 mutex_lock(&dev->mutex);
ffd0db97 699 dev->going_away = true;
8006479c
DT
700 mutex_unlock(&dev->mutex);
701
702 spin_lock_irq(&dev->event_lock);
703
704 /*
705 * Simulate keyup events for all pressed keys so that handlers
706 * are not left with "stuck" keys. The driver may continue
707 * generate events even after we done here but they will not
708 * reach any handlers.
709 */
866d7d7b 710 input_dev_release_keys(dev);
8006479c
DT
711
712 list_for_each_entry(handle, &dev->h_list, d_node)
713 handle->open = 0;
714
715 spin_unlock_irq(&dev->event_lock);
716}
717
8613e4c2
MCC
718/**
719 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
720 * @ke: keymap entry containing scancode to be converted.
721 * @scancode: pointer to the location where converted scancode should
722 * be stored.
723 *
724 * This function is used to convert scancode stored in &struct keymap_entry
725 * into scalar form understood by legacy keymap handling methods. These
726 * methods expect scancodes to be represented as 'unsigned int'.
727 */
728int input_scancode_to_scalar(const struct input_keymap_entry *ke,
729 unsigned int *scancode)
730{
731 switch (ke->len) {
732 case 1:
733 *scancode = *((u8 *)ke->scancode);
734 break;
735
736 case 2:
737 *scancode = *((u16 *)ke->scancode);
738 break;
739
740 case 4:
741 *scancode = *((u32 *)ke->scancode);
742 break;
743
744 default:
745 return -EINVAL;
746 }
747
748 return 0;
749}
750EXPORT_SYMBOL(input_scancode_to_scalar);
751
752/*
753 * Those routines handle the default case where no [gs]etkeycode() is
754 * defined. In this case, an array indexed by the scancode is used.
755 */
756
757static unsigned int input_fetch_keycode(struct input_dev *dev,
758 unsigned int index)
c8e4c772
MR
759{
760 switch (dev->keycodesize) {
8613e4c2
MCC
761 case 1:
762 return ((u8 *)dev->keycode)[index];
c8e4c772 763
8613e4c2
MCC
764 case 2:
765 return ((u16 *)dev->keycode)[index];
c8e4c772 766
8613e4c2
MCC
767 default:
768 return ((u32 *)dev->keycode)[index];
c8e4c772
MR
769 }
770}
771
772static int input_default_getkeycode(struct input_dev *dev,
8613e4c2 773 struct input_keymap_entry *ke)
c8e4c772 774{
8613e4c2
MCC
775 unsigned int index;
776 int error;
777
c8e4c772
MR
778 if (!dev->keycodesize)
779 return -EINVAL;
780
8613e4c2
MCC
781 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
782 index = ke->index;
783 else {
784 error = input_scancode_to_scalar(ke, &index);
785 if (error)
786 return error;
787 }
788
789 if (index >= dev->keycodemax)
c8e4c772
MR
790 return -EINVAL;
791
8613e4c2
MCC
792 ke->keycode = input_fetch_keycode(dev, index);
793 ke->index = index;
794 ke->len = sizeof(index);
795 memcpy(ke->scancode, &index, sizeof(index));
c8e4c772
MR
796
797 return 0;
798}
799
800static int input_default_setkeycode(struct input_dev *dev,
8613e4c2
MCC
801 const struct input_keymap_entry *ke,
802 unsigned int *old_keycode)
c8e4c772 803{
8613e4c2
MCC
804 unsigned int index;
805 int error;
c8e4c772
MR
806 int i;
807
8613e4c2 808 if (!dev->keycodesize)
c8e4c772
MR
809 return -EINVAL;
810
8613e4c2
MCC
811 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
812 index = ke->index;
813 } else {
814 error = input_scancode_to_scalar(ke, &index);
815 if (error)
816 return error;
817 }
818
819 if (index >= dev->keycodemax)
c8e4c772
MR
820 return -EINVAL;
821
de391d12 822 if (dev->keycodesize < sizeof(ke->keycode) &&
8613e4c2 823 (ke->keycode >> (dev->keycodesize * 8)))
c8e4c772
MR
824 return -EINVAL;
825
826 switch (dev->keycodesize) {
827 case 1: {
828 u8 *k = (u8 *)dev->keycode;
8613e4c2
MCC
829 *old_keycode = k[index];
830 k[index] = ke->keycode;
c8e4c772
MR
831 break;
832 }
833 case 2: {
834 u16 *k = (u16 *)dev->keycode;
8613e4c2
MCC
835 *old_keycode = k[index];
836 k[index] = ke->keycode;
c8e4c772
MR
837 break;
838 }
839 default: {
840 u32 *k = (u32 *)dev->keycode;
8613e4c2
MCC
841 *old_keycode = k[index];
842 k[index] = ke->keycode;
c8e4c772
MR
843 break;
844 }
845 }
846
8613e4c2
MCC
847 __clear_bit(*old_keycode, dev->keybit);
848 __set_bit(ke->keycode, dev->keybit);
c8e4c772
MR
849
850 for (i = 0; i < dev->keycodemax; i++) {
8613e4c2
MCC
851 if (input_fetch_keycode(dev, i) == *old_keycode) {
852 __set_bit(*old_keycode, dev->keybit);
c8e4c772
MR
853 break; /* Setting the bit twice is useless, so break */
854 }
855 }
856
857 return 0;
858}
859
f4f37c8e
DT
860/**
861 * input_get_keycode - retrieve keycode currently mapped to a given scancode
862 * @dev: input device which keymap is being queried
8613e4c2 863 * @ke: keymap entry
f4f37c8e
DT
864 *
865 * This function should be called by anyone interested in retrieving current
8613e4c2 866 * keymap. Presently evdev handlers use it.
f4f37c8e 867 */
8613e4c2 868int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
f4f37c8e 869{
2e2e3b96
DT
870 unsigned long flags;
871 int retval;
872
873 spin_lock_irqsave(&dev->event_lock, flags);
aebd636b 874 retval = dev->getkeycode(dev, ke);
8613e4c2 875 spin_unlock_irqrestore(&dev->event_lock, flags);
aebd636b 876
2e2e3b96 877 return retval;
f4f37c8e
DT
878}
879EXPORT_SYMBOL(input_get_keycode);
880
881/**
8613e4c2 882 * input_set_keycode - attribute a keycode to a given scancode
f4f37c8e 883 * @dev: input device which keymap is being updated
8613e4c2 884 * @ke: new keymap entry
f4f37c8e
DT
885 *
886 * This function should be called by anyone needing to update current
887 * keymap. Presently keyboard and evdev handlers use it.
888 */
58b93995 889int input_set_keycode(struct input_dev *dev,
8613e4c2 890 const struct input_keymap_entry *ke)
f4f37c8e
DT
891{
892 unsigned long flags;
fd6cf3dd 893 unsigned int old_keycode;
f4f37c8e
DT
894 int retval;
895
8613e4c2 896 if (ke->keycode > KEY_MAX)
f4f37c8e
DT
897 return -EINVAL;
898
899 spin_lock_irqsave(&dev->event_lock, flags);
900
aebd636b 901 retval = dev->setkeycode(dev, ke, &old_keycode);
f4f37c8e
DT
902 if (retval)
903 goto out;
904
4f93df40
DT
905 /* Make sure KEY_RESERVED did not get enabled. */
906 __clear_bit(KEY_RESERVED, dev->keybit);
907
f4f37c8e
DT
908 /*
909 * Simulate keyup event if keycode is not present
910 * in the keymap anymore
911 */
912 if (test_bit(EV_KEY, dev->evbit) &&
913 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
914 __test_and_clear_bit(old_keycode, dev->key)) {
4369c64c
HR
915 struct input_value vals[] = {
916 { EV_KEY, old_keycode, 0 },
917 input_value_sync
918 };
f4f37c8e 919
4369c64c 920 input_pass_values(dev, vals, ARRAY_SIZE(vals));
f4f37c8e
DT
921 }
922
923 out:
924 spin_unlock_irqrestore(&dev->event_lock, flags);
925
926 return retval;
927}
928EXPORT_SYMBOL(input_set_keycode);
c8e4c772 929
0b7024ac 930static const struct input_device_id *input_match_device(struct input_handler *handler,
66e66118 931 struct input_dev *dev)
1da177e4 932{
0b7024ac 933 const struct input_device_id *id;
1da177e4 934
0b7024ac 935 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1da177e4
LT
936
937 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
ddc5d341 938 if (id->bustype != dev->id.bustype)
1da177e4
LT
939 continue;
940
941 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
ddc5d341 942 if (id->vendor != dev->id.vendor)
1da177e4
LT
943 continue;
944
945 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
ddc5d341 946 if (id->product != dev->id.product)
1da177e4
LT
947 continue;
948
949 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
ddc5d341 950 if (id->version != dev->id.version)
1da177e4
LT
951 continue;
952
c0bb1f97
DT
953 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
954 continue;
955
956 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
957 continue;
958
959 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
960 continue;
961
962 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
963 continue;
964
965 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
966 continue;
967
968 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
969 continue;
970
971 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
972 continue;
973
974 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
975 continue;
976
977 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
978 continue;
1da177e4 979
0b7024ac
DT
980 if (!handler->match || handler->match(handler, dev))
981 return id;
1da177e4
LT
982 }
983
984 return NULL;
985}
986
5b2a0826
DT
987static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
988{
989 const struct input_device_id *id;
990 int error;
991
0b7024ac 992 id = input_match_device(handler, dev);
5b2a0826
DT
993 if (!id)
994 return -ENODEV;
995
996 error = handler->connect(handler, dev, id);
997 if (error && error != -ENODEV)
da0c4901
JP
998 pr_err("failed to attach handler %s to device %s, error: %d\n",
999 handler->name, kobject_name(&dev->dev.kobj), error);
5b2a0826
DT
1000
1001 return error;
1002}
1003
15e184af
DT
1004#ifdef CONFIG_COMPAT
1005
1006static int input_bits_to_string(char *buf, int buf_size,
1007 unsigned long bits, bool skip_empty)
1008{
1009 int len = 0;
1010
1011 if (INPUT_COMPAT_TEST) {
1012 u32 dword = bits >> 32;
1013 if (dword || !skip_empty)
1014 len += snprintf(buf, buf_size, "%x ", dword);
1015
1016 dword = bits & 0xffffffffUL;
1017 if (dword || !skip_empty || len)
1018 len += snprintf(buf + len, max(buf_size - len, 0),
1019 "%x", dword);
1020 } else {
1021 if (bits || !skip_empty)
1022 len += snprintf(buf, buf_size, "%lx", bits);
1023 }
1024
1025 return len;
1026}
1027
1028#else /* !CONFIG_COMPAT */
1029
1030static int input_bits_to_string(char *buf, int buf_size,
1031 unsigned long bits, bool skip_empty)
1032{
1033 return bits || !skip_empty ?
1034 snprintf(buf, buf_size, "%lx", bits) : 0;
1035}
1036
1037#endif
5b2a0826 1038
f96b434d
DT
1039#ifdef CONFIG_PROC_FS
1040
1041static struct proc_dir_entry *proc_bus_input_dir;
1042static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1043static int input_devices_state;
1044
1045static inline void input_wakeup_procfs_readers(void)
1046{
1047 input_devices_state++;
1048 wake_up(&input_devices_poll_wait);
1049}
1050
969b21cd 1051static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
f96b434d 1052{
f96b434d 1053 poll_wait(file, &input_devices_poll_wait, wait);
fa886612
DT
1054 if (file->f_version != input_devices_state) {
1055 file->f_version = input_devices_state;
f96b434d 1056 return POLLIN | POLLRDNORM;
fa886612 1057 }
1e0afb28 1058
f96b434d
DT
1059 return 0;
1060}
1061
1572ca2a
DT
1062union input_seq_state {
1063 struct {
1064 unsigned short pos;
1065 bool mutex_acquired;
1066 };
1067 void *p;
1068};
1069
969b21cd
DT
1070static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1071{
1572ca2a
DT
1072 union input_seq_state *state = (union input_seq_state *)&seq->private;
1073 int error;
1074
1075 /* We need to fit into seq->private pointer */
1076 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1077
1078 error = mutex_lock_interruptible(&input_mutex);
1079 if (error) {
1080 state->mutex_acquired = false;
1081 return ERR_PTR(error);
1082 }
1083
1084 state->mutex_acquired = true;
f96b434d 1085
ad5d972c 1086 return seq_list_start(&input_dev_list, *pos);
969b21cd 1087}
051b2fea 1088
969b21cd
DT
1089static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1090{
ad5d972c 1091 return seq_list_next(v, &input_dev_list, pos);
969b21cd 1092}
f96b434d 1093
1572ca2a 1094static void input_seq_stop(struct seq_file *seq, void *v)
969b21cd 1095{
1572ca2a
DT
1096 union input_seq_state *state = (union input_seq_state *)&seq->private;
1097
1098 if (state->mutex_acquired)
1099 mutex_unlock(&input_mutex);
969b21cd 1100}
f96b434d 1101
969b21cd
DT
1102static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1103 unsigned long *bitmap, int max)
1104{
1105 int i;
15e184af
DT
1106 bool skip_empty = true;
1107 char buf[18];
f96b434d 1108
969b21cd 1109 seq_printf(seq, "B: %s=", name);
15e184af
DT
1110
1111 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1112 if (input_bits_to_string(buf, sizeof(buf),
1113 bitmap[i], skip_empty)) {
1114 skip_empty = false;
1115 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1116 }
1117 }
1118
1119 /*
1120 * If no output was produced print a single 0.
1121 */
1122 if (skip_empty)
1123 seq_puts(seq, "0");
1124
969b21cd
DT
1125 seq_putc(seq, '\n');
1126}
f96b434d 1127
969b21cd
DT
1128static int input_devices_seq_show(struct seq_file *seq, void *v)
1129{
1130 struct input_dev *dev = container_of(v, struct input_dev, node);
9657d75c 1131 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
969b21cd
DT
1132 struct input_handle *handle;
1133
1134 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1135 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1136
1137 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1138 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1139 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
15e03ae8 1140 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
969b21cd
DT
1141 seq_printf(seq, "H: Handlers=");
1142
1143 list_for_each_entry(handle, &dev->h_list, d_node)
1144 seq_printf(seq, "%s ", handle->name);
1145 seq_putc(seq, '\n');
1146
85b77200
HR
1147 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1148
969b21cd
DT
1149 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1150 if (test_bit(EV_KEY, dev->evbit))
1151 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1152 if (test_bit(EV_REL, dev->evbit))
1153 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1154 if (test_bit(EV_ABS, dev->evbit))
1155 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1156 if (test_bit(EV_MSC, dev->evbit))
1157 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1158 if (test_bit(EV_LED, dev->evbit))
1159 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1160 if (test_bit(EV_SND, dev->evbit))
1161 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1162 if (test_bit(EV_FF, dev->evbit))
1163 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1164 if (test_bit(EV_SW, dev->evbit))
1165 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1166
1167 seq_putc(seq, '\n');
1168
1169 kfree(path);
1170 return 0;
f96b434d
DT
1171}
1172
cec69c37 1173static const struct seq_operations input_devices_seq_ops = {
969b21cd
DT
1174 .start = input_devices_seq_start,
1175 .next = input_devices_seq_next,
1572ca2a 1176 .stop = input_seq_stop,
969b21cd
DT
1177 .show = input_devices_seq_show,
1178};
1179
1180static int input_proc_devices_open(struct inode *inode, struct file *file)
f96b434d 1181{
969b21cd
DT
1182 return seq_open(file, &input_devices_seq_ops);
1183}
1184
2b8693c0 1185static const struct file_operations input_devices_fileops = {
969b21cd
DT
1186 .owner = THIS_MODULE,
1187 .open = input_proc_devices_open,
1188 .poll = input_proc_devices_poll,
1189 .read = seq_read,
1190 .llseek = seq_lseek,
1191 .release = seq_release,
1192};
1193
1194static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1195{
1572ca2a
DT
1196 union input_seq_state *state = (union input_seq_state *)&seq->private;
1197 int error;
1198
1199 /* We need to fit into seq->private pointer */
1200 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1201
1202 error = mutex_lock_interruptible(&input_mutex);
1203 if (error) {
1204 state->mutex_acquired = false;
1205 return ERR_PTR(error);
1206 }
1207
1208 state->mutex_acquired = true;
1209 state->pos = *pos;
8006479c 1210
ad5d972c 1211 return seq_list_start(&input_handler_list, *pos);
969b21cd 1212}
f96b434d 1213
969b21cd
DT
1214static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1215{
1572ca2a 1216 union input_seq_state *state = (union input_seq_state *)&seq->private;
f96b434d 1217
1572ca2a
DT
1218 state->pos = *pos + 1;
1219 return seq_list_next(v, &input_handler_list, pos);
969b21cd
DT
1220}
1221
1222static int input_handlers_seq_show(struct seq_file *seq, void *v)
1223{
1224 struct input_handler *handler = container_of(v, struct input_handler, node);
1572ca2a 1225 union input_seq_state *state = (union input_seq_state *)&seq->private;
969b21cd 1226
1572ca2a 1227 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
ef7995f4
DT
1228 if (handler->filter)
1229 seq_puts(seq, " (filter)");
7f8d4cad 1230 if (handler->legacy_minors)
969b21cd
DT
1231 seq_printf(seq, " Minor=%d", handler->minor);
1232 seq_putc(seq, '\n');
1233
1234 return 0;
1235}
1572ca2a 1236
cec69c37 1237static const struct seq_operations input_handlers_seq_ops = {
969b21cd
DT
1238 .start = input_handlers_seq_start,
1239 .next = input_handlers_seq_next,
1572ca2a 1240 .stop = input_seq_stop,
969b21cd
DT
1241 .show = input_handlers_seq_show,
1242};
1243
1244static int input_proc_handlers_open(struct inode *inode, struct file *file)
1245{
1246 return seq_open(file, &input_handlers_seq_ops);
1247}
1248
2b8693c0 1249static const struct file_operations input_handlers_fileops = {
969b21cd
DT
1250 .owner = THIS_MODULE,
1251 .open = input_proc_handlers_open,
1252 .read = seq_read,
1253 .llseek = seq_lseek,
1254 .release = seq_release,
1255};
f96b434d
DT
1256
1257static int __init input_proc_init(void)
1258{
1259 struct proc_dir_entry *entry;
1260
9c37066d 1261 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
f96b434d
DT
1262 if (!proc_bus_input_dir)
1263 return -ENOMEM;
1264
c7705f34
DL
1265 entry = proc_create("devices", 0, proc_bus_input_dir,
1266 &input_devices_fileops);
f96b434d
DT
1267 if (!entry)
1268 goto fail1;
1269
c7705f34
DL
1270 entry = proc_create("handlers", 0, proc_bus_input_dir,
1271 &input_handlers_fileops);
f96b434d
DT
1272 if (!entry)
1273 goto fail2;
1274
f96b434d
DT
1275 return 0;
1276
1277 fail2: remove_proc_entry("devices", proc_bus_input_dir);
9c37066d 1278 fail1: remove_proc_entry("bus/input", NULL);
f96b434d
DT
1279 return -ENOMEM;
1280}
1281
beffbdc2 1282static void input_proc_exit(void)
f96b434d
DT
1283{
1284 remove_proc_entry("devices", proc_bus_input_dir);
1285 remove_proc_entry("handlers", proc_bus_input_dir);
9c37066d 1286 remove_proc_entry("bus/input", NULL);
f96b434d
DT
1287}
1288
1289#else /* !CONFIG_PROC_FS */
1290static inline void input_wakeup_procfs_readers(void) { }
1291static inline int input_proc_init(void) { return 0; }
1292static inline void input_proc_exit(void) { }
1293#endif
1294
9657d75c
DT
1295#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1296static ssize_t input_dev_show_##name(struct device *dev, \
1297 struct device_attribute *attr, \
1298 char *buf) \
1299{ \
1300 struct input_dev *input_dev = to_input_dev(dev); \
1301 \
1302 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1303 input_dev->name ? input_dev->name : ""); \
1304} \
1305static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
5c1e9a6a
DT
1306
1307INPUT_DEV_STRING_ATTR_SHOW(name);
1308INPUT_DEV_STRING_ATTR_SHOW(phys);
1309INPUT_DEV_STRING_ATTR_SHOW(uniq);
1310
ac648a6a
DT
1311static int input_print_modalias_bits(char *buf, int size,
1312 char name, unsigned long *bm,
1313 unsigned int min_bit, unsigned int max_bit)
1d8f430c 1314{
ac648a6a 1315 int len = 0, i;
1d8f430c 1316
ac648a6a
DT
1317 len += snprintf(buf, max(size, 0), "%c", name);
1318 for (i = min_bit; i < max_bit; i++)
7b19ada2 1319 if (bm[BIT_WORD(i)] & BIT_MASK(i))
ac648a6a 1320 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1d8f430c
RR
1321 return len;
1322}
1323
2db66876
DT
1324static int input_print_modalias(char *buf, int size, struct input_dev *id,
1325 int add_cr)
1d8f430c 1326{
bd37e5a9 1327 int len;
1d8f430c 1328
ac648a6a
DT
1329 len = snprintf(buf, max(size, 0),
1330 "input:b%04Xv%04Xp%04Xe%04X-",
1331 id->id.bustype, id->id.vendor,
1332 id->id.product, id->id.version);
1333
1334 len += input_print_modalias_bits(buf + len, size - len,
1335 'e', id->evbit, 0, EV_MAX);
1336 len += input_print_modalias_bits(buf + len, size - len,
1337 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1338 len += input_print_modalias_bits(buf + len, size - len,
1339 'r', id->relbit, 0, REL_MAX);
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'a', id->absbit, 0, ABS_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'm', id->mscbit, 0, MSC_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'l', id->ledbit, 0, LED_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 's', id->sndbit, 0, SND_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'f', id->ffbit, 0, FF_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 'w', id->swbit, 0, SW_MAX);
2db66876
DT
1352
1353 if (add_cr)
ac648a6a 1354 len += snprintf(buf + len, max(size - len, 0), "\n");
2db66876 1355
bd37e5a9
KS
1356 return len;
1357}
1358
9657d75c
DT
1359static ssize_t input_dev_show_modalias(struct device *dev,
1360 struct device_attribute *attr,
1361 char *buf)
bd37e5a9
KS
1362{
1363 struct input_dev *id = to_input_dev(dev);
1364 ssize_t len;
1365
2db66876
DT
1366 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1367
8a3cf456 1368 return min_t(int, len, PAGE_SIZE);
1d8f430c 1369}
9657d75c 1370static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1d8f430c 1371
85b77200
HR
1372static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1373 int max, int add_cr);
1374
1375static ssize_t input_dev_show_properties(struct device *dev,
1376 struct device_attribute *attr,
1377 char *buf)
1378{
1379 struct input_dev *input_dev = to_input_dev(dev);
1380 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1381 INPUT_PROP_MAX, true);
1382 return min_t(int, len, PAGE_SIZE);
1383}
1384static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1385
629b77a4 1386static struct attribute *input_dev_attrs[] = {
9657d75c
DT
1387 &dev_attr_name.attr,
1388 &dev_attr_phys.attr,
1389 &dev_attr_uniq.attr,
1390 &dev_attr_modalias.attr,
85b77200 1391 &dev_attr_properties.attr,
629b77a4
GKH
1392 NULL
1393};
1394
bd0ef235 1395static struct attribute_group input_dev_attr_group = {
629b77a4 1396 .attrs = input_dev_attrs,
5c1e9a6a
DT
1397};
1398
9657d75c
DT
1399#define INPUT_DEV_ID_ATTR(name) \
1400static ssize_t input_dev_show_id_##name(struct device *dev, \
1401 struct device_attribute *attr, \
1402 char *buf) \
1403{ \
1404 struct input_dev *input_dev = to_input_dev(dev); \
1405 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1406} \
1407static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
5c1e9a6a
DT
1408
1409INPUT_DEV_ID_ATTR(bustype);
1410INPUT_DEV_ID_ATTR(vendor);
1411INPUT_DEV_ID_ATTR(product);
1412INPUT_DEV_ID_ATTR(version);
1413
1414static struct attribute *input_dev_id_attrs[] = {
9657d75c
DT
1415 &dev_attr_bustype.attr,
1416 &dev_attr_vendor.attr,
1417 &dev_attr_product.attr,
1418 &dev_attr_version.attr,
5c1e9a6a
DT
1419 NULL
1420};
1421
1422static struct attribute_group input_dev_id_attr_group = {
1423 .name = "id",
1424 .attrs = input_dev_id_attrs,
1425};
1426
969b21cd
DT
1427static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1428 int max, int add_cr)
1429{
1430 int i;
1431 int len = 0;
15e184af
DT
1432 bool skip_empty = true;
1433
1434 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1435 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1436 bitmap[i], skip_empty);
1437 if (len) {
1438 skip_empty = false;
1439 if (i > 0)
1440 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1441 }
1442 }
969b21cd 1443
15e184af
DT
1444 /*
1445 * If no output was produced print a single 0.
1446 */
1447 if (len == 0)
1448 len = snprintf(buf, buf_size, "%d", 0);
969b21cd
DT
1449
1450 if (add_cr)
1451 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1452
1453 return len;
1454}
1455
9657d75c
DT
1456#define INPUT_DEV_CAP_ATTR(ev, bm) \
1457static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1458 struct device_attribute *attr, \
1459 char *buf) \
1460{ \
1461 struct input_dev *input_dev = to_input_dev(dev); \
1462 int len = input_print_bitmap(buf, PAGE_SIZE, \
15e184af
DT
1463 input_dev->bm##bit, ev##_MAX, \
1464 true); \
9657d75c
DT
1465 return min_t(int, len, PAGE_SIZE); \
1466} \
1467static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
5c1e9a6a
DT
1468
1469INPUT_DEV_CAP_ATTR(EV, ev);
1470INPUT_DEV_CAP_ATTR(KEY, key);
1471INPUT_DEV_CAP_ATTR(REL, rel);
1472INPUT_DEV_CAP_ATTR(ABS, abs);
1473INPUT_DEV_CAP_ATTR(MSC, msc);
1474INPUT_DEV_CAP_ATTR(LED, led);
1475INPUT_DEV_CAP_ATTR(SND, snd);
1476INPUT_DEV_CAP_ATTR(FF, ff);
1477INPUT_DEV_CAP_ATTR(SW, sw);
1478
1479static struct attribute *input_dev_caps_attrs[] = {
9657d75c
DT
1480 &dev_attr_ev.attr,
1481 &dev_attr_key.attr,
1482 &dev_attr_rel.attr,
1483 &dev_attr_abs.attr,
1484 &dev_attr_msc.attr,
1485 &dev_attr_led.attr,
1486 &dev_attr_snd.attr,
1487 &dev_attr_ff.attr,
1488 &dev_attr_sw.attr,
5c1e9a6a
DT
1489 NULL
1490};
1491
1492static struct attribute_group input_dev_caps_attr_group = {
1493 .name = "capabilities",
1494 .attrs = input_dev_caps_attrs,
1495};
1496
a4dbd674 1497static const struct attribute_group *input_dev_attr_groups[] = {
cb9def4d
DT
1498 &input_dev_attr_group,
1499 &input_dev_id_attr_group,
1500 &input_dev_caps_attr_group,
1501 NULL
1502};
1503
9657d75c 1504static void input_dev_release(struct device *device)
d19fbe8a 1505{
9657d75c 1506 struct input_dev *dev = to_input_dev(device);
d19fbe8a 1507
509ca1a9 1508 input_ff_destroy(dev);
40d007e7 1509 input_mt_destroy_slots(dev);
d31b2865 1510 kfree(dev->absinfo);
4369c64c 1511 kfree(dev->vals);
d19fbe8a 1512 kfree(dev);
509ca1a9 1513
d19fbe8a
DT
1514 module_put(THIS_MODULE);
1515}
1516
a7fadbe1 1517/*
312c004d 1518 * Input uevent interface - loading event handlers based on
a7fadbe1
DT
1519 * device bitfields.
1520 */
7eff2e7a 1521static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
ac648a6a 1522 const char *name, unsigned long *bitmap, int max)
a7fadbe1 1523{
7eff2e7a 1524 int len;
a7fadbe1 1525
fcd3027a 1526 if (add_uevent_var(env, "%s", name))
a7fadbe1
DT
1527 return -ENOMEM;
1528
7eff2e7a
KS
1529 len = input_print_bitmap(&env->buf[env->buflen - 1],
1530 sizeof(env->buf) - env->buflen,
15e184af 1531 bitmap, max, false);
7eff2e7a 1532 if (len >= (sizeof(env->buf) - env->buflen))
a7fadbe1
DT
1533 return -ENOMEM;
1534
7eff2e7a 1535 env->buflen += len;
a7fadbe1
DT
1536 return 0;
1537}
1538
7eff2e7a 1539static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
ac648a6a
DT
1540 struct input_dev *dev)
1541{
7eff2e7a 1542 int len;
ac648a6a 1543
7eff2e7a 1544 if (add_uevent_var(env, "MODALIAS="))
ac648a6a
DT
1545 return -ENOMEM;
1546
7eff2e7a
KS
1547 len = input_print_modalias(&env->buf[env->buflen - 1],
1548 sizeof(env->buf) - env->buflen,
1549 dev, 0);
1550 if (len >= (sizeof(env->buf) - env->buflen))
ac648a6a
DT
1551 return -ENOMEM;
1552
7eff2e7a 1553 env->buflen += len;
ac648a6a
DT
1554 return 0;
1555}
1556
a7fadbe1
DT
1557#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1558 do { \
7eff2e7a 1559 int err = add_uevent_var(env, fmt, val); \
a7fadbe1
DT
1560 if (err) \
1561 return err; \
1562 } while (0)
1563
1564#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1565 do { \
7eff2e7a 1566 int err = input_add_uevent_bm_var(env, name, bm, max); \
a7fadbe1
DT
1567 if (err) \
1568 return err; \
1569 } while (0)
1570
ac648a6a
DT
1571#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1572 do { \
7eff2e7a 1573 int err = input_add_uevent_modalias_var(env, dev); \
ac648a6a
DT
1574 if (err) \
1575 return err; \
1576 } while (0)
1577
7eff2e7a 1578static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
a7fadbe1 1579{
9657d75c 1580 struct input_dev *dev = to_input_dev(device);
a7fadbe1
DT
1581
1582 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1583 dev->id.bustype, dev->id.vendor,
1584 dev->id.product, dev->id.version);
1585 if (dev->name)
1586 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1587 if (dev->phys)
1588 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
08de1f04 1589 if (dev->uniq)
a7fadbe1
DT
1590 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1591
85b77200
HR
1592 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1593
a7fadbe1
DT
1594 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1595 if (test_bit(EV_KEY, dev->evbit))
1596 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1597 if (test_bit(EV_REL, dev->evbit))
1598 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1599 if (test_bit(EV_ABS, dev->evbit))
1600 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1601 if (test_bit(EV_MSC, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1603 if (test_bit(EV_LED, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1605 if (test_bit(EV_SND, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1607 if (test_bit(EV_FF, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1609 if (test_bit(EV_SW, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1611
ac648a6a 1612 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
a7fadbe1
DT
1613
1614 return 0;
1615}
1616
3cc96351
DT
1617#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1618 do { \
1619 int i; \
1620 bool active; \
1621 \
1622 if (!test_bit(EV_##type, dev->evbit)) \
1623 break; \
1624 \
1625 for (i = 0; i < type##_MAX; i++) { \
1626 if (!test_bit(i, dev->bits##bit)) \
1627 continue; \
1628 \
1629 active = test_bit(i, dev->bits); \
1630 if (!active && !on) \
1631 continue; \
1632 \
1633 dev->event(dev, EV_##type, i, on ? active : 0); \
1634 } \
ffd0db97
DT
1635 } while (0)
1636
b50b5216 1637static void input_dev_toggle(struct input_dev *dev, bool activate)
ffd0db97
DT
1638{
1639 if (!dev->event)
1640 return;
1641
1642 INPUT_DO_TOGGLE(dev, LED, led, activate);
1643 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1644
1645 if (activate && test_bit(EV_REP, dev->evbit)) {
1646 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1647 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1648 }
1649}
1650
b50b5216
DT
1651/**
1652 * input_reset_device() - reset/restore the state of input device
1653 * @dev: input device whose state needs to be reset
1654 *
1655 * This function tries to reset the state of an opened input device and
1656 * bring internal state and state if the hardware in sync with each other.
1657 * We mark all keys as released, restore LED state, repeat rate, etc.
1658 */
1659void input_reset_device(struct input_dev *dev)
1660{
1661 mutex_lock(&dev->mutex);
1662
1663 if (dev->users) {
1664 input_dev_toggle(dev, true);
1665
1666 /*
1667 * Keys that have been pressed at suspend time are unlikely
1668 * to be still pressed when we resume.
1669 */
1670 spin_lock_irq(&dev->event_lock);
1671 input_dev_release_keys(dev);
1672 spin_unlock_irq(&dev->event_lock);
1673 }
1674
1675 mutex_unlock(&dev->mutex);
1676}
1677EXPORT_SYMBOL(input_reset_device);
1678
1679#ifdef CONFIG_PM
ffd0db97
DT
1680static int input_dev_suspend(struct device *dev)
1681{
1682 struct input_dev *input_dev = to_input_dev(dev);
1683
1684 mutex_lock(&input_dev->mutex);
b50b5216
DT
1685
1686 if (input_dev->users)
1687 input_dev_toggle(input_dev, false);
1688
ffd0db97
DT
1689 mutex_unlock(&input_dev->mutex);
1690
1691 return 0;
1692}
1693
1694static int input_dev_resume(struct device *dev)
1695{
1696 struct input_dev *input_dev = to_input_dev(dev);
1697
b50b5216 1698 input_reset_device(input_dev);
ffd0db97
DT
1699
1700 return 0;
1701}
1702
1703static const struct dev_pm_ops input_dev_pm_ops = {
1704 .suspend = input_dev_suspend,
1705 .resume = input_dev_resume,
1706 .poweroff = input_dev_suspend,
1707 .restore = input_dev_resume,
1708};
1709#endif /* CONFIG_PM */
1710
9657d75c
DT
1711static struct device_type input_dev_type = {
1712 .groups = input_dev_attr_groups,
1713 .release = input_dev_release,
1714 .uevent = input_dev_uevent,
ffd0db97
DT
1715#ifdef CONFIG_PM
1716 .pm = &input_dev_pm_ops,
1717#endif
9657d75c
DT
1718};
1719
2c9ede55 1720static char *input_devnode(struct device *dev, umode_t *mode)
aa5ed63e
KS
1721{
1722 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1723}
1724
ea9f240b 1725struct class input_class = {
9657d75c 1726 .name = "input",
e454cea2 1727 .devnode = input_devnode,
d19fbe8a 1728};
ca56fe07 1729EXPORT_SYMBOL_GPL(input_class);
d19fbe8a 1730
1447190e
DT
1731/**
1732 * input_allocate_device - allocate memory for new input device
1733 *
2be975c6 1734 * Returns prepared struct input_dev or %NULL.
1447190e
DT
1735 *
1736 * NOTE: Use input_free_device() to free devices that have not been
1737 * registered; input_unregister_device() should be used for already
1738 * registered devices.
1739 */
d19fbe8a
DT
1740struct input_dev *input_allocate_device(void)
1741{
1742 struct input_dev *dev;
1743
1744 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1745 if (dev) {
9657d75c
DT
1746 dev->dev.type = &input_dev_type;
1747 dev->dev.class = &input_class;
1748 device_initialize(&dev->dev);
f60d2b11 1749 mutex_init(&dev->mutex);
8006479c 1750 spin_lock_init(&dev->event_lock);
d19fbe8a
DT
1751 INIT_LIST_HEAD(&dev->h_list);
1752 INIT_LIST_HEAD(&dev->node);
655816e4
DT
1753
1754 __module_get(THIS_MODULE);
d19fbe8a
DT
1755 }
1756
1757 return dev;
1758}
ca56fe07 1759EXPORT_SYMBOL(input_allocate_device);
d19fbe8a 1760
2be975c6
DT
1761struct input_devres {
1762 struct input_dev *input;
1763};
1764
1765static int devm_input_device_match(struct device *dev, void *res, void *data)
1766{
1767 struct input_devres *devres = res;
1768
1769 return devres->input == data;
1770}
1771
1772static void devm_input_device_release(struct device *dev, void *res)
1773{
1774 struct input_devres *devres = res;
1775 struct input_dev *input = devres->input;
1776
1777 dev_dbg(dev, "%s: dropping reference to %s\n",
1778 __func__, dev_name(&input->dev));
1779 input_put_device(input);
1780}
1781
1782/**
1783 * devm_input_allocate_device - allocate managed input device
1784 * @dev: device owning the input device being created
1785 *
1786 * Returns prepared struct input_dev or %NULL.
1787 *
1788 * Managed input devices do not need to be explicitly unregistered or
1789 * freed as it will be done automatically when owner device unbinds from
1790 * its driver (or binding fails). Once managed input device is allocated,
1791 * it is ready to be set up and registered in the same fashion as regular
1792 * input device. There are no special devm_input_device_[un]register()
b666263b
DT
1793 * variants, regular ones work with both managed and unmanaged devices,
1794 * should you need them. In most cases however, managed input device need
1795 * not be explicitly unregistered or freed.
2be975c6
DT
1796 *
1797 * NOTE: the owner device is set up as parent of input device and users
1798 * should not override it.
1799 */
2be975c6
DT
1800struct input_dev *devm_input_allocate_device(struct device *dev)
1801{
1802 struct input_dev *input;
1803 struct input_devres *devres;
1804
1805 devres = devres_alloc(devm_input_device_release,
1806 sizeof(struct input_devres), GFP_KERNEL);
1807 if (!devres)
1808 return NULL;
1809
1810 input = input_allocate_device();
1811 if (!input) {
1812 devres_free(devres);
1813 return NULL;
1814 }
1815
1816 input->dev.parent = dev;
1817 input->devres_managed = true;
1818
1819 devres->input = input;
1820 devres_add(dev, devres);
1821
1822 return input;
1823}
1824EXPORT_SYMBOL(devm_input_allocate_device);
1825
1447190e
DT
1826/**
1827 * input_free_device - free memory occupied by input_dev structure
1828 * @dev: input device to free
1829 *
1830 * This function should only be used if input_register_device()
1831 * was not called yet or if it failed. Once device was registered
1832 * use input_unregister_device() and memory will be freed once last
8006479c 1833 * reference to the device is dropped.
1447190e
DT
1834 *
1835 * Device should be allocated by input_allocate_device().
1836 *
1837 * NOTE: If there are references to the input device then memory
1838 * will not be freed until last reference is dropped.
1839 */
f60d2b11
DT
1840void input_free_device(struct input_dev *dev)
1841{
2be975c6
DT
1842 if (dev) {
1843 if (dev->devres_managed)
1844 WARN_ON(devres_destroy(dev->dev.parent,
1845 devm_input_device_release,
1846 devm_input_device_match,
1847 dev));
f60d2b11 1848 input_put_device(dev);
2be975c6 1849 }
f60d2b11 1850}
ca56fe07 1851EXPORT_SYMBOL(input_free_device);
f60d2b11 1852
534565f2
DT
1853/**
1854 * input_set_capability - mark device as capable of a certain event
1855 * @dev: device that is capable of emitting or accepting event
1856 * @type: type of the event (EV_KEY, EV_REL, etc...)
1857 * @code: event code
1858 *
1859 * In addition to setting up corresponding bit in appropriate capability
1860 * bitmap the function also adjusts dev->evbit.
1861 */
1862void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1863{
1864 switch (type) {
1865 case EV_KEY:
1866 __set_bit(code, dev->keybit);
1867 break;
1868
1869 case EV_REL:
1870 __set_bit(code, dev->relbit);
1871 break;
1872
1873 case EV_ABS:
2d8ccbd7
DT
1874 input_alloc_absinfo(dev);
1875 if (!dev->absinfo)
1876 return;
1877
534565f2
DT
1878 __set_bit(code, dev->absbit);
1879 break;
1880
1881 case EV_MSC:
1882 __set_bit(code, dev->mscbit);
1883 break;
1884
1885 case EV_SW:
1886 __set_bit(code, dev->swbit);
1887 break;
1888
1889 case EV_LED:
1890 __set_bit(code, dev->ledbit);
1891 break;
1892
1893 case EV_SND:
1894 __set_bit(code, dev->sndbit);
1895 break;
1896
1897 case EV_FF:
1898 __set_bit(code, dev->ffbit);
1899 break;
1900
22d1c398
DES
1901 case EV_PWR:
1902 /* do nothing */
1903 break;
1904
534565f2 1905 default:
da0c4901
JP
1906 pr_err("input_set_capability: unknown type %u (code %u)\n",
1907 type, code);
534565f2
DT
1908 dump_stack();
1909 return;
1910 }
1911
1912 __set_bit(type, dev->evbit);
1913}
1914EXPORT_SYMBOL(input_set_capability);
1915
80b4895a
JB
1916static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1917{
1918 int mt_slots;
1919 int i;
1920 unsigned int events;
1921
8d18fba2
HR
1922 if (dev->mt) {
1923 mt_slots = dev->mt->num_slots;
80b4895a
JB
1924 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1925 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1926 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
8c127f07 1927 mt_slots = clamp(mt_slots, 2, 32);
80b4895a
JB
1928 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1929 mt_slots = 2;
1930 } else {
1931 mt_slots = 0;
1932 }
1933
1934 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1935
1936 for (i = 0; i < ABS_CNT; i++) {
1937 if (test_bit(i, dev->absbit)) {
1938 if (input_is_mt_axis(i))
1939 events += mt_slots;
1940 else
1941 events++;
1942 }
1943 }
1944
1945 for (i = 0; i < REL_CNT; i++)
1946 if (test_bit(i, dev->relbit))
1947 events++;
1948
7c75bf99
HR
1949 /* Make room for KEY and MSC events */
1950 events += 7;
1951
80b4895a
JB
1952 return events;
1953}
1954
92a3a587
DT
1955#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1956 do { \
1957 if (!test_bit(EV_##type, dev->evbit)) \
1958 memset(dev->bits##bit, 0, \
1959 sizeof(dev->bits##bit)); \
1960 } while (0)
1961
1962static void input_cleanse_bitmasks(struct input_dev *dev)
1963{
1964 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1965 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1966 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1967 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1968 INPUT_CLEANSE_BITMASK(dev, LED, led);
1969 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1970 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1971 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1972}
1973
2be975c6
DT
1974static void __input_unregister_device(struct input_dev *dev)
1975{
1976 struct input_handle *handle, *next;
1977
1978 input_disconnect_device(dev);
1979
1980 mutex_lock(&input_mutex);
1981
1982 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1983 handle->handler->disconnect(handle);
1984 WARN_ON(!list_empty(&dev->h_list));
1985
1986 del_timer_sync(&dev->timer);
1987 list_del_init(&dev->node);
1988
1989 input_wakeup_procfs_readers();
1990
1991 mutex_unlock(&input_mutex);
1992
1993 device_del(&dev->dev);
1994}
1995
1996static void devm_input_device_unregister(struct device *dev, void *res)
1997{
1998 struct input_devres *devres = res;
1999 struct input_dev *input = devres->input;
2000
2001 dev_dbg(dev, "%s: unregistering device %s\n",
2002 __func__, dev_name(&input->dev));
2003 __input_unregister_device(input);
2004}
2005
8006479c
DT
2006/**
2007 * input_register_device - register device with input core
2008 * @dev: device to be registered
2009 *
2010 * This function registers device with input core. The device must be
2011 * allocated with input_allocate_device() and all it's capabilities
2012 * set up before registering.
2013 * If function fails the device must be freed with input_free_device().
2014 * Once device has been successfully registered it can be unregistered
2015 * with input_unregister_device(); input_free_device() should not be
2016 * called in this case.
b666263b
DT
2017 *
2018 * Note that this function is also used to register managed input devices
2019 * (ones allocated with devm_input_allocate_device()). Such managed input
2020 * devices need not be explicitly unregistered or freed, their tear down
2021 * is controlled by the devres infrastructure. It is also worth noting
2022 * that tear down of managed input devices is internally a 2-step process:
2023 * registered managed input device is first unregistered, but stays in
2024 * memory and can still handle input_event() calls (although events will
2025 * not be delivered anywhere). The freeing of managed input device will
2026 * happen later, when devres stack is unwound to the point where device
2027 * allocation was made.
8006479c 2028 */
5f945489 2029int input_register_device(struct input_dev *dev)
1da177e4 2030{
bd0ef235 2031 static atomic_t input_no = ATOMIC_INIT(0);
2be975c6 2032 struct input_devres *devres = NULL;
1da177e4 2033 struct input_handler *handler;
7c75bf99 2034 unsigned int packet_size;
bd0ef235
DT
2035 const char *path;
2036 int error;
1da177e4 2037
2be975c6
DT
2038 if (dev->devres_managed) {
2039 devres = devres_alloc(devm_input_device_unregister,
2040 sizeof(struct input_devres), GFP_KERNEL);
2041 if (!devres)
2042 return -ENOMEM;
2043
2044 devres->input = dev;
2045 }
2046
4f93df40 2047 /* Every input device generates EV_SYN/SYN_REPORT events. */
8006479c 2048 __set_bit(EV_SYN, dev->evbit);
0fbf87ca 2049
4f93df40
DT
2050 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2051 __clear_bit(KEY_RESERVED, dev->keybit);
2052
92a3a587
DT
2053 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2054 input_cleanse_bitmasks(dev);
2055
7c75bf99
HR
2056 packet_size = input_estimate_events_per_packet(dev);
2057 if (dev->hint_events_per_packet < packet_size)
2058 dev->hint_events_per_packet = packet_size;
80b4895a 2059
4369c64c
HR
2060 dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2;
2061 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2be975c6
DT
2062 if (!dev->vals) {
2063 error = -ENOMEM;
2064 goto err_devres_free;
2065 }
80b4895a 2066
1da177e4
LT
2067 /*
2068 * If delay and period are pre-set by the driver, then autorepeating
2069 * is handled by the driver itself and we don't do it in input.c.
2070 */
1da177e4
LT
2071 init_timer(&dev->timer);
2072 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2073 dev->timer.data = (long) dev;
2074 dev->timer.function = input_repeat_key;
2075 dev->rep[REP_DELAY] = 250;
2076 dev->rep[REP_PERIOD] = 33;
2077 }
2078
aebd636b
DT
2079 if (!dev->getkeycode)
2080 dev->getkeycode = input_default_getkeycode;
c8e4c772 2081
aebd636b
DT
2082 if (!dev->setkeycode)
2083 dev->setkeycode = input_default_setkeycode;
c8e4c772 2084
a6c2490f
KS
2085 dev_set_name(&dev->dev, "input%ld",
2086 (unsigned long) atomic_inc_return(&input_no) - 1);
bd0ef235 2087
9657d75c 2088 error = device_add(&dev->dev);
bd0ef235 2089 if (error)
2be975c6 2090 goto err_free_vals;
bd0ef235 2091
9657d75c 2092 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
da0c4901
JP
2093 pr_info("%s as %s\n",
2094 dev->name ? dev->name : "Unspecified device",
2095 path ? path : "N/A");
bd0ef235 2096 kfree(path);
10204020 2097
8006479c 2098 error = mutex_lock_interruptible(&input_mutex);
2be975c6
DT
2099 if (error)
2100 goto err_device_del;
8006479c
DT
2101
2102 list_add_tail(&dev->node, &input_dev_list);
2103
1da177e4 2104 list_for_each_entry(handler, &input_handler_list, node)
5b2a0826 2105 input_attach_handler(dev, handler);
1da177e4 2106
f96b434d 2107 input_wakeup_procfs_readers();
5f945489 2108
8006479c
DT
2109 mutex_unlock(&input_mutex);
2110
2be975c6
DT
2111 if (dev->devres_managed) {
2112 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2113 __func__, dev_name(&dev->dev));
2114 devres_add(dev->dev.parent, devres);
2115 }
5f945489 2116 return 0;
2be975c6
DT
2117
2118err_device_del:
2119 device_del(&dev->dev);
2120err_free_vals:
2121 kfree(dev->vals);
2122 dev->vals = NULL;
2123err_devres_free:
2124 devres_free(devres);
2125 return error;
1da177e4 2126}
ca56fe07 2127EXPORT_SYMBOL(input_register_device);
1da177e4 2128
8006479c
DT
2129/**
2130 * input_unregister_device - unregister previously registered device
2131 * @dev: device to be unregistered
2132 *
2133 * This function unregisters an input device. Once device is unregistered
2134 * the caller should not try to access it as it may get freed at any moment.
2135 */
1da177e4
LT
2136void input_unregister_device(struct input_dev *dev)
2137{
2be975c6
DT
2138 if (dev->devres_managed) {
2139 WARN_ON(devres_destroy(dev->dev.parent,
2140 devm_input_device_unregister,
2141 devm_input_device_match,
2142 dev));
2143 __input_unregister_device(dev);
2144 /*
2145 * We do not do input_put_device() here because it will be done
2146 * when 2nd devres fires up.
2147 */
2148 } else {
2149 __input_unregister_device(dev);
2150 input_put_device(dev);
2151 }
1da177e4 2152}
ca56fe07 2153EXPORT_SYMBOL(input_unregister_device);
1da177e4 2154
8006479c
DT
2155/**
2156 * input_register_handler - register a new input handler
2157 * @handler: handler to be registered
2158 *
2159 * This function registers a new input handler (interface) for input
2160 * devices in the system and attaches it to all input devices that
2161 * are compatible with the handler.
2162 */
4263cf0f 2163int input_register_handler(struct input_handler *handler)
1da177e4
LT
2164{
2165 struct input_dev *dev;
7f8d4cad 2166 int error;
8006479c 2167
7f8d4cad
DT
2168 error = mutex_lock_interruptible(&input_mutex);
2169 if (error)
2170 return error;
1da177e4 2171
1da177e4
LT
2172 INIT_LIST_HEAD(&handler->h_list);
2173
1da177e4
LT
2174 list_add_tail(&handler->node, &input_handler_list);
2175
2176 list_for_each_entry(dev, &input_dev_list, node)
5b2a0826 2177 input_attach_handler(dev, handler);
1da177e4 2178
f96b434d 2179 input_wakeup_procfs_readers();
8006479c 2180
8006479c 2181 mutex_unlock(&input_mutex);
7f8d4cad 2182 return 0;
1da177e4 2183}
ca56fe07 2184EXPORT_SYMBOL(input_register_handler);
1da177e4 2185
8006479c
DT
2186/**
2187 * input_unregister_handler - unregisters an input handler
2188 * @handler: handler to be unregistered
2189 *
2190 * This function disconnects a handler from its input devices and
2191 * removes it from lists of known handlers.
2192 */
1da177e4
LT
2193void input_unregister_handler(struct input_handler *handler)
2194{
5b2a0826 2195 struct input_handle *handle, *next;
1da177e4 2196
8006479c
DT
2197 mutex_lock(&input_mutex);
2198
5b2a0826 2199 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1da177e4 2200 handler->disconnect(handle);
5b2a0826 2201 WARN_ON(!list_empty(&handler->h_list));
1da177e4
LT
2202
2203 list_del_init(&handler->node);
2204
f96b434d 2205 input_wakeup_procfs_readers();
8006479c
DT
2206
2207 mutex_unlock(&input_mutex);
1da177e4 2208}
ca56fe07 2209EXPORT_SYMBOL(input_unregister_handler);
1da177e4 2210
66d2a595
DT
2211/**
2212 * input_handler_for_each_handle - handle iterator
2213 * @handler: input handler to iterate
2214 * @data: data for the callback
2215 * @fn: function to be called for each handle
2216 *
2217 * Iterate over @bus's list of devices, and call @fn for each, passing
2218 * it @data and stop when @fn returns a non-zero value. The function is
2219 * using RCU to traverse the list and therefore may be usind in atonic
2220 * contexts. The @fn callback is invoked from RCU critical section and
2221 * thus must not sleep.
2222 */
2223int input_handler_for_each_handle(struct input_handler *handler, void *data,
2224 int (*fn)(struct input_handle *, void *))
2225{
2226 struct input_handle *handle;
2227 int retval = 0;
2228
2229 rcu_read_lock();
2230
2231 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2232 retval = fn(handle, data);
2233 if (retval)
2234 break;
2235 }
2236
2237 rcu_read_unlock();
2238
2239 return retval;
2240}
2241EXPORT_SYMBOL(input_handler_for_each_handle);
2242
8006479c
DT
2243/**
2244 * input_register_handle - register a new input handle
2245 * @handle: handle to register
2246 *
2247 * This function puts a new input handle onto device's
2248 * and handler's lists so that events can flow through
2249 * it once it is opened using input_open_device().
2250 *
2251 * This function is supposed to be called from handler's
2252 * connect() method.
2253 */
5b2a0826
DT
2254int input_register_handle(struct input_handle *handle)
2255{
2256 struct input_handler *handler = handle->handler;
8006479c
DT
2257 struct input_dev *dev = handle->dev;
2258 int error;
2259
2260 /*
2261 * We take dev->mutex here to prevent race with
2262 * input_release_device().
2263 */
2264 error = mutex_lock_interruptible(&dev->mutex);
2265 if (error)
2266 return error;
ef7995f4
DT
2267
2268 /*
2269 * Filters go to the head of the list, normal handlers
2270 * to the tail.
2271 */
2272 if (handler->filter)
2273 list_add_rcu(&handle->d_node, &dev->h_list);
2274 else
2275 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2276
8006479c 2277 mutex_unlock(&dev->mutex);
5b2a0826 2278
8006479c
DT
2279 /*
2280 * Since we are supposed to be called from ->connect()
2281 * which is mutually exclusive with ->disconnect()
2282 * we can't be racing with input_unregister_handle()
2283 * and so separate lock is not needed here.
2284 */
66d2a595 2285 list_add_tail_rcu(&handle->h_node, &handler->h_list);
5b2a0826
DT
2286
2287 if (handler->start)
2288 handler->start(handle);
2289
2290 return 0;
2291}
2292EXPORT_SYMBOL(input_register_handle);
2293
8006479c
DT
2294/**
2295 * input_unregister_handle - unregister an input handle
2296 * @handle: handle to unregister
2297 *
2298 * This function removes input handle from device's
2299 * and handler's lists.
2300 *
2301 * This function is supposed to be called from handler's
2302 * disconnect() method.
2303 */
5b2a0826
DT
2304void input_unregister_handle(struct input_handle *handle)
2305{
8006479c
DT
2306 struct input_dev *dev = handle->dev;
2307
66d2a595 2308 list_del_rcu(&handle->h_node);
8006479c
DT
2309
2310 /*
2311 * Take dev->mutex to prevent race with input_release_device().
2312 */
2313 mutex_lock(&dev->mutex);
2314 list_del_rcu(&handle->d_node);
2315 mutex_unlock(&dev->mutex);
66d2a595 2316
82ba56c2 2317 synchronize_rcu();
5b2a0826
DT
2318}
2319EXPORT_SYMBOL(input_unregister_handle);
2320
7f8d4cad
DT
2321/**
2322 * input_get_new_minor - allocates a new input minor number
2323 * @legacy_base: beginning or the legacy range to be searched
2324 * @legacy_num: size of legacy range
2325 * @allow_dynamic: whether we can also take ID from the dynamic range
2326 *
2327 * This function allocates a new device minor for from input major namespace.
2328 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2329 * parameters and whether ID can be allocated from dynamic range if there are
2330 * no free IDs in legacy range.
2331 */
2332int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2333 bool allow_dynamic)
1da177e4 2334{
1da177e4 2335 /*
7f8d4cad
DT
2336 * This function should be called from input handler's ->connect()
2337 * methods, which are serialized with input_mutex, so no additional
2338 * locking is needed here.
1da177e4 2339 */
7f8d4cad
DT
2340 if (legacy_base >= 0) {
2341 int minor = ida_simple_get(&input_ida,
2342 legacy_base,
2343 legacy_base + legacy_num,
2344 GFP_KERNEL);
2345 if (minor >= 0 || !allow_dynamic)
2346 return minor;
1da177e4 2347 }
2f2177c8 2348
7f8d4cad
DT
2349 return ida_simple_get(&input_ida,
2350 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2351 GFP_KERNEL);
1da177e4 2352}
7f8d4cad 2353EXPORT_SYMBOL(input_get_new_minor);
1da177e4 2354
7f8d4cad
DT
2355/**
2356 * input_free_minor - release previously allocated minor
2357 * @minor: minor to be released
2358 *
2359 * This function releases previously allocated input minor so that it can be
2360 * reused later.
2361 */
2362void input_free_minor(unsigned int minor)
2363{
2364 ida_simple_remove(&input_ida, minor);
2365}
2366EXPORT_SYMBOL(input_free_minor);
1da177e4 2367
f96b434d 2368static int __init input_init(void)
1da177e4 2369{
f96b434d 2370 int err;
1da177e4 2371
ea9f240b 2372 err = class_register(&input_class);
d19fbe8a 2373 if (err) {
da0c4901 2374 pr_err("unable to register input_dev class\n");
d19fbe8a
DT
2375 return err;
2376 }
2377
f96b434d
DT
2378 err = input_proc_init();
2379 if (err)
b0fdfebb 2380 goto fail1;
1da177e4 2381
7f8d4cad
DT
2382 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2383 INPUT_MAX_CHAR_DEVICES, "input");
f96b434d 2384 if (err) {
da0c4901 2385 pr_err("unable to register char major %d", INPUT_MAJOR);
b0fdfebb 2386 goto fail2;
1da177e4 2387 }
e334016f 2388
1da177e4 2389 return 0;
1da177e4 2390
b0fdfebb 2391 fail2: input_proc_exit();
ea9f240b 2392 fail1: class_unregister(&input_class);
f96b434d 2393 return err;
1da177e4
LT
2394}
2395
2396static void __exit input_exit(void)
2397{
f96b434d 2398 input_proc_exit();
7f8d4cad
DT
2399 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2400 INPUT_MAX_CHAR_DEVICES);
ea9f240b 2401 class_unregister(&input_class);
1da177e4
LT
2402}
2403
2404subsys_initcall(input_init);
2405module_exit(input_exit);