hwmon: (amc6821) Fix permissions for temp2_input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / hwmon / asc7621.c
CommitLineData
d58de038
GJ
1/*
2 * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
3 * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20#include <linux/module.h>
21#include <linux/init.h>
22#include <linux/slab.h>
23#include <linux/jiffies.h>
24#include <linux/i2c.h>
25#include <linux/hwmon.h>
26#include <linux/hwmon-sysfs.h>
27#include <linux/err.h>
28#include <linux/mutex.h>
29
30/* Addresses to scan */
918ee91c 31static const unsigned short normal_i2c[] = {
d58de038
GJ
32 0x2c, 0x2d, 0x2e, I2C_CLIENT_END
33};
34
35enum asc7621_type {
36 asc7621,
37 asc7621a
38};
39
40#define INTERVAL_HIGH (HZ + HZ / 2)
41#define INTERVAL_LOW (1 * 60 * HZ)
42#define PRI_NONE 0
43#define PRI_LOW 1
44#define PRI_HIGH 2
45#define FIRST_CHIP asc7621
46#define LAST_CHIP asc7621a
47
48struct asc7621_chip {
49 char *name;
50 enum asc7621_type chip_type;
51 u8 company_reg;
52 u8 company_id;
53 u8 verstep_reg;
54 u8 verstep_id;
918ee91c 55 const unsigned short *addresses;
d58de038
GJ
56};
57
58static struct asc7621_chip asc7621_chips[] = {
59 {
60 .name = "asc7621",
61 .chip_type = asc7621,
62 .company_reg = 0x3e,
63 .company_id = 0x61,
64 .verstep_reg = 0x3f,
65 .verstep_id = 0x6c,
66 .addresses = normal_i2c,
67 },
68 {
69 .name = "asc7621a",
70 .chip_type = asc7621a,
71 .company_reg = 0x3e,
72 .company_id = 0x61,
73 .verstep_reg = 0x3f,
74 .verstep_id = 0x6d,
75 .addresses = normal_i2c,
76 },
77};
78
79/*
80 * Defines the highest register to be used, not the count.
81 * The actual count will probably be smaller because of gaps
82 * in the implementation (unused register locations).
83 * This define will safely set the array size of both the parameter
84 * and data arrays.
85 * This comes from the data sheet register description table.
86 */
87#define LAST_REGISTER 0xff
88
89struct asc7621_data {
90 struct i2c_client client;
91 struct device *class_dev;
92 struct mutex update_lock;
93 int valid; /* !=0 if following fields are valid */
94 unsigned long last_high_reading; /* In jiffies */
95 unsigned long last_low_reading; /* In jiffies */
96 /*
97 * Registers we care about occupy the corresponding index
98 * in the array. Registers we don't care about are left
99 * at 0.
100 */
101 u8 reg[LAST_REGISTER + 1];
102};
103
104/*
105 * Macro to get the parent asc7621_param structure
106 * from a sensor_device_attribute passed into the
107 * show/store functions.
108 */
109#define to_asc7621_param(_sda) \
110 container_of(_sda, struct asc7621_param, sda)
111
112/*
113 * Each parameter to be retrieved needs an asc7621_param structure
114 * allocated. It contains the sensor_device_attribute structure
115 * and the control info needed to retrieve the value from the register map.
116 */
117struct asc7621_param {
118 struct sensor_device_attribute sda;
119 u8 priority;
120 u8 msb[3];
121 u8 lsb[3];
122 u8 mask[3];
123 u8 shift[3];
124};
125
126/*
127 * This is the map that ultimately indicates whether we'll be
128 * retrieving a register value or not, and at what frequency.
129 */
130static u8 asc7621_register_priorities[255];
131
132static struct asc7621_data *asc7621_update_device(struct device *dev);
133
134static inline u8 read_byte(struct i2c_client *client, u8 reg)
135{
136 int res = i2c_smbus_read_byte_data(client, reg);
137 if (res < 0) {
138 dev_err(&client->dev,
139 "Unable to read from register 0x%02x.\n", reg);
140 return 0;
141 };
142 return res & 0xff;
143}
144
145static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
146{
147 int res = i2c_smbus_write_byte_data(client, reg, data);
148 if (res < 0) {
149 dev_err(&client->dev,
150 "Unable to write value 0x%02x to register 0x%02x.\n",
151 data, reg);
152 };
153 return res;
154}
155
156/*
157 * Data Handlers
158 * Each function handles the formatting, storage
159 * and retrieval of like parameters.
160 */
161
088ce2ac 162#define SETUP_SHOW_DATA_PARAM(d, a) \
d58de038
GJ
163 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
164 struct asc7621_data *data = asc7621_update_device(d); \
165 struct asc7621_param *param = to_asc7621_param(sda)
166
088ce2ac 167#define SETUP_STORE_DATA_PARAM(d, a) \
d58de038
GJ
168 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
169 struct i2c_client *client = to_i2c_client(d); \
170 struct asc7621_data *data = i2c_get_clientdata(client); \
171 struct asc7621_param *param = to_asc7621_param(sda)
172
173/*
174 * u8 is just what it sounds like...an unsigned byte with no
175 * special formatting.
176 */
177static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
178 char *buf)
179{
088ce2ac 180 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
181
182 return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
183}
184
185static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
186 const char *buf, size_t count)
187{
088ce2ac 188 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
189 long reqval;
190
179c4fdb 191 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
192 return -EINVAL;
193
2a844c14 194 reqval = clamp_val(reqval, 0, 255);
d58de038
GJ
195
196 mutex_lock(&data->update_lock);
197 data->reg[param->msb[0]] = reqval;
198 write_byte(client, param->msb[0], reqval);
199 mutex_unlock(&data->update_lock);
200 return count;
201}
202
203/*
204 * Many of the config values occupy only a few bits of a register.
205 */
206static ssize_t show_bitmask(struct device *dev,
207 struct device_attribute *attr, char *buf)
208{
088ce2ac 209 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
210
211 return sprintf(buf, "%u\n",
212 (data->reg[param->msb[0]] >> param->
213 shift[0]) & param->mask[0]);
214}
215
216static ssize_t store_bitmask(struct device *dev,
217 struct device_attribute *attr,
218 const char *buf, size_t count)
219{
088ce2ac 220 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
221 long reqval;
222 u8 currval;
223
179c4fdb 224 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
225 return -EINVAL;
226
2a844c14 227 reqval = clamp_val(reqval, 0, param->mask[0]);
d58de038
GJ
228
229 reqval = (reqval & param->mask[0]) << param->shift[0];
230
231 mutex_lock(&data->update_lock);
232 currval = read_byte(client, param->msb[0]);
233 reqval |= (currval & ~(param->mask[0] << param->shift[0]));
234 data->reg[param->msb[0]] = reqval;
235 write_byte(client, param->msb[0], reqval);
236 mutex_unlock(&data->update_lock);
237 return count;
238}
239
240/*
241 * 16 bit fan rpm values
242 * reported by the device as the number of 11.111us periods (90khz)
243 * between full fan rotations. Therefore...
244 * RPM = (90000 * 60) / register value
245 */
246static ssize_t show_fan16(struct device *dev,
247 struct device_attribute *attr, char *buf)
248{
088ce2ac 249 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
250 u16 regval;
251
252 mutex_lock(&data->update_lock);
253 regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
254 mutex_unlock(&data->update_lock);
255
256 return sprintf(buf, "%u\n",
257 (regval == 0 ? -1 : (regval) ==
258 0xffff ? 0 : 5400000 / regval));
259}
260
261static ssize_t store_fan16(struct device *dev,
262 struct device_attribute *attr, const char *buf,
263 size_t count)
264{
088ce2ac 265 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
266 long reqval;
267
179c4fdb 268 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
269 return -EINVAL;
270
3c56b066
GR
271 /*
272 * If a minimum RPM of zero is requested, then we set the register to
273 * 0xffff. This value allows the fan to be stopped completely without
274 * generating an alarm.
275 */
d58de038 276 reqval =
2a844c14 277 (reqval <= 0 ? 0xffff : clamp_val(5400000 / reqval, 0, 0xfffe));
d58de038
GJ
278
279 mutex_lock(&data->update_lock);
280 data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
281 data->reg[param->lsb[0]] = reqval & 0xff;
282 write_byte(client, param->msb[0], data->reg[param->msb[0]]);
283 write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
284 mutex_unlock(&data->update_lock);
285
286 return count;
287}
288
289/*
290 * Voltages are scaled in the device so that the nominal voltage
291 * is 3/4ths of the 0-255 range (i.e. 192).
292 * If all voltages are 'normal' then all voltage registers will
d1bf8cf6
KM
293 * read 0xC0.
294 *
295 * The data sheet provides us with the 3/4 scale value for each voltage
d58de038
GJ
296 * which is stored in in_scaling. The sda->index parameter value provides
297 * the index into in_scaling.
298 *
299 * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
300 * respectively. That doesn't mean that's what the motherboard provides. :)
301 */
302
303static int asc7621_in_scaling[] = {
d1bf8cf6 304 2500, 2250, 3300, 5000, 12000
d58de038
GJ
305};
306
307static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
308 char *buf)
309{
088ce2ac 310 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
311 u16 regval;
312 u8 nr = sda->index;
313
314 mutex_lock(&data->update_lock);
d1bf8cf6 315 regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]);
d58de038
GJ
316 mutex_unlock(&data->update_lock);
317
d1bf8cf6
KM
318 /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */
319 regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2);
320
d58de038
GJ
321 return sprintf(buf, "%u\n", regval);
322}
323
324/* 8 bit voltage values (the mins and maxs) */
325static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
326 char *buf)
327{
088ce2ac 328 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
329 u8 nr = sda->index;
330
331 return sprintf(buf, "%u\n",
332 ((data->reg[param->msb[0]] *
d1bf8cf6 333 asc7621_in_scaling[nr]) / 0xc0));
d58de038
GJ
334}
335
336static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
337 const char *buf, size_t count)
338{
088ce2ac 339 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
340 long reqval;
341 u8 nr = sda->index;
342
179c4fdb 343 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
344 return -EINVAL;
345
2a844c14 346 reqval = clamp_val(reqval, 0, 0xffff);
d1bf8cf6
KM
347
348 reqval = reqval * 0xc0 / asc7621_in_scaling[nr];
d58de038 349
2a844c14 350 reqval = clamp_val(reqval, 0, 0xff);
d58de038
GJ
351
352 mutex_lock(&data->update_lock);
353 data->reg[param->msb[0]] = reqval;
354 write_byte(client, param->msb[0], reqval);
355 mutex_unlock(&data->update_lock);
356
357 return count;
358}
359
360static ssize_t show_temp8(struct device *dev,
361 struct device_attribute *attr, char *buf)
362{
088ce2ac 363 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
364
365 return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
366}
367
368static ssize_t store_temp8(struct device *dev,
369 struct device_attribute *attr, const char *buf,
370 size_t count)
371{
088ce2ac 372 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
373 long reqval;
374 s8 temp;
375
179c4fdb 376 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
377 return -EINVAL;
378
2a844c14 379 reqval = clamp_val(reqval, -127000, 127000);
d58de038
GJ
380
381 temp = reqval / 1000;
382
383 mutex_lock(&data->update_lock);
384 data->reg[param->msb[0]] = temp;
385 write_byte(client, param->msb[0], temp);
386 mutex_unlock(&data->update_lock);
387 return count;
388}
389
390/*
391 * Temperatures that occupy 2 bytes always have the whole
392 * number of degrees in the MSB with some part of the LSB
393 * indicating fractional degrees.
394 */
395
396/* mmmmmmmm.llxxxxxx */
397static ssize_t show_temp10(struct device *dev,
398 struct device_attribute *attr, char *buf)
399{
088ce2ac 400 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
401 u8 msb, lsb;
402 int temp;
403
404 mutex_lock(&data->update_lock);
405 msb = data->reg[param->msb[0]];
406 lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
407 temp = (((s8) msb) * 1000) + (lsb * 250);
408 mutex_unlock(&data->update_lock);
409
410 return sprintf(buf, "%d\n", temp);
411}
412
413/* mmmmmm.ll */
414static ssize_t show_temp62(struct device *dev,
415 struct device_attribute *attr, char *buf)
416{
088ce2ac 417 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
418 u8 regval = data->reg[param->msb[0]];
419 int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
420
421 return sprintf(buf, "%d\n", temp);
422}
423
424static ssize_t store_temp62(struct device *dev,
425 struct device_attribute *attr, const char *buf,
426 size_t count)
427{
088ce2ac 428 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
429 long reqval, i, f;
430 s8 temp;
431
179c4fdb 432 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
433 return -EINVAL;
434
2a844c14 435 reqval = clamp_val(reqval, -32000, 31750);
d58de038
GJ
436 i = reqval / 1000;
437 f = reqval - (i * 1000);
438 temp = i << 2;
439 temp |= f / 250;
440
441 mutex_lock(&data->update_lock);
442 data->reg[param->msb[0]] = temp;
443 write_byte(client, param->msb[0], temp);
444 mutex_unlock(&data->update_lock);
445 return count;
446}
447
448/*
449 * The aSC7621 doesn't provide an "auto_point2". Instead, you
450 * specify the auto_point1 and a range. To keep with the sysfs
451 * hwmon specs, we synthesize the auto_point_2 from them.
452 */
453
454static u32 asc7621_range_map[] = {
455 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
456 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
457};
458
459static ssize_t show_ap2_temp(struct device *dev,
460 struct device_attribute *attr, char *buf)
461{
088ce2ac 462 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
463 long auto_point1;
464 u8 regval;
465 int temp;
466
467 mutex_lock(&data->update_lock);
468 auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
469 regval =
470 ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
2a844c14 471 temp = auto_point1 + asc7621_range_map[clamp_val(regval, 0, 15)];
d58de038
GJ
472 mutex_unlock(&data->update_lock);
473
474 return sprintf(buf, "%d\n", temp);
475
476}
477
478static ssize_t store_ap2_temp(struct device *dev,
479 struct device_attribute *attr,
480 const char *buf, size_t count)
481{
088ce2ac 482 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
483 long reqval, auto_point1;
484 int i;
485 u8 currval, newval = 0;
486
179c4fdb 487 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
488 return -EINVAL;
489
490 mutex_lock(&data->update_lock);
491 auto_point1 = data->reg[param->msb[1]] * 1000;
2a844c14 492 reqval = clamp_val(reqval, auto_point1 + 2000, auto_point1 + 80000);
d58de038
GJ
493
494 for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
495 if (reqval >= auto_point1 + asc7621_range_map[i]) {
496 newval = i;
497 break;
498 }
499 }
500
501 newval = (newval & param->mask[0]) << param->shift[0];
502 currval = read_byte(client, param->msb[0]);
503 newval |= (currval & ~(param->mask[0] << param->shift[0]));
504 data->reg[param->msb[0]] = newval;
505 write_byte(client, param->msb[0], newval);
506 mutex_unlock(&data->update_lock);
507 return count;
508}
509
510static ssize_t show_pwm_ac(struct device *dev,
511 struct device_attribute *attr, char *buf)
512{
088ce2ac 513 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
514 u8 config, altbit, regval;
515 u8 map[] = {
516 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
517 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
518 };
519
520 mutex_lock(&data->update_lock);
521 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
522 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
523 regval = config | (altbit << 3);
524 mutex_unlock(&data->update_lock);
525
2a844c14 526 return sprintf(buf, "%u\n", map[clamp_val(regval, 0, 15)]);
d58de038
GJ
527}
528
529static ssize_t store_pwm_ac(struct device *dev,
530 struct device_attribute *attr,
531 const char *buf, size_t count)
532{
088ce2ac 533 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
534 unsigned long reqval;
535 u8 currval, config, altbit, newval;
536 u16 map[] = {
537 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
538 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
539 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
540 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
541 };
542
179c4fdb 543 if (kstrtoul(buf, 10, &reqval))
d58de038
GJ
544 return -EINVAL;
545
546 if (reqval > 31)
547 return -EINVAL;
548
549 reqval = map[reqval];
550 if (reqval == 0xff)
551 return -EINVAL;
552
553 config = reqval & 0x07;
554 altbit = (reqval >> 3) & 0x01;
555
556 config = (config & param->mask[0]) << param->shift[0];
557 altbit = (altbit & param->mask[1]) << param->shift[1];
558
559 mutex_lock(&data->update_lock);
560 currval = read_byte(client, param->msb[0]);
561 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
562 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
563 data->reg[param->msb[0]] = newval;
564 write_byte(client, param->msb[0], newval);
565 mutex_unlock(&data->update_lock);
566 return count;
567}
568
569static ssize_t show_pwm_enable(struct device *dev,
570 struct device_attribute *attr, char *buf)
571{
088ce2ac 572 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
573 u8 config, altbit, minoff, val, newval;
574
575 mutex_lock(&data->update_lock);
576 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
577 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
578 minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
579 mutex_unlock(&data->update_lock);
580
581 val = config | (altbit << 3);
582 newval = 0;
583
584 if (val == 3 || val >= 10)
585 newval = 255;
586 else if (val == 4)
587 newval = 0;
588 else if (val == 7)
589 newval = 1;
590 else if (minoff == 1)
591 newval = 2;
592 else
593 newval = 3;
594
595 return sprintf(buf, "%u\n", newval);
596}
597
598static ssize_t store_pwm_enable(struct device *dev,
599 struct device_attribute *attr,
600 const char *buf, size_t count)
601{
088ce2ac 602 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
603 long reqval;
604 u8 currval, config, altbit, newval, minoff = 255;
605
179c4fdb 606 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
607 return -EINVAL;
608
609 switch (reqval) {
610 case 0:
611 newval = 0x04;
612 break;
613 case 1:
614 newval = 0x07;
615 break;
616 case 2:
617 newval = 0x00;
618 minoff = 1;
619 break;
620 case 3:
621 newval = 0x00;
622 minoff = 0;
623 break;
624 case 255:
625 newval = 0x03;
626 break;
627 default:
628 return -EINVAL;
629 }
630
631 config = newval & 0x07;
632 altbit = (newval >> 3) & 0x01;
633
634 mutex_lock(&data->update_lock);
635 config = (config & param->mask[0]) << param->shift[0];
636 altbit = (altbit & param->mask[1]) << param->shift[1];
637 currval = read_byte(client, param->msb[0]);
638 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
639 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
640 data->reg[param->msb[0]] = newval;
641 write_byte(client, param->msb[0], newval);
642 if (minoff < 255) {
643 minoff = (minoff & param->mask[2]) << param->shift[2];
644 currval = read_byte(client, param->msb[2]);
645 newval =
646 minoff | (currval & ~(param->mask[2] << param->shift[2]));
647 data->reg[param->msb[2]] = newval;
648 write_byte(client, param->msb[2], newval);
649 }
650 mutex_unlock(&data->update_lock);
651 return count;
652}
653
654static u32 asc7621_pwm_freq_map[] = {
655 10, 15, 23, 30, 38, 47, 62, 94,
656 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
657};
658
659static ssize_t show_pwm_freq(struct device *dev,
660 struct device_attribute *attr, char *buf)
661{
088ce2ac 662 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
663 u8 regval =
664 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
665
2a844c14 666 regval = clamp_val(regval, 0, 15);
d58de038
GJ
667
668 return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
669}
670
671static ssize_t store_pwm_freq(struct device *dev,
672 struct device_attribute *attr,
673 const char *buf, size_t count)
674{
088ce2ac 675 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
676 unsigned long reqval;
677 u8 currval, newval = 255;
678 int i;
679
179c4fdb 680 if (kstrtoul(buf, 10, &reqval))
d58de038
GJ
681 return -EINVAL;
682
683 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
684 if (reqval == asc7621_pwm_freq_map[i]) {
685 newval = i;
686 break;
687 }
688 }
689 if (newval == 255)
690 return -EINVAL;
691
692 newval = (newval & param->mask[0]) << param->shift[0];
693
694 mutex_lock(&data->update_lock);
695 currval = read_byte(client, param->msb[0]);
696 newval |= (currval & ~(param->mask[0] << param->shift[0]));
697 data->reg[param->msb[0]] = newval;
698 write_byte(client, param->msb[0], newval);
699 mutex_unlock(&data->update_lock);
700 return count;
701}
702
703static u32 asc7621_pwm_auto_spinup_map[] = {
704 0, 100, 250, 400, 700, 1000, 2000, 4000
705};
706
707static ssize_t show_pwm_ast(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
088ce2ac 710 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
711 u8 regval =
712 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
713
2a844c14 714 regval = clamp_val(regval, 0, 7);
d58de038
GJ
715
716 return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
717
718}
719
720static ssize_t store_pwm_ast(struct device *dev,
721 struct device_attribute *attr,
722 const char *buf, size_t count)
723{
088ce2ac 724 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
725 long reqval;
726 u8 currval, newval = 255;
727 u32 i;
728
179c4fdb 729 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
730 return -EINVAL;
731
732 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
733 if (reqval == asc7621_pwm_auto_spinup_map[i]) {
734 newval = i;
735 break;
736 }
737 }
738 if (newval == 255)
739 return -EINVAL;
740
741 newval = (newval & param->mask[0]) << param->shift[0];
742
743 mutex_lock(&data->update_lock);
744 currval = read_byte(client, param->msb[0]);
745 newval |= (currval & ~(param->mask[0] << param->shift[0]));
746 data->reg[param->msb[0]] = newval;
747 write_byte(client, param->msb[0], newval);
748 mutex_unlock(&data->update_lock);
749 return count;
750}
751
752static u32 asc7621_temp_smoothing_time_map[] = {
753 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
754};
755
756static ssize_t show_temp_st(struct device *dev,
757 struct device_attribute *attr, char *buf)
758{
088ce2ac 759 SETUP_SHOW_DATA_PARAM(dev, attr);
d58de038
GJ
760 u8 regval =
761 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
2a844c14 762 regval = clamp_val(regval, 0, 7);
d58de038
GJ
763
764 return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
765}
766
767static ssize_t store_temp_st(struct device *dev,
768 struct device_attribute *attr,
769 const char *buf, size_t count)
770{
088ce2ac 771 SETUP_STORE_DATA_PARAM(dev, attr);
d58de038
GJ
772 long reqval;
773 u8 currval, newval = 255;
774 u32 i;
775
179c4fdb 776 if (kstrtol(buf, 10, &reqval))
d58de038
GJ
777 return -EINVAL;
778
779 for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
780 if (reqval == asc7621_temp_smoothing_time_map[i]) {
781 newval = i;
782 break;
783 }
784 }
785
786 if (newval == 255)
787 return -EINVAL;
788
789 newval = (newval & param->mask[0]) << param->shift[0];
790
791 mutex_lock(&data->update_lock);
792 currval = read_byte(client, param->msb[0]);
793 newval |= (currval & ~(param->mask[0] << param->shift[0]));
794 data->reg[param->msb[0]] = newval;
795 write_byte(client, param->msb[0], newval);
796 mutex_unlock(&data->update_lock);
797 return count;
798}
799
800/*
801 * End of data handlers
802 *
803 * These defines do nothing more than make the table easier
804 * to read when wrapped at column 80.
805 */
806
807/*
808 * Creates a variable length array inititalizer.
809 * VAA(1,3,5,7) would produce {1,3,5,7}
810 */
811#define VAA(args...) {args}
812
813#define PREAD(name, n, pri, rm, rl, m, s, r) \
814 {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
815 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
816 .shift[0] = s,}
817
818#define PWRITE(name, n, pri, rm, rl, m, s, r) \
819 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
820 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
821 .shift[0] = s,}
822
823/*
824 * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
825 * were created using the VAA macro.
826 */
827#define PWRITEM(name, n, pri, rm, rl, m, s, r) \
828 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
829 .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
830
831static struct asc7621_param asc7621_params[] = {
832 PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
833 PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
834 PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
835 PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
836 PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
837
838 PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
839 PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
840 PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
841 PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
842 PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
843
844 PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
845 PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
846 PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
847 PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
848 PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
849
d1bf8cf6
KM
850 PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask),
851 PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask),
852 PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask),
853 PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask),
854 PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask),
d58de038
GJ
855
856 PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
857 PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
858 PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
859 PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
860
861 PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
862 PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
863 PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
864 PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
865
d1bf8cf6
KM
866 PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask),
867 PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask),
868 PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask),
869 PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask),
d58de038
GJ
870
871 PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
872 PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
873 PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
874 PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
875 PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
876 PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
877 PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
878 PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
879
880 PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
881 PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
882 PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
883 PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
884
885 PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
886 PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
887 PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
888 PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
889
d1bf8cf6
KM
890 PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask),
891 PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask),
892 PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask),
893 PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask),
d58de038
GJ
894
895 PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
896 PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
897 PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
898 PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
899
900 PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
901 PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
d1bf8cf6 902 PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask),
d58de038
GJ
903 PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
904
905 PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
906 PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
907 PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
908 PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
909
910 PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
911 bitmask),
912 PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
913 bitmask),
914 PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
915 bitmask),
916 PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
917 bitmask),
918
919 PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
920 bitmask),
921 PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
922 bitmask),
923 PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
924 bitmask),
925 PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
926 bitmask),
927
928 PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
929 PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
930 PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
931 PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
932
933 PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
934 VAA(0x0f), VAA(4), ap2_temp),
935 PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
936 VAA(0x0f), VAA(4), ap2_temp),
937 PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
938 VAA(0x0f), VAA(4), ap2_temp),
939 PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
940 VAA(0x0f), VAA(4), ap2_temp),
941
942 PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
943 PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
944 PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
945 PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
946
947 PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
948 PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
949 PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
950 PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
951
952 PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
953 PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
954
955 PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
956 PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
957 PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
958
959 PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
960 PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
961 PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
962
963 PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
964 VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
965 PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
966 VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
967 PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
968 VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
969
970 PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
971 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
972 PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
973 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
974 PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
975 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
976
977 PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
978 PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
979 PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
980
981 PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
982 PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
983 PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
984
985 PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
986 PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
987 PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
988
989 PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
990 PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
991 PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
992
993 PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
994 PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
995 PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
996
997 PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
998 PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
999 PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
1000 PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
1001 PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
1002 PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
1003
1004};
1005
1006static struct asc7621_data *asc7621_update_device(struct device *dev)
1007{
1008 struct i2c_client *client = to_i2c_client(dev);
1009 struct asc7621_data *data = i2c_get_clientdata(client);
1010 int i;
1011
1012/*
1013 * The asc7621 chips guarantee consistent reads of multi-byte values
1014 * regardless of the order of the reads. No special logic is needed
1015 * so we can just read the registers in whatever order they appear
1016 * in the asc7621_params array.
1017 */
1018
1019 mutex_lock(&data->update_lock);
1020
1021 /* Read all the high priority registers */
1022
1023 if (!data->valid ||
1024 time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
1025
1026 for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
1027 if (asc7621_register_priorities[i] == PRI_HIGH) {
1028 data->reg[i] =
1029 i2c_smbus_read_byte_data(client, i) & 0xff;
1030 }
1031 }
1032 data->last_high_reading = jiffies;
1033 }; /* last_reading */
1034
1035 /* Read all the low priority registers. */
1036
1037 if (!data->valid ||
1038 time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
1039
1040 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1041 if (asc7621_register_priorities[i] == PRI_LOW) {
1042 data->reg[i] =
1043 i2c_smbus_read_byte_data(client, i) & 0xff;
1044 }
1045 }
1046 data->last_low_reading = jiffies;
1047 }; /* last_reading */
1048
1049 data->valid = 1;
1050
1051 mutex_unlock(&data->update_lock);
1052
1053 return data;
1054}
1055
1056/*
1057 * Standard detection and initialization below
1058 *
1059 * Helper function that checks if an address is valid
1060 * for a particular chip.
1061 */
1062
1063static inline int valid_address_for_chip(int chip_type, int address)
1064{
1065 int i;
1066
1067 for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
1068 i++) {
1069 if (asc7621_chips[chip_type].addresses[i] == address)
1070 return 1;
1071 }
1072 return 0;
1073}
1074
1075static void asc7621_init_client(struct i2c_client *client)
1076{
1077 int value;
1078
1079 /* Warn if part was not "READY" */
1080
1081 value = read_byte(client, 0x40);
1082
1083 if (value & 0x02) {
1084 dev_err(&client->dev,
1085 "Client (%d,0x%02x) config is locked.\n",
1086 i2c_adapter_id(client->adapter), client->addr);
1087 };
1088 if (!(value & 0x04)) {
1089 dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
1090 i2c_adapter_id(client->adapter), client->addr);
1091 };
1092
1093/*
1094 * Start monitoring
1095 *
1096 * Try to clear LOCK, Set START, save everything else
1097 */
1098 value = (value & ~0x02) | 0x01;
1099 write_byte(client, 0x40, value & 0xff);
1100
1101}
1102
1103static int
1104asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id)
1105{
1106 struct asc7621_data *data;
1107 int i, err;
1108
1109 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1110 return -EIO;
1111
35bb95a1
GR
1112 data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data),
1113 GFP_KERNEL);
d58de038
GJ
1114 if (data == NULL)
1115 return -ENOMEM;
1116
1117 i2c_set_clientdata(client, data);
1118 data->valid = 0;
1119 mutex_init(&data->update_lock);
1120
1121 /* Initialize the asc7621 chip */
1122 asc7621_init_client(client);
1123
1124 /* Create the sysfs entries */
1125 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1126 err =
1127 device_create_file(&client->dev,
1128 &(asc7621_params[i].sda.dev_attr));
1129 if (err)
1130 goto exit_remove;
1131 }
1132
1133 data->class_dev = hwmon_device_register(&client->dev);
1134 if (IS_ERR(data->class_dev)) {
1135 err = PTR_ERR(data->class_dev);
1136 goto exit_remove;
1137 }
1138
1139 return 0;
1140
1141exit_remove:
1142 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1143 device_remove_file(&client->dev,
1144 &(asc7621_params[i].sda.dev_attr));
1145 }
1146
d58de038
GJ
1147 return err;
1148}
1149
1150static int asc7621_detect(struct i2c_client *client,
1151 struct i2c_board_info *info)
1152{
1153 struct i2c_adapter *adapter = client->adapter;
1154 int company, verstep, chip_index;
d58de038
GJ
1155
1156 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1157 return -ENODEV;
1158
1159 for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
1160
1161 if (!valid_address_for_chip(chip_index, client->addr))
1162 continue;
1163
1164 company = read_byte(client,
1165 asc7621_chips[chip_index].company_reg);
1166 verstep = read_byte(client,
1167 asc7621_chips[chip_index].verstep_reg);
1168
1169 if (company == asc7621_chips[chip_index].company_id &&
1170 verstep == asc7621_chips[chip_index].verstep_id) {
d58de038
GJ
1171 strlcpy(info->type, asc7621_chips[chip_index].name,
1172 I2C_NAME_SIZE);
1173
28cbd461
JD
1174 dev_info(&adapter->dev, "Matched %s at 0x%02x\n",
1175 asc7621_chips[chip_index].name, client->addr);
d58de038
GJ
1176 return 0;
1177 }
1178 }
1179
1180 return -ENODEV;
1181}
1182
1183static int asc7621_remove(struct i2c_client *client)
1184{
1185 struct asc7621_data *data = i2c_get_clientdata(client);
1186 int i;
1187
1188 hwmon_device_unregister(data->class_dev);
1189
1190 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1191 device_remove_file(&client->dev,
1192 &(asc7621_params[i].sda.dev_attr));
1193 }
1194
d58de038
GJ
1195 return 0;
1196}
1197
1198static const struct i2c_device_id asc7621_id[] = {
1199 {"asc7621", asc7621},
1200 {"asc7621a", asc7621a},
1201 {},
1202};
1203
1204MODULE_DEVICE_TABLE(i2c, asc7621_id);
1205
1206static struct i2c_driver asc7621_driver = {
1207 .class = I2C_CLASS_HWMON,
1208 .driver = {
1209 .name = "asc7621",
1210 },
1211 .probe = asc7621_probe,
1212 .remove = asc7621_remove,
1213 .id_table = asc7621_id,
1214 .detect = asc7621_detect,
1215 .address_list = normal_i2c,
1216};
1217
1218static int __init sm_asc7621_init(void)
1219{
1220 int i, j;
1221/*
1222 * Collect all the registers needed into a single array.
1223 * This way, if a register isn't actually used for anything,
1224 * we don't retrieve it.
1225 */
1226
1227 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1228 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
1229 asc7621_register_priorities[asc7621_params[i].msb[j]] =
1230 asc7621_params[i].priority;
1231 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
1232 asc7621_register_priorities[asc7621_params[i].lsb[j]] =
1233 asc7621_params[i].priority;
1234 }
1235 return i2c_add_driver(&asc7621_driver);
1236}
1237
1238static void __exit sm_asc7621_exit(void)
1239{
1240 i2c_del_driver(&asc7621_driver);
1241}
1242
1243MODULE_LICENSE("GPL");
1244MODULE_AUTHOR("George Joseph");
1245MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
1246
1247module_init(sm_asc7621_init);
1248module_exit(sm_asc7621_exit);