Merge tag 'v3.10.103' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / i7core_edac.c
CommitLineData
52707f91
MCC
1/* Intel i7 core/Nehalem Memory Controller kernel module
2 *
e7bf068a 3 * This driver supports the memory controllers found on the Intel
52707f91
MCC
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
a0c36a1f
MCC
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
10 *
52707f91 11 * Copyright (c) 2009-2010 by:
a0c36a1f
MCC
12 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 *
14 * Red Hat Inc. http://www.redhat.com
15 *
16 * Forked and adapted from the i5400_edac driver
17 *
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26 */
27
a0c36a1f
MCC
28#include <linux/module.h>
29#include <linux/init.h>
30#include <linux/pci.h>
31#include <linux/pci_ids.h>
32#include <linux/slab.h>
3b918c12 33#include <linux/delay.h>
535e9c78 34#include <linux/dmi.h>
a0c36a1f
MCC
35#include <linux/edac.h>
36#include <linux/mmzone.h>
f4742949 37#include <linux/smp.h>
4140c542 38#include <asm/mce.h>
14d2c083 39#include <asm/processor.h>
4fad8098 40#include <asm/div64.h>
a0c36a1f
MCC
41
42#include "edac_core.h"
43
18c29002
MCC
44/* Static vars */
45static LIST_HEAD(i7core_edac_list);
46static DEFINE_MUTEX(i7core_edac_lock);
47static int probed;
48
54a08ab1
MCC
49static int use_pci_fixup;
50module_param(use_pci_fixup, int, 0444);
51MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
f4742949
MCC
52/*
53 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
54 * registers start at bus 255, and are not reported by BIOS.
55 * We currently find devices with only 2 sockets. In order to support more QPI
56 * Quick Path Interconnect, just increment this number.
57 */
58#define MAX_SOCKET_BUSES 2
59
60
a0c36a1f
MCC
61/*
62 * Alter this version for the module when modifications are made
63 */
152ba394 64#define I7CORE_REVISION " Ver: 1.0.0"
a0c36a1f
MCC
65#define EDAC_MOD_STR "i7core_edac"
66
a0c36a1f
MCC
67/*
68 * Debug macros
69 */
70#define i7core_printk(level, fmt, arg...) \
71 edac_printk(level, "i7core", fmt, ##arg)
72
73#define i7core_mc_printk(mci, level, fmt, arg...) \
74 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75
76/*
77 * i7core Memory Controller Registers
78 */
79
e9bd2e73
MCC
80 /* OFFSETS for Device 0 Function 0 */
81
82#define MC_CFG_CONTROL 0x90
e8b6a127
SG
83 #define MC_CFG_UNLOCK 0x02
84 #define MC_CFG_LOCK 0x00
e9bd2e73 85
a0c36a1f
MCC
86 /* OFFSETS for Device 3 Function 0 */
87
88#define MC_CONTROL 0x48
89#define MC_STATUS 0x4c
90#define MC_MAX_DOD 0x64
91
442305b1 92/*
15ed103a 93 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
442305b1
MCC
94 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
95 */
96
97#define MC_TEST_ERR_RCV1 0x60
98 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
99
100#define MC_TEST_ERR_RCV0 0x64
101 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
102 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
103
15ed103a 104/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
e8b6a127
SG
105#define MC_SSRCONTROL 0x48
106 #define SSR_MODE_DISABLE 0x00
107 #define SSR_MODE_ENABLE 0x01
108 #define SSR_MODE_MASK 0x03
109
110#define MC_SCRUB_CONTROL 0x4c
111 #define STARTSCRUB (1 << 24)
535e9c78 112 #define SCRUBINTERVAL_MASK 0xffffff
e8b6a127 113
b4e8f0b6
MCC
114#define MC_COR_ECC_CNT_0 0x80
115#define MC_COR_ECC_CNT_1 0x84
116#define MC_COR_ECC_CNT_2 0x88
117#define MC_COR_ECC_CNT_3 0x8c
118#define MC_COR_ECC_CNT_4 0x90
119#define MC_COR_ECC_CNT_5 0x94
120
121#define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
122#define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
123
124
a0c36a1f
MCC
125 /* OFFSETS for Devices 4,5 and 6 Function 0 */
126
0b2b7b7e
MCC
127#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
128 #define THREE_DIMMS_PRESENT (1 << 24)
129 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
130 #define QUAD_RANK_PRESENT (1 << 22)
131 #define REGISTERED_DIMM (1 << 15)
132
f122a892
MCC
133#define MC_CHANNEL_MAPPER 0x60
134 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
135 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
136
0b2b7b7e
MCC
137#define MC_CHANNEL_RANK_PRESENT 0x7c
138 #define RANK_PRESENT_MASK 0xffff
139
a0c36a1f 140#define MC_CHANNEL_ADDR_MATCH 0xf0
194a40fe
MCC
141#define MC_CHANNEL_ERROR_MASK 0xf8
142#define MC_CHANNEL_ERROR_INJECT 0xfc
143 #define INJECT_ADDR_PARITY 0x10
144 #define INJECT_ECC 0x08
145 #define MASK_CACHELINE 0x06
146 #define MASK_FULL_CACHELINE 0x06
147 #define MASK_MSB32_CACHELINE 0x04
148 #define MASK_LSB32_CACHELINE 0x02
149 #define NO_MASK_CACHELINE 0x00
150 #define REPEAT_EN 0x01
a0c36a1f 151
0b2b7b7e 152 /* OFFSETS for Devices 4,5 and 6 Function 1 */
b990538a 153
0b2b7b7e
MCC
154#define MC_DOD_CH_DIMM0 0x48
155#define MC_DOD_CH_DIMM1 0x4c
156#define MC_DOD_CH_DIMM2 0x50
157 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
158 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
159 #define DIMM_PRESENT_MASK (1 << 9)
160 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
854d3349
MCC
161 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
162 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
163 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
164 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
41fcb7fe 165 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
5566cb7c 166 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
854d3349
MCC
167 #define MC_DOD_NUMCOL_MASK 3
168 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
0b2b7b7e 169
f122a892
MCC
170#define MC_RANK_PRESENT 0x7c
171
0b2b7b7e
MCC
172#define MC_SAG_CH_0 0x80
173#define MC_SAG_CH_1 0x84
174#define MC_SAG_CH_2 0x88
175#define MC_SAG_CH_3 0x8c
176#define MC_SAG_CH_4 0x90
177#define MC_SAG_CH_5 0x94
178#define MC_SAG_CH_6 0x98
179#define MC_SAG_CH_7 0x9c
180
181#define MC_RIR_LIMIT_CH_0 0x40
182#define MC_RIR_LIMIT_CH_1 0x44
183#define MC_RIR_LIMIT_CH_2 0x48
184#define MC_RIR_LIMIT_CH_3 0x4C
185#define MC_RIR_LIMIT_CH_4 0x50
186#define MC_RIR_LIMIT_CH_5 0x54
187#define MC_RIR_LIMIT_CH_6 0x58
188#define MC_RIR_LIMIT_CH_7 0x5C
189#define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
190
191#define MC_RIR_WAY_CH 0x80
192 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
193 #define MC_RIR_WAY_RANK_MASK 0x7
194
a0c36a1f
MCC
195/*
196 * i7core structs
197 */
198
199#define NUM_CHANS 3
442305b1
MCC
200#define MAX_DIMMS 3 /* Max DIMMS per channel */
201#define MAX_MCR_FUNC 4
202#define MAX_CHAN_FUNC 3
a0c36a1f
MCC
203
204struct i7core_info {
205 u32 mc_control;
206 u32 mc_status;
207 u32 max_dod;
f122a892 208 u32 ch_map;
a0c36a1f
MCC
209};
210
194a40fe
MCC
211
212struct i7core_inject {
213 int enable;
214
215 u32 section;
216 u32 type;
217 u32 eccmask;
218
219 /* Error address mask */
220 int channel, dimm, rank, bank, page, col;
221};
222
0b2b7b7e 223struct i7core_channel {
0bf09e82
MCC
224 bool is_3dimms_present;
225 bool is_single_4rank;
226 bool has_4rank;
442305b1 227 u32 dimms;
0b2b7b7e
MCC
228};
229
8f331907 230struct pci_id_descr {
66607706
MCC
231 int dev;
232 int func;
233 int dev_id;
de06eeef 234 int optional;
8f331907
MCC
235};
236
bd9e19ca 237struct pci_id_table {
1288c18f
MCC
238 const struct pci_id_descr *descr;
239 int n_devs;
bd9e19ca
VM
240};
241
f4742949
MCC
242struct i7core_dev {
243 struct list_head list;
244 u8 socket;
245 struct pci_dev **pdev;
de06eeef 246 int n_devs;
f4742949
MCC
247 struct mem_ctl_info *mci;
248};
249
a0c36a1f 250struct i7core_pvt {
356f0a30 251 struct device *addrmatch_dev, *chancounts_dev;
5c4cdb5a 252
f4742949
MCC
253 struct pci_dev *pci_noncore;
254 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
255 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
256
257 struct i7core_dev *i7core_dev;
67166af4 258
a0c36a1f 259 struct i7core_info info;
194a40fe 260 struct i7core_inject inject;
f4742949 261 struct i7core_channel channel[NUM_CHANS];
67166af4 262
f4742949 263 int ce_count_available;
b4e8f0b6
MCC
264
265 /* ECC corrected errors counts per udimm */
f4742949
MCC
266 unsigned long udimm_ce_count[MAX_DIMMS];
267 int udimm_last_ce_count[MAX_DIMMS];
b4e8f0b6 268 /* ECC corrected errors counts per rdimm */
f4742949
MCC
269 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
270 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
442305b1 271
27100db0 272 bool is_registered, enable_scrub;
14d2c083 273
ca9c90ba 274 /* Fifo double buffers */
d5381642 275 struct mce mce_entry[MCE_LOG_LEN];
ca9c90ba
MCC
276 struct mce mce_outentry[MCE_LOG_LEN];
277
278 /* Fifo in/out counters */
279 unsigned mce_in, mce_out;
280
281 /* Count indicator to show errors not got */
282 unsigned mce_overrun;
939747bd 283
535e9c78
NC
284 /* DCLK Frequency used for computing scrub rate */
285 int dclk_freq;
286
939747bd
MCC
287 /* Struct to control EDAC polling */
288 struct edac_pci_ctl_info *i7core_pci;
a0c36a1f
MCC
289};
290
8f331907
MCC
291#define PCI_DESCR(device, function, device_id) \
292 .dev = (device), \
293 .func = (function), \
294 .dev_id = (device_id)
295
1288c18f 296static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
8f331907
MCC
297 /* Memory controller */
298 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
299 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
224e871f 300 /* Exists only for RDIMM */
de06eeef 301 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
8f331907
MCC
302 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
303
304 /* Channel 0 */
305 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
306 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
307 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
308 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
309
310 /* Channel 1 */
311 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
312 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
313 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
314 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
315
316 /* Channel 2 */
317 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
318 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
319 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
320 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
224e871f
MCC
321
322 /* Generic Non-core registers */
323 /*
324 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
325 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
326 * the probing code needs to test for the other address in case of
327 * failure of this one
328 */
329 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
330
a0c36a1f 331};
8f331907 332
1288c18f 333static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
52a2e4fc
MCC
334 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
335 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
336 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
337
338 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
339 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
340 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
341 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
342
508fa179
MCC
343 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
344 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
345 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
346 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
224e871f
MCC
347
348 /*
349 * This is the PCI device has an alternate address on some
350 * processors like Core i7 860
351 */
352 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
52a2e4fc
MCC
353};
354
1288c18f 355static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
bd9e19ca
VM
356 /* Memory controller */
357 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
358 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
359 /* Exists only for RDIMM */
360 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
361 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
362
363 /* Channel 0 */
364 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
365 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
366 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
367 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
368
369 /* Channel 1 */
370 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
371 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
372 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
373 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
374
375 /* Channel 2 */
376 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
377 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
378 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
379 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
224e871f
MCC
380
381 /* Generic Non-core registers */
382 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
383
bd9e19ca
VM
384};
385
1288c18f
MCC
386#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
387static const struct pci_id_table pci_dev_table[] = {
bd9e19ca
VM
388 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
389 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
390 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
3c52cc57 391 {0,} /* 0 terminated list. */
bd9e19ca
VM
392};
393
8f331907
MCC
394/*
395 * pci_device_id table for which devices we are looking for
8f331907 396 */
36c46f31 397static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = {
d1fd4fb6 398 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
f05da2f7 399 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
8f331907
MCC
400 {0,} /* 0 terminated list. */
401};
402
a0c36a1f 403/****************************************************************************
15ed103a 404 Ancillary status routines
a0c36a1f
MCC
405 ****************************************************************************/
406
407 /* MC_CONTROL bits */
ef708b53
MCC
408#define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
409#define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
a0c36a1f
MCC
410
411 /* MC_STATUS bits */
61053fde 412#define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
ef708b53 413#define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
a0c36a1f
MCC
414
415 /* MC_MAX_DOD read functions */
854d3349 416static inline int numdimms(u32 dimms)
a0c36a1f 417{
854d3349 418 return (dimms & 0x3) + 1;
a0c36a1f
MCC
419}
420
854d3349 421static inline int numrank(u32 rank)
a0c36a1f 422{
c31d34fe 423 static const int ranks[] = { 1, 2, 4, -EINVAL };
a0c36a1f 424
854d3349 425 return ranks[rank & 0x3];
a0c36a1f
MCC
426}
427
854d3349 428static inline int numbank(u32 bank)
a0c36a1f 429{
c31d34fe 430 static const int banks[] = { 4, 8, 16, -EINVAL };
a0c36a1f 431
854d3349 432 return banks[bank & 0x3];
a0c36a1f
MCC
433}
434
854d3349 435static inline int numrow(u32 row)
a0c36a1f 436{
c31d34fe 437 static const int rows[] = {
a0c36a1f
MCC
438 1 << 12, 1 << 13, 1 << 14, 1 << 15,
439 1 << 16, -EINVAL, -EINVAL, -EINVAL,
440 };
441
854d3349 442 return rows[row & 0x7];
a0c36a1f
MCC
443}
444
854d3349 445static inline int numcol(u32 col)
a0c36a1f 446{
c31d34fe 447 static const int cols[] = {
a0c36a1f
MCC
448 1 << 10, 1 << 11, 1 << 12, -EINVAL,
449 };
854d3349 450 return cols[col & 0x3];
a0c36a1f
MCC
451}
452
f4742949 453static struct i7core_dev *get_i7core_dev(u8 socket)
66607706
MCC
454{
455 struct i7core_dev *i7core_dev;
456
457 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
458 if (i7core_dev->socket == socket)
459 return i7core_dev;
460 }
461
462 return NULL;
463}
464
848b2f7e
HS
465static struct i7core_dev *alloc_i7core_dev(u8 socket,
466 const struct pci_id_table *table)
467{
468 struct i7core_dev *i7core_dev;
469
470 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
471 if (!i7core_dev)
472 return NULL;
473
474 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
475 GFP_KERNEL);
476 if (!i7core_dev->pdev) {
477 kfree(i7core_dev);
478 return NULL;
479 }
480
481 i7core_dev->socket = socket;
482 i7core_dev->n_devs = table->n_devs;
483 list_add_tail(&i7core_dev->list, &i7core_edac_list);
484
485 return i7core_dev;
486}
487
2aa9be44
HS
488static void free_i7core_dev(struct i7core_dev *i7core_dev)
489{
490 list_del(&i7core_dev->list);
491 kfree(i7core_dev->pdev);
492 kfree(i7core_dev);
493}
494
a0c36a1f
MCC
495/****************************************************************************
496 Memory check routines
497 ****************************************************************************/
eb94fc40 498
084a4fcc 499static int get_dimm_config(struct mem_ctl_info *mci)
a0c36a1f
MCC
500{
501 struct i7core_pvt *pvt = mci->pvt_info;
854d3349 502 struct pci_dev *pdev;
ba6c5c62 503 int i, j;
1c6fed80 504 enum edac_type mode;
854d3349 505 enum mem_type mtype;
084a4fcc 506 struct dimm_info *dimm;
a0c36a1f 507
854d3349 508 /* Get data from the MC register, function 0 */
f4742949 509 pdev = pvt->pci_mcr[0];
7dd6953c 510 if (!pdev)
8f331907
MCC
511 return -ENODEV;
512
f122a892 513 /* Device 3 function 0 reads */
7dd6953c
MCC
514 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
515 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
516 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
517 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
f122a892 518
956b9ba1
JP
519 edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
520 pvt->i7core_dev->socket, pvt->info.mc_control,
521 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
a0c36a1f 522
1c6fed80 523 if (ECC_ENABLED(pvt)) {
956b9ba1 524 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
1c6fed80
MCC
525 if (ECCx8(pvt))
526 mode = EDAC_S8ECD8ED;
527 else
528 mode = EDAC_S4ECD4ED;
529 } else {
956b9ba1 530 edac_dbg(0, "ECC disabled\n");
1c6fed80
MCC
531 mode = EDAC_NONE;
532 }
a0c36a1f
MCC
533
534 /* FIXME: need to handle the error codes */
956b9ba1
JP
535 edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
536 numdimms(pvt->info.max_dod),
537 numrank(pvt->info.max_dod >> 2),
538 numbank(pvt->info.max_dod >> 4),
539 numrow(pvt->info.max_dod >> 6),
540 numcol(pvt->info.max_dod >> 9));
a0c36a1f 541
0b2b7b7e 542 for (i = 0; i < NUM_CHANS; i++) {
854d3349 543 u32 data, dimm_dod[3], value[8];
0b2b7b7e 544
52a2e4fc
MCC
545 if (!pvt->pci_ch[i][0])
546 continue;
547
0b2b7b7e 548 if (!CH_ACTIVE(pvt, i)) {
956b9ba1 549 edac_dbg(0, "Channel %i is not active\n", i);
0b2b7b7e
MCC
550 continue;
551 }
552 if (CH_DISABLED(pvt, i)) {
956b9ba1 553 edac_dbg(0, "Channel %i is disabled\n", i);
0b2b7b7e
MCC
554 continue;
555 }
556
f122a892 557 /* Devices 4-6 function 0 */
f4742949 558 pci_read_config_dword(pvt->pci_ch[i][0],
0b2b7b7e
MCC
559 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
560
0bf09e82
MCC
561
562 if (data & THREE_DIMMS_PRESENT)
563 pvt->channel[i].is_3dimms_present = true;
564
565 if (data & SINGLE_QUAD_RANK_PRESENT)
566 pvt->channel[i].is_single_4rank = true;
567
568 if (data & QUAD_RANK_PRESENT)
569 pvt->channel[i].has_4rank = true;
0b2b7b7e 570
854d3349
MCC
571 if (data & REGISTERED_DIMM)
572 mtype = MEM_RDDR3;
14d2c083 573 else
854d3349 574 mtype = MEM_DDR3;
854d3349
MCC
575
576 /* Devices 4-6 function 1 */
f4742949 577 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 578 MC_DOD_CH_DIMM0, &dimm_dod[0]);
f4742949 579 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 580 MC_DOD_CH_DIMM1, &dimm_dod[1]);
f4742949 581 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 582 MC_DOD_CH_DIMM2, &dimm_dod[2]);
0b2b7b7e 583
956b9ba1
JP
584 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
585 i,
586 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
587 data,
588 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
589 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
590 pvt->channel[i].has_4rank ? "HAS_4R " : "",
591 (data & REGISTERED_DIMM) ? 'R' : 'U');
854d3349
MCC
592
593 for (j = 0; j < 3; j++) {
594 u32 banks, ranks, rows, cols;
5566cb7c 595 u32 size, npages;
854d3349
MCC
596
597 if (!DIMM_PRESENT(dimm_dod[j]))
598 continue;
599
0975c16f
MCC
600 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
601 i, j, 0);
854d3349
MCC
602 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
603 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
604 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
605 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
606
5566cb7c
MCC
607 /* DDR3 has 8 I/O banks */
608 size = (rows * cols * banks * ranks) >> (20 - 3);
609
956b9ba1
JP
610 edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
611 j, size,
612 RANKOFFSET(dimm_dod[j]),
613 banks, ranks, rows, cols);
854d3349 614
e9144601 615 npages = MiB_TO_PAGES(size);
5566cb7c 616
a895bf8b 617 dimm->nr_pages = npages;
b4e8f0b6 618
854d3349
MCC
619 switch (banks) {
620 case 4:
084a4fcc 621 dimm->dtype = DEV_X4;
854d3349
MCC
622 break;
623 case 8:
084a4fcc 624 dimm->dtype = DEV_X8;
854d3349
MCC
625 break;
626 case 16:
084a4fcc 627 dimm->dtype = DEV_X16;
854d3349
MCC
628 break;
629 default:
084a4fcc 630 dimm->dtype = DEV_UNKNOWN;
854d3349
MCC
631 }
632
084a4fcc
MCC
633 snprintf(dimm->label, sizeof(dimm->label),
634 "CPU#%uChannel#%u_DIMM#%u",
635 pvt->i7core_dev->socket, i, j);
636 dimm->grain = 8;
637 dimm->edac_mode = mode;
638 dimm->mtype = mtype;
854d3349 639 }
1c6fed80 640
854d3349
MCC
641 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
642 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
643 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
644 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
645 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
646 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
647 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
648 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
956b9ba1 649 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
854d3349 650 for (j = 0; j < 8; j++)
956b9ba1
JP
651 edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
652 (value[j] >> 27) & 0x1,
653 (value[j] >> 24) & 0x7,
654 (value[j] & ((1 << 24) - 1)));
0b2b7b7e
MCC
655 }
656
a0c36a1f
MCC
657 return 0;
658}
659
194a40fe
MCC
660/****************************************************************************
661 Error insertion routines
662 ****************************************************************************/
663
5c4cdb5a
MCC
664#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
665
194a40fe
MCC
666/* The i7core has independent error injection features per channel.
667 However, to have a simpler code, we don't allow enabling error injection
668 on more than one channel.
669 Also, since a change at an inject parameter will be applied only at enable,
670 we're disabling error injection on all write calls to the sysfs nodes that
671 controls the error code injection.
672 */
1288c18f 673static int disable_inject(const struct mem_ctl_info *mci)
194a40fe
MCC
674{
675 struct i7core_pvt *pvt = mci->pvt_info;
676
677 pvt->inject.enable = 0;
678
f4742949 679 if (!pvt->pci_ch[pvt->inject.channel][0])
8f331907
MCC
680 return -ENODEV;
681
f4742949 682 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 683 MC_CHANNEL_ERROR_INJECT, 0);
8f331907
MCC
684
685 return 0;
194a40fe
MCC
686}
687
688/*
689 * i7core inject inject.section
690 *
691 * accept and store error injection inject.section value
692 * bit 0 - refers to the lower 32-byte half cacheline
693 * bit 1 - refers to the upper 32-byte half cacheline
694 */
5c4cdb5a
MCC
695static ssize_t i7core_inject_section_store(struct device *dev,
696 struct device_attribute *mattr,
194a40fe
MCC
697 const char *data, size_t count)
698{
5c4cdb5a 699 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
700 struct i7core_pvt *pvt = mci->pvt_info;
701 unsigned long value;
702 int rc;
703
704 if (pvt->inject.enable)
41fcb7fe 705 disable_inject(mci);
194a40fe
MCC
706
707 rc = strict_strtoul(data, 10, &value);
708 if ((rc < 0) || (value > 3))
2068def5 709 return -EIO;
194a40fe
MCC
710
711 pvt->inject.section = (u32) value;
712 return count;
713}
714
5c4cdb5a
MCC
715static ssize_t i7core_inject_section_show(struct device *dev,
716 struct device_attribute *mattr,
717 char *data)
194a40fe 718{
5c4cdb5a 719 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
720 struct i7core_pvt *pvt = mci->pvt_info;
721 return sprintf(data, "0x%08x\n", pvt->inject.section);
722}
723
724/*
725 * i7core inject.type
726 *
727 * accept and store error injection inject.section value
728 * bit 0 - repeat enable - Enable error repetition
729 * bit 1 - inject ECC error
730 * bit 2 - inject parity error
731 */
5c4cdb5a
MCC
732static ssize_t i7core_inject_type_store(struct device *dev,
733 struct device_attribute *mattr,
194a40fe
MCC
734 const char *data, size_t count)
735{
5c4cdb5a
MCC
736 struct mem_ctl_info *mci = to_mci(dev);
737struct i7core_pvt *pvt = mci->pvt_info;
194a40fe
MCC
738 unsigned long value;
739 int rc;
740
741 if (pvt->inject.enable)
41fcb7fe 742 disable_inject(mci);
194a40fe
MCC
743
744 rc = strict_strtoul(data, 10, &value);
745 if ((rc < 0) || (value > 7))
2068def5 746 return -EIO;
194a40fe
MCC
747
748 pvt->inject.type = (u32) value;
749 return count;
750}
751
5c4cdb5a
MCC
752static ssize_t i7core_inject_type_show(struct device *dev,
753 struct device_attribute *mattr,
754 char *data)
194a40fe 755{
5c4cdb5a 756 struct mem_ctl_info *mci = to_mci(dev);
194a40fe 757 struct i7core_pvt *pvt = mci->pvt_info;
5c4cdb5a 758
194a40fe
MCC
759 return sprintf(data, "0x%08x\n", pvt->inject.type);
760}
761
762/*
763 * i7core_inject_inject.eccmask_store
764 *
765 * The type of error (UE/CE) will depend on the inject.eccmask value:
766 * Any bits set to a 1 will flip the corresponding ECC bit
767 * Correctable errors can be injected by flipping 1 bit or the bits within
768 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
769 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
770 * uncorrectable error to be injected.
771 */
5c4cdb5a
MCC
772static ssize_t i7core_inject_eccmask_store(struct device *dev,
773 struct device_attribute *mattr,
774 const char *data, size_t count)
194a40fe 775{
5c4cdb5a 776 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
777 struct i7core_pvt *pvt = mci->pvt_info;
778 unsigned long value;
779 int rc;
780
781 if (pvt->inject.enable)
41fcb7fe 782 disable_inject(mci);
194a40fe
MCC
783
784 rc = strict_strtoul(data, 10, &value);
785 if (rc < 0)
2068def5 786 return -EIO;
194a40fe
MCC
787
788 pvt->inject.eccmask = (u32) value;
789 return count;
790}
791
5c4cdb5a
MCC
792static ssize_t i7core_inject_eccmask_show(struct device *dev,
793 struct device_attribute *mattr,
794 char *data)
194a40fe 795{
5c4cdb5a 796 struct mem_ctl_info *mci = to_mci(dev);
194a40fe 797 struct i7core_pvt *pvt = mci->pvt_info;
5c4cdb5a 798
194a40fe
MCC
799 return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
800}
801
802/*
803 * i7core_addrmatch
804 *
805 * The type of error (UE/CE) will depend on the inject.eccmask value:
806 * Any bits set to a 1 will flip the corresponding ECC bit
807 * Correctable errors can be injected by flipping 1 bit or the bits within
808 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
809 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
810 * uncorrectable error to be injected.
811 */
194a40fe 812
a5538e53
MCC
813#define DECLARE_ADDR_MATCH(param, limit) \
814static ssize_t i7core_inject_store_##param( \
5c4cdb5a
MCC
815 struct device *dev, \
816 struct device_attribute *mattr, \
817 const char *data, size_t count) \
a5538e53 818{ \
42709efb 819 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
cc301b3a 820 struct i7core_pvt *pvt; \
a5538e53
MCC
821 long value; \
822 int rc; \
823 \
956b9ba1 824 edac_dbg(1, "\n"); \
cc301b3a
MCC
825 pvt = mci->pvt_info; \
826 \
a5538e53
MCC
827 if (pvt->inject.enable) \
828 disable_inject(mci); \
829 \
4f87fad1 830 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
a5538e53
MCC
831 value = -1; \
832 else { \
833 rc = strict_strtoul(data, 10, &value); \
834 if ((rc < 0) || (value >= limit)) \
835 return -EIO; \
836 } \
837 \
838 pvt->inject.param = value; \
839 \
840 return count; \
841} \
842 \
843static ssize_t i7core_inject_show_##param( \
5c4cdb5a
MCC
844 struct device *dev, \
845 struct device_attribute *mattr, \
846 char *data) \
a5538e53 847{ \
42709efb 848 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
cc301b3a
MCC
849 struct i7core_pvt *pvt; \
850 \
851 pvt = mci->pvt_info; \
956b9ba1 852 edac_dbg(1, "pvt=%p\n", pvt); \
a5538e53
MCC
853 if (pvt->inject.param < 0) \
854 return sprintf(data, "any\n"); \
855 else \
856 return sprintf(data, "%d\n", pvt->inject.param);\
194a40fe
MCC
857}
858
a5538e53 859#define ATTR_ADDR_MATCH(param) \
5c4cdb5a
MCC
860 static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \
861 i7core_inject_show_##param, \
862 i7core_inject_store_##param)
194a40fe 863
a5538e53
MCC
864DECLARE_ADDR_MATCH(channel, 3);
865DECLARE_ADDR_MATCH(dimm, 3);
866DECLARE_ADDR_MATCH(rank, 4);
867DECLARE_ADDR_MATCH(bank, 32);
868DECLARE_ADDR_MATCH(page, 0x10000);
869DECLARE_ADDR_MATCH(col, 0x4000);
194a40fe 870
5c4cdb5a
MCC
871ATTR_ADDR_MATCH(channel);
872ATTR_ADDR_MATCH(dimm);
873ATTR_ADDR_MATCH(rank);
874ATTR_ADDR_MATCH(bank);
875ATTR_ADDR_MATCH(page);
876ATTR_ADDR_MATCH(col);
877
1288c18f 878static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
276b824c
MCC
879{
880 u32 read;
881 int count;
882
956b9ba1
JP
883 edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
884 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
885 where, val);
4157d9f5 886
276b824c
MCC
887 for (count = 0; count < 10; count++) {
888 if (count)
b990538a 889 msleep(100);
276b824c
MCC
890 pci_write_config_dword(dev, where, val);
891 pci_read_config_dword(dev, where, &read);
892
893 if (read == val)
894 return 0;
895 }
896
4157d9f5
MCC
897 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
898 "write=%08x. Read=%08x\n",
899 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
900 where, val, read);
276b824c
MCC
901
902 return -EINVAL;
903}
904
194a40fe
MCC
905/*
906 * This routine prepares the Memory Controller for error injection.
907 * The error will be injected when some process tries to write to the
908 * memory that matches the given criteria.
909 * The criteria can be set in terms of a mask where dimm, rank, bank, page
910 * and col can be specified.
911 * A -1 value for any of the mask items will make the MCU to ignore
912 * that matching criteria for error injection.
913 *
914 * It should be noticed that the error will only happen after a write operation
915 * on a memory that matches the condition. if REPEAT_EN is not enabled at
916 * inject mask, then it will produce just one error. Otherwise, it will repeat
917 * until the injectmask would be cleaned.
918 *
919 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
920 * is reliable enough to check if the MC is using the
921 * three channels. However, this is not clear at the datasheet.
922 */
5c4cdb5a
MCC
923static ssize_t i7core_inject_enable_store(struct device *dev,
924 struct device_attribute *mattr,
925 const char *data, size_t count)
194a40fe 926{
5c4cdb5a 927 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
928 struct i7core_pvt *pvt = mci->pvt_info;
929 u32 injectmask;
930 u64 mask = 0;
931 int rc;
932 long enable;
933
f4742949 934 if (!pvt->pci_ch[pvt->inject.channel][0])
8f331907
MCC
935 return 0;
936
194a40fe
MCC
937 rc = strict_strtoul(data, 10, &enable);
938 if ((rc < 0))
939 return 0;
940
941 if (enable) {
942 pvt->inject.enable = 1;
943 } else {
944 disable_inject(mci);
945 return count;
946 }
947
948 /* Sets pvt->inject.dimm mask */
949 if (pvt->inject.dimm < 0)
486dd09f 950 mask |= 1LL << 41;
194a40fe 951 else {
f4742949 952 if (pvt->channel[pvt->inject.channel].dimms > 2)
486dd09f 953 mask |= (pvt->inject.dimm & 0x3LL) << 35;
194a40fe 954 else
486dd09f 955 mask |= (pvt->inject.dimm & 0x1LL) << 36;
194a40fe
MCC
956 }
957
958 /* Sets pvt->inject.rank mask */
959 if (pvt->inject.rank < 0)
486dd09f 960 mask |= 1LL << 40;
194a40fe 961 else {
f4742949 962 if (pvt->channel[pvt->inject.channel].dimms > 2)
486dd09f 963 mask |= (pvt->inject.rank & 0x1LL) << 34;
194a40fe 964 else
486dd09f 965 mask |= (pvt->inject.rank & 0x3LL) << 34;
194a40fe
MCC
966 }
967
968 /* Sets pvt->inject.bank mask */
969 if (pvt->inject.bank < 0)
486dd09f 970 mask |= 1LL << 39;
194a40fe 971 else
486dd09f 972 mask |= (pvt->inject.bank & 0x15LL) << 30;
194a40fe
MCC
973
974 /* Sets pvt->inject.page mask */
975 if (pvt->inject.page < 0)
486dd09f 976 mask |= 1LL << 38;
194a40fe 977 else
486dd09f 978 mask |= (pvt->inject.page & 0xffff) << 14;
194a40fe
MCC
979
980 /* Sets pvt->inject.column mask */
981 if (pvt->inject.col < 0)
486dd09f 982 mask |= 1LL << 37;
194a40fe 983 else
486dd09f 984 mask |= (pvt->inject.col & 0x3fff);
194a40fe 985
276b824c
MCC
986 /*
987 * bit 0: REPEAT_EN
988 * bits 1-2: MASK_HALF_CACHELINE
989 * bit 3: INJECT_ECC
990 * bit 4: INJECT_ADDR_PARITY
991 */
992
993 injectmask = (pvt->inject.type & 1) |
994 (pvt->inject.section & 0x3) << 1 |
995 (pvt->inject.type & 0x6) << (3 - 1);
996
997 /* Unlock writes to registers - this register is write only */
f4742949 998 pci_write_config_dword(pvt->pci_noncore,
67166af4 999 MC_CFG_CONTROL, 0x2);
e9bd2e73 1000
f4742949 1001 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
194a40fe 1002 MC_CHANNEL_ADDR_MATCH, mask);
f4742949 1003 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
7b029d03 1004 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
7b029d03 1005
f4742949 1006 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
194a40fe
MCC
1007 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1008
f4742949 1009 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 1010 MC_CHANNEL_ERROR_INJECT, injectmask);
276b824c 1011
194a40fe 1012 /*
276b824c
MCC
1013 * This is something undocumented, based on my tests
1014 * Without writing 8 to this register, errors aren't injected. Not sure
1015 * why.
194a40fe 1016 */
f4742949 1017 pci_write_config_dword(pvt->pci_noncore,
276b824c 1018 MC_CFG_CONTROL, 8);
194a40fe 1019
956b9ba1
JP
1020 edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1021 mask, pvt->inject.eccmask, injectmask);
194a40fe 1022
7b029d03 1023
194a40fe
MCC
1024 return count;
1025}
1026
5c4cdb5a
MCC
1027static ssize_t i7core_inject_enable_show(struct device *dev,
1028 struct device_attribute *mattr,
1029 char *data)
194a40fe 1030{
5c4cdb5a 1031 struct mem_ctl_info *mci = to_mci(dev);
194a40fe 1032 struct i7core_pvt *pvt = mci->pvt_info;
7b029d03
MCC
1033 u32 injectmask;
1034
52a2e4fc
MCC
1035 if (!pvt->pci_ch[pvt->inject.channel][0])
1036 return 0;
1037
f4742949 1038 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 1039 MC_CHANNEL_ERROR_INJECT, &injectmask);
7b029d03 1040
956b9ba1 1041 edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
7b029d03
MCC
1042
1043 if (injectmask & 0x0c)
1044 pvt->inject.enable = 1;
1045
194a40fe
MCC
1046 return sprintf(data, "%d\n", pvt->inject.enable);
1047}
1048
f338d736
MCC
1049#define DECLARE_COUNTER(param) \
1050static ssize_t i7core_show_counter_##param( \
5c4cdb5a
MCC
1051 struct device *dev, \
1052 struct device_attribute *mattr, \
1053 char *data) \
f338d736 1054{ \
42709efb 1055 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
f338d736
MCC
1056 struct i7core_pvt *pvt = mci->pvt_info; \
1057 \
956b9ba1 1058 edac_dbg(1, "\n"); \
f338d736
MCC
1059 if (!pvt->ce_count_available || (pvt->is_registered)) \
1060 return sprintf(data, "data unavailable\n"); \
1061 return sprintf(data, "%lu\n", \
1062 pvt->udimm_ce_count[param]); \
1063}
442305b1 1064
f338d736 1065#define ATTR_COUNTER(param) \
5c4cdb5a
MCC
1066 static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \
1067 i7core_show_counter_##param, \
1068 NULL)
442305b1 1069
f338d736
MCC
1070DECLARE_COUNTER(0);
1071DECLARE_COUNTER(1);
1072DECLARE_COUNTER(2);
442305b1 1073
5c4cdb5a
MCC
1074ATTR_COUNTER(0);
1075ATTR_COUNTER(1);
1076ATTR_COUNTER(2);
1077
194a40fe 1078/*
5c4cdb5a 1079 * inject_addrmatch device sysfs struct
194a40fe 1080 */
a5538e53 1081
5c4cdb5a
MCC
1082static struct attribute *i7core_addrmatch_attrs[] = {
1083 &dev_attr_channel.attr,
1084 &dev_attr_dimm.attr,
1085 &dev_attr_rank.attr,
1086 &dev_attr_bank.attr,
1087 &dev_attr_page.attr,
1088 &dev_attr_col.attr,
1089 NULL
a5538e53
MCC
1090};
1091
5c4cdb5a
MCC
1092static struct attribute_group addrmatch_grp = {
1093 .attrs = i7core_addrmatch_attrs,
a5538e53
MCC
1094};
1095
5c4cdb5a
MCC
1096static const struct attribute_group *addrmatch_groups[] = {
1097 &addrmatch_grp,
1098 NULL
f338d736
MCC
1099};
1100
5c4cdb5a
MCC
1101static void addrmatch_release(struct device *device)
1102{
956b9ba1 1103 edac_dbg(1, "Releasing device %s\n", dev_name(device));
356f0a30 1104 kfree(device);
5c4cdb5a
MCC
1105}
1106
1107static struct device_type addrmatch_type = {
1108 .groups = addrmatch_groups,
1109 .release = addrmatch_release,
f338d736
MCC
1110};
1111
5c4cdb5a
MCC
1112/*
1113 * all_channel_counts sysfs struct
1114 */
1115
1116static struct attribute *i7core_udimm_counters_attrs[] = {
1117 &dev_attr_udimm0.attr,
1118 &dev_attr_udimm1.attr,
1119 &dev_attr_udimm2.attr,
1120 NULL
1288c18f
MCC
1121};
1122
5c4cdb5a
MCC
1123static struct attribute_group all_channel_counts_grp = {
1124 .attrs = i7core_udimm_counters_attrs,
194a40fe
MCC
1125};
1126
5c4cdb5a
MCC
1127static const struct attribute_group *all_channel_counts_groups[] = {
1128 &all_channel_counts_grp,
1129 NULL
194a40fe
MCC
1130};
1131
5c4cdb5a
MCC
1132static void all_channel_counts_release(struct device *device)
1133{
956b9ba1 1134 edac_dbg(1, "Releasing device %s\n", dev_name(device));
356f0a30 1135 kfree(device);
5c4cdb5a
MCC
1136}
1137
1138static struct device_type all_channel_counts_type = {
1139 .groups = all_channel_counts_groups,
1140 .release = all_channel_counts_release,
1141};
1142
1143/*
1144 * inject sysfs attributes
1145 */
1146
1147static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1148 i7core_inject_section_show, i7core_inject_section_store);
1149
1150static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1151 i7core_inject_type_show, i7core_inject_type_store);
1152
1153
1154static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1155 i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1156
1157static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1158 i7core_inject_enable_show, i7core_inject_enable_store);
1159
1160static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1161{
1162 struct i7core_pvt *pvt = mci->pvt_info;
1163 int rc;
1164
1165 rc = device_create_file(&mci->dev, &dev_attr_inject_section);
1166 if (rc < 0)
1167 return rc;
1168 rc = device_create_file(&mci->dev, &dev_attr_inject_type);
1169 if (rc < 0)
1170 return rc;
1171 rc = device_create_file(&mci->dev, &dev_attr_inject_eccmask);
1172 if (rc < 0)
1173 return rc;
1174 rc = device_create_file(&mci->dev, &dev_attr_inject_enable);
1175 if (rc < 0)
1176 return rc;
1177
356f0a30
MCC
1178 pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1179 if (!pvt->addrmatch_dev)
1180 return rc;
1181
1182 pvt->addrmatch_dev->type = &addrmatch_type;
1183 pvt->addrmatch_dev->bus = mci->dev.bus;
1184 device_initialize(pvt->addrmatch_dev);
1185 pvt->addrmatch_dev->parent = &mci->dev;
1186 dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1187 dev_set_drvdata(pvt->addrmatch_dev, mci);
5c4cdb5a 1188
956b9ba1 1189 edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
5c4cdb5a 1190
356f0a30 1191 rc = device_add(pvt->addrmatch_dev);
5c4cdb5a
MCC
1192 if (rc < 0)
1193 return rc;
1194
1195 if (!pvt->is_registered) {
356f0a30
MCC
1196 pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1197 GFP_KERNEL);
1198 if (!pvt->chancounts_dev) {
1199 put_device(pvt->addrmatch_dev);
1200 device_del(pvt->addrmatch_dev);
1201 return rc;
1202 }
1203
1204 pvt->chancounts_dev->type = &all_channel_counts_type;
1205 pvt->chancounts_dev->bus = mci->dev.bus;
1206 device_initialize(pvt->chancounts_dev);
1207 pvt->chancounts_dev->parent = &mci->dev;
1208 dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1209 dev_set_drvdata(pvt->chancounts_dev, mci);
5c4cdb5a 1210
956b9ba1 1211 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
5c4cdb5a 1212
356f0a30 1213 rc = device_add(pvt->chancounts_dev);
5c4cdb5a
MCC
1214 if (rc < 0)
1215 return rc;
1216 }
1217 return 0;
1218}
1219
1220static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1221{
1222 struct i7core_pvt *pvt = mci->pvt_info;
1223
956b9ba1 1224 edac_dbg(1, "\n");
5c4cdb5a
MCC
1225
1226 device_remove_file(&mci->dev, &dev_attr_inject_section);
1227 device_remove_file(&mci->dev, &dev_attr_inject_type);
1228 device_remove_file(&mci->dev, &dev_attr_inject_eccmask);
1229 device_remove_file(&mci->dev, &dev_attr_inject_enable);
1230
1231 if (!pvt->is_registered) {
356f0a30
MCC
1232 put_device(pvt->chancounts_dev);
1233 device_del(pvt->chancounts_dev);
5c4cdb5a 1234 }
356f0a30
MCC
1235 put_device(pvt->addrmatch_dev);
1236 device_del(pvt->addrmatch_dev);
5c4cdb5a
MCC
1237}
1238
a0c36a1f
MCC
1239/****************************************************************************
1240 Device initialization routines: put/get, init/exit
1241 ****************************************************************************/
1242
1243/*
64c10f6e 1244 * i7core_put_all_devices 'put' all the devices that we have
a0c36a1f
MCC
1245 * reserved via 'get'
1246 */
13d6e9b6 1247static void i7core_put_devices(struct i7core_dev *i7core_dev)
a0c36a1f 1248{
13d6e9b6 1249 int i;
a0c36a1f 1250
956b9ba1 1251 edac_dbg(0, "\n");
de06eeef 1252 for (i = 0; i < i7core_dev->n_devs; i++) {
22e6bcbd
MCC
1253 struct pci_dev *pdev = i7core_dev->pdev[i];
1254 if (!pdev)
1255 continue;
956b9ba1
JP
1256 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1257 pdev->bus->number,
1258 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
22e6bcbd
MCC
1259 pci_dev_put(pdev);
1260 }
13d6e9b6 1261}
66607706 1262
13d6e9b6
MCC
1263static void i7core_put_all_devices(void)
1264{
42538680 1265 struct i7core_dev *i7core_dev, *tmp;
13d6e9b6 1266
39300e71 1267 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
13d6e9b6 1268 i7core_put_devices(i7core_dev);
2aa9be44 1269 free_i7core_dev(i7core_dev);
39300e71 1270 }
a0c36a1f
MCC
1271}
1272
1288c18f 1273static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
bc2d7245
KM
1274{
1275 struct pci_dev *pdev = NULL;
1276 int i;
54a08ab1 1277
bc2d7245 1278 /*
e7bf068a 1279 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
bc2d7245
KM
1280 * aren't announced by acpi. So, we need to use a legacy scan probing
1281 * to detect them
1282 */
bd9e19ca
VM
1283 while (table && table->descr) {
1284 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1285 if (unlikely(!pdev)) {
1286 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1287 pcibios_scan_specific_bus(255-i);
1288 }
bda14289 1289 pci_dev_put(pdev);
bd9e19ca 1290 table++;
bc2d7245
KM
1291 }
1292}
1293
bda14289
MCC
1294static unsigned i7core_pci_lastbus(void)
1295{
1296 int last_bus = 0, bus;
1297 struct pci_bus *b = NULL;
1298
1299 while ((b = pci_find_next_bus(b)) != NULL) {
1300 bus = b->number;
956b9ba1 1301 edac_dbg(0, "Found bus %d\n", bus);
bda14289
MCC
1302 if (bus > last_bus)
1303 last_bus = bus;
1304 }
1305
956b9ba1 1306 edac_dbg(0, "Last bus %d\n", last_bus);
bda14289
MCC
1307
1308 return last_bus;
1309}
1310
a0c36a1f 1311/*
64c10f6e 1312 * i7core_get_all_devices Find and perform 'get' operation on the MCH's
a0c36a1f
MCC
1313 * device/functions we want to reference for this driver
1314 *
1315 * Need to 'get' device 16 func 1 and func 2
1316 */
b197cba0
HS
1317static int i7core_get_onedevice(struct pci_dev **prev,
1318 const struct pci_id_table *table,
1319 const unsigned devno,
1320 const unsigned last_bus)
a0c36a1f 1321{
66607706 1322 struct i7core_dev *i7core_dev;
b197cba0 1323 const struct pci_id_descr *dev_descr = &table->descr[devno];
66607706 1324
8f331907 1325 struct pci_dev *pdev = NULL;
67166af4
MCC
1326 u8 bus = 0;
1327 u8 socket = 0;
a0c36a1f 1328
c77720b9 1329 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
de06eeef 1330 dev_descr->dev_id, *prev);
c77720b9 1331
224e871f 1332 /*
15ed103a 1333 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
224e871f
MCC
1334 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1335 * to probe for the alternate address in case of failure
1336 */
6b96200e
JD
1337 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1338 pci_dev_get(*prev); /* pci_get_device will put it */
224e871f
MCC
1339 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1340 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
6b96200e 1341 }
224e871f 1342
6b96200e
JD
1343 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1344 !pdev) {
1345 pci_dev_get(*prev); /* pci_get_device will put it */
224e871f
MCC
1346 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1347 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1348 *prev);
6b96200e 1349 }
224e871f 1350
c77720b9
MCC
1351 if (!pdev) {
1352 if (*prev) {
1353 *prev = pdev;
1354 return 0;
d1fd4fb6
MCC
1355 }
1356
de06eeef 1357 if (dev_descr->optional)
c77720b9 1358 return 0;
310cbb72 1359
bd9e19ca
VM
1360 if (devno == 0)
1361 return -ENODEV;
1362
ab089374 1363 i7core_printk(KERN_INFO,
c77720b9 1364 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1365 dev_descr->dev, dev_descr->func,
1366 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
67166af4 1367
c77720b9
MCC
1368 /* End of list, leave */
1369 return -ENODEV;
1370 }
1371 bus = pdev->bus->number;
67166af4 1372
bda14289 1373 socket = last_bus - bus;
c77720b9 1374
66607706
MCC
1375 i7core_dev = get_i7core_dev(socket);
1376 if (!i7core_dev) {
848b2f7e 1377 i7core_dev = alloc_i7core_dev(socket, table);
2896637b
HS
1378 if (!i7core_dev) {
1379 pci_dev_put(pdev);
66607706 1380 return -ENOMEM;
2896637b 1381 }
c77720b9 1382 }
67166af4 1383
66607706 1384 if (i7core_dev->pdev[devno]) {
c77720b9
MCC
1385 i7core_printk(KERN_ERR,
1386 "Duplicated device for "
1387 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1388 bus, dev_descr->dev, dev_descr->func,
1389 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
c77720b9
MCC
1390 pci_dev_put(pdev);
1391 return -ENODEV;
1392 }
67166af4 1393
66607706 1394 i7core_dev->pdev[devno] = pdev;
c77720b9
MCC
1395
1396 /* Sanity check */
de06eeef
MCC
1397 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1398 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
c77720b9
MCC
1399 i7core_printk(KERN_ERR,
1400 "Device PCI ID %04x:%04x "
1401 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
de06eeef 1402 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
c77720b9 1403 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
de06eeef 1404 bus, dev_descr->dev, dev_descr->func);
c77720b9
MCC
1405 return -ENODEV;
1406 }
ef708b53 1407
c77720b9
MCC
1408 /* Be sure that the device is enabled */
1409 if (unlikely(pci_enable_device(pdev) < 0)) {
1410 i7core_printk(KERN_ERR,
1411 "Couldn't enable "
1412 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1413 bus, dev_descr->dev, dev_descr->func,
1414 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
c77720b9
MCC
1415 return -ENODEV;
1416 }
ef708b53 1417
956b9ba1
JP
1418 edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1419 socket, bus, dev_descr->dev,
1420 dev_descr->func,
1421 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
8f331907 1422
a3e15416
MCC
1423 /*
1424 * As stated on drivers/pci/search.c, the reference count for
1425 * @from is always decremented if it is not %NULL. So, as we need
1426 * to get all devices up to null, we need to do a get for the device
1427 */
1428 pci_dev_get(pdev);
1429
c77720b9 1430 *prev = pdev;
ef708b53 1431
c77720b9
MCC
1432 return 0;
1433}
a0c36a1f 1434
64c10f6e 1435static int i7core_get_all_devices(void)
c77720b9 1436{
3c52cc57 1437 int i, rc, last_bus;
c77720b9 1438 struct pci_dev *pdev = NULL;
3c52cc57 1439 const struct pci_id_table *table = pci_dev_table;
bd9e19ca 1440
bda14289
MCC
1441 last_bus = i7core_pci_lastbus();
1442
3c52cc57 1443 while (table && table->descr) {
bd9e19ca
VM
1444 for (i = 0; i < table->n_devs; i++) {
1445 pdev = NULL;
1446 do {
b197cba0 1447 rc = i7core_get_onedevice(&pdev, table, i,
bda14289 1448 last_bus);
bd9e19ca
VM
1449 if (rc < 0) {
1450 if (i == 0) {
1451 i = table->n_devs;
1452 break;
1453 }
1454 i7core_put_all_devices();
1455 return -ENODEV;
1456 }
1457 } while (pdev);
1458 }
3c52cc57 1459 table++;
c77720b9 1460 }
66607706 1461
ef708b53 1462 return 0;
ef708b53
MCC
1463}
1464
f4742949
MCC
1465static int mci_bind_devs(struct mem_ctl_info *mci,
1466 struct i7core_dev *i7core_dev)
ef708b53
MCC
1467{
1468 struct i7core_pvt *pvt = mci->pvt_info;
1469 struct pci_dev *pdev;
f4742949 1470 int i, func, slot;
27100db0 1471 char *family;
ef708b53 1472
27100db0
MCC
1473 pvt->is_registered = false;
1474 pvt->enable_scrub = false;
de06eeef 1475 for (i = 0; i < i7core_dev->n_devs; i++) {
f4742949
MCC
1476 pdev = i7core_dev->pdev[i];
1477 if (!pdev)
66607706
MCC
1478 continue;
1479
f4742949
MCC
1480 func = PCI_FUNC(pdev->devfn);
1481 slot = PCI_SLOT(pdev->devfn);
1482 if (slot == 3) {
1483 if (unlikely(func > MAX_MCR_FUNC))
1484 goto error;
1485 pvt->pci_mcr[func] = pdev;
1486 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1487 if (unlikely(func > MAX_CHAN_FUNC))
ef708b53 1488 goto error;
f4742949 1489 pvt->pci_ch[slot - 4][func] = pdev;
27100db0 1490 } else if (!slot && !func) {
f4742949 1491 pvt->pci_noncore = pdev;
27100db0
MCC
1492
1493 /* Detect the processor family */
1494 switch (pdev->device) {
1495 case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1496 family = "Xeon 35xx/ i7core";
1497 pvt->enable_scrub = false;
1498 break;
1499 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1500 family = "i7-800/i5-700";
1501 pvt->enable_scrub = false;
1502 break;
1503 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1504 family = "Xeon 34xx";
1505 pvt->enable_scrub = false;
1506 break;
1507 case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1508 family = "Xeon 55xx";
1509 pvt->enable_scrub = true;
1510 break;
1511 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1512 family = "Xeon 56xx / i7-900";
1513 pvt->enable_scrub = true;
1514 break;
1515 default:
1516 family = "unknown";
1517 pvt->enable_scrub = false;
1518 }
956b9ba1 1519 edac_dbg(0, "Detected a processor type %s\n", family);
27100db0 1520 } else
f4742949 1521 goto error;
ef708b53 1522
956b9ba1
JP
1523 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1524 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1525 pdev, i7core_dev->socket);
14d2c083 1526
f4742949
MCC
1527 if (PCI_SLOT(pdev->devfn) == 3 &&
1528 PCI_FUNC(pdev->devfn) == 2)
27100db0 1529 pvt->is_registered = true;
a0c36a1f 1530 }
e9bd2e73 1531
a0c36a1f 1532 return 0;
ef708b53
MCC
1533
1534error:
1535 i7core_printk(KERN_ERR, "Device %d, function %d "
1536 "is out of the expected range\n",
1537 slot, func);
1538 return -EINVAL;
a0c36a1f
MCC
1539}
1540
442305b1
MCC
1541/****************************************************************************
1542 Error check routines
1543 ****************************************************************************/
b4e8f0b6
MCC
1544
1545static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1288c18f
MCC
1546 const int chan,
1547 const int new0,
1548 const int new1,
1549 const int new2)
b4e8f0b6
MCC
1550{
1551 struct i7core_pvt *pvt = mci->pvt_info;
1552 int add0 = 0, add1 = 0, add2 = 0;
1553 /* Updates CE counters if it is not the first time here */
f4742949 1554 if (pvt->ce_count_available) {
b4e8f0b6
MCC
1555 /* Updates CE counters */
1556
f4742949
MCC
1557 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1558 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1559 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
b4e8f0b6
MCC
1560
1561 if (add2 < 0)
1562 add2 += 0x7fff;
f4742949 1563 pvt->rdimm_ce_count[chan][2] += add2;
b4e8f0b6
MCC
1564
1565 if (add1 < 0)
1566 add1 += 0x7fff;
f4742949 1567 pvt->rdimm_ce_count[chan][1] += add1;
b4e8f0b6
MCC
1568
1569 if (add0 < 0)
1570 add0 += 0x7fff;
f4742949 1571 pvt->rdimm_ce_count[chan][0] += add0;
b4e8f0b6 1572 } else
f4742949 1573 pvt->ce_count_available = 1;
b4e8f0b6
MCC
1574
1575 /* Store the new values */
f4742949
MCC
1576 pvt->rdimm_last_ce_count[chan][2] = new2;
1577 pvt->rdimm_last_ce_count[chan][1] = new1;
1578 pvt->rdimm_last_ce_count[chan][0] = new0;
b4e8f0b6
MCC
1579
1580 /*updated the edac core */
1581 if (add0 != 0)
00d18339
MCC
1582 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1583 0, 0, 0,
1584 chan, 0, -1, "error", "");
b4e8f0b6 1585 if (add1 != 0)
00d18339
MCC
1586 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1587 0, 0, 0,
1588 chan, 1, -1, "error", "");
b4e8f0b6 1589 if (add2 != 0)
00d18339
MCC
1590 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1591 0, 0, 0,
1592 chan, 2, -1, "error", "");
b4e8f0b6
MCC
1593}
1594
f4742949 1595static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
b4e8f0b6
MCC
1596{
1597 struct i7core_pvt *pvt = mci->pvt_info;
1598 u32 rcv[3][2];
1599 int i, new0, new1, new2;
1600
1601 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
f4742949 1602 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
b4e8f0b6 1603 &rcv[0][0]);
f4742949 1604 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
b4e8f0b6 1605 &rcv[0][1]);
f4742949 1606 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
b4e8f0b6 1607 &rcv[1][0]);
f4742949 1608 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
b4e8f0b6 1609 &rcv[1][1]);
f4742949 1610 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
b4e8f0b6 1611 &rcv[2][0]);
f4742949 1612 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
b4e8f0b6
MCC
1613 &rcv[2][1]);
1614 for (i = 0 ; i < 3; i++) {
956b9ba1
JP
1615 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1616 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
b4e8f0b6 1617 /*if the channel has 3 dimms*/
f4742949 1618 if (pvt->channel[i].dimms > 2) {
b4e8f0b6
MCC
1619 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1620 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1621 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1622 } else {
1623 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1624 DIMM_BOT_COR_ERR(rcv[i][0]);
1625 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1626 DIMM_BOT_COR_ERR(rcv[i][1]);
1627 new2 = 0;
1628 }
1629
f4742949 1630 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
b4e8f0b6
MCC
1631 }
1632}
442305b1
MCC
1633
1634/* This function is based on the device 3 function 4 registers as described on:
1635 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1636 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1637 * also available at:
1638 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1639 */
f4742949 1640static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
442305b1
MCC
1641{
1642 struct i7core_pvt *pvt = mci->pvt_info;
1643 u32 rcv1, rcv0;
1644 int new0, new1, new2;
1645
f4742949 1646 if (!pvt->pci_mcr[4]) {
956b9ba1 1647 edac_dbg(0, "MCR registers not found\n");
442305b1
MCC
1648 return;
1649 }
1650
b4e8f0b6 1651 /* Corrected test errors */
f4742949
MCC
1652 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1653 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
442305b1
MCC
1654
1655 /* Store the new values */
1656 new2 = DIMM2_COR_ERR(rcv1);
1657 new1 = DIMM1_COR_ERR(rcv0);
1658 new0 = DIMM0_COR_ERR(rcv0);
1659
442305b1 1660 /* Updates CE counters if it is not the first time here */
f4742949 1661 if (pvt->ce_count_available) {
442305b1
MCC
1662 /* Updates CE counters */
1663 int add0, add1, add2;
1664
f4742949
MCC
1665 add2 = new2 - pvt->udimm_last_ce_count[2];
1666 add1 = new1 - pvt->udimm_last_ce_count[1];
1667 add0 = new0 - pvt->udimm_last_ce_count[0];
442305b1
MCC
1668
1669 if (add2 < 0)
1670 add2 += 0x7fff;
f4742949 1671 pvt->udimm_ce_count[2] += add2;
442305b1
MCC
1672
1673 if (add1 < 0)
1674 add1 += 0x7fff;
f4742949 1675 pvt->udimm_ce_count[1] += add1;
442305b1
MCC
1676
1677 if (add0 < 0)
1678 add0 += 0x7fff;
f4742949 1679 pvt->udimm_ce_count[0] += add0;
b4e8f0b6
MCC
1680
1681 if (add0 | add1 | add2)
1682 i7core_printk(KERN_ERR, "New Corrected error(s): "
1683 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1684 add0, add1, add2);
442305b1 1685 } else
f4742949 1686 pvt->ce_count_available = 1;
442305b1
MCC
1687
1688 /* Store the new values */
f4742949
MCC
1689 pvt->udimm_last_ce_count[2] = new2;
1690 pvt->udimm_last_ce_count[1] = new1;
1691 pvt->udimm_last_ce_count[0] = new0;
442305b1
MCC
1692}
1693
8a2f118e
MCC
1694/*
1695 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1696 * Architectures Software Developer’s Manual Volume 3B.
f237fcf2
MCC
1697 * Nehalem are defined as family 0x06, model 0x1a
1698 *
1699 * The MCA registers used here are the following ones:
8a2f118e 1700 * struct mce field MCA Register
f237fcf2
MCC
1701 * m->status MSR_IA32_MC8_STATUS
1702 * m->addr MSR_IA32_MC8_ADDR
1703 * m->misc MSR_IA32_MC8_MISC
8a2f118e
MCC
1704 * In the case of Nehalem, the error information is masked at .status and .misc
1705 * fields
1706 */
d5381642 1707static void i7core_mce_output_error(struct mem_ctl_info *mci,
1288c18f 1708 const struct mce *m)
d5381642 1709{
b4e8f0b6 1710 struct i7core_pvt *pvt = mci->pvt_info;
00d18339 1711 char *type, *optype, *err;
0975c16f 1712 enum hw_event_mc_err_type tp_event;
8a2f118e 1713 unsigned long error = m->status & 0x1ff0000l;
0975c16f
MCC
1714 bool uncorrected_error = m->mcgstatus & 1ll << 61;
1715 bool ripv = m->mcgstatus & 1;
a639539f 1716 u32 optypenum = (m->status >> 4) & 0x07;
8cf2d239 1717 u32 core_err_cnt = (m->status >> 38) & 0x7fff;
8a2f118e
MCC
1718 u32 dimm = (m->misc >> 16) & 0x3;
1719 u32 channel = (m->misc >> 18) & 0x3;
1720 u32 syndrome = m->misc >> 32;
1721 u32 errnum = find_first_bit(&error, 32);
1722
0975c16f
MCC
1723 if (uncorrected_error) {
1724 if (ripv) {
1725 type = "FATAL";
1726 tp_event = HW_EVENT_ERR_FATAL;
1727 } else {
1728 type = "NON_FATAL";
1729 tp_event = HW_EVENT_ERR_UNCORRECTED;
1730 }
1731 } else {
1732 type = "CORRECTED";
1733 tp_event = HW_EVENT_ERR_CORRECTED;
1734 }
c5d34528 1735
a639539f 1736 switch (optypenum) {
b990538a
MCC
1737 case 0:
1738 optype = "generic undef request";
1739 break;
1740 case 1:
1741 optype = "read error";
1742 break;
1743 case 2:
1744 optype = "write error";
1745 break;
1746 case 3:
1747 optype = "addr/cmd error";
1748 break;
1749 case 4:
1750 optype = "scrubbing error";
1751 break;
1752 default:
1753 optype = "reserved";
1754 break;
a639539f
MCC
1755 }
1756
8a2f118e
MCC
1757 switch (errnum) {
1758 case 16:
1759 err = "read ECC error";
1760 break;
1761 case 17:
1762 err = "RAS ECC error";
1763 break;
1764 case 18:
1765 err = "write parity error";
1766 break;
1767 case 19:
1768 err = "redundacy loss";
1769 break;
1770 case 20:
1771 err = "reserved";
1772 break;
1773 case 21:
1774 err = "memory range error";
1775 break;
1776 case 22:
1777 err = "RTID out of range";
1778 break;
1779 case 23:
1780 err = "address parity error";
1781 break;
1782 case 24:
1783 err = "byte enable parity error";
1784 break;
1785 default:
1786 err = "unknown";
d5381642 1787 }
d5381642 1788
0975c16f
MCC
1789 /*
1790 * Call the helper to output message
1791 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1792 * only one event
1793 */
1794 if (uncorrected_error || !pvt->is_registered)
00d18339 1795 edac_mc_handle_error(tp_event, mci, core_err_cnt,
0975c16f
MCC
1796 m->addr >> PAGE_SHIFT,
1797 m->addr & ~PAGE_MASK,
1798 syndrome,
1799 channel, dimm, -1,
00d18339 1800 err, optype);
d5381642
MCC
1801}
1802
87d1d272
MCC
1803/*
1804 * i7core_check_error Retrieve and process errors reported by the
1805 * hardware. Called by the Core module.
1806 */
1807static void i7core_check_error(struct mem_ctl_info *mci)
1808{
d5381642
MCC
1809 struct i7core_pvt *pvt = mci->pvt_info;
1810 int i;
1811 unsigned count = 0;
ca9c90ba 1812 struct mce *m;
d5381642 1813
ca9c90ba
MCC
1814 /*
1815 * MCE first step: Copy all mce errors into a temporary buffer
1816 * We use a double buffering here, to reduce the risk of
25985edc 1817 * losing an error.
ca9c90ba
MCC
1818 */
1819 smp_rmb();
321ece4d
MCC
1820 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1821 % MCE_LOG_LEN;
ca9c90ba 1822 if (!count)
8a311e17 1823 goto check_ce_error;
f4742949 1824
ca9c90ba 1825 m = pvt->mce_outentry;
321ece4d
MCC
1826 if (pvt->mce_in + count > MCE_LOG_LEN) {
1827 unsigned l = MCE_LOG_LEN - pvt->mce_in;
f4742949 1828
ca9c90ba
MCC
1829 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1830 smp_wmb();
1831 pvt->mce_in = 0;
1832 count -= l;
1833 m += l;
1834 }
1835 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1836 smp_wmb();
1837 pvt->mce_in += count;
1838
1839 smp_rmb();
1840 if (pvt->mce_overrun) {
1841 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1842 pvt->mce_overrun);
1843 smp_wmb();
1844 pvt->mce_overrun = 0;
1845 }
d5381642 1846
ca9c90ba
MCC
1847 /*
1848 * MCE second step: parse errors and display
1849 */
d5381642 1850 for (i = 0; i < count; i++)
ca9c90ba 1851 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
d5381642 1852
ca9c90ba
MCC
1853 /*
1854 * Now, let's increment CE error counts
1855 */
8a311e17 1856check_ce_error:
f4742949
MCC
1857 if (!pvt->is_registered)
1858 i7core_udimm_check_mc_ecc_err(mci);
1859 else
1860 i7core_rdimm_check_mc_ecc_err(mci);
87d1d272
MCC
1861}
1862
d5381642
MCC
1863/*
1864 * i7core_mce_check_error Replicates mcelog routine to get errors
1865 * This routine simply queues mcelog errors, and
1866 * return. The error itself should be handled later
1867 * by i7core_check_error.
6e103be1
MCC
1868 * WARNING: As this routine should be called at NMI time, extra care should
1869 * be taken to avoid deadlocks, and to be as fast as possible.
d5381642 1870 */
4140c542
BP
1871static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1872 void *data)
d5381642 1873{
4140c542
BP
1874 struct mce *mce = (struct mce *)data;
1875 struct i7core_dev *i7_dev;
1876 struct mem_ctl_info *mci;
1877 struct i7core_pvt *pvt;
1878
1879 i7_dev = get_i7core_dev(mce->socketid);
1880 if (!i7_dev)
8d418eb3 1881 return NOTIFY_DONE;
4140c542
BP
1882
1883 mci = i7_dev->mci;
1884 pvt = mci->pvt_info;
d5381642 1885
8a2f118e
MCC
1886 /*
1887 * Just let mcelog handle it if the error is
1888 * outside the memory controller
1889 */
1890 if (((mce->status & 0xffff) >> 7) != 1)
4140c542 1891 return NOTIFY_DONE;
8a2f118e 1892
f237fcf2
MCC
1893 /* Bank 8 registers are the only ones that we know how to handle */
1894 if (mce->bank != 8)
4140c542 1895 return NOTIFY_DONE;
f237fcf2 1896
ca9c90ba 1897 smp_rmb();
321ece4d 1898 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
ca9c90ba
MCC
1899 smp_wmb();
1900 pvt->mce_overrun++;
4140c542 1901 return NOTIFY_DONE;
d5381642 1902 }
6e103be1
MCC
1903
1904 /* Copy memory error at the ringbuffer */
1905 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
ca9c90ba 1906 smp_wmb();
321ece4d 1907 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
d5381642 1908
c5d34528
MCC
1909 /* Handle fatal errors immediately */
1910 if (mce->mcgstatus & 1)
1911 i7core_check_error(mci);
1912
e7bf068a 1913 /* Advise mcelog that the errors were handled */
4140c542 1914 return NOTIFY_STOP;
d5381642
MCC
1915}
1916
4140c542
BP
1917static struct notifier_block i7_mce_dec = {
1918 .notifier_call = i7core_mce_check_error,
1919};
1920
535e9c78
NC
1921struct memdev_dmi_entry {
1922 u8 type;
1923 u8 length;
1924 u16 handle;
1925 u16 phys_mem_array_handle;
1926 u16 mem_err_info_handle;
1927 u16 total_width;
1928 u16 data_width;
1929 u16 size;
1930 u8 form;
1931 u8 device_set;
1932 u8 device_locator;
1933 u8 bank_locator;
1934 u8 memory_type;
1935 u16 type_detail;
1936 u16 speed;
1937 u8 manufacturer;
1938 u8 serial_number;
1939 u8 asset_tag;
1940 u8 part_number;
1941 u8 attributes;
1942 u32 extended_size;
1943 u16 conf_mem_clk_speed;
1944} __attribute__((__packed__));
1945
1946
1947/*
1948 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1949 * memory devices show the same speed, and if they don't then consider
1950 * all speeds to be invalid.
1951 */
1952static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1953{
1954 int *dclk_freq = _dclk_freq;
1955 u16 dmi_mem_clk_speed;
1956
1957 if (*dclk_freq == -1)
1958 return;
1959
1960 if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1961 struct memdev_dmi_entry *memdev_dmi_entry =
1962 (struct memdev_dmi_entry *)dh;
1963 unsigned long conf_mem_clk_speed_offset =
1964 (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1965 (unsigned long)&memdev_dmi_entry->type;
1966 unsigned long speed_offset =
1967 (unsigned long)&memdev_dmi_entry->speed -
1968 (unsigned long)&memdev_dmi_entry->type;
1969
1970 /* Check that a DIMM is present */
1971 if (memdev_dmi_entry->size == 0)
1972 return;
1973
1974 /*
1975 * Pick the configured speed if it's available, otherwise
1976 * pick the DIMM speed, or we don't have a speed.
1977 */
1978 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1979 dmi_mem_clk_speed =
1980 memdev_dmi_entry->conf_mem_clk_speed;
1981 } else if (memdev_dmi_entry->length > speed_offset) {
1982 dmi_mem_clk_speed = memdev_dmi_entry->speed;
1983 } else {
1984 *dclk_freq = -1;
1985 return;
1986 }
1987
1988 if (*dclk_freq == 0) {
1989 /* First pass, speed was 0 */
1990 if (dmi_mem_clk_speed > 0) {
1991 /* Set speed if a valid speed is read */
1992 *dclk_freq = dmi_mem_clk_speed;
1993 } else {
1994 /* Otherwise we don't have a valid speed */
1995 *dclk_freq = -1;
1996 }
1997 } else if (*dclk_freq > 0 &&
1998 *dclk_freq != dmi_mem_clk_speed) {
1999 /*
2000 * If we have a speed, check that all DIMMS are the same
2001 * speed, otherwise set the speed as invalid.
2002 */
2003 *dclk_freq = -1;
2004 }
2005 }
2006}
2007
2008/*
2009 * The default DCLK frequency is used as a fallback if we
2010 * fail to find anything reliable in the DMI. The value
2011 * is taken straight from the datasheet.
2012 */
2013#define DEFAULT_DCLK_FREQ 800
2014
2015static int get_dclk_freq(void)
2016{
2017 int dclk_freq = 0;
2018
2019 dmi_walk(decode_dclk, (void *)&dclk_freq);
2020
2021 if (dclk_freq < 1)
2022 return DEFAULT_DCLK_FREQ;
2023
2024 return dclk_freq;
2025}
2026
e8b6a127
SG
2027/*
2028 * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate
2029 * to hardware according to SCRUBINTERVAL formula
2030 * found in datasheet.
2031 */
2032static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
2033{
2034 struct i7core_pvt *pvt = mci->pvt_info;
2035 struct pci_dev *pdev;
e8b6a127
SG
2036 u32 dw_scrub;
2037 u32 dw_ssr;
2038
2039 /* Get data from the MC register, function 2 */
2040 pdev = pvt->pci_mcr[2];
2041 if (!pdev)
2042 return -ENODEV;
2043
2044 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
2045
2046 if (new_bw == 0) {
2047 /* Prepare to disable petrol scrub */
2048 dw_scrub &= ~STARTSCRUB;
2049 /* Stop the patrol scrub engine */
535e9c78
NC
2050 write_and_test(pdev, MC_SCRUB_CONTROL,
2051 dw_scrub & ~SCRUBINTERVAL_MASK);
e8b6a127
SG
2052
2053 /* Get current status of scrub rate and set bit to disable */
2054 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2055 dw_ssr &= ~SSR_MODE_MASK;
2056 dw_ssr |= SSR_MODE_DISABLE;
2057 } else {
535e9c78
NC
2058 const int cache_line_size = 64;
2059 const u32 freq_dclk_mhz = pvt->dclk_freq;
2060 unsigned long long scrub_interval;
e8b6a127
SG
2061 /*
2062 * Translate the desired scrub rate to a register value and
535e9c78 2063 * program the corresponding register value.
e8b6a127 2064 */
535e9c78 2065 scrub_interval = (unsigned long long)freq_dclk_mhz *
4fad8098
SD
2066 cache_line_size * 1000000;
2067 do_div(scrub_interval, new_bw);
535e9c78
NC
2068
2069 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
2070 return -EINVAL;
2071
2072 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
e8b6a127
SG
2073
2074 /* Start the patrol scrub engine */
2075 pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
2076 STARTSCRUB | dw_scrub);
2077
2078 /* Get current status of scrub rate and set bit to enable */
2079 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2080 dw_ssr &= ~SSR_MODE_MASK;
2081 dw_ssr |= SSR_MODE_ENABLE;
2082 }
2083 /* Disable or enable scrubbing */
2084 pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2085
2086 return new_bw;
2087}
2088
2089/*
2090 * get_sdram_scrub_rate This routine convert current scrub rate value
15ed103a 2091 * into byte/sec bandwidth according to
e8b6a127
SG
2092 * SCRUBINTERVAL formula found in datasheet.
2093 */
2094static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2095{
2096 struct i7core_pvt *pvt = mci->pvt_info;
2097 struct pci_dev *pdev;
2098 const u32 cache_line_size = 64;
535e9c78
NC
2099 const u32 freq_dclk_mhz = pvt->dclk_freq;
2100 unsigned long long scrub_rate;
e8b6a127
SG
2101 u32 scrubval;
2102
2103 /* Get data from the MC register, function 2 */
2104 pdev = pvt->pci_mcr[2];
2105 if (!pdev)
2106 return -ENODEV;
2107
2108 /* Get current scrub control data */
2109 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2110
2111 /* Mask highest 8-bits to 0 */
535e9c78 2112 scrubval &= SCRUBINTERVAL_MASK;
e8b6a127
SG
2113 if (!scrubval)
2114 return 0;
2115
2116 /* Calculate scrub rate value into byte/sec bandwidth */
535e9c78 2117 scrub_rate = (unsigned long long)freq_dclk_mhz *
4fad8098
SD
2118 1000000 * cache_line_size;
2119 do_div(scrub_rate, scrubval);
535e9c78 2120 return (int)scrub_rate;
e8b6a127
SG
2121}
2122
2123static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2124{
2125 struct i7core_pvt *pvt = mci->pvt_info;
2126 u32 pci_lock;
2127
2128 /* Unlock writes to pci registers */
2129 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2130 pci_lock &= ~0x3;
2131 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2132 pci_lock | MC_CFG_UNLOCK);
2133
2134 mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2135 mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2136}
2137
2138static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2139{
2140 struct i7core_pvt *pvt = mci->pvt_info;
2141 u32 pci_lock;
2142
2143 /* Lock writes to pci registers */
2144 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2145 pci_lock &= ~0x3;
2146 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2147 pci_lock | MC_CFG_LOCK);
2148}
2149
a3aa0a4a
HS
2150static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2151{
2152 pvt->i7core_pci = edac_pci_create_generic_ctl(
2153 &pvt->i7core_dev->pdev[0]->dev,
2154 EDAC_MOD_STR);
2155 if (unlikely(!pvt->i7core_pci))
f9902f24
MCC
2156 i7core_printk(KERN_WARNING,
2157 "Unable to setup PCI error report via EDAC\n");
a3aa0a4a
HS
2158}
2159
2160static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2161{
2162 if (likely(pvt->i7core_pci))
2163 edac_pci_release_generic_ctl(pvt->i7core_pci);
2164 else
2165 i7core_printk(KERN_ERR,
2166 "Couldn't find mem_ctl_info for socket %d\n",
2167 pvt->i7core_dev->socket);
2168 pvt->i7core_pci = NULL;
2169}
2170
1c6edbbe
HS
2171static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2172{
2173 struct mem_ctl_info *mci = i7core_dev->mci;
2174 struct i7core_pvt *pvt;
2175
2176 if (unlikely(!mci || !mci->pvt_info)) {
956b9ba1 2177 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
1c6edbbe
HS
2178
2179 i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2180 return;
2181 }
2182
2183 pvt = mci->pvt_info;
2184
956b9ba1 2185 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
1c6edbbe 2186
e8b6a127 2187 /* Disable scrubrate setting */
27100db0
MCC
2188 if (pvt->enable_scrub)
2189 disable_sdram_scrub_setting(mci);
e8b6a127 2190
1c6edbbe
HS
2191 /* Disable EDAC polling */
2192 i7core_pci_ctl_release(pvt);
2193
2194 /* Remove MC sysfs nodes */
5c4cdb5a 2195 i7core_delete_sysfs_devices(mci);
fd687502 2196 edac_mc_del_mc(mci->pdev);
1c6edbbe 2197
956b9ba1 2198 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1c6edbbe
HS
2199 kfree(mci->ctl_name);
2200 edac_mc_free(mci);
2201 i7core_dev->mci = NULL;
2202}
2203
aace4283 2204static int i7core_register_mci(struct i7core_dev *i7core_dev)
a0c36a1f
MCC
2205{
2206 struct mem_ctl_info *mci;
2207 struct i7core_pvt *pvt;
0975c16f
MCC
2208 int rc;
2209 struct edac_mc_layer layers[2];
a0c36a1f 2210
a0c36a1f 2211 /* allocate a new MC control structure */
0975c16f
MCC
2212
2213 layers[0].type = EDAC_MC_LAYER_CHANNEL;
2214 layers[0].size = NUM_CHANS;
2215 layers[0].is_virt_csrow = false;
2216 layers[1].type = EDAC_MC_LAYER_SLOT;
2217 layers[1].size = MAX_DIMMS;
2218 layers[1].is_virt_csrow = true;
ca0907b9 2219 mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
0975c16f 2220 sizeof(*pvt));
f4742949
MCC
2221 if (unlikely(!mci))
2222 return -ENOMEM;
a0c36a1f 2223
956b9ba1 2224 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
a0c36a1f 2225
a0c36a1f 2226 pvt = mci->pvt_info;
ef708b53 2227 memset(pvt, 0, sizeof(*pvt));
67166af4 2228
6d37d240
MCC
2229 /* Associates i7core_dev and mci for future usage */
2230 pvt->i7core_dev = i7core_dev;
2231 i7core_dev->mci = mci;
2232
41fcb7fe
MCC
2233 /*
2234 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2235 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2236 * memory channels
2237 */
2238 mci->mtype_cap = MEM_FLAG_DDR3;
a0c36a1f
MCC
2239 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2240 mci->edac_cap = EDAC_FLAG_NONE;
2241 mci->mod_name = "i7core_edac.c";
2242 mci->mod_ver = I7CORE_REVISION;
f4742949
MCC
2243 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
2244 i7core_dev->socket);
2245 mci->dev_name = pci_name(i7core_dev->pdev[0]);
a0c36a1f 2246 mci->ctl_page_to_phys = NULL;
1288c18f 2247
ef708b53 2248 /* Store pci devices at mci for faster access */
f4742949 2249 rc = mci_bind_devs(mci, i7core_dev);
41fcb7fe 2250 if (unlikely(rc < 0))
628c5ddf 2251 goto fail0;
ef708b53 2252
5939813b 2253
ef708b53 2254 /* Get dimm basic config */
2e5185f7 2255 get_dimm_config(mci);
5939813b 2256 /* record ptr to the generic device */
fd687502 2257 mci->pdev = &i7core_dev->pdev[0]->dev;
5939813b
HS
2258 /* Set the function pointer to an actual operation function */
2259 mci->edac_check = i7core_check_error;
ef708b53 2260
e8b6a127 2261 /* Enable scrubrate setting */
27100db0
MCC
2262 if (pvt->enable_scrub)
2263 enable_sdram_scrub_setting(mci);
e8b6a127 2264
a0c36a1f 2265 /* add this new MC control structure to EDAC's list of MCs */
b7c76151 2266 if (unlikely(edac_mc_add_mc(mci))) {
956b9ba1 2267 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
a0c36a1f
MCC
2268 /* FIXME: perhaps some code should go here that disables error
2269 * reporting if we just enabled it
2270 */
b7c76151
MCC
2271
2272 rc = -EINVAL;
628c5ddf 2273 goto fail0;
a0c36a1f 2274 }
5c4cdb5a 2275 if (i7core_create_sysfs_devices(mci)) {
956b9ba1 2276 edac_dbg(0, "MC: failed to create sysfs nodes\n");
5c4cdb5a
MCC
2277 edac_mc_del_mc(mci->pdev);
2278 rc = -EINVAL;
2279 goto fail0;
2280 }
a0c36a1f 2281
194a40fe 2282 /* Default error mask is any memory */
ef708b53 2283 pvt->inject.channel = 0;
194a40fe
MCC
2284 pvt->inject.dimm = -1;
2285 pvt->inject.rank = -1;
2286 pvt->inject.bank = -1;
2287 pvt->inject.page = -1;
2288 pvt->inject.col = -1;
2289
a3aa0a4a
HS
2290 /* allocating generic PCI control info */
2291 i7core_pci_ctl_create(pvt);
2292
535e9c78
NC
2293 /* DCLK for scrub rate setting */
2294 pvt->dclk_freq = get_dclk_freq();
2295
628c5ddf
HS
2296 return 0;
2297
628c5ddf
HS
2298fail0:
2299 kfree(mci->ctl_name);
2300 edac_mc_free(mci);
1c6edbbe 2301 i7core_dev->mci = NULL;
f4742949
MCC
2302 return rc;
2303}
2304
2305/*
2306 * i7core_probe Probe for ONE instance of device to see if it is
2307 * present.
2308 * return:
2309 * 0 for FOUND a device
2310 * < 0 for error code
2311 */
2d95d815 2312
9b3c6e85 2313static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
f4742949 2314{
40557591 2315 int rc, count = 0;
f4742949
MCC
2316 struct i7core_dev *i7core_dev;
2317
2d95d815
MCC
2318 /* get the pci devices we want to reserve for our use */
2319 mutex_lock(&i7core_edac_lock);
2320
f4742949 2321 /*
d4c27795 2322 * All memory controllers are allocated at the first pass.
f4742949 2323 */
2d95d815
MCC
2324 if (unlikely(probed >= 1)) {
2325 mutex_unlock(&i7core_edac_lock);
76a7bd81 2326 return -ENODEV;
2d95d815
MCC
2327 }
2328 probed++;
de06eeef 2329
64c10f6e 2330 rc = i7core_get_all_devices();
f4742949
MCC
2331 if (unlikely(rc < 0))
2332 goto fail0;
2333
2334 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
40557591 2335 count++;
aace4283 2336 rc = i7core_register_mci(i7core_dev);
d4c27795
MCC
2337 if (unlikely(rc < 0))
2338 goto fail1;
d5381642
MCC
2339 }
2340
40557591
MCC
2341 /*
2342 * Nehalem-EX uses a different memory controller. However, as the
2343 * memory controller is not visible on some Nehalem/Nehalem-EP, we
2344 * need to indirectly probe via a X58 PCI device. The same devices
2345 * are found on (some) Nehalem-EX. So, on those machines, the
2346 * probe routine needs to return -ENODEV, as the actual Memory
2347 * Controller registers won't be detected.
2348 */
2349 if (!count) {
2350 rc = -ENODEV;
2351 goto fail1;
2352 }
2353
2354 i7core_printk(KERN_INFO,
2355 "Driver loaded, %d memory controller(s) found.\n",
2356 count);
8f331907 2357
66607706 2358 mutex_unlock(&i7core_edac_lock);
a0c36a1f
MCC
2359 return 0;
2360
66607706 2361fail1:
88ef5ea9
MCC
2362 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2363 i7core_unregister_mci(i7core_dev);
2364
13d6e9b6 2365 i7core_put_all_devices();
66607706
MCC
2366fail0:
2367 mutex_unlock(&i7core_edac_lock);
b7c76151 2368 return rc;
a0c36a1f
MCC
2369}
2370
2371/*
2372 * i7core_remove destructor for one instance of device
2373 *
2374 */
9b3c6e85 2375static void i7core_remove(struct pci_dev *pdev)
a0c36a1f 2376{
64c10f6e 2377 struct i7core_dev *i7core_dev;
a0c36a1f 2378
956b9ba1 2379 edac_dbg(0, "\n");
a0c36a1f 2380
22e6bcbd
MCC
2381 /*
2382 * we have a trouble here: pdev value for removal will be wrong, since
2383 * it will point to the X58 register used to detect that the machine
2384 * is a Nehalem or upper design. However, due to the way several PCI
2385 * devices are grouped together to provide MC functionality, we need
2386 * to use a different method for releasing the devices
2387 */
87d1d272 2388
66607706 2389 mutex_lock(&i7core_edac_lock);
71fe0170
HS
2390
2391 if (unlikely(!probed)) {
2392 mutex_unlock(&i7core_edac_lock);
2393 return;
2394 }
2395
88ef5ea9
MCC
2396 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2397 i7core_unregister_mci(i7core_dev);
64c10f6e
HS
2398
2399 /* Release PCI resources */
2400 i7core_put_all_devices();
2401
2d95d815
MCC
2402 probed--;
2403
66607706 2404 mutex_unlock(&i7core_edac_lock);
a0c36a1f
MCC
2405}
2406
a0c36a1f
MCC
2407MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2408
2409/*
2410 * i7core_driver pci_driver structure for this module
2411 *
2412 */
2413static struct pci_driver i7core_driver = {
2414 .name = "i7core_edac",
2415 .probe = i7core_probe,
9b3c6e85 2416 .remove = i7core_remove,
a0c36a1f
MCC
2417 .id_table = i7core_pci_tbl,
2418};
2419
2420/*
2421 * i7core_init Module entry function
2422 * Try to initialize this module for its devices
2423 */
2424static int __init i7core_init(void)
2425{
2426 int pci_rc;
2427
956b9ba1 2428 edac_dbg(2, "\n");
a0c36a1f
MCC
2429
2430 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2431 opstate_init();
2432
54a08ab1
MCC
2433 if (use_pci_fixup)
2434 i7core_xeon_pci_fixup(pci_dev_table);
bc2d7245 2435
a0c36a1f
MCC
2436 pci_rc = pci_register_driver(&i7core_driver);
2437
e35fca47
CG
2438 if (pci_rc >= 0) {
2439 mce_register_decode_chain(&i7_mce_dec);
3ef288a9 2440 return 0;
e35fca47 2441 }
3ef288a9
MCC
2442
2443 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2444 pci_rc);
2445
2446 return pci_rc;
a0c36a1f
MCC
2447}
2448
2449/*
2450 * i7core_exit() Module exit function
2451 * Unregister the driver
2452 */
2453static void __exit i7core_exit(void)
2454{
956b9ba1 2455 edac_dbg(2, "\n");
a0c36a1f 2456 pci_unregister_driver(&i7core_driver);
e35fca47 2457 mce_unregister_decode_chain(&i7_mce_dec);
a0c36a1f
MCC
2458}
2459
2460module_init(i7core_init);
2461module_exit(i7core_exit);
2462
2463MODULE_LICENSE("GPL");
2464MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2465MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2466MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2467 I7CORE_REVISION);
2468
2469module_param(edac_op_state, int, 0444);
2470MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");