nohz: Fix update_ts_time_stat idle accounting
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
9411b4ef 24#include <linux/sched.h>
1da177e4
LT
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
e9d95bf7 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 32#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
33#define DEF_SAMPLING_DOWN_FACTOR (1)
34#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 38#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
32ee8c3e
DJ
41/*
42 * The polling frequency of this governor depends on the capability of
1da177e4 43 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
df8b59be 51#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 52
cef9615a
TR
53static unsigned int min_sampling_rate;
54
112124ab 55#define LATENCY_MULTIPLIER (1000)
cef9615a 56#define MIN_LATENCY_MULTIPLIER (100)
1c256245 57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 58
c4028958 59static void do_dbs_timer(struct work_struct *work);
0e625ac1
TR
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
71};
c4028958
DH
72
73/* Sampling types */
529af7a1 74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
75
76struct cpu_dbs_info_s {
ccb2fe20 77 cputime64_t prev_cpu_idle;
6b8fcd90 78 cputime64_t prev_cpu_iowait;
ccb2fe20 79 cputime64_t prev_cpu_wall;
80800913 80 cputime64_t prev_cpu_nice;
32ee8c3e 81 struct cpufreq_policy *cur_policy;
2b03f891 82 struct delayed_work work;
05ca0350
AS
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
3f78a9f7 87 unsigned int rate_mult;
529af7a1 88 int cpu;
5a75c828 89 unsigned int sample_type:1;
90 /*
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
94 */
95 struct mutex timer_mutex;
1da177e4 96};
245b2e70 97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4
LT
98
99static unsigned int dbs_enable; /* number of CPUs using this policy */
100
4ec223d0 101/*
326c86de 102 * dbs_mutex protects dbs_enable in governor start/stop.
4ec223d0 103 */
ffac80e9 104static DEFINE_MUTEX(dbs_mutex);
1da177e4 105
05ca0350 106static struct dbs_tuners {
32ee8c3e 107 unsigned int sampling_rate;
32ee8c3e 108 unsigned int up_threshold;
e9d95bf7 109 unsigned int down_differential;
32ee8c3e 110 unsigned int ignore_nice;
3f78a9f7 111 unsigned int sampling_down_factor;
05ca0350 112 unsigned int powersave_bias;
19379b11 113 unsigned int io_is_busy;
05ca0350 114} dbs_tuners_ins = {
32ee8c3e 115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
e9d95bf7 117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 118 .ignore_nice = 0,
05ca0350 119 .powersave_bias = 0,
1da177e4
LT
120};
121
80800913 122static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123 cputime64_t *wall)
dac1c1a5 124{
ea487615 125 cputime64_t idle_time;
3430502d 126 cputime64_t cur_wall_time;
ea487615 127 cputime64_t busy_time;
ccb2fe20 128
3430502d 129 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ea487615
VP
130 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 kstat_cpu(cpu).cpustat.system);
ccb2fe20 132
ea487615
VP
133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
1ca3abdb 136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
ea487615 137
3430502d 138 idle_time = cputime64_sub(cur_wall_time, busy_time);
139 if (wall)
54c9a35d 140 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
3430502d 141
54c9a35d 142 return (cputime64_t)jiffies_to_usecs(idle_time);
dac1c1a5
DJ
143}
144
80800913 145static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146{
6beea0cd 147 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
80800913 148
149 if (idle_time == -1ULL)
150 return get_cpu_idle_time_jiffy(cpu, wall);
6beea0cd
MH
151 else
152 idle_time += get_cpu_iowait_time_us(cpu, wall);
80800913 153
80800913 154 return idle_time;
155}
156
6b8fcd90
AV
157static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
158{
159 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
160
161 if (iowait_time == -1ULL)
162 return 0;
163
164 return iowait_time;
165}
166
05ca0350
AS
167/*
168 * Find right freq to be set now with powersave_bias on.
169 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
170 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
171 */
b5ecf60f
AB
172static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
173 unsigned int freq_next,
174 unsigned int relation)
05ca0350
AS
175{
176 unsigned int freq_req, freq_reduc, freq_avg;
177 unsigned int freq_hi, freq_lo;
178 unsigned int index = 0;
179 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
245b2e70
TH
180 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
181 policy->cpu);
05ca0350
AS
182
183 if (!dbs_info->freq_table) {
184 dbs_info->freq_lo = 0;
185 dbs_info->freq_lo_jiffies = 0;
186 return freq_next;
187 }
188
189 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
190 relation, &index);
191 freq_req = dbs_info->freq_table[index].frequency;
192 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
193 freq_avg = freq_req - freq_reduc;
194
195 /* Find freq bounds for freq_avg in freq_table */
196 index = 0;
197 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
198 CPUFREQ_RELATION_H, &index);
199 freq_lo = dbs_info->freq_table[index].frequency;
200 index = 0;
201 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
202 CPUFREQ_RELATION_L, &index);
203 freq_hi = dbs_info->freq_table[index].frequency;
204
205 /* Find out how long we have to be in hi and lo freqs */
206 if (freq_hi == freq_lo) {
207 dbs_info->freq_lo = 0;
208 dbs_info->freq_lo_jiffies = 0;
209 return freq_lo;
210 }
211 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
212 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
213 jiffies_hi += ((freq_hi - freq_lo) / 2);
214 jiffies_hi /= (freq_hi - freq_lo);
215 jiffies_lo = jiffies_total - jiffies_hi;
216 dbs_info->freq_lo = freq_lo;
217 dbs_info->freq_lo_jiffies = jiffies_lo;
218 dbs_info->freq_hi_jiffies = jiffies_hi;
219 return freq_hi;
220}
221
5a75c828 222static void ondemand_powersave_bias_init_cpu(int cpu)
223{
384be2b1 224 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
5a75c828 225 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
226 dbs_info->freq_lo = 0;
227}
228
05ca0350
AS
229static void ondemand_powersave_bias_init(void)
230{
231 int i;
232 for_each_online_cpu(i) {
5a75c828 233 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
234 }
235}
236
1da177e4 237/************************** sysfs interface ************************/
0e625ac1 238
0e625ac1
TR
239static ssize_t show_sampling_rate_min(struct kobject *kobj,
240 struct attribute *attr, char *buf)
1da177e4 241{
cef9615a 242 return sprintf(buf, "%u\n", min_sampling_rate);
1da177e4
LT
243}
244
6dad2a29 245define_one_global_ro(sampling_rate_min);
1da177e4
LT
246
247/* cpufreq_ondemand Governor Tunables */
248#define show_one(file_name, object) \
249static ssize_t show_##file_name \
0e625ac1 250(struct kobject *kobj, struct attribute *attr, char *buf) \
1da177e4
LT
251{ \
252 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
253}
254show_one(sampling_rate, sampling_rate);
19379b11 255show_one(io_is_busy, io_is_busy);
1da177e4 256show_one(up_threshold, up_threshold);
3f78a9f7 257show_one(sampling_down_factor, sampling_down_factor);
001893cd 258show_one(ignore_nice_load, ignore_nice);
05ca0350 259show_one(powersave_bias, powersave_bias);
1da177e4 260
0e625ac1
TR
261static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
262 const char *buf, size_t count)
1da177e4
LT
263{
264 unsigned int input;
265 int ret;
ffac80e9 266 ret = sscanf(buf, "%u", &input);
5a75c828 267 if (ret != 1)
268 return -EINVAL;
cef9615a 269 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
1da177e4
LT
270 return count;
271}
272
19379b11
AV
273static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
274 const char *buf, size_t count)
275{
276 unsigned int input;
277 int ret;
278
279 ret = sscanf(buf, "%u", &input);
280 if (ret != 1)
281 return -EINVAL;
19379b11 282 dbs_tuners_ins.io_is_busy = !!input;
19379b11
AV
283 return count;
284}
285
0e625ac1
TR
286static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
287 const char *buf, size_t count)
1da177e4
LT
288{
289 unsigned int input;
290 int ret;
ffac80e9 291 ret = sscanf(buf, "%u", &input);
1da177e4 292
32ee8c3e 293 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 294 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
295 return -EINVAL;
296 }
1da177e4 297 dbs_tuners_ins.up_threshold = input;
1da177e4
LT
298 return count;
299}
300
3f78a9f7
DN
301static ssize_t store_sampling_down_factor(struct kobject *a,
302 struct attribute *b, const char *buf, size_t count)
303{
304 unsigned int input, j;
305 int ret;
306 ret = sscanf(buf, "%u", &input);
307
308 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
309 return -EINVAL;
3f78a9f7
DN
310 dbs_tuners_ins.sampling_down_factor = input;
311
312 /* Reset down sampling multiplier in case it was active */
313 for_each_online_cpu(j) {
314 struct cpu_dbs_info_s *dbs_info;
315 dbs_info = &per_cpu(od_cpu_dbs_info, j);
316 dbs_info->rate_mult = 1;
317 }
3f78a9f7
DN
318 return count;
319}
320
0e625ac1
TR
321static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
322 const char *buf, size_t count)
3d5ee9e5
DJ
323{
324 unsigned int input;
325 int ret;
326
327 unsigned int j;
32ee8c3e 328
ffac80e9 329 ret = sscanf(buf, "%u", &input);
2b03f891 330 if (ret != 1)
3d5ee9e5
DJ
331 return -EINVAL;
332
2b03f891 333 if (input > 1)
3d5ee9e5 334 input = 1;
32ee8c3e 335
2b03f891 336 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3d5ee9e5
DJ
337 return count;
338 }
339 dbs_tuners_ins.ignore_nice = input;
340
ccb2fe20 341 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 342 for_each_online_cpu(j) {
ccb2fe20 343 struct cpu_dbs_info_s *dbs_info;
245b2e70 344 dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 345 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
346 &dbs_info->prev_cpu_wall);
1ca3abdb
VP
347 if (dbs_tuners_ins.ignore_nice)
348 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
349
3d5ee9e5 350 }
3d5ee9e5
DJ
351 return count;
352}
353
0e625ac1
TR
354static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
355 const char *buf, size_t count)
05ca0350
AS
356{
357 unsigned int input;
358 int ret;
359 ret = sscanf(buf, "%u", &input);
360
361 if (ret != 1)
362 return -EINVAL;
363
364 if (input > 1000)
365 input = 1000;
366
05ca0350
AS
367 dbs_tuners_ins.powersave_bias = input;
368 ondemand_powersave_bias_init();
05ca0350
AS
369 return count;
370}
371
6dad2a29 372define_one_global_rw(sampling_rate);
07d77759 373define_one_global_rw(io_is_busy);
6dad2a29 374define_one_global_rw(up_threshold);
3f78a9f7 375define_one_global_rw(sampling_down_factor);
6dad2a29
BP
376define_one_global_rw(ignore_nice_load);
377define_one_global_rw(powersave_bias);
1da177e4 378
2b03f891 379static struct attribute *dbs_attributes[] = {
1da177e4
LT
380 &sampling_rate_min.attr,
381 &sampling_rate.attr,
1da177e4 382 &up_threshold.attr,
3f78a9f7 383 &sampling_down_factor.attr,
001893cd 384 &ignore_nice_load.attr,
05ca0350 385 &powersave_bias.attr,
19379b11 386 &io_is_busy.attr,
1da177e4
LT
387 NULL
388};
389
390static struct attribute_group dbs_attr_group = {
391 .attrs = dbs_attributes,
392 .name = "ondemand",
393};
394
395/************************** sysfs end ************************/
396
00e299ff
MC
397static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
398{
399 if (dbs_tuners_ins.powersave_bias)
400 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
401 else if (p->cur == p->max)
402 return;
403
404 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
405 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
406}
407
2f8a835c 408static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 409{
c43aa3bd 410 unsigned int max_load_freq;
1da177e4
LT
411
412 struct cpufreq_policy *policy;
413 unsigned int j;
414
05ca0350 415 this_dbs_info->freq_lo = 0;
1da177e4 416 policy = this_dbs_info->cur_policy;
ea487615 417
32ee8c3e 418 /*
c29f1403
DJ
419 * Every sampling_rate, we check, if current idle time is less
420 * than 20% (default), then we try to increase frequency
ccb2fe20 421 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
422 * frequency which can sustain the load while keeping idle time over
423 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 424 *
32ee8c3e
DJ
425 * Any frequency increase takes it to the maximum frequency.
426 * Frequency reduction happens at minimum steps of
427 * 5% (default) of current frequency
1da177e4
LT
428 */
429
c43aa3bd 430 /* Get Absolute Load - in terms of freq */
431 max_load_freq = 0;
432
835481d9 433 for_each_cpu(j, policy->cpus) {
1da177e4 434 struct cpu_dbs_info_s *j_dbs_info;
6b8fcd90
AV
435 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
436 unsigned int idle_time, wall_time, iowait_time;
c43aa3bd 437 unsigned int load, load_freq;
438 int freq_avg;
1da177e4 439
245b2e70 440 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 441
442 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
6b8fcd90 443 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
3430502d 444
c43aa3bd 445 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
446 j_dbs_info->prev_cpu_wall);
447 j_dbs_info->prev_cpu_wall = cur_wall_time;
448
c43aa3bd 449 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
ccb2fe20 450 j_dbs_info->prev_cpu_idle);
c43aa3bd 451 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 452
6b8fcd90
AV
453 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
454 j_dbs_info->prev_cpu_iowait);
455 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
456
1ca3abdb
VP
457 if (dbs_tuners_ins.ignore_nice) {
458 cputime64_t cur_nice;
459 unsigned long cur_nice_jiffies;
460
461 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
462 j_dbs_info->prev_cpu_nice);
463 /*
464 * Assumption: nice time between sampling periods will
465 * be less than 2^32 jiffies for 32 bit sys
466 */
467 cur_nice_jiffies = (unsigned long)
468 cputime64_to_jiffies64(cur_nice);
469
470 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
471 idle_time += jiffies_to_usecs(cur_nice_jiffies);
472 }
473
6b8fcd90
AV
474 /*
475 * For the purpose of ondemand, waiting for disk IO is an
476 * indication that you're performance critical, and not that
477 * the system is actually idle. So subtract the iowait time
478 * from the cpu idle time.
479 */
480
19379b11 481 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
6b8fcd90
AV
482 idle_time -= iowait_time;
483
3430502d 484 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 485 continue;
c43aa3bd 486
487 load = 100 * (wall_time - idle_time) / wall_time;
488
489 freq_avg = __cpufreq_driver_getavg(policy, j);
490 if (freq_avg <= 0)
491 freq_avg = policy->cur;
492
493 load_freq = load * freq_avg;
494 if (load_freq > max_load_freq)
495 max_load_freq = load_freq;
1da177e4
LT
496 }
497
ccb2fe20 498 /* Check for frequency increase */
c43aa3bd 499 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
3f78a9f7
DN
500 /* If switching to max speed, apply sampling_down_factor */
501 if (policy->cur < policy->max)
502 this_dbs_info->rate_mult =
503 dbs_tuners_ins.sampling_down_factor;
00e299ff 504 dbs_freq_increase(policy, policy->max);
1da177e4
LT
505 return;
506 }
507
508 /* Check for frequency decrease */
c29f1403
DJ
509 /* if we cannot reduce the frequency anymore, break out early */
510 if (policy->cur == policy->min)
511 return;
1da177e4 512
c29f1403
DJ
513 /*
514 * The optimal frequency is the frequency that is the lowest that
515 * can support the current CPU usage without triggering the up
516 * policy. To be safe, we focus 10 points under the threshold.
517 */
e9d95bf7 518 if (max_load_freq <
519 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
520 policy->cur) {
c43aa3bd 521 unsigned int freq_next;
e9d95bf7 522 freq_next = max_load_freq /
523 (dbs_tuners_ins.up_threshold -
524 dbs_tuners_ins.down_differential);
dfde5d62 525
3f78a9f7
DN
526 /* No longer fully busy, reset rate_mult */
527 this_dbs_info->rate_mult = 1;
528
1dbf5888
NC
529 if (freq_next < policy->min)
530 freq_next = policy->min;
531
05ca0350
AS
532 if (!dbs_tuners_ins.powersave_bias) {
533 __cpufreq_driver_target(policy, freq_next,
534 CPUFREQ_RELATION_L);
535 } else {
536 int freq = powersave_bias_target(policy, freq_next,
537 CPUFREQ_RELATION_L);
538 __cpufreq_driver_target(policy, freq,
539 CPUFREQ_RELATION_L);
540 }
ccb2fe20 541 }
1da177e4
LT
542}
543
c4028958 544static void do_dbs_timer(struct work_struct *work)
32ee8c3e 545{
529af7a1
VP
546 struct cpu_dbs_info_s *dbs_info =
547 container_of(work, struct cpu_dbs_info_s, work.work);
548 unsigned int cpu = dbs_info->cpu;
549 int sample_type = dbs_info->sample_type;
550
5cb2c3bd 551 int delay;
a665df9d 552
5a75c828 553 mutex_lock(&dbs_info->timer_mutex);
56463b78 554
05ca0350 555 /* Common NORMAL_SAMPLE setup */
c4028958 556 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 557 if (!dbs_tuners_ins.powersave_bias ||
c4028958 558 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 559 dbs_check_cpu(dbs_info);
05ca0350
AS
560 if (dbs_info->freq_lo) {
561 /* Setup timer for SUB_SAMPLE */
c4028958 562 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350 563 delay = dbs_info->freq_hi_jiffies;
5cb2c3bd
VG
564 } else {
565 /* We want all CPUs to do sampling nearly on
566 * same jiffy
567 */
568 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
569 * dbs_info->rate_mult);
570
571 if (num_online_cpus() > 1)
572 delay -= jiffies % delay;
05ca0350
AS
573 }
574 } else {
575 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 576 dbs_info->freq_lo, CPUFREQ_RELATION_H);
5cb2c3bd 577 delay = dbs_info->freq_lo_jiffies;
05ca0350 578 }
57df5573 579 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
5a75c828 580 mutex_unlock(&dbs_info->timer_mutex);
32ee8c3e 581}
1da177e4 582
529af7a1 583static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 584{
1ce28d6b
AS
585 /* We want all CPUs to do sampling nearly on same jiffy */
586 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
a665df9d
JF
587
588 if (num_online_cpus() > 1)
589 delay -= jiffies % delay;
2f8a835c 590
c4028958 591 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
28287033 592 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
57df5573 593 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
1da177e4
LT
594}
595
2cd7cbdf 596static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 597{
b14893a6 598 cancel_delayed_work_sync(&dbs_info->work);
1da177e4
LT
599}
600
19379b11
AV
601/*
602 * Not all CPUs want IO time to be accounted as busy; this dependson how
603 * efficient idling at a higher frequency/voltage is.
604 * Pavel Machek says this is not so for various generations of AMD and old
605 * Intel systems.
606 * Mike Chan (androidlcom) calis this is also not true for ARM.
607 * Because of this, whitelist specific known (series) of CPUs by default, and
608 * leave all others up to the user.
609 */
610static int should_io_be_busy(void)
611{
612#if defined(CONFIG_X86)
613 /*
614 * For Intel, Core 2 (model 15) andl later have an efficient idle.
615 */
616 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
617 boot_cpu_data.x86 == 6 &&
618 boot_cpu_data.x86_model >= 15)
619 return 1;
620#endif
621 return 0;
622}
623
1da177e4
LT
624static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
625 unsigned int event)
626{
627 unsigned int cpu = policy->cpu;
628 struct cpu_dbs_info_s *this_dbs_info;
629 unsigned int j;
914f7c31 630 int rc;
1da177e4 631
245b2e70 632 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
1da177e4
LT
633
634 switch (event) {
635 case CPUFREQ_GOV_START:
ffac80e9 636 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
637 return -EINVAL;
638
3fc54d37 639 mutex_lock(&dbs_mutex);
914f7c31 640
5a75c828 641 dbs_enable++;
835481d9 642 for_each_cpu(j, policy->cpus) {
1da177e4 643 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 644 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
1da177e4 645 j_dbs_info->cur_policy = policy;
32ee8c3e 646
3430502d 647 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
648 &j_dbs_info->prev_cpu_wall);
1ca3abdb
VP
649 if (dbs_tuners_ins.ignore_nice) {
650 j_dbs_info->prev_cpu_nice =
651 kstat_cpu(j).cpustat.nice;
652 }
1da177e4 653 }
529af7a1 654 this_dbs_info->cpu = cpu;
3f78a9f7 655 this_dbs_info->rate_mult = 1;
5a75c828 656 ondemand_powersave_bias_init_cpu(cpu);
1da177e4
LT
657 /*
658 * Start the timerschedule work, when this governor
659 * is used for first time
660 */
661 if (dbs_enable == 1) {
662 unsigned int latency;
0e625ac1
TR
663
664 rc = sysfs_create_group(cpufreq_global_kobject,
665 &dbs_attr_group);
666 if (rc) {
667 mutex_unlock(&dbs_mutex);
668 return rc;
669 }
670
1da177e4 671 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
672 latency = policy->cpuinfo.transition_latency / 1000;
673 if (latency == 0)
674 latency = 1;
cef9615a
TR
675 /* Bring kernel and HW constraints together */
676 min_sampling_rate = max(min_sampling_rate,
677 MIN_LATENCY_MULTIPLIER * latency);
678 dbs_tuners_ins.sampling_rate =
679 max(min_sampling_rate,
680 latency * LATENCY_MULTIPLIER);
19379b11 681 dbs_tuners_ins.io_is_busy = should_io_be_busy();
1da177e4 682 }
3fc54d37 683 mutex_unlock(&dbs_mutex);
7d26e2d5 684
0e625ac1 685 mutex_init(&this_dbs_info->timer_mutex);
7d26e2d5 686 dbs_timer_init(this_dbs_info);
1da177e4
LT
687 break;
688
689 case CPUFREQ_GOV_STOP:
2cd7cbdf 690 dbs_timer_exit(this_dbs_info);
7d26e2d5 691
692 mutex_lock(&dbs_mutex);
5a75c828 693 mutex_destroy(&this_dbs_info->timer_mutex);
1da177e4 694 dbs_enable--;
3fc54d37 695 mutex_unlock(&dbs_mutex);
0e625ac1
TR
696 if (!dbs_enable)
697 sysfs_remove_group(cpufreq_global_kobject,
698 &dbs_attr_group);
1da177e4
LT
699
700 break;
701
702 case CPUFREQ_GOV_LIMITS:
5a75c828 703 mutex_lock(&this_dbs_info->timer_mutex);
1da177e4 704 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 705 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 706 policy->max, CPUFREQ_RELATION_H);
1da177e4 707 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 708 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 709 policy->min, CPUFREQ_RELATION_L);
5a75c828 710 mutex_unlock(&this_dbs_info->timer_mutex);
1da177e4
LT
711 break;
712 }
713 return 0;
714}
715
1da177e4
LT
716static int __init cpufreq_gov_dbs_init(void)
717{
80800913 718 cputime64_t wall;
4f6e6b9f
AR
719 u64 idle_time;
720 int cpu = get_cpu();
80800913 721
4f6e6b9f
AR
722 idle_time = get_cpu_idle_time_us(cpu, &wall);
723 put_cpu();
80800913 724 if (idle_time != -1ULL) {
725 /* Idle micro accounting is supported. Use finer thresholds */
726 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
727 dbs_tuners_ins.down_differential =
728 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a
TR
729 /*
730 * In no_hz/micro accounting case we set the minimum frequency
731 * not depending on HZ, but fixed (very low). The deferred
732 * timer might skip some samples if idle/sleeping as needed.
733 */
734 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
735 } else {
736 /* For correct statistics, we need 10 ticks for each measure */
737 min_sampling_rate =
738 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
80800913 739 }
888a794c 740
57df5573 741 return cpufreq_register_governor(&cpufreq_gov_ondemand);
1da177e4
LT
742}
743
744static void __exit cpufreq_gov_dbs_exit(void)
745{
1c256245 746 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
1da177e4
LT
747}
748
749
ffac80e9
VP
750MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
751MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
752MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 753 "Low Latency Frequency Transition capable processors");
ffac80e9 754MODULE_LICENSE("GPL");
1da177e4 755
6915719b
JW
756#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
757fs_initcall(cpufreq_gov_dbs_init);
758#else
1da177e4 759module_init(cpufreq_gov_dbs_init);
6915719b 760#endif
1da177e4 761module_exit(cpufreq_gov_dbs_exit);