Merge remote-tracking branch 'asoc/fix/da7213' into asoc-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / atm / fore200e.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 A FORE Systems 200E-series driver for ATM on Linux.
3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7 This driver simultaneously supports PCA-200E and SBA-200E adapters
8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23*/
24
25
1da177e4
LT
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
1da177e4
LT
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
e92481f9 39#include <linux/firmware.h>
1da177e4
LT
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <asm/uaccess.h>
60063497 47#include <linux/atomic.h>
1da177e4 48
e92481f9 49#ifdef CONFIG_SBUS
826b6cfc
DM
50#include <linux/of.h>
51#include <linux/of_device.h>
1da177e4 52#include <asm/idprom.h>
1da177e4
LT
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82 printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...) do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
94
30dfe2c0 95#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
1da177e4
LT
96
97#if 1
98#define ASSERT(expr) if (!(expr)) { \
99 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
5a346a10
HH
100 __func__, __LINE__, #expr); \
101 panic(FORE200E "%s", __func__); \
1da177e4
LT
102 }
103#else
104#define ASSERT(expr) do {} while (0)
105#endif
106
107
108static const struct atmdev_ops fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120 { BUFFER_S1_NBR, BUFFER_L1_NBR },
121 { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139 switch(aal) {
140 case FORE200E_AAL0: return ATM_AAL0;
141 case FORE200E_AAL34: return ATM_AAL34;
142 case FORE200E_AAL5: return ATM_AAL5;
143 }
144
145 return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153 switch(aal) {
154 case ATM_AAL0: return FORE200E_AAL0;
155 case ATM_AAL34: return FORE200E_AAL34;
156 case ATM_AAL1:
157 case ATM_AAL2:
158 case ATM_AAL5: return FORE200E_AAL5;
159 }
160
161 return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
1da177e4
LT
168 static char str[8];
169 sprintf(str, "%d", irq);
170 return str;
1da177e4
LT
171}
172
173
1da177e4
LT
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175 between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180 unsigned long offset = 0;
181
182 if (alignment <= sizeof(int))
183 alignment = 0;
184
185 chunk->alloc_size = size + alignment;
186 chunk->align_size = size;
187 chunk->direction = direction;
188
1f8a5fb8 189 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
1da177e4
LT
190 if (chunk->alloc_addr == NULL)
191 return -ENOMEM;
192
193 if (alignment > 0)
194 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196 chunk->align_addr = chunk->alloc_addr + offset;
197
198 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200 return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
1f8a5fb8 211 kfree(chunk->alloc_addr);
1da177e4
LT
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219 while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227 int ok;
228
229 mb();
230 do {
231 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 break;
233
234 } while (time_before(jiffies, timeout));
235
236#if 1
237 if (!ok) {
238 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 *addr, val);
240 }
241#endif
242
243 return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251 int ok;
252
253 do {
254 if ((ok = (fore200e->bus->read(addr) == val)))
255 break;
256
257 } while (time_before(jiffies, timeout));
258
259#if 1
260 if (!ok) {
261 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 fore200e->bus->read(addr), val);
263 }
264#endif
265
266 return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273 int scheme, magn, nbr;
274 struct buffer* buffer;
275
276 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283 struct chunk* data = &buffer[ nbr ].data;
284
285 if (data->alloc_addr != NULL)
286 fore200e_chunk_free(fore200e, data);
287 }
288 }
289 }
290 }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297 int scheme, magn;
298
299 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
303 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305 if (status->alloc_addr)
306 fore200e->bus->dma_chunk_free(fore200e, status);
307
308 if (rbd_block->alloc_addr)
309 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 }
311 }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318 int ok;
319
320 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324 fore200e->bus->reset(fore200e);
325
326 if (diag) {
327 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 if (ok == 0) {
329
330 printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 return -ENODEV;
332 }
333
334 printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336 fore200e->state = FORE200E_STATE_RESET;
337 }
338
339 return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 fore200e->name, fore200e->phys_base,
348 fore200e_irq_itoa(fore200e->irq));
349
350 if (fore200e->state > FORE200E_STATE_RESET) {
351 /* first, reset the board to prevent further interrupts or data transfers */
352 fore200e_reset(fore200e, 0);
353 }
354
355 /* then, release all allocated resources */
356 switch(fore200e->state) {
357
358 case FORE200E_STATE_COMPLETE:
a2c1aa54 359 kfree(fore200e->stats);
1da177e4
LT
360
361 case FORE200E_STATE_IRQ:
362 free_irq(fore200e->irq, fore200e->atm_dev);
363
364 case FORE200E_STATE_ALLOC_BUF:
365 fore200e_free_rx_buf(fore200e);
366
367 case FORE200E_STATE_INIT_BSQ:
368 fore200e_uninit_bs_queue(fore200e);
369
370 case FORE200E_STATE_INIT_RXQ:
371 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374 case FORE200E_STATE_INIT_TXQ:
375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378 case FORE200E_STATE_INIT_CMDQ:
379 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381 case FORE200E_STATE_INITIALIZE:
382 /* nothing to do for that state */
383
384 case FORE200E_STATE_START_FW:
385 /* nothing to do for that state */
386
1da177e4
LT
387 case FORE200E_STATE_RESET:
388 /* nothing to do for that state */
389
390 case FORE200E_STATE_MAP:
391 fore200e->bus->unmap(fore200e);
392
393 case FORE200E_STATE_CONFIGURE:
394 /* nothing to do for that state */
395
396 case FORE200E_STATE_REGISTER:
397 /* XXX shouldn't we *start* by deregistering the device? */
398 atm_dev_deregister(fore200e->atm_dev);
399
400 case FORE200E_STATE_BLANK:
401 /* nothing to do for that state */
402 break;
403 }
404}
405
406
e92481f9 407#ifdef CONFIG_PCI
1da177e4
LT
408
409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410{
411 /* on big-endian hosts, the board is configured to convert
412 the endianess of slave RAM accesses */
413 return le32_to_cpu(readl(addr));
414}
415
416
417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418{
419 /* on big-endian hosts, the board is configured to convert
420 the endianess of slave RAM accesses */
421 writel(cpu_to_le32(val), addr);
422}
423
424
425static u32
426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427{
428 u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
429
430 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
431 virt_addr, size, direction, dma_addr);
432
433 return dma_addr;
434}
435
436
437static void
438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439{
440 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441 dma_addr, size, direction);
442
443 pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
444}
445
446
447static void
448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449{
450 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452 pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
453}
454
455static void
456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460 pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
461}
462
463
464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467static int
468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469 int size, int nbr, int alignment)
470{
471 /* returned chunks are page-aligned */
472 chunk->alloc_size = size * nbr;
473 chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
474 chunk->alloc_size,
475 &chunk->dma_addr);
476
477 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
478 return -ENOMEM;
479
480 chunk->align_addr = chunk->alloc_addr;
481
482 return 0;
483}
484
485
486/* free a DMA consistent chunk of memory */
487
488static void
489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
490{
491 pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
492 chunk->alloc_size,
493 chunk->alloc_addr,
494 chunk->dma_addr);
495}
496
497
498static int
499fore200e_pca_irq_check(struct fore200e* fore200e)
500{
501 /* this is a 1 bit register */
502 int irq_posted = readl(fore200e->regs.pca.psr);
503
504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
505 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
506 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
507 }
508#endif
509
510 return irq_posted;
511}
512
513
514static void
515fore200e_pca_irq_ack(struct fore200e* fore200e)
516{
517 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
518}
519
520
521static void
522fore200e_pca_reset(struct fore200e* fore200e)
523{
524 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
525 fore200e_spin(10);
526 writel(0, fore200e->regs.pca.hcr);
527}
528
529
6c44512d 530static int fore200e_pca_map(struct fore200e* fore200e)
1da177e4
LT
531{
532 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
533
534 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
535
536 if (fore200e->virt_base == NULL) {
537 printk(FORE200E "can't map device %s\n", fore200e->name);
538 return -EFAULT;
539 }
540
541 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
542
543 /* gain access to the PCA specific registers */
544 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
545 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
546 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
547
548 fore200e->state = FORE200E_STATE_MAP;
549 return 0;
550}
551
552
553static void
554fore200e_pca_unmap(struct fore200e* fore200e)
555{
556 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
557
558 if (fore200e->virt_base != NULL)
559 iounmap(fore200e->virt_base);
560}
561
562
6c44512d 563static int fore200e_pca_configure(struct fore200e *fore200e)
1da177e4
LT
564{
565 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
566 u8 master_ctrl, latency;
567
568 DPRINTK(2, "device %s being configured\n", fore200e->name);
569
570 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
571 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
572 return -EIO;
573 }
574
575 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
576
577 master_ctrl = master_ctrl
578#if defined(__BIG_ENDIAN)
579 /* request the PCA board to convert the endianess of slave RAM accesses */
580 | PCA200E_CTRL_CONVERT_ENDIAN
581#endif
582#if 0
583 | PCA200E_CTRL_DIS_CACHE_RD
584 | PCA200E_CTRL_DIS_WRT_INVAL
585 | PCA200E_CTRL_ENA_CONT_REQ_MODE
586 | PCA200E_CTRL_2_CACHE_WRT_INVAL
587#endif
588 | PCA200E_CTRL_LARGE_PCI_BURSTS;
589
590 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
591
592 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
593 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
594 this may impact the performances of other PCI devices on the same bus, though */
595 latency = 192;
596 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
597
598 fore200e->state = FORE200E_STATE_CONFIGURE;
599 return 0;
600}
601
602
603static int __init
604fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
605{
606 struct host_cmdq* cmdq = &fore200e->host_cmdq;
607 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
608 struct prom_opcode opcode;
609 int ok;
610 u32 prom_dma;
611
612 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
613
614 opcode.opcode = OPCODE_GET_PROM;
615 opcode.pad = 0;
616
617 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
618
619 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
620
621 *entry->status = STATUS_PENDING;
622
623 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
624
625 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
626
627 *entry->status = STATUS_FREE;
628
629 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
630
631 if (ok == 0) {
632 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
633 return -EIO;
634 }
635
636#if defined(__BIG_ENDIAN)
637
638#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
639
640 /* MAC address is stored as little-endian */
641 swap_here(&prom->mac_addr[0]);
642 swap_here(&prom->mac_addr[4]);
643#endif
644
645 return 0;
646}
647
648
649static int
650fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
651{
652 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
653
654 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
655 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
656}
657
e92481f9 658#endif /* CONFIG_PCI */
1da177e4
LT
659
660
e92481f9 661#ifdef CONFIG_SBUS
1da177e4 662
826b6cfc 663static u32 fore200e_sba_read(volatile u32 __iomem *addr)
1da177e4
LT
664{
665 return sbus_readl(addr);
666}
667
826b6cfc 668static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
1da177e4
LT
669{
670 sbus_writel(val, addr);
671}
672
826b6cfc 673static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
1da177e4 674{
2dc11581 675 struct platform_device *op = fore200e->bus_dev;
826b6cfc 676 u32 dma_addr;
1da177e4 677
826b6cfc
DM
678 dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
679
680 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
681 virt_addr, size, direction, dma_addr);
1da177e4 682
826b6cfc 683 return dma_addr;
1da177e4
LT
684}
685
826b6cfc 686static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
1da177e4 687{
2dc11581 688 struct platform_device *op = fore200e->bus_dev;
7a715f46 689
826b6cfc
DM
690 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
691 dma_addr, size, direction);
1da177e4 692
826b6cfc 693 dma_unmap_single(&op->dev, dma_addr, size, direction);
1da177e4
LT
694}
695
826b6cfc 696static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
1da177e4 697{
2dc11581 698 struct platform_device *op = fore200e->bus_dev;
7a715f46 699
826b6cfc 700 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
1da177e4 701
826b6cfc 702 dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
1da177e4
LT
703}
704
826b6cfc 705static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
1da177e4 706{
2dc11581 707 struct platform_device *op = fore200e->bus_dev;
7a715f46 708
826b6cfc 709 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
1da177e4 710
826b6cfc 711 dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
1da177e4
LT
712}
713
826b6cfc
DM
714/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
715 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
716 */
717static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
718 int size, int nbr, int alignment)
1da177e4 719{
2dc11581 720 struct platform_device *op = fore200e->bus_dev;
7a715f46 721
826b6cfc 722 chunk->alloc_size = chunk->align_size = size * nbr;
1da177e4 723
826b6cfc
DM
724 /* returned chunks are page-aligned */
725 chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
726 &chunk->dma_addr, GFP_ATOMIC);
1da177e4 727
826b6cfc
DM
728 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
729 return -ENOMEM;
1da177e4 730
826b6cfc 731 chunk->align_addr = chunk->alloc_addr;
1da177e4 732
826b6cfc 733 return 0;
1da177e4
LT
734}
735
1da177e4 736/* free a DVMA consistent chunk of memory */
826b6cfc 737static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
1da177e4 738{
2dc11581 739 struct platform_device *op = fore200e->bus_dev;
7a715f46 740
826b6cfc
DM
741 dma_free_coherent(&op->dev, chunk->alloc_size,
742 chunk->alloc_addr, chunk->dma_addr);
1da177e4
LT
743}
744
826b6cfc 745static void fore200e_sba_irq_enable(struct fore200e *fore200e)
1da177e4 746{
826b6cfc
DM
747 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
748 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
1da177e4
LT
749}
750
826b6cfc 751static int fore200e_sba_irq_check(struct fore200e *fore200e)
1da177e4 752{
826b6cfc 753 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
1da177e4
LT
754}
755
826b6cfc 756static void fore200e_sba_irq_ack(struct fore200e *fore200e)
1da177e4 757{
826b6cfc
DM
758 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
759 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
1da177e4
LT
760}
761
826b6cfc 762static void fore200e_sba_reset(struct fore200e *fore200e)
1da177e4 763{
826b6cfc
DM
764 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
765 fore200e_spin(10);
766 fore200e->bus->write(0, fore200e->regs.sba.hcr);
1da177e4
LT
767}
768
826b6cfc 769static int __init fore200e_sba_map(struct fore200e *fore200e)
1da177e4 770{
2dc11581 771 struct platform_device *op = fore200e->bus_dev;
826b6cfc 772 unsigned int bursts;
1da177e4 773
826b6cfc
DM
774 /* gain access to the SBA specific registers */
775 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
776 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
777 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
778 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
1da177e4 779
826b6cfc
DM
780 if (!fore200e->virt_base) {
781 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
782 return -EFAULT;
783 }
1da177e4 784
826b6cfc 785 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
1da177e4 786
826b6cfc 787 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
1da177e4 788
826b6cfc 789 /* get the supported DVMA burst sizes */
61c7a080 790 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
1da177e4 791
826b6cfc
DM
792 if (sbus_can_dma_64bit())
793 sbus_set_sbus64(&op->dev, bursts);
1da177e4 794
826b6cfc
DM
795 fore200e->state = FORE200E_STATE_MAP;
796 return 0;
1da177e4
LT
797}
798
826b6cfc 799static void fore200e_sba_unmap(struct fore200e *fore200e)
1da177e4 800{
2dc11581 801 struct platform_device *op = fore200e->bus_dev;
1da177e4 802
826b6cfc
DM
803 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
804 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
805 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
806 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
807}
1da177e4 808
826b6cfc 809static int __init fore200e_sba_configure(struct fore200e *fore200e)
1da177e4 810{
826b6cfc
DM
811 fore200e->state = FORE200E_STATE_CONFIGURE;
812 return 0;
1da177e4
LT
813}
814
826b6cfc 815static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
1da177e4 816{
2dc11581 817 struct platform_device *op = fore200e->bus_dev;
826b6cfc
DM
818 const u8 *prop;
819 int len;
1da177e4 820
61c7a080 821 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
826b6cfc
DM
822 if (!prop)
823 return -ENODEV;
824 memcpy(&prom->mac_addr[4], prop, 4);
1da177e4 825
61c7a080 826 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
826b6cfc
DM
827 if (!prop)
828 return -ENODEV;
829 memcpy(&prom->mac_addr[2], prop, 4);
1da177e4 830
61c7a080
GL
831 prom->serial_number = of_getintprop_default(op->dev.of_node,
832 "serialnumber", 0);
833 prom->hw_revision = of_getintprop_default(op->dev.of_node,
834 "promversion", 0);
1da177e4 835
826b6cfc 836 return 0;
1da177e4
LT
837}
838
826b6cfc 839static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
1da177e4 840{
2dc11581 841 struct platform_device *op = fore200e->bus_dev;
826b6cfc 842 const struct linux_prom_registers *regs;
1da177e4 843
61c7a080 844 regs = of_get_property(op->dev.of_node, "reg", NULL);
1da177e4 845
826b6cfc 846 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n",
61c7a080 847 (regs ? regs->which_io : 0), op->dev.of_node->name);
1da177e4 848}
e92481f9 849#endif /* CONFIG_SBUS */
1da177e4
LT
850
851
852static void
853fore200e_tx_irq(struct fore200e* fore200e)
854{
855 struct host_txq* txq = &fore200e->host_txq;
856 struct host_txq_entry* entry;
857 struct atm_vcc* vcc;
858 struct fore200e_vc_map* vc_map;
859
860 if (fore200e->host_txq.txing == 0)
861 return;
862
863 for (;;) {
864
865 entry = &txq->host_entry[ txq->tail ];
866
867 if ((*entry->status & STATUS_COMPLETE) == 0) {
868 break;
869 }
870
871 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
872 entry, txq->tail, entry->vc_map, entry->skb);
873
874 /* free copy of misaligned data */
a2c1aa54 875 kfree(entry->data);
1da177e4
LT
876
877 /* remove DMA mapping */
878 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
879 DMA_TO_DEVICE);
880
881 vc_map = entry->vc_map;
882
883 /* vcc closed since the time the entry was submitted for tx? */
884 if ((vc_map->vcc == NULL) ||
885 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
886
887 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
888 fore200e->atm_dev->number);
889
890 dev_kfree_skb_any(entry->skb);
891 }
892 else {
893 ASSERT(vc_map->vcc);
894
895 /* vcc closed then immediately re-opened? */
896 if (vc_map->incarn != entry->incarn) {
897
898 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
899 if the same vcc is immediately re-opened, those pending PDUs must
900 not be popped after the completion of their emission, as they refer
901 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
902 would be decremented by the size of the (unrelated) skb, possibly
903 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
904 we thus bind the tx entry to the current incarnation of the vcc
905 when the entry is submitted for tx. When the tx later completes,
906 if the incarnation number of the tx entry does not match the one
907 of the vcc, then this implies that the vcc has been closed then re-opened.
908 we thus just drop the skb here. */
909
910 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
911 fore200e->atm_dev->number);
912
913 dev_kfree_skb_any(entry->skb);
914 }
915 else {
916 vcc = vc_map->vcc;
917 ASSERT(vcc);
918
919 /* notify tx completion */
920 if (vcc->pop) {
921 vcc->pop(vcc, entry->skb);
922 }
923 else {
924 dev_kfree_skb_any(entry->skb);
925 }
926#if 1
927 /* race fixed by the above incarnation mechanism, but... */
928 if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
929 atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
930 }
931#endif
932 /* check error condition */
933 if (*entry->status & STATUS_ERROR)
934 atomic_inc(&vcc->stats->tx_err);
935 else
936 atomic_inc(&vcc->stats->tx);
937 }
938 }
939
940 *entry->status = STATUS_FREE;
941
942 fore200e->host_txq.txing--;
943
944 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
945 }
946}
947
948
949#ifdef FORE200E_BSQ_DEBUG
950int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
951{
952 struct buffer* buffer;
953 int count = 0;
954
955 buffer = bsq->freebuf;
956 while (buffer) {
957
958 if (buffer->supplied) {
959 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
960 where, scheme, magn, buffer->index);
961 }
962
963 if (buffer->magn != magn) {
964 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
965 where, scheme, magn, buffer->index, buffer->magn);
966 }
967
968 if (buffer->scheme != scheme) {
969 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
970 where, scheme, magn, buffer->index, buffer->scheme);
971 }
972
973 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
974 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
975 where, scheme, magn, buffer->index);
976 }
977
978 count++;
979 buffer = buffer->next;
980 }
981
982 if (count != bsq->freebuf_count) {
983 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
984 where, scheme, magn, count, bsq->freebuf_count);
985 }
986 return 0;
987}
988#endif
989
990
991static void
992fore200e_supply(struct fore200e* fore200e)
993{
994 int scheme, magn, i;
995
996 struct host_bsq* bsq;
997 struct host_bsq_entry* entry;
998 struct buffer* buffer;
999
1000 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1001 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1002
1003 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1004
1005#ifdef FORE200E_BSQ_DEBUG
1006 bsq_audit(1, bsq, scheme, magn);
1007#endif
1008 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1009
1010 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1011 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1012
1013 entry = &bsq->host_entry[ bsq->head ];
1014
1015 for (i = 0; i < RBD_BLK_SIZE; i++) {
1016
1017 /* take the first buffer in the free buffer list */
1018 buffer = bsq->freebuf;
1019 if (!buffer) {
1020 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1021 scheme, magn, bsq->freebuf_count);
1022 return;
1023 }
1024 bsq->freebuf = buffer->next;
1025
1026#ifdef FORE200E_BSQ_DEBUG
1027 if (buffer->supplied)
1028 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1029 scheme, magn, buffer->index);
1030 buffer->supplied = 1;
1031#endif
1032 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1033 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
1034 }
1035
1036 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1037
1038 /* decrease accordingly the number of free rx buffers */
1039 bsq->freebuf_count -= RBD_BLK_SIZE;
1040
1041 *entry->status = STATUS_PENDING;
1042 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1043 }
1044 }
1045 }
1046}
1047
1048
1049static int
1050fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1051{
1052 struct sk_buff* skb;
1053 struct buffer* buffer;
1054 struct fore200e_vcc* fore200e_vcc;
1055 int i, pdu_len = 0;
1056#ifdef FORE200E_52BYTE_AAL0_SDU
1057 u32 cell_header = 0;
1058#endif
1059
1060 ASSERT(vcc);
1061
1062 fore200e_vcc = FORE200E_VCC(vcc);
1063 ASSERT(fore200e_vcc);
1064
1065#ifdef FORE200E_52BYTE_AAL0_SDU
1066 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1067
1068 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1069 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1070 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1071 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1072 rpd->atm_header.clp;
1073 pdu_len = 4;
1074 }
1075#endif
1076
1077 /* compute total PDU length */
1078 for (i = 0; i < rpd->nseg; i++)
1079 pdu_len += rpd->rsd[ i ].length;
1080
1081 skb = alloc_skb(pdu_len, GFP_ATOMIC);
1082 if (skb == NULL) {
1083 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1084
1085 atomic_inc(&vcc->stats->rx_drop);
1086 return -ENOMEM;
1087 }
1088
a61bbcf2 1089 __net_timestamp(skb);
1da177e4
LT
1090
1091#ifdef FORE200E_52BYTE_AAL0_SDU
1092 if (cell_header) {
1093 *((u32*)skb_put(skb, 4)) = cell_header;
1094 }
1095#endif
1096
1097 /* reassemble segments */
1098 for (i = 0; i < rpd->nseg; i++) {
1099
1100 /* rebuild rx buffer address from rsd handle */
1101 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1102
1103 /* Make device DMA transfer visible to CPU. */
1104 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1105
1106 memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1107
1108 /* Now let the device get at it again. */
1109 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1110 }
1111
1112 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1113
1114 if (pdu_len < fore200e_vcc->rx_min_pdu)
1115 fore200e_vcc->rx_min_pdu = pdu_len;
1116 if (pdu_len > fore200e_vcc->rx_max_pdu)
1117 fore200e_vcc->rx_max_pdu = pdu_len;
1118 fore200e_vcc->rx_pdu++;
1119
1120 /* push PDU */
1121 if (atm_charge(vcc, skb->truesize) == 0) {
1122
1123 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1124 vcc->itf, vcc->vpi, vcc->vci);
1125
1126 dev_kfree_skb_any(skb);
1127
1128 atomic_inc(&vcc->stats->rx_drop);
1129 return -ENOMEM;
1130 }
1131
1132 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1133
1134 vcc->push(vcc, skb);
1135 atomic_inc(&vcc->stats->rx);
1136
1137 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1138
1139 return 0;
1140}
1141
1142
1143static void
1144fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145{
1146 struct host_bsq* bsq;
1147 struct buffer* buffer;
1148 int i;
1149
1150 for (i = 0; i < rpd->nseg; i++) {
1151
1152 /* rebuild rx buffer address from rsd handle */
1153 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157#ifdef FORE200E_BSQ_DEBUG
1158 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160 if (buffer->supplied == 0)
1161 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162 buffer->scheme, buffer->magn, buffer->index);
1163 buffer->supplied = 0;
1164#endif
1165
1166 /* re-insert the buffer into the free buffer list */
1167 buffer->next = bsq->freebuf;
1168 bsq->freebuf = buffer;
1169
1170 /* then increment the number of free rx buffers */
1171 bsq->freebuf_count++;
1172 }
1173}
1174
1175
1176static void
1177fore200e_rx_irq(struct fore200e* fore200e)
1178{
1179 struct host_rxq* rxq = &fore200e->host_rxq;
1180 struct host_rxq_entry* entry;
1181 struct atm_vcc* vcc;
1182 struct fore200e_vc_map* vc_map;
1183
1184 for (;;) {
1185
1186 entry = &rxq->host_entry[ rxq->head ];
1187
1188 /* no more received PDUs */
1189 if ((*entry->status & STATUS_COMPLETE) == 0)
1190 break;
1191
1192 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194 if ((vc_map->vcc == NULL) ||
1195 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198 fore200e->atm_dev->number,
1199 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200 }
1201 else {
1202 vcc = vc_map->vcc;
1203 ASSERT(vcc);
1204
1205 if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208 }
1209 else {
1210 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211 fore200e->atm_dev->number,
1212 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213 atomic_inc(&vcc->stats->rx_err);
1214 }
1215 }
1216
1217 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219 fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221 /* rewrite the rpd address to ack the received PDU */
1222 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223 *entry->status = STATUS_FREE;
1224
1225 fore200e_supply(fore200e);
1226 }
1227}
1228
1229
1230#ifndef FORE200E_USE_TASKLET
1231static void
1232fore200e_irq(struct fore200e* fore200e)
1233{
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&fore200e->q_lock, flags);
1237 fore200e_rx_irq(fore200e);
1238 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240 spin_lock_irqsave(&fore200e->q_lock, flags);
1241 fore200e_tx_irq(fore200e);
1242 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243}
1244#endif
1245
1246
1247static irqreturn_t
7d12e780 1248fore200e_interrupt(int irq, void* dev)
1da177e4
LT
1249{
1250 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252 if (fore200e->bus->irq_check(fore200e) == 0) {
1253
1254 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255 return IRQ_NONE;
1256 }
1257 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259#ifdef FORE200E_USE_TASKLET
1260 tasklet_schedule(&fore200e->tx_tasklet);
1261 tasklet_schedule(&fore200e->rx_tasklet);
1262#else
1263 fore200e_irq(fore200e);
1264#endif
1265
1266 fore200e->bus->irq_ack(fore200e);
1267 return IRQ_HANDLED;
1268}
1269
1270
1271#ifdef FORE200E_USE_TASKLET
1272static void
1273fore200e_tx_tasklet(unsigned long data)
1274{
1275 struct fore200e* fore200e = (struct fore200e*) data;
1276 unsigned long flags;
1277
1278 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280 spin_lock_irqsave(&fore200e->q_lock, flags);
1281 fore200e_tx_irq(fore200e);
1282 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283}
1284
1285
1286static void
1287fore200e_rx_tasklet(unsigned long data)
1288{
1289 struct fore200e* fore200e = (struct fore200e*) data;
1290 unsigned long flags;
1291
1292 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294 spin_lock_irqsave(&fore200e->q_lock, flags);
1295 fore200e_rx_irq((struct fore200e*) data);
1296 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297}
1298#endif
1299
1300
1301static int
1302fore200e_select_scheme(struct atm_vcc* vcc)
1303{
1304 /* fairly balance the VCs over (identical) buffer schemes */
1305 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308 vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310 return scheme;
1311}
1312
1313
1314static int
1315fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316{
1317 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1318 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1319 struct activate_opcode activ_opcode;
1320 struct deactivate_opcode deactiv_opcode;
1321 struct vpvc vpvc;
1322 int ok;
1323 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326
1327 if (activate) {
1328 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329
1330 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331 activ_opcode.aal = aal;
1332 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333 activ_opcode.pad = 0;
1334 }
1335 else {
1336 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337 deactiv_opcode.pad = 0;
1338 }
1339
1340 vpvc.vci = vcc->vci;
1341 vpvc.vpi = vcc->vpi;
1342
1343 *entry->status = STATUS_PENDING;
1344
1345 if (activate) {
1346
1347#ifdef FORE200E_52BYTE_AAL0_SDU
1348 mtu = 48;
1349#endif
1350 /* the MTU is not used by the cp, except in the case of AAL0 */
1351 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1352 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354 }
1355 else {
1356 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358 }
1359
1360 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362 *entry->status = STATUS_FREE;
1363
1364 if (ok == 0) {
1365 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367 return -EIO;
1368 }
1369
1370 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1371 activate ? "open" : "clos");
1372
1373 return 0;
1374}
1375
1376
1377#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1378
1379static void
1380fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381{
1382 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383
1384 /* compute the data cells to idle cells ratio from the tx PCR */
1385 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387 }
1388 else {
1389 /* disable rate control */
1390 rate->data_cells = rate->idle_cells = 0;
1391 }
1392}
1393
1394
1395static int
1396fore200e_open(struct atm_vcc *vcc)
1397{
1398 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1399 struct fore200e_vcc* fore200e_vcc;
1400 struct fore200e_vc_map* vc_map;
1401 unsigned long flags;
1402 int vci = vcc->vci;
1403 short vpi = vcc->vpi;
1404
1405 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408 spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411 if (vc_map->vcc) {
1412
1413 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415 printk(FORE200E "VC %d.%d.%d already in use\n",
1416 fore200e->atm_dev->number, vpi, vci);
1417
1418 return -EINVAL;
1419 }
1420
1421 vc_map->vcc = vcc;
1422
1423 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1f8a5fb8 1425 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1da177e4
LT
1426 if (fore200e_vcc == NULL) {
1427 vc_map->vcc = NULL;
1428 return -ENOMEM;
1429 }
1430
1431 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438
1439 /* pseudo-CBR bandwidth requested? */
1440 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441
bfbf3c09 1442 mutex_lock(&fore200e->rate_mtx);
1da177e4 1443 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
bfbf3c09 1444 mutex_unlock(&fore200e->rate_mtx);
1da177e4 1445
1f8a5fb8 1446 kfree(fore200e_vcc);
1da177e4
LT
1447 vc_map->vcc = NULL;
1448 return -EAGAIN;
1449 }
1450
1451 /* reserve bandwidth */
1452 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
bfbf3c09 1453 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
1454 }
1455
1456 vcc->itf = vcc->dev->number;
1457
1458 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459 set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461 vcc->dev_data = fore200e_vcc;
1462
1463 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465 vc_map->vcc = NULL;
1466
1467 clear_bit(ATM_VF_ADDR, &vcc->flags);
1468 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470 vcc->dev_data = NULL;
1471
1472 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1f8a5fb8 1474 kfree(fore200e_vcc);
1da177e4
LT
1475 return -EINVAL;
1476 }
1477
1478 /* compute rate control parameters */
1479 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480
1481 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482 set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1487 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488 }
1489
1490 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1493
1494 /* new incarnation of the vcc */
1495 vc_map->incarn = ++fore200e->incarn_count;
1496
1497 /* VC unusable before this flag is set */
1498 set_bit(ATM_VF_READY, &vcc->flags);
1499
1500 return 0;
1501}
1502
1503
1504static void
1505fore200e_close(struct atm_vcc* vcc)
1506{
1507 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1508 struct fore200e_vcc* fore200e_vcc;
1509 struct fore200e_vc_map* vc_map;
1510 unsigned long flags;
1511
1512 ASSERT(vcc);
1513 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518 clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522 spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526 /* the vc is no longer considered as "in use" by fore200e_open() */
1527 vc_map->vcc = NULL;
1528
1529 vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531 fore200e_vcc = FORE200E_VCC(vcc);
1532 vcc->dev_data = NULL;
1533
1534 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536 /* release reserved bandwidth, if any */
1537 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
bfbf3c09 1539 mutex_lock(&fore200e->rate_mtx);
1da177e4 1540 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
bfbf3c09 1541 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
1542
1543 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544 }
1545
1546 clear_bit(ATM_VF_ADDR, &vcc->flags);
1547 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549 ASSERT(fore200e_vcc);
1f8a5fb8 1550 kfree(fore200e_vcc);
1da177e4
LT
1551}
1552
1553
1554static int
1555fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556{
1557 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1558 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1559 struct fore200e_vc_map* vc_map;
1560 struct host_txq* txq = &fore200e->host_txq;
1561 struct host_txq_entry* entry;
1562 struct tpd* tpd;
1563 struct tpd_haddr tpd_haddr;
1564 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1565 int tx_copy = 0;
1566 int tx_len = skb->len;
1567 u32* cell_header = NULL;
1568 unsigned char* skb_data;
1569 int skb_len;
1570 unsigned char* data;
1571 unsigned long flags;
1572
1573 ASSERT(vcc);
1574 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1575 ASSERT(fore200e);
1576 ASSERT(fore200e_vcc);
1577
1578 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1579 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1580 dev_kfree_skb_any(skb);
1581 return -EINVAL;
1582 }
1583
1584#ifdef FORE200E_52BYTE_AAL0_SDU
1585 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1586 cell_header = (u32*) skb->data;
1587 skb_data = skb->data + 4; /* skip 4-byte cell header */
1588 skb_len = tx_len = skb->len - 4;
1589
1590 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1591 }
1592 else
1593#endif
1594 {
1595 skb_data = skb->data;
1596 skb_len = skb->len;
1597 }
1598
1599 if (((unsigned long)skb_data) & 0x3) {
1600
1601 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1602 tx_copy = 1;
1603 tx_len = skb_len;
1604 }
1605
1606 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1607
1608 /* this simply NUKES the PCA board */
1609 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1610 tx_copy = 1;
1611 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1612 }
1613
1614 if (tx_copy) {
1615 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1616 if (data == NULL) {
1617 if (vcc->pop) {
1618 vcc->pop(vcc, skb);
1619 }
1620 else {
1621 dev_kfree_skb_any(skb);
1622 }
1623 return -ENOMEM;
1624 }
1625
1626 memcpy(data, skb_data, skb_len);
1627 if (skb_len < tx_len)
1628 memset(data + skb_len, 0x00, tx_len - skb_len);
1629 }
1630 else {
1631 data = skb_data;
1632 }
1633
1634 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1635 ASSERT(vc_map->vcc == vcc);
1636
1637 retry_here:
1638
1639 spin_lock_irqsave(&fore200e->q_lock, flags);
1640
1641 entry = &txq->host_entry[ txq->head ];
1642
1643 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1644
1645 /* try to free completed tx queue entries */
1646 fore200e_tx_irq(fore200e);
1647
1648 if (*entry->status != STATUS_FREE) {
1649
1650 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1651
1652 /* retry once again? */
1653 if (--retry > 0) {
1654 udelay(50);
1655 goto retry_here;
1656 }
1657
1658 atomic_inc(&vcc->stats->tx_err);
1659
1660 fore200e->tx_sat++;
1661 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1662 fore200e->name, fore200e->cp_queues->heartbeat);
1663 if (vcc->pop) {
1664 vcc->pop(vcc, skb);
1665 }
1666 else {
1667 dev_kfree_skb_any(skb);
1668 }
1669
1670 if (tx_copy)
1671 kfree(data);
1672
1673 return -ENOBUFS;
1674 }
1675 }
1676
1677 entry->incarn = vc_map->incarn;
1678 entry->vc_map = vc_map;
1679 entry->skb = skb;
1680 entry->data = tx_copy ? data : NULL;
1681
1682 tpd = entry->tpd;
1683 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1684 tpd->tsd[ 0 ].length = tx_len;
1685
1686 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1687 txq->txing++;
1688
1689 /* The dma_map call above implies a dma_sync so the device can use it,
1690 * thus no explicit dma_sync call is necessary here.
1691 */
1692
1693 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1694 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1695 tpd->tsd[0].length, skb_len);
1696
1697 if (skb_len < fore200e_vcc->tx_min_pdu)
1698 fore200e_vcc->tx_min_pdu = skb_len;
1699 if (skb_len > fore200e_vcc->tx_max_pdu)
1700 fore200e_vcc->tx_max_pdu = skb_len;
1701 fore200e_vcc->tx_pdu++;
1702
1703 /* set tx rate control information */
1704 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1705 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1706
1707 if (cell_header) {
1708 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1709 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1710 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1711 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1712 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1713 }
1714 else {
1715 /* set the ATM header, common to all cells conveying the PDU */
1716 tpd->atm_header.clp = 0;
1717 tpd->atm_header.plt = 0;
1718 tpd->atm_header.vci = vcc->vci;
1719 tpd->atm_header.vpi = vcc->vpi;
1720 tpd->atm_header.gfc = 0;
1721 }
1722
1723 tpd->spec.length = tx_len;
1724 tpd->spec.nseg = 1;
1725 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1726 tpd->spec.intr = 1;
1727
1728 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1729 tpd_haddr.pad = 0;
1730 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1731
1732 *entry->status = STATUS_PENDING;
1733 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1734
1735 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1736
1737 return 0;
1738}
1739
1740
1741static int
1742fore200e_getstats(struct fore200e* fore200e)
1743{
1744 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1745 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1746 struct stats_opcode opcode;
1747 int ok;
1748 u32 stats_dma_addr;
1749
1750 if (fore200e->stats == NULL) {
1f8a5fb8 1751 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1da177e4
LT
1752 if (fore200e->stats == NULL)
1753 return -ENOMEM;
1754 }
1755
1756 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1757 sizeof(struct stats), DMA_FROM_DEVICE);
1758
1759 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761 opcode.opcode = OPCODE_GET_STATS;
1762 opcode.pad = 0;
1763
1764 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1765
1766 *entry->status = STATUS_PENDING;
1767
1768 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1769
1770 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1771
1772 *entry->status = STATUS_FREE;
1773
1774 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1775
1776 if (ok == 0) {
1777 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1778 return -EIO;
1779 }
1780
1781 return 0;
1782}
1783
1784
1785static int
1786fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1787{
1788 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1789
1790 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1791 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1792
1793 return -EINVAL;
1794}
1795
1796
1797static int
b7058842 1798fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1da177e4
LT
1799{
1800 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1801
1802 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1803 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1804
1805 return -EINVAL;
1806}
1807
1808
1809#if 0 /* currently unused */
1810static int
1811fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1812{
1813 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1814 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1815 struct oc3_opcode opcode;
1816 int ok;
1817 u32 oc3_regs_dma_addr;
1818
1819 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1820
1821 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1822
1823 opcode.opcode = OPCODE_GET_OC3;
1824 opcode.reg = 0;
1825 opcode.value = 0;
1826 opcode.mask = 0;
1827
1828 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1829
1830 *entry->status = STATUS_PENDING;
1831
1832 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1833
1834 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1835
1836 *entry->status = STATUS_FREE;
1837
1838 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1839
1840 if (ok == 0) {
1841 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1842 return -EIO;
1843 }
1844
1845 return 0;
1846}
1847#endif
1848
1849
1850static int
1851fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1852{
1853 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1854 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1855 struct oc3_opcode opcode;
1856 int ok;
1857
1858 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1859
1860 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1861
1862 opcode.opcode = OPCODE_SET_OC3;
1863 opcode.reg = reg;
1864 opcode.value = value;
1865 opcode.mask = mask;
1866
1867 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1868
1869 *entry->status = STATUS_PENDING;
1870
1871 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1872
1873 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1874
1875 *entry->status = STATUS_FREE;
1876
1877 if (ok == 0) {
1878 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1879 return -EIO;
1880 }
1881
1882 return 0;
1883}
1884
1885
1886static int
1887fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1888{
1889 u32 mct_value, mct_mask;
1890 int error;
1891
1892 if (!capable(CAP_NET_ADMIN))
1893 return -EPERM;
1894
1895 switch (loop_mode) {
1896
1897 case ATM_LM_NONE:
1898 mct_value = 0;
1899 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1900 break;
1901
1902 case ATM_LM_LOC_PHY:
1903 mct_value = mct_mask = SUNI_MCT_DLE;
1904 break;
1905
1906 case ATM_LM_RMT_PHY:
1907 mct_value = mct_mask = SUNI_MCT_LLE;
1908 break;
1909
1910 default:
1911 return -EINVAL;
1912 }
1913
1914 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1915 if (error == 0)
1916 fore200e->loop_mode = loop_mode;
1917
1918 return error;
1919}
1920
1921
1da177e4
LT
1922static int
1923fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1924{
1925 struct sonet_stats tmp;
1926
1927 if (fore200e_getstats(fore200e) < 0)
1928 return -EIO;
1929
63734a32
AV
1930 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1931 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1932 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1933 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1934 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1935 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1936 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1937 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1938 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1939 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1940 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1941 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1942 be32_to_cpu(fore200e->stats->aal5.cells_received);
1da177e4
LT
1943
1944 if (arg)
1945 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1946
1947 return 0;
1948}
1949
1950
1951static int
1952fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1953{
1954 struct fore200e* fore200e = FORE200E_DEV(dev);
1955
1956 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1957
1958 switch (cmd) {
1959
1960 case SONET_GETSTAT:
1961 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1962
1963 case SONET_GETDIAG:
1964 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1965
1966 case ATM_SETLOOP:
1967 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1968
1969 case ATM_GETLOOP:
1970 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1971
1972 case ATM_QUERYLOOP:
1973 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1974 }
1975
1976 return -ENOSYS; /* not implemented */
1977}
1978
1979
1980static int
1981fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1982{
1983 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1984 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1985
1986 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1987 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1988 return -EINVAL;
1989 }
1990
1991 DPRINTK(2, "change_qos %d.%d.%d, "
1992 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1993 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1994 "available_cell_rate = %u",
1995 vcc->itf, vcc->vpi, vcc->vci,
1996 fore200e_traffic_class[ qos->txtp.traffic_class ],
1997 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1998 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1999 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2000 flags, fore200e->available_cell_rate);
2001
2002 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2003
bfbf3c09 2004 mutex_lock(&fore200e->rate_mtx);
1da177e4 2005 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
bfbf3c09 2006 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
2007 return -EAGAIN;
2008 }
2009
2010 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2011 fore200e->available_cell_rate -= qos->txtp.max_pcr;
2012
bfbf3c09 2013 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
2014
2015 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2016
2017 /* update rate control parameters */
2018 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2019
2020 set_bit(ATM_VF_HASQOS, &vcc->flags);
2021
2022 return 0;
2023 }
2024
2025 return -EINVAL;
2026}
2027
2028
6c44512d 2029static int fore200e_irq_request(struct fore200e *fore200e)
1da177e4 2030{
dace1453 2031 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1da177e4
LT
2032
2033 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2034 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2035 return -EBUSY;
2036 }
2037
2038 printk(FORE200E "IRQ %s reserved for device %s\n",
2039 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2040
2041#ifdef FORE200E_USE_TASKLET
2042 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2043 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2044#endif
2045
2046 fore200e->state = FORE200E_STATE_IRQ;
2047 return 0;
2048}
2049
2050
6c44512d 2051static int fore200e_get_esi(struct fore200e *fore200e)
1da177e4 2052{
1f8a5fb8 2053 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
1da177e4
LT
2054 int ok, i;
2055
2056 if (!prom)
2057 return -ENOMEM;
2058
2059 ok = fore200e->bus->prom_read(fore200e, prom);
2060 if (ok < 0) {
1f8a5fb8 2061 kfree(prom);
1da177e4
LT
2062 return -EBUSY;
2063 }
2064
3008ab36 2065 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1da177e4
LT
2066 fore200e->name,
2067 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
3008ab36 2068 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1da177e4
LT
2069
2070 for (i = 0; i < ESI_LEN; i++) {
2071 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2072 }
2073
1f8a5fb8 2074 kfree(prom);
1da177e4
LT
2075
2076 return 0;
2077}
2078
2079
6c44512d 2080static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1da177e4
LT
2081{
2082 int scheme, magn, nbr, size, i;
2083
2084 struct host_bsq* bsq;
2085 struct buffer* buffer;
2086
2087 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2088 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2089
2090 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2091
2092 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2093 size = fore200e_rx_buf_size[ scheme ][ magn ];
2094
2095 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2096
2097 /* allocate the array of receive buffers */
1f8a5fb8 2098 buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
1da177e4
LT
2099
2100 if (buffer == NULL)
2101 return -ENOMEM;
2102
2103 bsq->freebuf = NULL;
2104
2105 for (i = 0; i < nbr; i++) {
2106
2107 buffer[ i ].scheme = scheme;
2108 buffer[ i ].magn = magn;
2109#ifdef FORE200E_BSQ_DEBUG
2110 buffer[ i ].index = i;
2111 buffer[ i ].supplied = 0;
2112#endif
2113
2114 /* allocate the receive buffer body */
2115 if (fore200e_chunk_alloc(fore200e,
2116 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2117 DMA_FROM_DEVICE) < 0) {
2118
2119 while (i > 0)
2120 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
1f8a5fb8 2121 kfree(buffer);
1da177e4
LT
2122
2123 return -ENOMEM;
2124 }
2125
2126 /* insert the buffer into the free buffer list */
2127 buffer[ i ].next = bsq->freebuf;
2128 bsq->freebuf = &buffer[ i ];
2129 }
2130 /* all the buffers are free, initially */
2131 bsq->freebuf_count = nbr;
2132
2133#ifdef FORE200E_BSQ_DEBUG
2134 bsq_audit(3, bsq, scheme, magn);
2135#endif
2136 }
2137 }
2138
2139 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2140 return 0;
2141}
2142
2143
6c44512d 2144static int fore200e_init_bs_queue(struct fore200e *fore200e)
1da177e4
LT
2145{
2146 int scheme, magn, i;
2147
2148 struct host_bsq* bsq;
2149 struct cp_bsq_entry __iomem * cp_entry;
2150
2151 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2152 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2153
2154 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2155
2156 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2157
2158 /* allocate and align the array of status words */
2159 if (fore200e->bus->dma_chunk_alloc(fore200e,
2160 &bsq->status,
2161 sizeof(enum status),
2162 QUEUE_SIZE_BS,
2163 fore200e->bus->status_alignment) < 0) {
2164 return -ENOMEM;
2165 }
2166
2167 /* allocate and align the array of receive buffer descriptors */
2168 if (fore200e->bus->dma_chunk_alloc(fore200e,
2169 &bsq->rbd_block,
2170 sizeof(struct rbd_block),
2171 QUEUE_SIZE_BS,
2172 fore200e->bus->descr_alignment) < 0) {
2173
2174 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2175 return -ENOMEM;
2176 }
2177
2178 /* get the base address of the cp resident buffer supply queue entries */
2179 cp_entry = fore200e->virt_base +
2180 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2181
2182 /* fill the host resident and cp resident buffer supply queue entries */
2183 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2184
2185 bsq->host_entry[ i ].status =
2186 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2187 bsq->host_entry[ i ].rbd_block =
2188 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2189 bsq->host_entry[ i ].rbd_block_dma =
2190 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2191 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2192
2193 *bsq->host_entry[ i ].status = STATUS_FREE;
2194
2195 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2196 &cp_entry[ i ].status_haddr);
2197 }
2198 }
2199 }
2200
2201 fore200e->state = FORE200E_STATE_INIT_BSQ;
2202 return 0;
2203}
2204
2205
6c44512d 2206static int fore200e_init_rx_queue(struct fore200e *fore200e)
1da177e4
LT
2207{
2208 struct host_rxq* rxq = &fore200e->host_rxq;
2209 struct cp_rxq_entry __iomem * cp_entry;
2210 int i;
2211
2212 DPRINTK(2, "receive queue is being initialized\n");
2213
2214 /* allocate and align the array of status words */
2215 if (fore200e->bus->dma_chunk_alloc(fore200e,
2216 &rxq->status,
2217 sizeof(enum status),
2218 QUEUE_SIZE_RX,
2219 fore200e->bus->status_alignment) < 0) {
2220 return -ENOMEM;
2221 }
2222
2223 /* allocate and align the array of receive PDU descriptors */
2224 if (fore200e->bus->dma_chunk_alloc(fore200e,
2225 &rxq->rpd,
2226 sizeof(struct rpd),
2227 QUEUE_SIZE_RX,
2228 fore200e->bus->descr_alignment) < 0) {
2229
2230 fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2231 return -ENOMEM;
2232 }
2233
2234 /* get the base address of the cp resident rx queue entries */
2235 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2236
2237 /* fill the host resident and cp resident rx entries */
2238 for (i=0; i < QUEUE_SIZE_RX; i++) {
2239
2240 rxq->host_entry[ i ].status =
2241 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2242 rxq->host_entry[ i ].rpd =
2243 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2244 rxq->host_entry[ i ].rpd_dma =
2245 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2246 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2247
2248 *rxq->host_entry[ i ].status = STATUS_FREE;
2249
2250 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2251 &cp_entry[ i ].status_haddr);
2252
2253 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2254 &cp_entry[ i ].rpd_haddr);
2255 }
2256
2257 /* set the head entry of the queue */
2258 rxq->head = 0;
2259
2260 fore200e->state = FORE200E_STATE_INIT_RXQ;
2261 return 0;
2262}
2263
2264
6c44512d 2265static int fore200e_init_tx_queue(struct fore200e *fore200e)
1da177e4
LT
2266{
2267 struct host_txq* txq = &fore200e->host_txq;
2268 struct cp_txq_entry __iomem * cp_entry;
2269 int i;
2270
2271 DPRINTK(2, "transmit queue is being initialized\n");
2272
2273 /* allocate and align the array of status words */
2274 if (fore200e->bus->dma_chunk_alloc(fore200e,
2275 &txq->status,
2276 sizeof(enum status),
2277 QUEUE_SIZE_TX,
2278 fore200e->bus->status_alignment) < 0) {
2279 return -ENOMEM;
2280 }
2281
2282 /* allocate and align the array of transmit PDU descriptors */
2283 if (fore200e->bus->dma_chunk_alloc(fore200e,
2284 &txq->tpd,
2285 sizeof(struct tpd),
2286 QUEUE_SIZE_TX,
2287 fore200e->bus->descr_alignment) < 0) {
2288
2289 fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2290 return -ENOMEM;
2291 }
2292
2293 /* get the base address of the cp resident tx queue entries */
2294 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2295
2296 /* fill the host resident and cp resident tx entries */
2297 for (i=0; i < QUEUE_SIZE_TX; i++) {
2298
2299 txq->host_entry[ i ].status =
2300 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2301 txq->host_entry[ i ].tpd =
2302 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2303 txq->host_entry[ i ].tpd_dma =
2304 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2305 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2306
2307 *txq->host_entry[ i ].status = STATUS_FREE;
2308
2309 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2310 &cp_entry[ i ].status_haddr);
2311
2312 /* although there is a one-to-one mapping of tx queue entries and tpds,
2313 we do not write here the DMA (physical) base address of each tpd into
2314 the related cp resident entry, because the cp relies on this write
2315 operation to detect that a new pdu has been submitted for tx */
2316 }
2317
2318 /* set the head and tail entries of the queue */
2319 txq->head = 0;
2320 txq->tail = 0;
2321
2322 fore200e->state = FORE200E_STATE_INIT_TXQ;
2323 return 0;
2324}
2325
2326
6c44512d 2327static int fore200e_init_cmd_queue(struct fore200e *fore200e)
1da177e4
LT
2328{
2329 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2330 struct cp_cmdq_entry __iomem * cp_entry;
2331 int i;
2332
2333 DPRINTK(2, "command queue is being initialized\n");
2334
2335 /* allocate and align the array of status words */
2336 if (fore200e->bus->dma_chunk_alloc(fore200e,
2337 &cmdq->status,
2338 sizeof(enum status),
2339 QUEUE_SIZE_CMD,
2340 fore200e->bus->status_alignment) < 0) {
2341 return -ENOMEM;
2342 }
2343
2344 /* get the base address of the cp resident cmd queue entries */
2345 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2346
2347 /* fill the host resident and cp resident cmd entries */
2348 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2349
2350 cmdq->host_entry[ i ].status =
2351 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2352 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2353
2354 *cmdq->host_entry[ i ].status = STATUS_FREE;
2355
2356 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2357 &cp_entry[ i ].status_haddr);
2358 }
2359
2360 /* set the head entry of the queue */
2361 cmdq->head = 0;
2362
2363 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2364 return 0;
2365}
2366
2367
6c44512d
GKH
2368static void fore200e_param_bs_queue(struct fore200e *fore200e,
2369 enum buffer_scheme scheme,
2370 enum buffer_magn magn, int queue_length,
2371 int pool_size, int supply_blksize)
1da177e4
LT
2372{
2373 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2374
2375 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2376 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2377 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2378 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2379}
2380
2381
6c44512d 2382static int fore200e_initialize(struct fore200e *fore200e)
1da177e4
LT
2383{
2384 struct cp_queues __iomem * cpq;
2385 int ok, scheme, magn;
2386
2387 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2388
bfbf3c09 2389 mutex_init(&fore200e->rate_mtx);
1da177e4
LT
2390 spin_lock_init(&fore200e->q_lock);
2391
2392 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2393
2394 /* enable cp to host interrupts */
2395 fore200e->bus->write(1, &cpq->imask);
2396
2397 if (fore200e->bus->irq_enable)
2398 fore200e->bus->irq_enable(fore200e);
2399
2400 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2401
2402 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2403 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2404 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2405
2406 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2407 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2408
2409 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2410 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2411 fore200e_param_bs_queue(fore200e, scheme, magn,
2412 QUEUE_SIZE_BS,
2413 fore200e_rx_buf_nbr[ scheme ][ magn ],
2414 RBD_BLK_SIZE);
2415
2416 /* issue the initialize command */
2417 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2418 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2419
2420 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2421 if (ok == 0) {
2422 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2423 return -ENODEV;
2424 }
2425
2426 printk(FORE200E "device %s initialized\n", fore200e->name);
2427
2428 fore200e->state = FORE200E_STATE_INITIALIZE;
2429 return 0;
2430}
2431
2432
6c44512d 2433static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
1da177e4
LT
2434{
2435 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2436
2437#if 0
2438 printk("%c", c);
2439#endif
2440 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2441}
2442
2443
6c44512d 2444static int fore200e_monitor_getc(struct fore200e *fore200e)
1da177e4
LT
2445{
2446 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2448 int c;
2449
2450 while (time_before(jiffies, timeout)) {
2451
2452 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2453
2454 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2455
2456 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2457#if 0
2458 printk("%c", c & 0xFF);
2459#endif
2460 return c & 0xFF;
2461 }
2462 }
2463
2464 return -1;
2465}
2466
2467
6c44512d 2468static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
1da177e4
LT
2469{
2470 while (*str) {
2471
2472 /* the i960 monitor doesn't accept any new character if it has something to say */
2473 while (fore200e_monitor_getc(fore200e) >= 0);
2474
2475 fore200e_monitor_putc(fore200e, *str++);
2476 }
2477
2478 while (fore200e_monitor_getc(fore200e) >= 0);
2479}
2480
e92481f9
CW
2481#ifdef __LITTLE_ENDIAN
2482#define FW_EXT ".bin"
2483#else
2484#define FW_EXT "_ecd.bin2"
2485#endif
1da177e4 2486
6c44512d 2487static int fore200e_load_and_start_fw(struct fore200e *fore200e)
e92481f9
CW
2488{
2489 const struct firmware *firmware;
2490 struct device *device;
2491 struct fw_header *fw_header;
6f75a9b6
CW
2492 const __le32 *fw_data;
2493 u32 fw_size;
e92481f9
CW
2494 u32 __iomem *load_addr;
2495 char buf[48];
2496 int err = -ENODEV;
2497
2498 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2499 device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2500#ifdef CONFIG_SBUS
2501 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2dc11581 2502 device = &((struct platform_device *) fore200e->bus_dev)->dev;
e92481f9
CW
2503#endif
2504 else
2505 return err;
2506
2507 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
fcffd0d8
MR
2508 if ((err = request_firmware(&firmware, buf, device)) < 0) {
2509 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
e92481f9
CW
2510 return err;
2511 }
2512
6f75a9b6 2513 fw_data = (__le32 *) firmware->data;
e92481f9
CW
2514 fw_size = firmware->size / sizeof(u32);
2515 fw_header = (struct fw_header *) firmware->data;
2516 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2517
2518 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2519 fore200e->name, load_addr, fw_size);
2520
2521 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2522 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2523 goto release;
2524 }
2525
2526 for (; fw_size--; fw_data++, load_addr++)
2527 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
1da177e4
LT
2528
2529 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2530
2531#if defined(__sparc_v9__)
2532 /* reported to be required by SBA cards on some sparc64 hosts */
2533 fore200e_spin(100);
2534#endif
2535
e92481f9
CW
2536 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2537 fore200e_monitor_puts(fore200e, buf);
1da177e4 2538
e92481f9 2539 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
1da177e4 2540 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
e92481f9 2541 goto release;
1da177e4
LT
2542 }
2543
2544 printk(FORE200E "device %s firmware started\n", fore200e->name);
2545
2546 fore200e->state = FORE200E_STATE_START_FW;
e92481f9 2547 err = 0;
1da177e4 2548
e92481f9
CW
2549release:
2550 release_firmware(firmware);
2551 return err;
1da177e4
LT
2552}
2553
2554
6c44512d 2555static int fore200e_register(struct fore200e *fore200e, struct device *parent)
1da177e4
LT
2556{
2557 struct atm_dev* atm_dev;
2558
2559 DPRINTK(2, "device %s being registered\n", fore200e->name);
2560
d9ca676b
DW
2561 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2562 -1, NULL);
1da177e4
LT
2563 if (atm_dev == NULL) {
2564 printk(FORE200E "unable to register device %s\n", fore200e->name);
2565 return -ENODEV;
2566 }
2567
2568 atm_dev->dev_data = fore200e;
2569 fore200e->atm_dev = atm_dev;
2570
2571 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2572 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2573
2574 fore200e->available_cell_rate = ATM_OC3_PCR;
2575
2576 fore200e->state = FORE200E_STATE_REGISTER;
2577 return 0;
2578}
2579
2580
6c44512d 2581static int fore200e_init(struct fore200e *fore200e, struct device *parent)
1da177e4 2582{
d9ca676b 2583 if (fore200e_register(fore200e, parent) < 0)
1da177e4
LT
2584 return -ENODEV;
2585
2586 if (fore200e->bus->configure(fore200e) < 0)
2587 return -ENODEV;
2588
2589 if (fore200e->bus->map(fore200e) < 0)
2590 return -ENODEV;
2591
2592 if (fore200e_reset(fore200e, 1) < 0)
2593 return -ENODEV;
2594
e92481f9 2595 if (fore200e_load_and_start_fw(fore200e) < 0)
1da177e4
LT
2596 return -ENODEV;
2597
2598 if (fore200e_initialize(fore200e) < 0)
2599 return -ENODEV;
2600
2601 if (fore200e_init_cmd_queue(fore200e) < 0)
2602 return -ENOMEM;
2603
2604 if (fore200e_init_tx_queue(fore200e) < 0)
2605 return -ENOMEM;
2606
2607 if (fore200e_init_rx_queue(fore200e) < 0)
2608 return -ENOMEM;
2609
2610 if (fore200e_init_bs_queue(fore200e) < 0)
2611 return -ENOMEM;
2612
2613 if (fore200e_alloc_rx_buf(fore200e) < 0)
2614 return -ENOMEM;
2615
2616 if (fore200e_get_esi(fore200e) < 0)
2617 return -EIO;
2618
2619 if (fore200e_irq_request(fore200e) < 0)
2620 return -EBUSY;
2621
2622 fore200e_supply(fore200e);
c027f5f9 2623
1da177e4
LT
2624 /* all done, board initialization is now complete */
2625 fore200e->state = FORE200E_STATE_COMPLETE;
2626 return 0;
2627}
2628
826b6cfc 2629#ifdef CONFIG_SBUS
b1608d69 2630static const struct of_device_id fore200e_sba_match[];
6c44512d 2631static int fore200e_sba_probe(struct platform_device *op)
826b6cfc 2632{
b1608d69 2633 const struct of_device_id *match;
1c48a5c9 2634 const struct fore200e_bus *bus;
826b6cfc
DM
2635 struct fore200e *fore200e;
2636 static int index = 0;
2637 int err;
2638
b1608d69
GL
2639 match = of_match_device(fore200e_sba_match, &op->dev);
2640 if (!match)
1c48a5c9 2641 return -EINVAL;
b1608d69 2642 bus = match->data;
1c48a5c9 2643
826b6cfc
DM
2644 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2645 if (!fore200e)
2646 return -ENOMEM;
2647
2648 fore200e->bus = bus;
2649 fore200e->bus_dev = op;
1636f8ac 2650 fore200e->irq = op->archdata.irqs[0];
826b6cfc
DM
2651 fore200e->phys_base = op->resource[0].start;
2652
2653 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2654
d9ca676b 2655 err = fore200e_init(fore200e, &op->dev);
826b6cfc
DM
2656 if (err < 0) {
2657 fore200e_shutdown(fore200e);
2658 kfree(fore200e);
2659 return err;
2660 }
2661
2662 index++;
2663 dev_set_drvdata(&op->dev, fore200e);
2664
2665 return 0;
2666}
2667
6c44512d 2668static int fore200e_sba_remove(struct platform_device *op)
826b6cfc
DM
2669{
2670 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2671
2672 fore200e_shutdown(fore200e);
2673 kfree(fore200e);
2674
2675 return 0;
2676}
2677
fd098316 2678static const struct of_device_id fore200e_sba_match[] = {
826b6cfc
DM
2679 {
2680 .name = SBA200E_PROM_NAME,
2681 .data = (void *) &fore200e_bus[1],
2682 },
2683 {},
2684};
2685MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2686
1c48a5c9 2687static struct platform_driver fore200e_sba_driver = {
4018294b
GL
2688 .driver = {
2689 .name = "fore_200e",
2690 .owner = THIS_MODULE,
2691 .of_match_table = fore200e_sba_match,
2692 },
826b6cfc 2693 .probe = fore200e_sba_probe,
6c44512d 2694 .remove = fore200e_sba_remove,
826b6cfc
DM
2695};
2696#endif
2697
e92481f9 2698#ifdef CONFIG_PCI
6c44512d
GKH
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700 const struct pci_device_id *pci_ent)
1da177e4
LT
2701{
2702 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703 struct fore200e* fore200e;
2704 int err = 0;
2705 static int index = 0;
2706
2707 if (pci_enable_device(pci_dev)) {
2708 err = -EINVAL;
2709 goto out;
2710 }
2711
1f8a5fb8 2712 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
1da177e4
LT
2713 if (fore200e == NULL) {
2714 err = -ENOMEM;
2715 goto out_disable;
2716 }
2717
2718 fore200e->bus = bus;
2719 fore200e->bus_dev = pci_dev;
2720 fore200e->irq = pci_dev->irq;
2721 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2722
2723 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2724
2725 pci_set_master(pci_dev);
2726
2727 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2728 fore200e->bus->model_name,
2729 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2730
2731 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2732
d9ca676b 2733 err = fore200e_init(fore200e, &pci_dev->dev);
1da177e4
LT
2734 if (err < 0) {
2735 fore200e_shutdown(fore200e);
2736 goto out_free;
2737 }
2738
2739 ++index;
2740 pci_set_drvdata(pci_dev, fore200e);
2741
2742out:
2743 return err;
2744
2745out_free:
2746 kfree(fore200e);
2747out_disable:
2748 pci_disable_device(pci_dev);
2749 goto out;
2750}
2751
2752
6c44512d 2753static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
1da177e4
LT
2754{
2755 struct fore200e *fore200e;
2756
2757 fore200e = pci_get_drvdata(pci_dev);
2758
1da177e4
LT
2759 fore200e_shutdown(fore200e);
2760 kfree(fore200e);
2761 pci_disable_device(pci_dev);
2762}
2763
2764
1da177e4
LT
2765static struct pci_device_id fore200e_pca_tbl[] = {
2766 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2767 0, 0, (unsigned long) &fore200e_bus[0] },
2768 { 0, }
2769};
2770
2771MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2772
2773static struct pci_driver fore200e_pca_driver = {
2774 .name = "fore_200e",
2775 .probe = fore200e_pca_detect,
6c44512d 2776 .remove = fore200e_pca_remove_one,
1da177e4
LT
2777 .id_table = fore200e_pca_tbl,
2778};
2779#endif
2780
826b6cfc 2781static int __init fore200e_module_init(void)
1da177e4 2782{
826b6cfc 2783 int err;
1da177e4 2784
826b6cfc 2785 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
1da177e4 2786
826b6cfc 2787#ifdef CONFIG_SBUS
1c48a5c9 2788 err = platform_driver_register(&fore200e_sba_driver);
826b6cfc
DM
2789 if (err)
2790 return err;
2791#endif
1da177e4 2792
e92481f9 2793#ifdef CONFIG_PCI
826b6cfc 2794 err = pci_register_driver(&fore200e_pca_driver);
1da177e4
LT
2795#endif
2796
826b6cfc
DM
2797#ifdef CONFIG_SBUS
2798 if (err)
1c48a5c9 2799 platform_driver_unregister(&fore200e_sba_driver);
826b6cfc 2800#endif
1da177e4 2801
826b6cfc 2802 return err;
1da177e4
LT
2803}
2804
826b6cfc 2805static void __exit fore200e_module_cleanup(void)
1da177e4 2806{
e92481f9 2807#ifdef CONFIG_PCI
826b6cfc
DM
2808 pci_unregister_driver(&fore200e_pca_driver);
2809#endif
2810#ifdef CONFIG_SBUS
1c48a5c9 2811 platform_driver_unregister(&fore200e_sba_driver);
1da177e4 2812#endif
1da177e4
LT
2813}
2814
1da177e4
LT
2815static int
2816fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2817{
2818 struct fore200e* fore200e = FORE200E_DEV(dev);
2819 struct fore200e_vcc* fore200e_vcc;
2820 struct atm_vcc* vcc;
2821 int i, len, left = *pos;
2822 unsigned long flags;
2823
2824 if (!left--) {
2825
2826 if (fore200e_getstats(fore200e) < 0)
2827 return -EIO;
2828
2829 len = sprintf(page,"\n"
2830 " device:\n"
2831 " internal name:\t\t%s\n", fore200e->name);
2832
2833 /* print bus-specific information */
2834 if (fore200e->bus->proc_read)
2835 len += fore200e->bus->proc_read(fore200e, page + len);
2836
2837 len += sprintf(page + len,
2838 " interrupt line:\t\t%s\n"
2839 " physical base address:\t0x%p\n"
2840 " virtual base address:\t0x%p\n"
3008ab36 2841 " factory address (ESI):\t%pM\n"
1da177e4
LT
2842 " board serial number:\t\t%d\n\n",
2843 fore200e_irq_itoa(fore200e->irq),
2844 (void*)fore200e->phys_base,
2845 fore200e->virt_base,
3008ab36 2846 fore200e->esi,
1da177e4
LT
2847 fore200e->esi[4] * 256 + fore200e->esi[5]);
2848
2849 return len;
2850 }
2851
2852 if (!left--)
2853 return sprintf(page,
2854 " free small bufs, scheme 1:\t%d\n"
2855 " free large bufs, scheme 1:\t%d\n"
2856 " free small bufs, scheme 2:\t%d\n"
2857 " free large bufs, scheme 2:\t%d\n",
2858 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2859 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2860 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2861 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2862
2863 if (!left--) {
2864 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2865
2866 len = sprintf(page,"\n\n"
2867 " cell processor:\n"
2868 " heartbeat state:\t\t");
2869
2870 if (hb >> 16 != 0xDEAD)
2871 len += sprintf(page + len, "0x%08x\n", hb);
2872 else
2873 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2874
2875 return len;
2876 }
2877
2878 if (!left--) {
2879 static const char* media_name[] = {
2880 "unshielded twisted pair",
2881 "multimode optical fiber ST",
2882 "multimode optical fiber SC",
2883 "single-mode optical fiber ST",
2884 "single-mode optical fiber SC",
2885 "unknown"
2886 };
2887
2888 static const char* oc3_mode[] = {
2889 "normal operation",
2890 "diagnostic loopback",
2891 "line loopback",
2892 "unknown"
2893 };
2894
2895 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2896 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2897 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2898 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2899 u32 oc3_index;
2900
e0c5567d 2901 if (media_index > 4)
2902 media_index = 5;
1da177e4
LT
2903
2904 switch (fore200e->loop_mode) {
2905 case ATM_LM_NONE: oc3_index = 0;
2906 break;
2907 case ATM_LM_LOC_PHY: oc3_index = 1;
2908 break;
2909 case ATM_LM_RMT_PHY: oc3_index = 2;
2910 break;
2911 default: oc3_index = 3;
2912 }
2913
2914 return sprintf(page,
2915 " firmware release:\t\t%d.%d.%d\n"
2916 " monitor release:\t\t%d.%d\n"
2917 " media type:\t\t\t%s\n"
2918 " OC-3 revision:\t\t0x%x\n"
2919 " OC-3 mode:\t\t\t%s",
2920 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2921 mon960_release >> 16, mon960_release << 16 >> 16,
2922 media_name[ media_index ],
2923 oc3_revision,
2924 oc3_mode[ oc3_index ]);
2925 }
2926
2927 if (!left--) {
2928 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2929
2930 return sprintf(page,
2931 "\n\n"
2932 " monitor:\n"
2933 " version number:\t\t%d\n"
2934 " boot status word:\t\t0x%08x\n",
2935 fore200e->bus->read(&cp_monitor->mon_version),
2936 fore200e->bus->read(&cp_monitor->bstat));
2937 }
2938
2939 if (!left--)
2940 return sprintf(page,
2941 "\n"
2942 " device statistics:\n"
2943 " 4b5b:\n"
2944 " crc_header_errors:\t\t%10u\n"
2945 " framing_errors:\t\t%10u\n",
63734a32
AV
2946 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2947 be32_to_cpu(fore200e->stats->phy.framing_errors));
1da177e4
LT
2948
2949 if (!left--)
2950 return sprintf(page, "\n"
2951 " OC-3:\n"
2952 " section_bip8_errors:\t%10u\n"
2953 " path_bip8_errors:\t\t%10u\n"
2954 " line_bip24_errors:\t\t%10u\n"
2955 " line_febe_errors:\t\t%10u\n"
2956 " path_febe_errors:\t\t%10u\n"
2957 " corr_hcs_errors:\t\t%10u\n"
2958 " ucorr_hcs_errors:\t\t%10u\n",
63734a32
AV
2959 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2960 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2961 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2962 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2963 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2964 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2965 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
1da177e4
LT
2966
2967 if (!left--)
2968 return sprintf(page,"\n"
2969 " ATM:\t\t\t\t cells\n"
2970 " TX:\t\t\t%10u\n"
2971 " RX:\t\t\t%10u\n"
2972 " vpi out of range:\t\t%10u\n"
2973 " vpi no conn:\t\t%10u\n"
2974 " vci out of range:\t\t%10u\n"
2975 " vci no conn:\t\t%10u\n",
63734a32
AV
2976 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2977 be32_to_cpu(fore200e->stats->atm.cells_received),
2978 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2979 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2980 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2981 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
1da177e4
LT
2982
2983 if (!left--)
2984 return sprintf(page,"\n"
2985 " AAL0:\t\t\t cells\n"
2986 " TX:\t\t\t%10u\n"
2987 " RX:\t\t\t%10u\n"
2988 " dropped:\t\t\t%10u\n",
63734a32
AV
2989 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2990 be32_to_cpu(fore200e->stats->aal0.cells_received),
2991 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
1da177e4
LT
2992
2993 if (!left--)
2994 return sprintf(page,"\n"
2995 " AAL3/4:\n"
2996 " SAR sublayer:\t\t cells\n"
2997 " TX:\t\t\t%10u\n"
2998 " RX:\t\t\t%10u\n"
2999 " dropped:\t\t\t%10u\n"
3000 " CRC errors:\t\t%10u\n"
3001 " protocol errors:\t\t%10u\n\n"
3002 " CS sublayer:\t\t PDUs\n"
3003 " TX:\t\t\t%10u\n"
3004 " RX:\t\t\t%10u\n"
3005 " dropped:\t\t\t%10u\n"
3006 " protocol errors:\t\t%10u\n",
63734a32
AV
3007 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3008 be32_to_cpu(fore200e->stats->aal34.cells_received),
3009 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3010 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3011 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3012 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3013 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3014 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3015 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
1da177e4
LT
3016
3017 if (!left--)
3018 return sprintf(page,"\n"
3019 " AAL5:\n"
3020 " SAR sublayer:\t\t cells\n"
3021 " TX:\t\t\t%10u\n"
3022 " RX:\t\t\t%10u\n"
3023 " dropped:\t\t\t%10u\n"
3024 " congestions:\t\t%10u\n\n"
3025 " CS sublayer:\t\t PDUs\n"
3026 " TX:\t\t\t%10u\n"
3027 " RX:\t\t\t%10u\n"
3028 " dropped:\t\t\t%10u\n"
3029 " CRC errors:\t\t%10u\n"
3030 " protocol errors:\t\t%10u\n",
63734a32
AV
3031 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3032 be32_to_cpu(fore200e->stats->aal5.cells_received),
3033 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3034 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3035 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3036 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3037 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3038 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3039 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
1da177e4
LT
3040
3041 if (!left--)
3042 return sprintf(page,"\n"
3043 " AUX:\t\t allocation failures\n"
3044 " small b1:\t\t\t%10u\n"
3045 " large b1:\t\t\t%10u\n"
3046 " small b2:\t\t\t%10u\n"
3047 " large b2:\t\t\t%10u\n"
3048 " RX PDUs:\t\t\t%10u\n"
3049 " TX PDUs:\t\t\t%10lu\n",
63734a32
AV
3050 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3051 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3052 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3053 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3054 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
1da177e4
LT
3055 fore200e->tx_sat);
3056
3057 if (!left--)
3058 return sprintf(page,"\n"
3059 " receive carrier:\t\t\t%s\n",
3060 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3061
3062 if (!left--) {
3063 return sprintf(page,"\n"
3064 " VCCs:\n address VPI VCI AAL "
3065 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
3066 }
3067
3068 for (i = 0; i < NBR_CONNECT; i++) {
3069
3070 vcc = fore200e->vc_map[i].vcc;
3071
3072 if (vcc == NULL)
3073 continue;
3074
3075 spin_lock_irqsave(&fore200e->q_lock, flags);
3076
3077 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3078
3079 fore200e_vcc = FORE200E_VCC(vcc);
3080 ASSERT(fore200e_vcc);
3081
3082 len = sprintf(page,
3083 " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
3084 (u32)(unsigned long)vcc,
3085 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3086 fore200e_vcc->tx_pdu,
3087 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3088 fore200e_vcc->tx_max_pdu,
3089 fore200e_vcc->rx_pdu,
3090 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3091 fore200e_vcc->rx_max_pdu);
3092
3093 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3094 return len;
3095 }
3096
3097 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3098 }
3099
3100 return 0;
3101}
3102
3103module_init(fore200e_module_init);
3104module_exit(fore200e_module_cleanup);
3105
3106
3107static const struct atmdev_ops fore200e_ops =
3108{
3109 .open = fore200e_open,
3110 .close = fore200e_close,
3111 .ioctl = fore200e_ioctl,
3112 .getsockopt = fore200e_getsockopt,
3113 .setsockopt = fore200e_setsockopt,
3114 .send = fore200e_send,
3115 .change_qos = fore200e_change_qos,
3116 .proc_read = fore200e_proc_read,
3117 .owner = THIS_MODULE
3118};
3119
3120
1da177e4 3121static const struct fore200e_bus fore200e_bus[] = {
e92481f9 3122#ifdef CONFIG_PCI
1da177e4 3123 { "PCA-200E", "pca200e", 32, 4, 32,
1da177e4
LT
3124 fore200e_pca_read,
3125 fore200e_pca_write,
3126 fore200e_pca_dma_map,
3127 fore200e_pca_dma_unmap,
3128 fore200e_pca_dma_sync_for_cpu,
3129 fore200e_pca_dma_sync_for_device,
3130 fore200e_pca_dma_chunk_alloc,
3131 fore200e_pca_dma_chunk_free,
1da177e4
LT
3132 fore200e_pca_configure,
3133 fore200e_pca_map,
3134 fore200e_pca_reset,
3135 fore200e_pca_prom_read,
3136 fore200e_pca_unmap,
3137 NULL,
3138 fore200e_pca_irq_check,
3139 fore200e_pca_irq_ack,
3140 fore200e_pca_proc_read,
3141 },
3142#endif
e92481f9 3143#ifdef CONFIG_SBUS
1da177e4 3144 { "SBA-200E", "sba200e", 32, 64, 32,
1da177e4
LT
3145 fore200e_sba_read,
3146 fore200e_sba_write,
3147 fore200e_sba_dma_map,
3148 fore200e_sba_dma_unmap,
3149 fore200e_sba_dma_sync_for_cpu,
3150 fore200e_sba_dma_sync_for_device,
3151 fore200e_sba_dma_chunk_alloc,
3152 fore200e_sba_dma_chunk_free,
1da177e4
LT
3153 fore200e_sba_configure,
3154 fore200e_sba_map,
3155 fore200e_sba_reset,
3156 fore200e_sba_prom_read,
3157 fore200e_sba_unmap,
3158 fore200e_sba_irq_enable,
3159 fore200e_sba_irq_check,
3160 fore200e_sba_irq_ack,
3161 fore200e_sba_proc_read,
3162 },
3163#endif
3164 {}
3165};
3166
1da177e4 3167MODULE_LICENSE("GPL");
6f75a9b6
CW
3168#ifdef CONFIG_PCI
3169#ifdef __LITTLE_ENDIAN__
3170MODULE_FIRMWARE("pca200e.bin");
3171#else
3172MODULE_FIRMWARE("pca200e_ecd.bin2");
3173#endif
3174#endif /* CONFIG_PCI */
3175#ifdef CONFIG_SBUS
3176MODULE_FIRMWARE("sba200e_ecd.bin2");
1da177e4 3177#endif