x86: don't disable RDTSC in userland for 32bit notsc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / xen / time.c
CommitLineData
15c84731
JF
1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
f91a8b44 14#include <linux/kernel_stat.h>
15c84731
JF
15
16#include <asm/xen/hypervisor.h>
17#include <asm/xen/hypercall.h>
18
19#include <xen/events.h>
20#include <xen/interface/xen.h>
21#include <xen/interface/vcpu.h>
22
23#include "xen-ops.h"
24
25#define XEN_SHIFT 22
26
27/* Xen may fire a timer up to this many ns early */
28#define TIMER_SLOP 100000
f91a8b44 29#define NS_PER_TICK (1000000000LL / HZ)
15c84731 30
ab550288
JF
31static cycle_t xen_clocksource_read(void);
32
15c84731
JF
33/* These are perodically updated in shared_info, and then copied here. */
34struct shadow_time_info {
35 u64 tsc_timestamp; /* TSC at last update of time vals. */
36 u64 system_timestamp; /* Time, in nanosecs, since boot. */
37 u32 tsc_to_nsec_mul;
38 int tsc_shift;
39 u32 version;
40};
41
42static DEFINE_PER_CPU(struct shadow_time_info, shadow_time);
43
f91a8b44
JF
44/* runstate info updated by Xen */
45static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate);
46
47/* snapshots of runstate info */
48static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot);
49
50/* unused ns of stolen and blocked time */
51static DEFINE_PER_CPU(u64, residual_stolen);
52static DEFINE_PER_CPU(u64, residual_blocked);
53
54/* return an consistent snapshot of 64-bit time/counter value */
55static u64 get64(const u64 *p)
56{
57 u64 ret;
58
59 if (BITS_PER_LONG < 64) {
60 u32 *p32 = (u32 *)p;
61 u32 h, l;
62
63 /*
64 * Read high then low, and then make sure high is
65 * still the same; this will only loop if low wraps
66 * and carries into high.
67 * XXX some clean way to make this endian-proof?
68 */
69 do {
70 h = p32[1];
71 barrier();
72 l = p32[0];
73 barrier();
74 } while (p32[1] != h);
75
76 ret = (((u64)h) << 32) | l;
77 } else
78 ret = *p;
79
80 return ret;
81}
82
83/*
84 * Runstate accounting
85 */
86static void get_runstate_snapshot(struct vcpu_runstate_info *res)
87{
88 u64 state_time;
89 struct vcpu_runstate_info *state;
90
f120f13e 91 BUG_ON(preemptible());
f91a8b44
JF
92
93 state = &__get_cpu_var(runstate);
94
95 /*
96 * The runstate info is always updated by the hypervisor on
97 * the current CPU, so there's no need to use anything
98 * stronger than a compiler barrier when fetching it.
99 */
100 do {
101 state_time = get64(&state->state_entry_time);
102 barrier();
103 *res = *state;
104 barrier();
105 } while (get64(&state->state_entry_time) != state_time);
f91a8b44
JF
106}
107
f0d73394
JF
108/* return true when a vcpu could run but has no real cpu to run on */
109bool xen_vcpu_stolen(int vcpu)
110{
111 return per_cpu(runstate, vcpu).state == RUNSTATE_runnable;
112}
113
f91a8b44
JF
114static void setup_runstate_info(int cpu)
115{
116 struct vcpu_register_runstate_memory_area area;
117
118 area.addr.v = &per_cpu(runstate, cpu);
119
120 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
121 cpu, &area))
122 BUG();
123}
124
125static void do_stolen_accounting(void)
126{
127 struct vcpu_runstate_info state;
128 struct vcpu_runstate_info *snap;
129 s64 blocked, runnable, offline, stolen;
130 cputime_t ticks;
131
132 get_runstate_snapshot(&state);
133
134 WARN_ON(state.state != RUNSTATE_running);
135
136 snap = &__get_cpu_var(runstate_snapshot);
137
138 /* work out how much time the VCPU has not been runn*ing* */
139 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
140 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
141 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
142
143 *snap = state;
144
145 /* Add the appropriate number of ticks of stolen time,
146 including any left-overs from last time. Passing NULL to
147 account_steal_time accounts the time as stolen. */
148 stolen = runnable + offline + __get_cpu_var(residual_stolen);
149
150 if (stolen < 0)
151 stolen = 0;
152
153 ticks = 0;
154 while (stolen >= NS_PER_TICK) {
155 ticks++;
156 stolen -= NS_PER_TICK;
157 }
158 __get_cpu_var(residual_stolen) = stolen;
159 account_steal_time(NULL, ticks);
160
161 /* Add the appropriate number of ticks of blocked time,
162 including any left-overs from last time. Passing idle to
163 account_steal_time accounts the time as idle/wait. */
164 blocked += __get_cpu_var(residual_blocked);
165
166 if (blocked < 0)
167 blocked = 0;
168
169 ticks = 0;
170 while (blocked >= NS_PER_TICK) {
171 ticks++;
172 blocked -= NS_PER_TICK;
173 }
174 __get_cpu_var(residual_blocked) = blocked;
175 account_steal_time(idle_task(smp_processor_id()), ticks);
176}
177
ab550288
JF
178/*
179 * Xen sched_clock implementation. Returns the number of unstolen
180 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED
181 * states.
182 */
183unsigned long long xen_sched_clock(void)
184{
185 struct vcpu_runstate_info state;
f120f13e
JF
186 cycle_t now;
187 u64 ret;
ab550288
JF
188 s64 offset;
189
f120f13e
JF
190 /*
191 * Ideally sched_clock should be called on a per-cpu basis
192 * anyway, so preempt should already be disabled, but that's
193 * not current practice at the moment.
194 */
195 preempt_disable();
196
197 now = xen_clocksource_read();
198
ab550288
JF
199 get_runstate_snapshot(&state);
200
201 WARN_ON(state.state != RUNSTATE_running);
202
203 offset = now - state.state_entry_time;
204 if (offset < 0)
205 offset = 0;
206
f120f13e 207 ret = state.time[RUNSTATE_blocked] +
ab550288
JF
208 state.time[RUNSTATE_running] +
209 offset;
f120f13e
JF
210
211 preempt_enable();
212
213 return ret;
ab550288 214}
f91a8b44
JF
215
216
217/* Get the CPU speed from Xen */
15c84731
JF
218unsigned long xen_cpu_khz(void)
219{
220 u64 cpu_khz = 1000000ULL << 32;
221 const struct vcpu_time_info *info =
222 &HYPERVISOR_shared_info->vcpu_info[0].time;
223
224 do_div(cpu_khz, info->tsc_to_system_mul);
225 if (info->tsc_shift < 0)
226 cpu_khz <<= -info->tsc_shift;
227 else
228 cpu_khz >>= info->tsc_shift;
229
230 return cpu_khz;
231}
232
233/*
234 * Reads a consistent set of time-base values from Xen, into a shadow data
235 * area.
236 */
f91a8b44 237static unsigned get_time_values_from_xen(void)
15c84731
JF
238{
239 struct vcpu_time_info *src;
240 struct shadow_time_info *dst;
241
15c84731
JF
242 /* src is shared memory with the hypervisor, so we need to
243 make sure we get a consistent snapshot, even in the face of
244 being preempted. */
245 src = &__get_cpu_var(xen_vcpu)->time;
246 dst = &__get_cpu_var(shadow_time);
247
248 do {
249 dst->version = src->version;
250 rmb(); /* fetch version before data */
251 dst->tsc_timestamp = src->tsc_timestamp;
252 dst->system_timestamp = src->system_time;
253 dst->tsc_to_nsec_mul = src->tsc_to_system_mul;
254 dst->tsc_shift = src->tsc_shift;
255 rmb(); /* test version after fetching data */
256 } while ((src->version & 1) | (dst->version ^ src->version));
257
f91a8b44 258 return dst->version;
15c84731
JF
259}
260
261/*
262 * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
263 * yielding a 64-bit result.
264 */
265static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift)
266{
267 u64 product;
268#ifdef __i386__
269 u32 tmp1, tmp2;
270#endif
271
272 if (shift < 0)
273 delta >>= -shift;
274 else
275 delta <<= shift;
276
277#ifdef __i386__
278 __asm__ (
279 "mul %5 ; "
280 "mov %4,%%eax ; "
281 "mov %%edx,%4 ; "
282 "mul %5 ; "
283 "xor %5,%5 ; "
284 "add %4,%%eax ; "
285 "adc %5,%%edx ; "
286 : "=A" (product), "=r" (tmp1), "=r" (tmp2)
287 : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) );
288#elif __x86_64__
289 __asm__ (
290 "mul %%rdx ; shrd $32,%%rdx,%%rax"
291 : "=a" (product) : "0" (delta), "d" ((u64)mul_frac) );
292#else
293#error implement me!
294#endif
295
296 return product;
297}
298
299static u64 get_nsec_offset(struct shadow_time_info *shadow)
300{
301 u64 now, delta;
f91a8b44 302 now = native_read_tsc();
15c84731
JF
303 delta = now - shadow->tsc_timestamp;
304 return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift);
305}
306
ab550288 307static cycle_t xen_clocksource_read(void)
15c84731
JF
308{
309 struct shadow_time_info *shadow = &get_cpu_var(shadow_time);
310 cycle_t ret;
f91a8b44 311 unsigned version;
15c84731 312
f91a8b44
JF
313 do {
314 version = get_time_values_from_xen();
315 barrier();
316 ret = shadow->system_timestamp + get_nsec_offset(shadow);
317 barrier();
318 } while (version != __get_cpu_var(xen_vcpu)->time.version);
15c84731
JF
319
320 put_cpu_var(shadow_time);
321
322 return ret;
323}
324
325static void xen_read_wallclock(struct timespec *ts)
326{
327 const struct shared_info *s = HYPERVISOR_shared_info;
328 u32 version;
329 u64 delta;
330 struct timespec now;
331
332 /* get wallclock at system boot */
333 do {
334 version = s->wc_version;
335 rmb(); /* fetch version before time */
336 now.tv_sec = s->wc_sec;
337 now.tv_nsec = s->wc_nsec;
338 rmb(); /* fetch time before checking version */
339 } while ((s->wc_version & 1) | (version ^ s->wc_version));
340
341 delta = xen_clocksource_read(); /* time since system boot */
342 delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec;
343
344 now.tv_nsec = do_div(delta, NSEC_PER_SEC);
345 now.tv_sec = delta;
346
347 set_normalized_timespec(ts, now.tv_sec, now.tv_nsec);
348}
349
350unsigned long xen_get_wallclock(void)
351{
352 struct timespec ts;
353
354 xen_read_wallclock(&ts);
355
356 return ts.tv_sec;
357}
358
359int xen_set_wallclock(unsigned long now)
360{
361 /* do nothing for domU */
362 return -1;
363}
364
365static struct clocksource xen_clocksource __read_mostly = {
366 .name = "xen",
367 .rating = 400,
368 .read = xen_clocksource_read,
369 .mask = ~0,
370 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
371 .shift = XEN_SHIFT,
372 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
373};
374
375/*
376 Xen clockevent implementation
377
378 Xen has two clockevent implementations:
379
380 The old timer_op one works with all released versions of Xen prior
381 to version 3.0.4. This version of the hypervisor provides a
382 single-shot timer with nanosecond resolution. However, sharing the
383 same event channel is a 100Hz tick which is delivered while the
384 vcpu is running. We don't care about or use this tick, but it will
385 cause the core time code to think the timer fired too soon, and
386 will end up resetting it each time. It could be filtered, but
387 doing so has complications when the ktime clocksource is not yet
388 the xen clocksource (ie, at boot time).
389
390 The new vcpu_op-based timer interface allows the tick timer period
391 to be changed or turned off. The tick timer is not useful as a
392 periodic timer because events are only delivered to running vcpus.
393 The one-shot timer can report when a timeout is in the past, so
394 set_next_event is capable of returning -ETIME when appropriate.
395 This interface is used when available.
396*/
397
398
399/*
400 Get a hypervisor absolute time. In theory we could maintain an
401 offset between the kernel's time and the hypervisor's time, and
402 apply that to a kernel's absolute timeout. Unfortunately the
403 hypervisor and kernel times can drift even if the kernel is using
404 the Xen clocksource, because ntp can warp the kernel's clocksource.
405*/
406static s64 get_abs_timeout(unsigned long delta)
407{
408 return xen_clocksource_read() + delta;
409}
410
411static void xen_timerop_set_mode(enum clock_event_mode mode,
412 struct clock_event_device *evt)
413{
414 switch (mode) {
415 case CLOCK_EVT_MODE_PERIODIC:
416 /* unsupported */
417 WARN_ON(1);
418 break;
419
420 case CLOCK_EVT_MODE_ONESHOT:
18de5bc4 421 case CLOCK_EVT_MODE_RESUME:
15c84731
JF
422 break;
423
424 case CLOCK_EVT_MODE_UNUSED:
425 case CLOCK_EVT_MODE_SHUTDOWN:
426 HYPERVISOR_set_timer_op(0); /* cancel timeout */
427 break;
428 }
429}
430
431static int xen_timerop_set_next_event(unsigned long delta,
432 struct clock_event_device *evt)
433{
434 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
435
436 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
437 BUG();
438
439 /* We may have missed the deadline, but there's no real way of
440 knowing for sure. If the event was in the past, then we'll
441 get an immediate interrupt. */
442
443 return 0;
444}
445
446static const struct clock_event_device xen_timerop_clockevent = {
447 .name = "xen",
448 .features = CLOCK_EVT_FEAT_ONESHOT,
449
450 .max_delta_ns = 0xffffffff,
451 .min_delta_ns = TIMER_SLOP,
452
453 .mult = 1,
454 .shift = 0,
455 .rating = 500,
456
457 .set_mode = xen_timerop_set_mode,
458 .set_next_event = xen_timerop_set_next_event,
459};
460
461
462
463static void xen_vcpuop_set_mode(enum clock_event_mode mode,
464 struct clock_event_device *evt)
465{
466 int cpu = smp_processor_id();
467
468 switch (mode) {
469 case CLOCK_EVT_MODE_PERIODIC:
470 WARN_ON(1); /* unsupported */
471 break;
472
473 case CLOCK_EVT_MODE_ONESHOT:
474 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
475 BUG();
476 break;
477
478 case CLOCK_EVT_MODE_UNUSED:
479 case CLOCK_EVT_MODE_SHUTDOWN:
480 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
481 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
482 BUG();
483 break;
18de5bc4
TG
484 case CLOCK_EVT_MODE_RESUME:
485 break;
15c84731
JF
486 }
487}
488
489static int xen_vcpuop_set_next_event(unsigned long delta,
490 struct clock_event_device *evt)
491{
492 int cpu = smp_processor_id();
493 struct vcpu_set_singleshot_timer single;
494 int ret;
495
496 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
497
498 single.timeout_abs_ns = get_abs_timeout(delta);
499 single.flags = VCPU_SSHOTTMR_future;
500
501 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
502
503 BUG_ON(ret != 0 && ret != -ETIME);
504
505 return ret;
506}
507
508static const struct clock_event_device xen_vcpuop_clockevent = {
509 .name = "xen",
510 .features = CLOCK_EVT_FEAT_ONESHOT,
511
512 .max_delta_ns = 0xffffffff,
513 .min_delta_ns = TIMER_SLOP,
514
515 .mult = 1,
516 .shift = 0,
517 .rating = 500,
518
519 .set_mode = xen_vcpuop_set_mode,
520 .set_next_event = xen_vcpuop_set_next_event,
521};
522
523static const struct clock_event_device *xen_clockevent =
524 &xen_timerop_clockevent;
525static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
526
527static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
528{
529 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
530 irqreturn_t ret;
531
532 ret = IRQ_NONE;
533 if (evt->event_handler) {
534 evt->event_handler(evt);
535 ret = IRQ_HANDLED;
536 }
537
f91a8b44
JF
538 do_stolen_accounting();
539
15c84731
JF
540 return ret;
541}
542
f87e4cac 543void xen_setup_timer(int cpu)
15c84731
JF
544{
545 const char *name;
546 struct clock_event_device *evt;
547 int irq;
548
549 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
550
551 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
552 if (!name)
553 name = "<timer kasprintf failed>";
554
555 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
556 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
557 name, NULL);
558
f87e4cac 559 evt = &per_cpu(xen_clock_events, cpu);
15c84731
JF
560 memcpy(evt, xen_clockevent, sizeof(*evt));
561
562 evt->cpumask = cpumask_of_cpu(cpu);
563 evt->irq = irq;
15c84731 564
f91a8b44 565 setup_runstate_info(cpu);
f87e4cac
JF
566}
567
568void xen_setup_cpu_clockevents(void)
569{
570 BUG_ON(preemptible());
f91a8b44 571
f87e4cac 572 clockevents_register_device(&__get_cpu_var(xen_clock_events));
15c84731
JF
573}
574
575__init void xen_time_init(void)
576{
577 int cpu = smp_processor_id();
578
579 get_time_values_from_xen();
580
581 clocksource_register(&xen_clocksource);
582
583 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
f91a8b44 584 /* Successfully turned off 100Hz tick, so we have the
15c84731
JF
585 vcpuop-based timer interface */
586 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
587 xen_clockevent = &xen_vcpuop_clockevent;
588 }
589
590 /* Set initial system time with full resolution */
591 xen_read_wallclock(&xtime);
592 set_normalized_timespec(&wall_to_monotonic,
593 -xtime.tv_sec, -xtime.tv_nsec);
594
595 tsc_disable = 0;
596
597 xen_setup_timer(cpu);
f87e4cac 598 xen_setup_cpu_clockevents();
15c84731 599}