vm: add VM_FAULT_SIGSEGV handling support
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
56dd9470 16#include <linux/context_tracking.h> /* exception_enter(), ... */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
fab1167c 21#include <asm/fixmap.h> /* VSYSCALL_START */
1da177e4 22
33cb5243 23/*
2d4a7167
IM
24 * Page fault error code bits:
25 *
26 * bit 0 == 0: no page found 1: protection fault
27 * bit 1 == 0: read access 1: write access
28 * bit 2 == 0: kernel-mode access 1: user-mode access
29 * bit 3 == 1: use of reserved bit detected
30 * bit 4 == 1: fault was an instruction fetch
33cb5243 31 */
2d4a7167
IM
32enum x86_pf_error_code {
33
34 PF_PROT = 1 << 0,
35 PF_WRITE = 1 << 1,
36 PF_USER = 1 << 2,
37 PF_RSVD = 1 << 3,
38 PF_INSTR = 1 << 4,
39};
66c58156 40
b814d41f 41/*
b319eed0
IM
42 * Returns 0 if mmiotrace is disabled, or if the fault is not
43 * handled by mmiotrace:
b814d41f 44 */
62c9295f
MH
45static inline int __kprobes
46kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 47{
0fd0e3da
PP
48 if (unlikely(is_kmmio_active()))
49 if (kmmio_handler(regs, addr) == 1)
50 return -1;
0fd0e3da 51 return 0;
86069782
PP
52}
53
62c9295f 54static inline int __kprobes notify_page_fault(struct pt_regs *regs)
1bd858a5 55{
74a0b576
CH
56 int ret = 0;
57
58 /* kprobe_running() needs smp_processor_id() */
b1801812 59 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
60 preempt_disable();
61 if (kprobe_running() && kprobe_fault_handler(regs, 14))
62 ret = 1;
63 preempt_enable();
64 }
1bd858a5 65
74a0b576 66 return ret;
33cb5243 67}
1bd858a5 68
1dc85be0 69/*
2d4a7167
IM
70 * Prefetch quirks:
71 *
72 * 32-bit mode:
73 *
74 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
75 * Check that here and ignore it.
1dc85be0 76 *
2d4a7167 77 * 64-bit mode:
1dc85be0 78 *
2d4a7167
IM
79 * Sometimes the CPU reports invalid exceptions on prefetch.
80 * Check that here and ignore it.
81 *
82 * Opcode checker based on code by Richard Brunner.
1dc85be0 83 */
107a0367
IM
84static inline int
85check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
86 unsigned char opcode, int *prefetch)
87{
88 unsigned char instr_hi = opcode & 0xf0;
89 unsigned char instr_lo = opcode & 0x0f;
90
91 switch (instr_hi) {
92 case 0x20:
93 case 0x30:
94 /*
95 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
96 * In X86_64 long mode, the CPU will signal invalid
97 * opcode if some of these prefixes are present so
98 * X86_64 will never get here anyway
99 */
100 return ((instr_lo & 7) == 0x6);
101#ifdef CONFIG_X86_64
102 case 0x40:
103 /*
104 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
105 * Need to figure out under what instruction mode the
106 * instruction was issued. Could check the LDT for lm,
107 * but for now it's good enough to assume that long
108 * mode only uses well known segments or kernel.
109 */
318f5a2a 110 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
111#endif
112 case 0x60:
113 /* 0x64 thru 0x67 are valid prefixes in all modes. */
114 return (instr_lo & 0xC) == 0x4;
115 case 0xF0:
116 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
117 return !instr_lo || (instr_lo>>1) == 1;
118 case 0x00:
119 /* Prefetch instruction is 0x0F0D or 0x0F18 */
120 if (probe_kernel_address(instr, opcode))
121 return 0;
122
123 *prefetch = (instr_lo == 0xF) &&
124 (opcode == 0x0D || opcode == 0x18);
125 return 0;
126 default:
127 return 0;
128 }
129}
130
2d4a7167
IM
131static int
132is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 133{
2d4a7167 134 unsigned char *max_instr;
ab2bf0c1 135 unsigned char *instr;
33cb5243 136 int prefetch = 0;
1da177e4 137
3085354d
IM
138 /*
139 * If it was a exec (instruction fetch) fault on NX page, then
140 * do not ignore the fault:
141 */
66c58156 142 if (error_code & PF_INSTR)
1da177e4 143 return 0;
1dc85be0 144
107a0367 145 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 146 max_instr = instr + 15;
1da177e4 147
76381fee 148 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
149 return 0;
150
107a0367 151 while (instr < max_instr) {
2d4a7167 152 unsigned char opcode;
1da177e4 153
ab2bf0c1 154 if (probe_kernel_address(instr, opcode))
33cb5243 155 break;
1da177e4 156
1da177e4
LT
157 instr++;
158
107a0367 159 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 160 break;
1da177e4
LT
161 }
162 return prefetch;
163}
164
2d4a7167
IM
165static void
166force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 167 struct task_struct *tsk, int fault)
c4aba4a8 168{
f672b49b 169 unsigned lsb = 0;
c4aba4a8
HH
170 siginfo_t info;
171
2d4a7167
IM
172 info.si_signo = si_signo;
173 info.si_errno = 0;
174 info.si_code = si_code;
175 info.si_addr = (void __user *)address;
f672b49b
AK
176 if (fault & VM_FAULT_HWPOISON_LARGE)
177 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
178 if (fault & VM_FAULT_HWPOISON)
179 lsb = PAGE_SHIFT;
180 info.si_addr_lsb = lsb;
2d4a7167 181
c4aba4a8
HH
182 force_sig_info(si_signo, &info, tsk);
183}
184
f2f13a85
IM
185DEFINE_SPINLOCK(pgd_lock);
186LIST_HEAD(pgd_list);
187
188#ifdef CONFIG_X86_32
189static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 190{
f2f13a85
IM
191 unsigned index = pgd_index(address);
192 pgd_t *pgd_k;
193 pud_t *pud, *pud_k;
194 pmd_t *pmd, *pmd_k;
2d4a7167 195
f2f13a85
IM
196 pgd += index;
197 pgd_k = init_mm.pgd + index;
198
199 if (!pgd_present(*pgd_k))
200 return NULL;
201
202 /*
203 * set_pgd(pgd, *pgd_k); here would be useless on PAE
204 * and redundant with the set_pmd() on non-PAE. As would
205 * set_pud.
206 */
207 pud = pud_offset(pgd, address);
208 pud_k = pud_offset(pgd_k, address);
209 if (!pud_present(*pud_k))
210 return NULL;
211
212 pmd = pmd_offset(pud, address);
213 pmd_k = pmd_offset(pud_k, address);
214 if (!pmd_present(*pmd_k))
215 return NULL;
216
b8bcfe99 217 if (!pmd_present(*pmd))
f2f13a85 218 set_pmd(pmd, *pmd_k);
b8bcfe99 219 else
f2f13a85 220 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
221
222 return pmd_k;
223}
224
225void vmalloc_sync_all(void)
226{
227 unsigned long address;
228
229 if (SHARED_KERNEL_PMD)
230 return;
231
232 for (address = VMALLOC_START & PMD_MASK;
233 address >= TASK_SIZE && address < FIXADDR_TOP;
234 address += PMD_SIZE) {
f2f13a85
IM
235 struct page *page;
236
a79e53d8 237 spin_lock(&pgd_lock);
f2f13a85 238 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 239 spinlock_t *pgt_lock;
f01f7c56 240 pmd_t *ret;
617d34d9 241
a79e53d8 242 /* the pgt_lock only for Xen */
617d34d9
JF
243 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
244
245 spin_lock(pgt_lock);
246 ret = vmalloc_sync_one(page_address(page), address);
247 spin_unlock(pgt_lock);
248
249 if (!ret)
f2f13a85
IM
250 break;
251 }
a79e53d8 252 spin_unlock(&pgd_lock);
f2f13a85
IM
253 }
254}
255
256/*
257 * 32-bit:
258 *
259 * Handle a fault on the vmalloc or module mapping area
260 */
62c9295f 261static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
262{
263 unsigned long pgd_paddr;
264 pmd_t *pmd_k;
265 pte_t *pte_k;
266
267 /* Make sure we are in vmalloc area: */
268 if (!(address >= VMALLOC_START && address < VMALLOC_END))
269 return -1;
270
ebc8827f
FW
271 WARN_ON_ONCE(in_nmi());
272
f2f13a85
IM
273 /*
274 * Synchronize this task's top level page-table
275 * with the 'reference' page table.
276 *
277 * Do _not_ use "current" here. We might be inside
278 * an interrupt in the middle of a task switch..
279 */
280 pgd_paddr = read_cr3();
281 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
282 if (!pmd_k)
283 return -1;
284
285 pte_k = pte_offset_kernel(pmd_k, address);
286 if (!pte_present(*pte_k))
287 return -1;
288
289 return 0;
290}
291
292/*
293 * Did it hit the DOS screen memory VA from vm86 mode?
294 */
295static inline void
296check_v8086_mode(struct pt_regs *regs, unsigned long address,
297 struct task_struct *tsk)
298{
299 unsigned long bit;
300
301 if (!v8086_mode(regs))
302 return;
303
304 bit = (address - 0xA0000) >> PAGE_SHIFT;
305 if (bit < 32)
306 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 307}
1da177e4 308
087975b0 309static bool low_pfn(unsigned long pfn)
1da177e4 310{
087975b0
AM
311 return pfn < max_low_pfn;
312}
1156e098 313
087975b0
AM
314static void dump_pagetable(unsigned long address)
315{
316 pgd_t *base = __va(read_cr3());
317 pgd_t *pgd = &base[pgd_index(address)];
318 pmd_t *pmd;
319 pte_t *pte;
2d4a7167 320
1156e098 321#ifdef CONFIG_X86_PAE
087975b0
AM
322 printk("*pdpt = %016Lx ", pgd_val(*pgd));
323 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
324 goto out;
1156e098 325#endif
087975b0
AM
326 pmd = pmd_offset(pud_offset(pgd, address), address);
327 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
328
329 /*
330 * We must not directly access the pte in the highpte
331 * case if the page table is located in highmem.
332 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 333 * it's allocated already:
1156e098 334 */
087975b0
AM
335 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
336 goto out;
1156e098 337
087975b0
AM
338 pte = pte_offset_kernel(pmd, address);
339 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
340out:
1156e098 341 printk("\n");
f2f13a85
IM
342}
343
344#else /* CONFIG_X86_64: */
345
346void vmalloc_sync_all(void)
347{
6afb5157 348 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
349}
350
351/*
352 * 64-bit:
353 *
354 * Handle a fault on the vmalloc area
355 *
356 * This assumes no large pages in there.
357 */
62c9295f 358static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
359{
360 pgd_t *pgd, *pgd_ref;
361 pud_t *pud, *pud_ref;
362 pmd_t *pmd, *pmd_ref;
363 pte_t *pte, *pte_ref;
364
365 /* Make sure we are in vmalloc area: */
366 if (!(address >= VMALLOC_START && address < VMALLOC_END))
367 return -1;
368
ebc8827f
FW
369 WARN_ON_ONCE(in_nmi());
370
f2f13a85
IM
371 /*
372 * Copy kernel mappings over when needed. This can also
373 * happen within a race in page table update. In the later
374 * case just flush:
375 */
376 pgd = pgd_offset(current->active_mm, address);
377 pgd_ref = pgd_offset_k(address);
378 if (pgd_none(*pgd_ref))
379 return -1;
380
1160c277 381 if (pgd_none(*pgd)) {
f2f13a85 382 set_pgd(pgd, *pgd_ref);
1160c277
SK
383 arch_flush_lazy_mmu_mode();
384 } else {
f2f13a85 385 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 386 }
f2f13a85
IM
387
388 /*
389 * Below here mismatches are bugs because these lower tables
390 * are shared:
391 */
392
393 pud = pud_offset(pgd, address);
394 pud_ref = pud_offset(pgd_ref, address);
395 if (pud_none(*pud_ref))
396 return -1;
397
398 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
399 BUG();
400
401 pmd = pmd_offset(pud, address);
402 pmd_ref = pmd_offset(pud_ref, address);
403 if (pmd_none(*pmd_ref))
404 return -1;
405
406 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
407 BUG();
408
409 pte_ref = pte_offset_kernel(pmd_ref, address);
410 if (!pte_present(*pte_ref))
411 return -1;
412
413 pte = pte_offset_kernel(pmd, address);
414
415 /*
416 * Don't use pte_page here, because the mappings can point
417 * outside mem_map, and the NUMA hash lookup cannot handle
418 * that:
419 */
420 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
421 BUG();
422
423 return 0;
424}
425
e05139f2 426#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 427static const char errata93_warning[] =
ad361c98
JP
428KERN_ERR
429"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
430"******* Working around it, but it may cause SEGVs or burn power.\n"
431"******* Please consider a BIOS update.\n"
432"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 433#endif
f2f13a85
IM
434
435/*
436 * No vm86 mode in 64-bit mode:
437 */
438static inline void
439check_v8086_mode(struct pt_regs *regs, unsigned long address,
440 struct task_struct *tsk)
441{
442}
443
444static int bad_address(void *p)
445{
446 unsigned long dummy;
447
448 return probe_kernel_address((unsigned long *)p, dummy);
449}
450
451static void dump_pagetable(unsigned long address)
452{
087975b0
AM
453 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
454 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
455 pud_t *pud;
456 pmd_t *pmd;
457 pte_t *pte;
458
2d4a7167
IM
459 if (bad_address(pgd))
460 goto bad;
461
d646bce4 462 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
463
464 if (!pgd_present(*pgd))
465 goto out;
1da177e4 466
d2ae5b5f 467 pud = pud_offset(pgd, address);
2d4a7167
IM
468 if (bad_address(pud))
469 goto bad;
470
1da177e4 471 printk("PUD %lx ", pud_val(*pud));
b5360222 472 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 473 goto out;
1da177e4
LT
474
475 pmd = pmd_offset(pud, address);
2d4a7167
IM
476 if (bad_address(pmd))
477 goto bad;
478
1da177e4 479 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
480 if (!pmd_present(*pmd) || pmd_large(*pmd))
481 goto out;
1da177e4
LT
482
483 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
484 if (bad_address(pte))
485 goto bad;
486
33cb5243 487 printk("PTE %lx", pte_val(*pte));
2d4a7167 488out:
1da177e4
LT
489 printk("\n");
490 return;
491bad:
492 printk("BAD\n");
8c938f9f
IM
493}
494
f2f13a85 495#endif /* CONFIG_X86_64 */
1da177e4 496
2d4a7167
IM
497/*
498 * Workaround for K8 erratum #93 & buggy BIOS.
499 *
500 * BIOS SMM functions are required to use a specific workaround
501 * to avoid corruption of the 64bit RIP register on C stepping K8.
502 *
503 * A lot of BIOS that didn't get tested properly miss this.
504 *
505 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
506 * Try to work around it here.
507 *
508 * Note we only handle faults in kernel here.
509 * Does nothing on 32-bit.
fdfe8aa8 510 */
33cb5243 511static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 512{
e05139f2
JB
513#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
514 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
515 || boot_cpu_data.x86 != 0xf)
516 return 0;
517
65ea5b03 518 if (address != regs->ip)
1da177e4 519 return 0;
2d4a7167 520
33cb5243 521 if ((address >> 32) != 0)
1da177e4 522 return 0;
2d4a7167 523
1da177e4 524 address |= 0xffffffffUL << 32;
33cb5243
HH
525 if ((address >= (u64)_stext && address <= (u64)_etext) ||
526 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 527 printk_once(errata93_warning);
65ea5b03 528 regs->ip = address;
1da177e4
LT
529 return 1;
530 }
fdfe8aa8 531#endif
1da177e4 532 return 0;
33cb5243 533}
1da177e4 534
35f3266f 535/*
2d4a7167
IM
536 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
537 * to illegal addresses >4GB.
538 *
539 * We catch this in the page fault handler because these addresses
540 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
541 * segment in LDT is compatibility mode.
542 */
543static int is_errata100(struct pt_regs *regs, unsigned long address)
544{
545#ifdef CONFIG_X86_64
2d4a7167 546 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
547 return 1;
548#endif
549 return 0;
550}
551
29caf2f9
HH
552static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
553{
554#ifdef CONFIG_X86_F00F_BUG
555 unsigned long nr;
2d4a7167 556
29caf2f9 557 /*
2d4a7167 558 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 559 */
e2604b49 560 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
561 nr = (address - idt_descr.address) >> 3;
562
563 if (nr == 6) {
564 do_invalid_op(regs, 0);
565 return 1;
566 }
567 }
568#endif
569 return 0;
570}
571
8f766149
IM
572static const char nx_warning[] = KERN_CRIT
573"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
574
2d4a7167
IM
575static void
576show_fault_oops(struct pt_regs *regs, unsigned long error_code,
577 unsigned long address)
b3279c7f 578{
1156e098
HH
579 if (!oops_may_print())
580 return;
581
1156e098 582 if (error_code & PF_INSTR) {
93809be8 583 unsigned int level;
2d4a7167 584
1156e098
HH
585 pte_t *pte = lookup_address(address, &level);
586
8f766149 587 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 588 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 589 }
1156e098 590
19f0dda9 591 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 592 if (address < PAGE_SIZE)
19f0dda9 593 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 594 else
19f0dda9 595 printk(KERN_CONT "paging request");
2d4a7167 596
f294a8ce 597 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 598 printk(KERN_ALERT "IP:");
b3279c7f 599 printk_address(regs->ip, 1);
2d4a7167 600
b3279c7f
HH
601 dump_pagetable(address);
602}
603
2d4a7167
IM
604static noinline void
605pgtable_bad(struct pt_regs *regs, unsigned long error_code,
606 unsigned long address)
1da177e4 607{
2d4a7167
IM
608 struct task_struct *tsk;
609 unsigned long flags;
610 int sig;
611
612 flags = oops_begin();
613 tsk = current;
614 sig = SIGKILL;
1209140c 615
1da177e4 616 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 617 tsk->comm, address);
1da177e4 618 dump_pagetable(address);
2d4a7167
IM
619
620 tsk->thread.cr2 = address;
51e7dc70 621 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
622 tsk->thread.error_code = error_code;
623
22f5991c 624 if (__die("Bad pagetable", regs, error_code))
874d93d1 625 sig = 0;
2d4a7167 626
874d93d1 627 oops_end(flags, regs, sig);
1da177e4
LT
628}
629
2d4a7167
IM
630static noinline void
631no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 632 unsigned long address, int signal, int si_code)
92181f19
NP
633{
634 struct task_struct *tsk = current;
19803078 635 unsigned long *stackend;
92181f19
NP
636 unsigned long flags;
637 int sig;
92181f19 638
2d4a7167 639 /* Are we prepared to handle this kernel fault? */
4fc34901
AL
640 if (fixup_exception(regs)) {
641 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 642 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
643 tsk->thread.error_code = error_code | PF_USER;
644 tsk->thread.cr2 = address;
645
646 /* XXX: hwpoison faults will set the wrong code. */
647 force_sig_info_fault(signal, si_code, address, tsk, 0);
648 }
92181f19 649 return;
4fc34901 650 }
92181f19
NP
651
652 /*
2d4a7167
IM
653 * 32-bit:
654 *
655 * Valid to do another page fault here, because if this fault
656 * had been triggered by is_prefetch fixup_exception would have
657 * handled it.
658 *
659 * 64-bit:
92181f19 660 *
2d4a7167 661 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
662 */
663 if (is_prefetch(regs, error_code, address))
664 return;
665
666 if (is_errata93(regs, address))
667 return;
668
669 /*
670 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 671 * terminate things with extreme prejudice:
92181f19 672 */
92181f19 673 flags = oops_begin();
92181f19
NP
674
675 show_fault_oops(regs, error_code, address);
676
2d4a7167 677 stackend = end_of_stack(tsk);
0e7810be 678 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
b0f4c4b3 679 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 680
1cc99544 681 tsk->thread.cr2 = address;
51e7dc70 682 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 683 tsk->thread.error_code = error_code;
92181f19 684
92181f19
NP
685 sig = SIGKILL;
686 if (__die("Oops", regs, error_code))
687 sig = 0;
2d4a7167 688
92181f19 689 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 690 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 691
92181f19 692 oops_end(flags, regs, sig);
92181f19
NP
693}
694
2d4a7167
IM
695/*
696 * Print out info about fatal segfaults, if the show_unhandled_signals
697 * sysctl is set:
698 */
699static inline void
700show_signal_msg(struct pt_regs *regs, unsigned long error_code,
701 unsigned long address, struct task_struct *tsk)
702{
703 if (!unhandled_signal(tsk, SIGSEGV))
704 return;
705
706 if (!printk_ratelimit())
707 return;
708
a1a08d1c 709 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
710 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
711 tsk->comm, task_pid_nr(tsk), address,
712 (void *)regs->ip, (void *)regs->sp, error_code);
713
714 print_vma_addr(KERN_CONT " in ", regs->ip);
715
716 printk(KERN_CONT "\n");
717}
718
719static void
720__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
721 unsigned long address, int si_code)
92181f19
NP
722{
723 struct task_struct *tsk = current;
724
725 /* User mode accesses just cause a SIGSEGV */
726 if (error_code & PF_USER) {
727 /*
2d4a7167 728 * It's possible to have interrupts off here:
92181f19
NP
729 */
730 local_irq_enable();
731
732 /*
733 * Valid to do another page fault here because this one came
2d4a7167 734 * from user space:
92181f19
NP
735 */
736 if (is_prefetch(regs, error_code, address))
737 return;
738
739 if (is_errata100(regs, address))
740 return;
741
3ae36655
AL
742#ifdef CONFIG_X86_64
743 /*
744 * Instruction fetch faults in the vsyscall page might need
745 * emulation.
746 */
747 if (unlikely((error_code & PF_INSTR) &&
748 ((address & ~0xfff) == VSYSCALL_START))) {
749 if (emulate_vsyscall(regs, address))
750 return;
751 }
752#endif
e575a86f
KC
753 /* Kernel addresses are always protection faults: */
754 if (address >= TASK_SIZE)
755 error_code |= PF_PROT;
3ae36655 756
e575a86f 757 if (likely(show_unhandled_signals))
2d4a7167
IM
758 show_signal_msg(regs, error_code, address, tsk);
759
2d4a7167 760 tsk->thread.cr2 = address;
e575a86f 761 tsk->thread.error_code = error_code;
51e7dc70 762 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 763
f672b49b 764 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 765
92181f19
NP
766 return;
767 }
768
769 if (is_f00f_bug(regs, address))
770 return;
771
4fc34901 772 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
773}
774
2d4a7167
IM
775static noinline void
776bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
777 unsigned long address)
92181f19
NP
778{
779 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
780}
781
2d4a7167
IM
782static void
783__bad_area(struct pt_regs *regs, unsigned long error_code,
784 unsigned long address, int si_code)
92181f19
NP
785{
786 struct mm_struct *mm = current->mm;
787
788 /*
789 * Something tried to access memory that isn't in our memory map..
790 * Fix it, but check if it's kernel or user first..
791 */
792 up_read(&mm->mmap_sem);
793
794 __bad_area_nosemaphore(regs, error_code, address, si_code);
795}
796
2d4a7167
IM
797static noinline void
798bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
799{
800 __bad_area(regs, error_code, address, SEGV_MAPERR);
801}
802
2d4a7167
IM
803static noinline void
804bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
805 unsigned long address)
92181f19
NP
806{
807 __bad_area(regs, error_code, address, SEGV_ACCERR);
808}
809
2d4a7167 810static void
a6e04aa9
AK
811do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
812 unsigned int fault)
92181f19
NP
813{
814 struct task_struct *tsk = current;
815 struct mm_struct *mm = tsk->mm;
a6e04aa9 816 int code = BUS_ADRERR;
92181f19
NP
817
818 up_read(&mm->mmap_sem);
819
2d4a7167 820 /* Kernel mode? Handle exceptions or die: */
96054569 821 if (!(error_code & PF_USER)) {
4fc34901 822 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
823 return;
824 }
2d4a7167 825
cd1b68f0 826 /* User-space => ok to do another page fault: */
92181f19
NP
827 if (is_prefetch(regs, error_code, address))
828 return;
2d4a7167
IM
829
830 tsk->thread.cr2 = address;
831 tsk->thread.error_code = error_code;
51e7dc70 832 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 833
a6e04aa9 834#ifdef CONFIG_MEMORY_FAILURE
f672b49b 835 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
836 printk(KERN_ERR
837 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
838 tsk->comm, tsk->pid, address);
839 code = BUS_MCEERR_AR;
840 }
841#endif
f672b49b 842 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
843}
844
ed368ae7 845static noinline void
2d4a7167
IM
846mm_fault_error(struct pt_regs *regs, unsigned long error_code,
847 unsigned long address, unsigned int fault)
92181f19 848{
ed368ae7
JW
849 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
850 up_read(&current->mm->mmap_sem);
851 no_context(regs, error_code, address, 0, 0);
852 return;
b80ef10e 853 }
b80ef10e 854
2d4a7167 855 if (fault & VM_FAULT_OOM) {
f8626854
AV
856 /* Kernel mode? Handle exceptions or die: */
857 if (!(error_code & PF_USER)) {
858 up_read(&current->mm->mmap_sem);
4fc34901
AL
859 no_context(regs, error_code, address,
860 SIGSEGV, SEGV_MAPERR);
ed368ae7 861 return;
f8626854
AV
862 }
863
c2d23f91
DR
864 up_read(&current->mm->mmap_sem);
865
866 /*
867 * We ran out of memory, call the OOM killer, and return the
868 * userspace (which will retry the fault, or kill us if we got
869 * oom-killed):
870 */
871 pagefault_out_of_memory();
2d4a7167 872 } else {
f672b49b
AK
873 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
874 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 875 do_sigbus(regs, error_code, address, fault);
0c42d1fb
LT
876 else if (fault & VM_FAULT_SIGSEGV)
877 bad_area_nosemaphore(regs, error_code, address);
2d4a7167
IM
878 else
879 BUG();
880 }
92181f19
NP
881}
882
d8b57bb7
TG
883static int spurious_fault_check(unsigned long error_code, pte_t *pte)
884{
885 if ((error_code & PF_WRITE) && !pte_write(*pte))
886 return 0;
2d4a7167 887
d8b57bb7
TG
888 if ((error_code & PF_INSTR) && !pte_exec(*pte))
889 return 0;
890
891 return 1;
892}
893
5b727a3b 894/*
2d4a7167
IM
895 * Handle a spurious fault caused by a stale TLB entry.
896 *
897 * This allows us to lazily refresh the TLB when increasing the
898 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
899 * eagerly is very expensive since that implies doing a full
900 * cross-processor TLB flush, even if no stale TLB entries exist
901 * on other processors.
902 *
5b727a3b
JF
903 * There are no security implications to leaving a stale TLB when
904 * increasing the permissions on a page.
905 */
62c9295f 906static noinline __kprobes int
2d4a7167 907spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
908{
909 pgd_t *pgd;
910 pud_t *pud;
911 pmd_t *pmd;
912 pte_t *pte;
3c3e5694 913 int ret;
5b727a3b
JF
914
915 /* Reserved-bit violation or user access to kernel space? */
916 if (error_code & (PF_USER | PF_RSVD))
917 return 0;
918
919 pgd = init_mm.pgd + pgd_index(address);
920 if (!pgd_present(*pgd))
921 return 0;
922
923 pud = pud_offset(pgd, address);
924 if (!pud_present(*pud))
925 return 0;
926
d8b57bb7
TG
927 if (pud_large(*pud))
928 return spurious_fault_check(error_code, (pte_t *) pud);
929
5b727a3b
JF
930 pmd = pmd_offset(pud, address);
931 if (!pmd_present(*pmd))
932 return 0;
933
d8b57bb7
TG
934 if (pmd_large(*pmd))
935 return spurious_fault_check(error_code, (pte_t *) pmd);
936
5b727a3b 937 pte = pte_offset_kernel(pmd, address);
954f8571 938 if (!pte_present(*pte))
5b727a3b
JF
939 return 0;
940
3c3e5694
SR
941 ret = spurious_fault_check(error_code, pte);
942 if (!ret)
943 return 0;
944
945 /*
2d4a7167
IM
946 * Make sure we have permissions in PMD.
947 * If not, then there's a bug in the page tables:
3c3e5694
SR
948 */
949 ret = spurious_fault_check(error_code, (pte_t *) pmd);
950 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 951
3c3e5694 952 return ret;
5b727a3b
JF
953}
954
abd4f750 955int show_unhandled_signals = 1;
1da177e4 956
2d4a7167 957static inline int
68da336a 958access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 959{
68da336a 960 if (error_code & PF_WRITE) {
2d4a7167 961 /* write, present and write, not present: */
92181f19
NP
962 if (unlikely(!(vma->vm_flags & VM_WRITE)))
963 return 1;
2d4a7167 964 return 0;
92181f19
NP
965 }
966
2d4a7167
IM
967 /* read, present: */
968 if (unlikely(error_code & PF_PROT))
969 return 1;
970
971 /* read, not present: */
972 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
973 return 1;
974
92181f19
NP
975 return 0;
976}
977
0973a06c
HS
978static int fault_in_kernel_space(unsigned long address)
979{
d9517346 980 return address >= TASK_SIZE_MAX;
0973a06c
HS
981}
982
40d3cd66
PA
983static inline bool smap_violation(int error_code, struct pt_regs *regs)
984{
d8b7ff13
PA
985 if (!IS_ENABLED(CONFIG_X86_SMAP))
986 return false;
987
988 if (!static_cpu_has(X86_FEATURE_SMAP))
989 return false;
990
40d3cd66
PA
991 if (error_code & PF_USER)
992 return false;
993
994 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
995 return false;
996
997 return true;
998}
999
1da177e4
LT
1000/*
1001 * This routine handles page faults. It determines the address,
1002 * and the problem, and then passes it off to one of the appropriate
1003 * routines.
1da177e4 1004 */
6ba3c97a
FW
1005static void __kprobes
1006__do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 1007{
2d4a7167 1008 struct vm_area_struct *vma;
1da177e4 1009 struct task_struct *tsk;
2d4a7167 1010 unsigned long address;
1da177e4 1011 struct mm_struct *mm;
f8c2ee22 1012 int fault;
e2ec2c2b 1013 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1014
a9ba9a3b
AV
1015 tsk = current;
1016 mm = tsk->mm;
2d4a7167 1017
2d4a7167 1018 /* Get the faulting address: */
f51c9452 1019 address = read_cr2();
1da177e4 1020
f8561296
VN
1021 /*
1022 * Detect and handle instructions that would cause a page fault for
1023 * both a tracked kernel page and a userspace page.
1024 */
1025 if (kmemcheck_active(regs))
1026 kmemcheck_hide(regs);
5dfaf90f 1027 prefetchw(&mm->mmap_sem);
f8561296 1028
0fd0e3da 1029 if (unlikely(kmmio_fault(regs, address)))
86069782 1030 return;
1da177e4
LT
1031
1032 /*
1033 * We fault-in kernel-space virtual memory on-demand. The
1034 * 'reference' page table is init_mm.pgd.
1035 *
1036 * NOTE! We MUST NOT take any locks for this case. We may
1037 * be in an interrupt or a critical region, and should
1038 * only copy the information from the master page table,
1039 * nothing more.
1040 *
1041 * This verifies that the fault happens in kernel space
1042 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1043 * protection error (error_code & 9) == 0.
1da177e4 1044 */
0973a06c 1045 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1046 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1047 if (vmalloc_fault(address) >= 0)
1048 return;
1049
1050 if (kmemcheck_fault(regs, address, error_code))
1051 return;
1052 }
5b727a3b 1053
2d4a7167 1054 /* Can handle a stale RO->RW TLB: */
92181f19 1055 if (spurious_fault(error_code, address))
5b727a3b
JF
1056 return;
1057
2d4a7167 1058 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
1059 if (notify_page_fault(regs))
1060 return;
f8c2ee22
HH
1061 /*
1062 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1063 * fault we could otherwise deadlock:
f8c2ee22 1064 */
92181f19 1065 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1066
92181f19 1067 return;
f8c2ee22
HH
1068 }
1069
2d4a7167 1070 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 1071 if (unlikely(notify_page_fault(regs)))
9be260a6 1072 return;
f8c2ee22 1073 /*
891cffbd
LT
1074 * It's safe to allow irq's after cr2 has been saved and the
1075 * vmalloc fault has been handled.
1076 *
1077 * User-mode registers count as a user access even for any
2d4a7167 1078 * potential system fault or CPU buglet:
f8c2ee22 1079 */
891cffbd
LT
1080 if (user_mode_vm(regs)) {
1081 local_irq_enable();
1082 error_code |= PF_USER;
e2ec2c2b 1083 flags |= FAULT_FLAG_USER;
2d4a7167
IM
1084 } else {
1085 if (regs->flags & X86_EFLAGS_IF)
1086 local_irq_enable();
1087 }
8c914cb7 1088
66c58156 1089 if (unlikely(error_code & PF_RSVD))
92181f19 1090 pgtable_bad(regs, error_code, address);
1da177e4 1091
d8b7ff13
PA
1092 if (unlikely(smap_violation(error_code, regs))) {
1093 bad_area_nosemaphore(regs, error_code, address);
1094 return;
40d3cd66
PA
1095 }
1096
a8b0ca17 1097 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
7dd1fcc2 1098
1da177e4 1099 /*
2d4a7167
IM
1100 * If we're in an interrupt, have no user context or are running
1101 * in an atomic region then we must not take the fault:
1da177e4 1102 */
92181f19
NP
1103 if (unlikely(in_atomic() || !mm)) {
1104 bad_area_nosemaphore(regs, error_code, address);
1105 return;
1106 }
1da177e4 1107
e2ec2c2b
JW
1108 if (error_code & PF_WRITE)
1109 flags |= FAULT_FLAG_WRITE;
1110
3a1dfe6e
IM
1111 /*
1112 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1113 * addresses in user space. All other faults represent errors in
1114 * the kernel and should generate an OOPS. Unfortunately, in the
1115 * case of an erroneous fault occurring in a code path which already
1116 * holds mmap_sem we will deadlock attempting to validate the fault
1117 * against the address space. Luckily the kernel only validly
1118 * references user space from well defined areas of code, which are
1119 * listed in the exceptions table.
1da177e4
LT
1120 *
1121 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1122 * the source reference check when there is a possibility of a
1123 * deadlock. Attempt to lock the address space, if we cannot we then
1124 * validate the source. If this is invalid we can skip the address
1125 * space check, thus avoiding the deadlock:
1da177e4 1126 */
92181f19 1127 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1128 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1129 !search_exception_tables(regs->ip)) {
1130 bad_area_nosemaphore(regs, error_code, address);
1131 return;
1132 }
d065bd81 1133retry:
1da177e4 1134 down_read(&mm->mmap_sem);
01006074
PZ
1135 } else {
1136 /*
2d4a7167
IM
1137 * The above down_read_trylock() might have succeeded in
1138 * which case we'll have missed the might_sleep() from
1139 * down_read():
01006074
PZ
1140 */
1141 might_sleep();
1da177e4
LT
1142 }
1143
1144 vma = find_vma(mm, address);
92181f19
NP
1145 if (unlikely(!vma)) {
1146 bad_area(regs, error_code, address);
1147 return;
1148 }
1149 if (likely(vma->vm_start <= address))
1da177e4 1150 goto good_area;
92181f19
NP
1151 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1152 bad_area(regs, error_code, address);
1153 return;
1154 }
33cb5243 1155 if (error_code & PF_USER) {
6f4d368e
HH
1156 /*
1157 * Accessing the stack below %sp is always a bug.
1158 * The large cushion allows instructions like enter
2d4a7167 1159 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1160 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1161 */
92181f19
NP
1162 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1163 bad_area(regs, error_code, address);
1164 return;
1165 }
1da177e4 1166 }
92181f19
NP
1167 if (unlikely(expand_stack(vma, address))) {
1168 bad_area(regs, error_code, address);
1169 return;
1170 }
1171
1172 /*
1173 * Ok, we have a good vm_area for this memory access, so
1174 * we can handle it..
1175 */
1da177e4 1176good_area:
68da336a 1177 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1178 bad_area_access_error(regs, error_code, address);
1179 return;
1da177e4
LT
1180 }
1181
1182 /*
1183 * If for any reason at all we couldn't handle the fault,
1184 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1185 * the fault:
1da177e4 1186 */
d065bd81 1187 fault = handle_mm_fault(mm, vma, address, flags);
2d4a7167 1188
ed368ae7
JW
1189 /*
1190 * If we need to retry but a fatal signal is pending, handle the
1191 * signal first. We do not need to release the mmap_sem because it
1192 * would already be released in __lock_page_or_retry in mm/filemap.c.
1193 */
1194 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1195 return;
1196
1197 if (unlikely(fault & VM_FAULT_ERROR)) {
1198 mm_fault_error(regs, error_code, address, fault);
1199 return;
37b23e05
KM
1200 }
1201
d065bd81
ML
1202 /*
1203 * Major/minor page fault accounting is only done on the
1204 * initial attempt. If we go through a retry, it is extremely
1205 * likely that the page will be found in page cache at that point.
1206 */
1207 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1208 if (fault & VM_FAULT_MAJOR) {
1209 tsk->maj_flt++;
a8b0ca17 1210 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
d065bd81
ML
1211 regs, address);
1212 } else {
1213 tsk->min_flt++;
a8b0ca17 1214 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
d065bd81
ML
1215 regs, address);
1216 }
1217 if (fault & VM_FAULT_RETRY) {
1218 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1219 * of starvation. */
1220 flags &= ~FAULT_FLAG_ALLOW_RETRY;
45cac65b 1221 flags |= FAULT_FLAG_TRIED;
d065bd81
ML
1222 goto retry;
1223 }
ac17dc8e 1224 }
d729ab35 1225
8c938f9f
IM
1226 check_v8086_mode(regs, address, tsk);
1227
1da177e4 1228 up_read(&mm->mmap_sem);
1da177e4 1229}
6ba3c97a
FW
1230
1231dotraplinkage void __kprobes
1232do_page_fault(struct pt_regs *regs, unsigned long error_code)
1233{
6c1e0256
FW
1234 enum ctx_state prev_state;
1235
1236 prev_state = exception_enter();
6ba3c97a 1237 __do_page_fault(regs, error_code);
6c1e0256 1238 exception_exit(prev_state);
6ba3c97a 1239}