Use helpers to obtain task pid in printks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / parisc / mm / fault.c
CommitLineData
1da177e4
LT
1/* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $
2 *
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License. See the file "COPYING" in the main directory of this archive
5 * for more details.
6 *
7 *
8 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
9 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
10 * Copyright 1999 Hewlett Packard Co.
11 *
12 */
13
14#include <linux/mm.h>
15#include <linux/ptrace.h>
16#include <linux/sched.h>
17#include <linux/interrupt.h>
18#include <linux/module.h>
19
20#include <asm/uaccess.h>
21#include <asm/traps.h>
22
23#define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
24 /* dumped to the console via printk) */
25
26
1da177e4
LT
27/* Various important other fields */
28#define bit22set(x) (x & 0x00000200)
29#define bits23_25set(x) (x & 0x000001c0)
30#define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
31 /* extended opcode is 0x6a */
32
33#define BITSSET 0x1c0 /* for identifying LDCW */
34
35
36DEFINE_PER_CPU(struct exception_data, exception_data);
37
38/*
39 * parisc_acctyp(unsigned int inst) --
40 * Given a PA-RISC memory access instruction, determine if the
41 * the instruction would perform a memory read or memory write
42 * operation.
43 *
44 * This function assumes that the given instruction is a memory access
45 * instruction (i.e. you should really only call it if you know that
46 * the instruction has generated some sort of a memory access fault).
47 *
48 * Returns:
49 * VM_READ if read operation
50 * VM_WRITE if write operation
51 * VM_EXEC if execute operation
52 */
53static unsigned long
54parisc_acctyp(unsigned long code, unsigned int inst)
55{
56 if (code == 6 || code == 16)
57 return VM_EXEC;
58
59 switch (inst & 0xf0000000) {
60 case 0x40000000: /* load */
61 case 0x50000000: /* new load */
62 return VM_READ;
63
64 case 0x60000000: /* store */
65 case 0x70000000: /* new store */
66 return VM_WRITE;
67
68 case 0x20000000: /* coproc */
69 case 0x30000000: /* coproc2 */
70 if (bit22set(inst))
71 return VM_WRITE;
72
73 case 0x0: /* indexed/memory management */
74 if (bit22set(inst)) {
75 /*
76 * Check for the 'Graphics Flush Read' instruction.
77 * It resembles an FDC instruction, except for bits
78 * 20 and 21. Any combination other than zero will
79 * utilize the block mover functionality on some
80 * older PA-RISC platforms. The case where a block
81 * move is performed from VM to graphics IO space
82 * should be treated as a READ.
83 *
84 * The significance of bits 20,21 in the FDC
85 * instruction is:
86 *
87 * 00 Flush data cache (normal instruction behavior)
88 * 01 Graphics flush write (IO space -> VM)
89 * 10 Graphics flush read (VM -> IO space)
90 * 11 Graphics flush read/write (VM <-> IO space)
91 */
92 if (isGraphicsFlushRead(inst))
93 return VM_READ;
94 return VM_WRITE;
95 } else {
96 /*
97 * Check for LDCWX and LDCWS (semaphore instructions).
98 * If bits 23 through 25 are all 1's it is one of
99 * the above two instructions and is a write.
100 *
101 * Note: With the limited bits we are looking at,
102 * this will also catch PROBEW and PROBEWI. However,
103 * these should never get in here because they don't
104 * generate exceptions of the type:
105 * Data TLB miss fault/data page fault
106 * Data memory protection trap
107 */
108 if (bits23_25set(inst) == BITSSET)
109 return VM_WRITE;
110 }
111 return VM_READ; /* Default */
112 }
113 return VM_READ; /* Default */
114}
115
116#undef bit22set
117#undef bits23_25set
118#undef isGraphicsFlushRead
119#undef BITSSET
120
121
122#if 0
123/* This is the treewalk to find a vma which is the highest that has
124 * a start < addr. We're using find_vma_prev instead right now, but
125 * we might want to use this at some point in the future. Probably
126 * not, but I want it committed to CVS so I don't lose it :-)
127 */
128 while (tree != vm_avl_empty) {
129 if (tree->vm_start > addr) {
130 tree = tree->vm_avl_left;
131 } else {
132 prev = tree;
133 if (prev->vm_next == NULL)
134 break;
135 if (prev->vm_next->vm_start > addr)
136 break;
137 tree = tree->vm_avl_right;
138 }
139 }
140#endif
141
142void do_page_fault(struct pt_regs *regs, unsigned long code,
143 unsigned long address)
144{
145 struct vm_area_struct *vma, *prev_vma;
146 struct task_struct *tsk = current;
147 struct mm_struct *mm = tsk->mm;
148 const struct exception_table_entry *fix;
149 unsigned long acc_type;
83c54070 150 int fault;
1da177e4 151
6edaf68a 152 if (in_atomic() || !mm)
1da177e4
LT
153 goto no_context;
154
155 down_read(&mm->mmap_sem);
156 vma = find_vma_prev(mm, address, &prev_vma);
157 if (!vma || address < vma->vm_start)
158 goto check_expansion;
159/*
160 * Ok, we have a good vm_area for this memory access. We still need to
161 * check the access permissions.
162 */
163
164good_area:
165
166 acc_type = parisc_acctyp(code,regs->iir);
167
168 if ((vma->vm_flags & acc_type) != acc_type)
169 goto bad_area;
170
171 /*
172 * If for any reason at all we couldn't handle the fault, make
173 * sure we exit gracefully rather than endlessly redo the
174 * fault.
175 */
176
83c54070
NP
177 fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0);
178 if (unlikely(fault & VM_FAULT_ERROR)) {
1da177e4 179 /*
67a5a59d 180 * We hit a shared mapping outside of the file, or some
6e346228
LT
181 * other thing happened to us that made us unable to
182 * handle the page fault gracefully.
1da177e4 183 */
83c54070
NP
184 if (fault & VM_FAULT_OOM)
185 goto out_of_memory;
186 else if (fault & VM_FAULT_SIGBUS)
187 goto bad_area;
188 BUG();
1da177e4 189 }
83c54070
NP
190 if (fault & VM_FAULT_MAJOR)
191 current->maj_flt++;
192 else
193 current->min_flt++;
1da177e4
LT
194 up_read(&mm->mmap_sem);
195 return;
196
197check_expansion:
198 vma = prev_vma;
199 if (vma && (expand_stack(vma, address) == 0))
200 goto good_area;
201
202/*
203 * Something tried to access memory that isn't in our memory map..
204 */
205bad_area:
206 up_read(&mm->mmap_sem);
207
208 if (user_mode(regs)) {
209 struct siginfo si;
210
211#ifdef PRINT_USER_FAULTS
212 printk(KERN_DEBUG "\n");
213 printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
214 tsk->pid, tsk->comm, code, address);
215 if (vma) {
216 printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
217 vma->vm_start, vma->vm_end);
218 }
219 show_regs(regs);
220#endif
221 /* FIXME: actually we need to get the signo and code correct */
222 si.si_signo = SIGSEGV;
223 si.si_errno = 0;
224 si.si_code = SEGV_MAPERR;
225 si.si_addr = (void __user *) address;
226 force_sig_info(SIGSEGV, &si, current);
227 return;
228 }
229
230no_context:
231
232 if (!user_mode(regs)) {
233 fix = search_exception_tables(regs->iaoq[0]);
234
235 if (fix) {
236 struct exception_data *d;
237
238 d = &__get_cpu_var(exception_data);
239 d->fault_ip = regs->iaoq[0];
240 d->fault_space = regs->isr;
241 d->fault_addr = regs->ior;
242
243 regs->iaoq[0] = ((fix->fixup) & ~3);
244
245 /*
246 * NOTE: In some cases the faulting instruction
247 * may be in the delay slot of a branch. We
248 * don't want to take the branch, so we don't
249 * increment iaoq[1], instead we set it to be
250 * iaoq[0]+4, and clear the B bit in the PSW
251 */
252
253 regs->iaoq[1] = regs->iaoq[0] + 4;
254 regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
255
256 return;
257 }
258 }
259
260 parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
261
262 out_of_memory:
263 up_read(&mm->mmap_sem);
264 printk(KERN_CRIT "VM: killing process %s\n", current->comm);
265 if (user_mode(regs))
dcca2bde 266 do_group_exit(SIGKILL);
1da177e4
LT
267 goto no_context;
268}