Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / kernel / perf_event_mipsxx.c
CommitLineData
e5dcb58a
DD
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
82091564 5 * Copyright (C) 2011 Cavium Networks, Inc.
e5dcb58a
DD
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
e5dcb58a 30#define MIPS_MAX_HWEVENTS 4
a7911a8f
AC
31#define MIPS_TCS_PER_COUNTER 2
32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
e5dcb58a
DD
33
34struct cpu_hw_events {
35 /* Array of events on this cpu. */
36 struct perf_event *events[MIPS_MAX_HWEVENTS];
37
38 /*
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
41 */
42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
e5dcb58a
DD
44 /*
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
48 */
49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .saved_ctrl = {0},
53};
54
55/* The description of MIPS performance events. */
56struct mips_perf_event {
57 unsigned int event_id;
58 /*
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
61 * even numbers.
62 */
63 unsigned int cntr_mask;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
82091564 66 #define CNTR_ALL 0xffffffff
e5dcb58a
DD
67#ifdef CONFIG_MIPS_MT_SMP
68 enum {
69 T = 0,
70 V = 1,
71 P = 2,
72 } range;
73#else
74 #define T
75 #define V
76 #define P
77#endif
78};
79
80static struct mips_perf_event raw_event;
81static DEFINE_MUTEX(raw_event_mutex);
82
e5dcb58a
DD
83#define C(x) PERF_COUNT_HW_CACHE_##x
84
85struct mips_pmu {
82091564
DD
86 u64 max_period;
87 u64 valid_count;
88 u64 overflow;
e5dcb58a
DD
89 const char *name;
90 int irq;
e5dcb58a
DD
91 u64 (*read_counter)(unsigned int idx);
92 void (*write_counter)(unsigned int idx, u64 val);
e5dcb58a
DD
93 const struct mips_perf_event *(*map_raw_event)(u64 config);
94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 const struct mips_perf_event (*cache_event_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 unsigned int num_counters;
100};
101
82091564
DD
102static struct mips_pmu mipspmu;
103
104#define M_CONFIG1_PC (1 << 4)
105
70342287
RB
106#define M_PERFCTL_EXL (1 << 0)
107#define M_PERFCTL_KERNEL (1 << 1)
108#define M_PERFCTL_SUPERVISOR (1 << 2)
109#define M_PERFCTL_USER (1 << 3)
110#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
82091564 111#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
70342287 112#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
a7911a8f
AC
113
114#ifdef CONFIG_CPU_BMIPS5000
115#define M_PERFCTL_MT_EN(filter) 0
116#else /* !CONFIG_CPU_BMIPS5000 */
82091564 117#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
a7911a8f
AC
118#endif /* CONFIG_CPU_BMIPS5000 */
119
70342287
RB
120#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
121#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
122#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
123#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
124#define M_PERFCTL_WIDE (1 << 30)
125#define M_PERFCTL_MORE (1 << 31)
126#define M_PERFCTL_TC (1 << 30)
82091564
DD
127
128#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
129 M_PERFCTL_KERNEL | \
130 M_PERFCTL_USER | \
131 M_PERFCTL_SUPERVISOR | \
132 M_PERFCTL_INTERRUPT_ENABLE)
133
134#ifdef CONFIG_MIPS_MT_SMP
135#define M_PERFCTL_CONFIG_MASK 0x3fff801f
136#else
137#define M_PERFCTL_CONFIG_MASK 0x1f
138#endif
139#define M_PERFCTL_EVENT_MASK 0xfe0
140
141
399aaa25 142#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
143static int cpu_has_mipsmt_pertccounters;
144
145static DEFINE_RWLOCK(pmuint_rwlock);
146
a7911a8f
AC
147#if defined(CONFIG_CPU_BMIPS5000)
148#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
149 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150#else
82091564
DD
151/*
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154 */
82091564 155#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
a7911a8f
AC
156 0 : smp_processor_id())
157#endif
82091564
DD
158
159/* Copied from op_model_mipsxx.c */
160static unsigned int vpe_shift(void)
161{
162 if (num_possible_cpus() > 1)
163 return 1;
164
165 return 0;
166}
167
168static unsigned int counters_total_to_per_cpu(unsigned int counters)
169{
170 return counters >> vpe_shift();
171}
172
399aaa25 173#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
82091564
DD
174#define vpe_id() 0
175
399aaa25 176#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
82091564
DD
177
178static void resume_local_counters(void);
179static void pause_local_counters(void);
180static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181static int mipsxx_pmu_handle_shared_irq(void);
182
183static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184{
185 if (vpe_id() == 1)
186 idx = (idx + 2) & 3;
187 return idx;
188}
189
190static u64 mipsxx_pmu_read_counter(unsigned int idx)
191{
192 idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194 switch (idx) {
195 case 0:
196 /*
197 * The counters are unsigned, we must cast to truncate
198 * off the high bits.
199 */
200 return (u32)read_c0_perfcntr0();
201 case 1:
202 return (u32)read_c0_perfcntr1();
203 case 2:
204 return (u32)read_c0_perfcntr2();
205 case 3:
206 return (u32)read_c0_perfcntr3();
207 default:
208 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209 return 0;
210 }
211}
212
213static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214{
215 idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217 switch (idx) {
218 case 0:
219 return read_c0_perfcntr0_64();
220 case 1:
221 return read_c0_perfcntr1_64();
222 case 2:
223 return read_c0_perfcntr2_64();
224 case 3:
225 return read_c0_perfcntr3_64();
226 default:
227 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228 return 0;
229 }
230}
231
232static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233{
234 idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236 switch (idx) {
237 case 0:
238 write_c0_perfcntr0(val);
239 return;
240 case 1:
241 write_c0_perfcntr1(val);
242 return;
243 case 2:
244 write_c0_perfcntr2(val);
245 return;
246 case 3:
247 write_c0_perfcntr3(val);
248 return;
249 }
250}
251
252static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253{
254 idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256 switch (idx) {
257 case 0:
258 write_c0_perfcntr0_64(val);
259 return;
260 case 1:
261 write_c0_perfcntr1_64(val);
262 return;
263 case 2:
264 write_c0_perfcntr2_64(val);
265 return;
266 case 3:
267 write_c0_perfcntr3_64(val);
268 return;
269 }
270}
271
272static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273{
274 idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276 switch (idx) {
277 case 0:
278 return read_c0_perfctrl0();
279 case 1:
280 return read_c0_perfctrl1();
281 case 2:
282 return read_c0_perfctrl2();
283 case 3:
284 return read_c0_perfctrl3();
285 default:
286 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287 return 0;
288 }
289}
290
291static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292{
293 idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295 switch (idx) {
296 case 0:
297 write_c0_perfctrl0(val);
298 return;
299 case 1:
300 write_c0_perfctrl1(val);
301 return;
302 case 2:
303 write_c0_perfctrl2(val);
304 return;
305 case 3:
306 write_c0_perfctrl3(val);
307 return;
308 }
309}
310
311static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312 struct hw_perf_event *hwc)
313{
314 int i;
315
316 /*
317 * We only need to care the counter mask. The range has been
318 * checked definitely.
319 */
320 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323 /*
324 * Note that some MIPS perf events can be counted by both
325 * even and odd counters, wheresas many other are only by
326 * even _or_ odd counters. This introduces an issue that
327 * when the former kind of event takes the counter the
328 * latter kind of event wants to use, then the "counter
329 * allocation" for the latter event will fail. In fact if
330 * they can be dynamically swapped, they both feel happy.
331 * But here we leave this issue alone for now.
332 */
333 if (test_bit(i, &cntr_mask) &&
334 !test_and_set_bit(i, cpuc->used_mask))
335 return i;
336 }
337
338 return -EAGAIN;
339}
340
341static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342{
343 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
344
345 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349 /* Make sure interrupt enabled. */
350 M_PERFCTL_INTERRUPT_ENABLE;
a7911a8f
AC
351 if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352 /* enable the counter for the calling thread */
353 cpuc->saved_ctrl[idx] |=
354 (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
82091564
DD
356 /*
357 * We do not actually let the counter run. Leave it until start().
358 */
359}
360
361static void mipsxx_pmu_disable_event(int idx)
362{
363 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
364 unsigned long flags;
365
366 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368 local_irq_save(flags);
369 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372 local_irq_restore(flags);
373}
e5dcb58a
DD
374
375static int mipspmu_event_set_period(struct perf_event *event,
376 struct hw_perf_event *hwc,
377 int idx)
378{
82091564
DD
379 u64 left = local64_read(&hwc->period_left);
380 u64 period = hwc->sample_period;
e5dcb58a 381 int ret = 0;
e5dcb58a 382
82091564
DD
383 if (unlikely((left + period) & (1ULL << 63))) {
384 /* left underflowed by more than period. */
e5dcb58a
DD
385 left = period;
386 local64_set(&hwc->period_left, left);
387 hwc->last_period = period;
388 ret = 1;
82091564
DD
389 } else if (unlikely((left + period) <= period)) {
390 /* left underflowed by less than period. */
e5dcb58a
DD
391 left += period;
392 local64_set(&hwc->period_left, left);
393 hwc->last_period = period;
394 ret = 1;
395 }
396
82091564
DD
397 if (left > mipspmu.max_period) {
398 left = mipspmu.max_period;
399 local64_set(&hwc->period_left, left);
400 }
e5dcb58a 401
82091564 402 local64_set(&hwc->prev_count, mipspmu.overflow - left);
e5dcb58a 403
82091564 404 mipspmu.write_counter(idx, mipspmu.overflow - left);
e5dcb58a
DD
405
406 perf_event_update_userpage(event);
407
408 return ret;
409}
410
411static void mipspmu_event_update(struct perf_event *event,
412 struct hw_perf_event *hwc,
413 int idx)
414{
82091564 415 u64 prev_raw_count, new_raw_count;
e5dcb58a
DD
416 u64 delta;
417
418again:
419 prev_raw_count = local64_read(&hwc->prev_count);
82091564 420 new_raw_count = mipspmu.read_counter(idx);
e5dcb58a
DD
421
422 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423 new_raw_count) != prev_raw_count)
424 goto again;
425
82091564 426 delta = new_raw_count - prev_raw_count;
e5dcb58a
DD
427
428 local64_add(delta, &event->count);
429 local64_sub(delta, &hwc->period_left);
430}
431
432static void mipspmu_start(struct perf_event *event, int flags)
433{
434 struct hw_perf_event *hwc = &event->hw;
435
e5dcb58a
DD
436 if (flags & PERF_EF_RELOAD)
437 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439 hwc->state = 0;
440
441 /* Set the period for the event. */
442 mipspmu_event_set_period(event, hwc, hwc->idx);
443
444 /* Enable the event. */
82091564 445 mipsxx_pmu_enable_event(hwc, hwc->idx);
e5dcb58a
DD
446}
447
448static void mipspmu_stop(struct perf_event *event, int flags)
449{
450 struct hw_perf_event *hwc = &event->hw;
451
e5dcb58a
DD
452 if (!(hwc->state & PERF_HES_STOPPED)) {
453 /* We are working on a local event. */
82091564 454 mipsxx_pmu_disable_event(hwc->idx);
e5dcb58a
DD
455 barrier();
456 mipspmu_event_update(event, hwc, hwc->idx);
457 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458 }
459}
460
461static int mipspmu_add(struct perf_event *event, int flags)
462{
463 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
464 struct hw_perf_event *hwc = &event->hw;
465 int idx;
466 int err = 0;
467
468 perf_pmu_disable(event->pmu);
469
470 /* To look for a free counter for this event. */
82091564 471 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
e5dcb58a
DD
472 if (idx < 0) {
473 err = idx;
474 goto out;
475 }
476
477 /*
478 * If there is an event in the counter we are going to use then
479 * make sure it is disabled.
480 */
481 event->hw.idx = idx;
82091564 482 mipsxx_pmu_disable_event(idx);
e5dcb58a
DD
483 cpuc->events[idx] = event;
484
485 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486 if (flags & PERF_EF_START)
487 mipspmu_start(event, PERF_EF_RELOAD);
488
489 /* Propagate our changes to the userspace mapping. */
490 perf_event_update_userpage(event);
491
492out:
493 perf_pmu_enable(event->pmu);
494 return err;
495}
496
497static void mipspmu_del(struct perf_event *event, int flags)
498{
499 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
500 struct hw_perf_event *hwc = &event->hw;
501 int idx = hwc->idx;
502
82091564 503 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
e5dcb58a
DD
504
505 mipspmu_stop(event, PERF_EF_UPDATE);
506 cpuc->events[idx] = NULL;
507 clear_bit(idx, cpuc->used_mask);
508
509 perf_event_update_userpage(event);
510}
511
512static void mipspmu_read(struct perf_event *event)
513{
514 struct hw_perf_event *hwc = &event->hw;
515
516 /* Don't read disabled counters! */
517 if (hwc->idx < 0)
518 return;
519
520 mipspmu_event_update(event, hwc, hwc->idx);
521}
522
523static void mipspmu_enable(struct pmu *pmu)
524{
399aaa25 525#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
526 write_unlock(&pmuint_rwlock);
527#endif
528 resume_local_counters();
e5dcb58a
DD
529}
530
82091564
DD
531/*
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed accross CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
541 */
e5dcb58a
DD
542static void mipspmu_disable(struct pmu *pmu)
543{
82091564 544 pause_local_counters();
399aaa25 545#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
546 write_lock(&pmuint_rwlock);
547#endif
e5dcb58a
DD
548}
549
550static atomic_t active_events = ATOMIC_INIT(0);
551static DEFINE_MUTEX(pmu_reserve_mutex);
552static int (*save_perf_irq)(void);
553
554static int mipspmu_get_irq(void)
555{
556 int err;
557
82091564 558 if (mipspmu.irq >= 0) {
e5dcb58a 559 /* Request my own irq handler. */
82091564
DD
560 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561 IRQF_PERCPU | IRQF_NOBALANCING,
e5dcb58a
DD
562 "mips_perf_pmu", NULL);
563 if (err) {
564 pr_warning("Unable to request IRQ%d for MIPS "
82091564 565 "performance counters!\n", mipspmu.irq);
e5dcb58a
DD
566 }
567 } else if (cp0_perfcount_irq < 0) {
568 /*
569 * We are sharing the irq number with the timer interrupt.
570 */
571 save_perf_irq = perf_irq;
82091564 572 perf_irq = mipsxx_pmu_handle_shared_irq;
e5dcb58a
DD
573 err = 0;
574 } else {
575 pr_warning("The platform hasn't properly defined its "
576 "interrupt controller.\n");
577 err = -ENOENT;
578 }
579
580 return err;
581}
582
583static void mipspmu_free_irq(void)
584{
82091564
DD
585 if (mipspmu.irq >= 0)
586 free_irq(mipspmu.irq, NULL);
e5dcb58a
DD
587 else if (cp0_perfcount_irq < 0)
588 perf_irq = save_perf_irq;
589}
590
591/*
592 * mipsxx/rm9000/loongson2 have different performance counters, they have
593 * specific low-level init routines.
594 */
595static void reset_counters(void *arg);
596static int __hw_perf_event_init(struct perf_event *event);
597
598static void hw_perf_event_destroy(struct perf_event *event)
599{
600 if (atomic_dec_and_mutex_lock(&active_events,
601 &pmu_reserve_mutex)) {
602 /*
603 * We must not call the destroy function with interrupts
604 * disabled.
605 */
606 on_each_cpu(reset_counters,
82091564 607 (void *)(long)mipspmu.num_counters, 1);
e5dcb58a
DD
608 mipspmu_free_irq();
609 mutex_unlock(&pmu_reserve_mutex);
610 }
611}
612
613static int mipspmu_event_init(struct perf_event *event)
614{
615 int err = 0;
616
2481c5fa
SE
617 /* does not support taken branch sampling */
618 if (has_branch_stack(event))
619 return -EOPNOTSUPP;
620
e5dcb58a
DD
621 switch (event->attr.type) {
622 case PERF_TYPE_RAW:
623 case PERF_TYPE_HARDWARE:
624 case PERF_TYPE_HW_CACHE:
625 break;
626
627 default:
628 return -ENOENT;
629 }
630
82091564
DD
631 if (event->cpu >= nr_cpumask_bits ||
632 (event->cpu >= 0 && !cpu_online(event->cpu)))
e5dcb58a
DD
633 return -ENODEV;
634
635 if (!atomic_inc_not_zero(&active_events)) {
e5dcb58a
DD
636 mutex_lock(&pmu_reserve_mutex);
637 if (atomic_read(&active_events) == 0)
638 err = mipspmu_get_irq();
639
640 if (!err)
641 atomic_inc(&active_events);
642 mutex_unlock(&pmu_reserve_mutex);
643 }
644
645 if (err)
646 return err;
647
ff5d7265 648 return __hw_perf_event_init(event);
e5dcb58a
DD
649}
650
651static struct pmu pmu = {
652 .pmu_enable = mipspmu_enable,
653 .pmu_disable = mipspmu_disable,
654 .event_init = mipspmu_event_init,
655 .add = mipspmu_add,
656 .del = mipspmu_del,
657 .start = mipspmu_start,
658 .stop = mipspmu_stop,
659 .read = mipspmu_read,
660};
661
662static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
663{
664/*
665 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
666 * event_id.
667 */
668#ifdef CONFIG_MIPS_MT_SMP
669 return ((unsigned int)pev->range << 24) |
670 (pev->cntr_mask & 0xffff00) |
671 (pev->event_id & 0xff);
672#else
673 return (pev->cntr_mask & 0xffff00) |
674 (pev->event_id & 0xff);
675#endif
676}
677
678static const struct mips_perf_event *mipspmu_map_general_event(int idx)
679{
e5dcb58a 680
c5600b2d
AC
681 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
682 return ERR_PTR(-EOPNOTSUPP);
683 return &(*mipspmu.general_event_map)[idx];
e5dcb58a
DD
684}
685
686static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687{
688 unsigned int cache_type, cache_op, cache_result;
689 const struct mips_perf_event *pev;
690
691 cache_type = (config >> 0) & 0xff;
692 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693 return ERR_PTR(-EINVAL);
694
695 cache_op = (config >> 8) & 0xff;
696 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697 return ERR_PTR(-EINVAL);
698
699 cache_result = (config >> 16) & 0xff;
700 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701 return ERR_PTR(-EINVAL);
702
82091564 703 pev = &((*mipspmu.cache_event_map)
e5dcb58a
DD
704 [cache_type]
705 [cache_op]
706 [cache_result]);
707
c5600b2d 708 if (pev->cntr_mask == 0)
e5dcb58a
DD
709 return ERR_PTR(-EOPNOTSUPP);
710
711 return pev;
712
713}
714
e5dcb58a
DD
715static int validate_group(struct perf_event *event)
716{
717 struct perf_event *sibling, *leader = event->group_leader;
718 struct cpu_hw_events fake_cpuc;
719
720 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
721
266623b7 722 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
aa2bc1ad 723 return -EINVAL;
e5dcb58a
DD
724
725 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
266623b7 726 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
aa2bc1ad 727 return -EINVAL;
e5dcb58a
DD
728 }
729
266623b7 730 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
aa2bc1ad 731 return -EINVAL;
e5dcb58a
DD
732
733 return 0;
734}
735
736/* This is needed by specific irq handlers in perf_event_*.c */
737static void handle_associated_event(struct cpu_hw_events *cpuc,
738 int idx, struct perf_sample_data *data,
739 struct pt_regs *regs)
740{
741 struct perf_event *event = cpuc->events[idx];
742 struct hw_perf_event *hwc = &event->hw;
743
744 mipspmu_event_update(event, hwc, idx);
745 data->period = event->hw.last_period;
746 if (!mipspmu_event_set_period(event, hwc, idx))
747 return;
748
749 if (perf_event_overflow(event, data, regs))
82091564 750 mipsxx_pmu_disable_event(idx);
e5dcb58a 751}
3a9ab99e 752
3a9ab99e 753
4409af37 754static int __n_counters(void)
3a9ab99e
DCZ
755{
756 if (!(read_c0_config1() & M_CONFIG1_PC))
757 return 0;
758 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
759 return 1;
760 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
761 return 2;
762 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
763 return 3;
764
765 return 4;
766}
767
4409af37 768static int n_counters(void)
3a9ab99e
DCZ
769{
770 int counters;
771
772 switch (current_cpu_type()) {
773 case CPU_R10000:
774 counters = 2;
775 break;
776
777 case CPU_R12000:
778 case CPU_R14000:
779 counters = 4;
780 break;
781
782 default:
783 counters = __n_counters();
784 }
785
786 return counters;
787}
788
789static void reset_counters(void *arg)
790{
791 int counters = (int)(long)arg;
792 switch (counters) {
793 case 4:
82091564
DD
794 mipsxx_pmu_write_control(3, 0);
795 mipspmu.write_counter(3, 0);
3a9ab99e 796 case 3:
82091564
DD
797 mipsxx_pmu_write_control(2, 0);
798 mipspmu.write_counter(2, 0);
3a9ab99e 799 case 2:
82091564
DD
800 mipsxx_pmu_write_control(1, 0);
801 mipspmu.write_counter(1, 0);
3a9ab99e 802 case 1:
82091564
DD
803 mipsxx_pmu_write_control(0, 0);
804 mipspmu.write_counter(0, 0);
3a9ab99e
DCZ
805 }
806}
807
3a9ab99e
DCZ
808/* 24K/34K/1004K cores can share the same event map. */
809static const struct mips_perf_event mipsxxcore_event_map
810 [PERF_COUNT_HW_MAX] = {
811 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
812 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
3a9ab99e
DCZ
813 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
814 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
3a9ab99e
DCZ
815};
816
817/* 74K core has different branch event code. */
818static const struct mips_perf_event mipsxx74Kcore_event_map
819 [PERF_COUNT_HW_MAX] = {
820 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
821 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
3a9ab99e
DCZ
822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
823 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
3a9ab99e
DCZ
824};
825
939991cf
DD
826static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
827 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
828 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
829 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
70342287 830 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
939991cf
DD
831 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
832 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
833 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
834};
835
a7911a8f
AC
836static const struct mips_perf_event bmips5000_event_map
837 [PERF_COUNT_HW_MAX] = {
838 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
839 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
840 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
841};
842
4be3d2f3
ZSL
843static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
844 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
845 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
846 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
847 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
848 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
849 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
4be3d2f3
ZSL
850};
851
3a9ab99e
DCZ
852/* 24K/34K/1004K cores can share the same cache event map. */
853static const struct mips_perf_event mipsxxcore_cache_map
854 [PERF_COUNT_HW_CACHE_MAX]
855 [PERF_COUNT_HW_CACHE_OP_MAX]
856 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
857[C(L1D)] = {
858 /*
859 * Like some other architectures (e.g. ARM), the performance
860 * counters don't differentiate between read and write
861 * accesses/misses, so this isn't strictly correct, but it's the
862 * best we can do. Writes and reads get combined.
863 */
864 [C(OP_READ)] = {
865 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
866 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
867 },
868 [C(OP_WRITE)] = {
869 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
870 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
871 },
3a9ab99e
DCZ
872},
873[C(L1I)] = {
874 [C(OP_READ)] = {
875 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
876 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
877 },
878 [C(OP_WRITE)] = {
879 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
880 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
881 },
882 [C(OP_PREFETCH)] = {
883 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
884 /*
885 * Note that MIPS has only "hit" events countable for
886 * the prefetch operation.
887 */
3a9ab99e
DCZ
888 },
889},
890[C(LL)] = {
891 [C(OP_READ)] = {
892 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
893 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
894 },
895 [C(OP_WRITE)] = {
896 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
897 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
898 },
3a9ab99e
DCZ
899},
900[C(DTLB)] = {
901 [C(OP_READ)] = {
902 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
903 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
904 },
905 [C(OP_WRITE)] = {
906 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
907 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
908 },
3a9ab99e
DCZ
909},
910[C(ITLB)] = {
911 [C(OP_READ)] = {
912 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
913 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
914 },
915 [C(OP_WRITE)] = {
916 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
917 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
918 },
3a9ab99e
DCZ
919},
920[C(BPU)] = {
921 /* Using the same code for *HW_BRANCH* */
922 [C(OP_READ)] = {
923 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
924 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
925 },
926 [C(OP_WRITE)] = {
927 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
928 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
929 },
89d6c0b5 930},
3a9ab99e
DCZ
931};
932
933/* 74K core has completely different cache event map. */
934static const struct mips_perf_event mipsxx74Kcore_cache_map
935 [PERF_COUNT_HW_CACHE_MAX]
936 [PERF_COUNT_HW_CACHE_OP_MAX]
937 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
938[C(L1D)] = {
939 /*
940 * Like some other architectures (e.g. ARM), the performance
941 * counters don't differentiate between read and write
942 * accesses/misses, so this isn't strictly correct, but it's the
943 * best we can do. Writes and reads get combined.
944 */
945 [C(OP_READ)] = {
946 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
947 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
948 },
949 [C(OP_WRITE)] = {
950 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
951 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
952 },
3a9ab99e
DCZ
953},
954[C(L1I)] = {
955 [C(OP_READ)] = {
956 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
957 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
958 },
959 [C(OP_WRITE)] = {
960 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
961 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
962 },
963 [C(OP_PREFETCH)] = {
964 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
965 /*
966 * Note that MIPS has only "hit" events countable for
967 * the prefetch operation.
968 */
3a9ab99e
DCZ
969 },
970},
971[C(LL)] = {
972 [C(OP_READ)] = {
973 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
974 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
975 },
976 [C(OP_WRITE)] = {
977 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
978 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
979 },
3a9ab99e
DCZ
980},
981[C(ITLB)] = {
982 [C(OP_READ)] = {
983 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
984 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
985 },
986 [C(OP_WRITE)] = {
987 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
988 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
989 },
3a9ab99e
DCZ
990},
991[C(BPU)] = {
992 /* Using the same code for *HW_BRANCH* */
993 [C(OP_READ)] = {
994 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
995 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
996 },
997 [C(OP_WRITE)] = {
998 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
999 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1000 },
89d6c0b5 1001},
3a9ab99e
DCZ
1002};
1003
a7911a8f
AC
1004/* BMIPS5000 */
1005static const struct mips_perf_event bmips5000_cache_map
1006 [PERF_COUNT_HW_CACHE_MAX]
1007 [PERF_COUNT_HW_CACHE_OP_MAX]
1008 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1009[C(L1D)] = {
1010 /*
1011 * Like some other architectures (e.g. ARM), the performance
1012 * counters don't differentiate between read and write
1013 * accesses/misses, so this isn't strictly correct, but it's the
1014 * best we can do. Writes and reads get combined.
1015 */
1016 [C(OP_READ)] = {
1017 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1018 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1019 },
1020 [C(OP_WRITE)] = {
1021 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1022 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1023 },
1024},
1025[C(L1I)] = {
1026 [C(OP_READ)] = {
1027 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1028 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1029 },
1030 [C(OP_WRITE)] = {
1031 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1032 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1033 },
1034 [C(OP_PREFETCH)] = {
1035 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1036 /*
1037 * Note that MIPS has only "hit" events countable for
1038 * the prefetch operation.
1039 */
1040 },
1041},
1042[C(LL)] = {
1043 [C(OP_READ)] = {
1044 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1045 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1046 },
1047 [C(OP_WRITE)] = {
1048 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1049 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1050 },
1051},
1052[C(BPU)] = {
1053 /* Using the same code for *HW_BRANCH* */
1054 [C(OP_READ)] = {
1055 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1056 },
1057 [C(OP_WRITE)] = {
1058 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1059 },
1060},
1061};
1062
939991cf
DD
1063
1064static const struct mips_perf_event octeon_cache_map
1065 [PERF_COUNT_HW_CACHE_MAX]
1066 [PERF_COUNT_HW_CACHE_OP_MAX]
1067 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1068[C(L1D)] = {
1069 [C(OP_READ)] = {
1070 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1071 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1072 },
1073 [C(OP_WRITE)] = {
1074 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
939991cf
DD
1075 },
1076},
1077[C(L1I)] = {
1078 [C(OP_READ)] = {
1079 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
939991cf
DD
1080 },
1081 [C(OP_PREFETCH)] = {
1082 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
939991cf
DD
1083 },
1084},
1085[C(DTLB)] = {
1086 /*
1087 * Only general DTLB misses are counted use the same event for
1088 * read and write.
1089 */
1090 [C(OP_READ)] = {
939991cf
DD
1091 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1092 },
1093 [C(OP_WRITE)] = {
939991cf
DD
1094 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1095 },
939991cf
DD
1096},
1097[C(ITLB)] = {
1098 [C(OP_READ)] = {
939991cf
DD
1099 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1100 },
939991cf
DD
1101},
1102};
1103
4be3d2f3
ZSL
1104static const struct mips_perf_event xlp_cache_map
1105 [PERF_COUNT_HW_CACHE_MAX]
1106 [PERF_COUNT_HW_CACHE_OP_MAX]
1107 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1108[C(L1D)] = {
1109 [C(OP_READ)] = {
1110 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1111 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1112 },
1113 [C(OP_WRITE)] = {
1114 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1115 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1116 },
4be3d2f3
ZSL
1117},
1118[C(L1I)] = {
1119 [C(OP_READ)] = {
1120 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1121 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1122 },
4be3d2f3
ZSL
1123},
1124[C(LL)] = {
1125 [C(OP_READ)] = {
1126 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1127 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1128 },
1129 [C(OP_WRITE)] = {
1130 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1131 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1132 },
4be3d2f3
ZSL
1133},
1134[C(DTLB)] = {
1135 /*
1136 * Only general DTLB misses are counted use the same event for
1137 * read and write.
1138 */
1139 [C(OP_READ)] = {
4be3d2f3
ZSL
1140 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1141 },
1142 [C(OP_WRITE)] = {
4be3d2f3
ZSL
1143 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1144 },
4be3d2f3
ZSL
1145},
1146[C(ITLB)] = {
1147 [C(OP_READ)] = {
4be3d2f3
ZSL
1148 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1149 },
1150 [C(OP_WRITE)] = {
4be3d2f3
ZSL
1151 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1152 },
4be3d2f3
ZSL
1153},
1154[C(BPU)] = {
1155 [C(OP_READ)] = {
4be3d2f3
ZSL
1156 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1157 },
4be3d2f3
ZSL
1158},
1159};
1160
3a9ab99e 1161#ifdef CONFIG_MIPS_MT_SMP
4409af37
DD
1162static void check_and_calc_range(struct perf_event *event,
1163 const struct mips_perf_event *pev)
3a9ab99e
DCZ
1164{
1165 struct hw_perf_event *hwc = &event->hw;
1166
1167 if (event->cpu >= 0) {
1168 if (pev->range > V) {
1169 /*
1170 * The user selected an event that is processor
1171 * wide, while expecting it to be VPE wide.
1172 */
1173 hwc->config_base |= M_TC_EN_ALL;
1174 } else {
1175 /*
1176 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177 * for both CPUs.
1178 */
1179 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180 hwc->config_base |= M_TC_EN_VPE;
1181 }
1182 } else
1183 hwc->config_base |= M_TC_EN_ALL;
1184}
1185#else
4409af37
DD
1186static void check_and_calc_range(struct perf_event *event,
1187 const struct mips_perf_event *pev)
3a9ab99e
DCZ
1188{
1189}
1190#endif
1191
1192static int __hw_perf_event_init(struct perf_event *event)
1193{
1194 struct perf_event_attr *attr = &event->attr;
1195 struct hw_perf_event *hwc = &event->hw;
1196 const struct mips_perf_event *pev;
1197 int err;
1198
1199 /* Returning MIPS event descriptor for generic perf event. */
1200 if (PERF_TYPE_HARDWARE == event->attr.type) {
1201 if (event->attr.config >= PERF_COUNT_HW_MAX)
1202 return -EINVAL;
1203 pev = mipspmu_map_general_event(event->attr.config);
1204 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205 pev = mipspmu_map_cache_event(event->attr.config);
1206 } else if (PERF_TYPE_RAW == event->attr.type) {
1207 /* We are working on the global raw event. */
1208 mutex_lock(&raw_event_mutex);
82091564 1209 pev = mipspmu.map_raw_event(event->attr.config);
3a9ab99e
DCZ
1210 } else {
1211 /* The event type is not (yet) supported. */
1212 return -EOPNOTSUPP;
1213 }
1214
1215 if (IS_ERR(pev)) {
1216 if (PERF_TYPE_RAW == event->attr.type)
1217 mutex_unlock(&raw_event_mutex);
1218 return PTR_ERR(pev);
1219 }
1220
1221 /*
1222 * We allow max flexibility on how each individual counter shared
1223 * by the single CPU operates (the mode exclusion and the range).
1224 */
1225 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226
1227 /* Calculate range bits and validate it. */
1228 if (num_possible_cpus() > 1)
1229 check_and_calc_range(event, pev);
1230
1231 hwc->event_base = mipspmu_perf_event_encode(pev);
1232 if (PERF_TYPE_RAW == event->attr.type)
1233 mutex_unlock(&raw_event_mutex);
1234
1235 if (!attr->exclude_user)
1236 hwc->config_base |= M_PERFCTL_USER;
1237 if (!attr->exclude_kernel) {
1238 hwc->config_base |= M_PERFCTL_KERNEL;
1239 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240 hwc->config_base |= M_PERFCTL_EXL;
1241 }
1242 if (!attr->exclude_hv)
1243 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244
1245 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246 /*
1247 * The event can belong to another cpu. We do not assign a local
1248 * counter for it for now.
1249 */
1250 hwc->idx = -1;
1251 hwc->config = 0;
1252
1253 if (!hwc->sample_period) {
82091564 1254 hwc->sample_period = mipspmu.max_period;
3a9ab99e
DCZ
1255 hwc->last_period = hwc->sample_period;
1256 local64_set(&hwc->period_left, hwc->sample_period);
1257 }
1258
1259 err = 0;
ff5d7265 1260 if (event->group_leader != event)
3a9ab99e 1261 err = validate_group(event);
3a9ab99e
DCZ
1262
1263 event->destroy = hw_perf_event_destroy;
ff5d7265
DCZ
1264
1265 if (err)
1266 event->destroy(event);
1267
3a9ab99e
DCZ
1268 return err;
1269}
1270
1271static void pause_local_counters(void)
1272{
1273 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
82091564 1274 int ctr = mipspmu.num_counters;
3a9ab99e
DCZ
1275 unsigned long flags;
1276
1277 local_irq_save(flags);
82091564
DD
1278 do {
1279 ctr--;
1280 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283 } while (ctr > 0);
3a9ab99e
DCZ
1284 local_irq_restore(flags);
1285}
1286
1287static void resume_local_counters(void)
1288{
1289 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
82091564 1290 int ctr = mipspmu.num_counters;
3a9ab99e 1291
82091564
DD
1292 do {
1293 ctr--;
1294 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295 } while (ctr > 0);
3a9ab99e
DCZ
1296}
1297
1298static int mipsxx_pmu_handle_shared_irq(void)
1299{
1300 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301 struct perf_sample_data data;
82091564
DD
1302 unsigned int counters = mipspmu.num_counters;
1303 u64 counter;
3a9ab99e
DCZ
1304 int handled = IRQ_NONE;
1305 struct pt_regs *regs;
1306
da4b62cd 1307 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
3a9ab99e 1308 return handled;
3a9ab99e
DCZ
1309 /*
1310 * First we pause the local counters, so that when we are locked
1311 * here, the counters are all paused. When it gets locked due to
1312 * perf_disable(), the timer interrupt handler will be delayed.
1313 *
1314 * See also mipsxx_pmu_start().
1315 */
1316 pause_local_counters();
399aaa25 1317#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1318 read_lock(&pmuint_rwlock);
1319#endif
1320
1321 regs = get_irq_regs();
1322
fd0d000b 1323 perf_sample_data_init(&data, 0, 0);
3a9ab99e
DCZ
1324
1325 switch (counters) {
1326#define HANDLE_COUNTER(n) \
1327 case n + 1: \
1328 if (test_bit(n, cpuc->used_mask)) { \
82091564
DD
1329 counter = mipspmu.read_counter(n); \
1330 if (counter & mipspmu.overflow) { \
1331 handle_associated_event(cpuc, n, &data, regs); \
3a9ab99e
DCZ
1332 handled = IRQ_HANDLED; \
1333 } \
1334 }
1335 HANDLE_COUNTER(3)
1336 HANDLE_COUNTER(2)
1337 HANDLE_COUNTER(1)
1338 HANDLE_COUNTER(0)
1339 }
1340
1341 /*
1342 * Do all the work for the pending perf events. We can do this
1343 * in here because the performance counter interrupt is a regular
1344 * interrupt, not NMI.
1345 */
1346 if (handled == IRQ_HANDLED)
91f01737 1347 irq_work_run();
3a9ab99e 1348
399aaa25 1349#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1350 read_unlock(&pmuint_rwlock);
1351#endif
1352 resume_local_counters();
1353 return handled;
1354}
1355
4409af37 1356static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
3a9ab99e
DCZ
1357{
1358 return mipsxx_pmu_handle_shared_irq();
1359}
1360
3a9ab99e 1361/* 24K */
3a9ab99e
DCZ
1362#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1363 ((b) == 0 || (b) == 1 || (b) == 11)
1364
1365/* 34K */
3a9ab99e
DCZ
1366#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1367 ((b) == 0 || (b) == 1 || (b) == 11)
1368#ifdef CONFIG_MIPS_MT_SMP
1369#define IS_RANGE_P_34K_EVENT(r, b) \
1370 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1371 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1372 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1373 ((b) >= 64 && (b) <= 67))
70342287 1374#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
3a9ab99e
DCZ
1375#endif
1376
1377/* 74K */
3a9ab99e
DCZ
1378#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1379 ((b) == 0 || (b) == 1)
1380
1381/* 1004K */
3a9ab99e
DCZ
1382#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1383 ((b) == 0 || (b) == 1 || (b) == 11)
1384#ifdef CONFIG_MIPS_MT_SMP
1385#define IS_RANGE_P_1004K_EVENT(r, b) \
1386 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1387 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1388 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1389 (r) == 188 || (b) == 61 || (b) == 62 || \
1390 ((b) >= 64 && (b) <= 67))
1391#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1392#endif
1393
a7911a8f
AC
1394/* BMIPS5000 */
1395#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1396 ((b) == 0 || (b) == 1)
1397
1398
3a9ab99e
DCZ
1399/*
1400 * User can use 0-255 raw events, where 0-127 for the events of even
1401 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1402 * indicate the parity. So, for example, when user wants to take the
1403 * Event Num of 15 for odd counters (by referring to the user manual),
1404 * then 128 needs to be added to 15 as the input for the event config,
1405 * i.e., 143 (0x8F) to be used.
1406 */
4409af37 1407static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
3a9ab99e
DCZ
1408{
1409 unsigned int raw_id = config & 0xff;
1410 unsigned int base_id = raw_id & 0x7f;
1411
2c1b54d3
DCZ
1412 raw_event.event_id = base_id;
1413
3a9ab99e
DCZ
1414 switch (current_cpu_type()) {
1415 case CPU_24K:
3a9ab99e
DCZ
1416 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1417 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1418 else
1419 raw_event.cntr_mask =
1420 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1421#ifdef CONFIG_MIPS_MT_SMP
1422 /*
1423 * This is actually doing nothing. Non-multithreading
1424 * CPUs will not check and calculate the range.
1425 */
1426 raw_event.range = P;
1427#endif
1428 break;
1429 case CPU_34K:
3a9ab99e
DCZ
1430 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1431 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1432 else
1433 raw_event.cntr_mask =
1434 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1435#ifdef CONFIG_MIPS_MT_SMP
1436 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1437 raw_event.range = P;
1438 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1439 raw_event.range = V;
1440 else
1441 raw_event.range = T;
1442#endif
1443 break;
1444 case CPU_74K:
3a9ab99e
DCZ
1445 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1446 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1447 else
1448 raw_event.cntr_mask =
1449 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1450#ifdef CONFIG_MIPS_MT_SMP
1451 raw_event.range = P;
1452#endif
1453 break;
1454 case CPU_1004K:
3a9ab99e
DCZ
1455 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1456 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1457 else
1458 raw_event.cntr_mask =
1459 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1460#ifdef CONFIG_MIPS_MT_SMP
1461 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1462 raw_event.range = P;
1463 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1464 raw_event.range = V;
1465 else
1466 raw_event.range = T;
1467#endif
1468 break;
a7911a8f
AC
1469 case CPU_BMIPS5000:
1470 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1471 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1472 else
1473 raw_event.cntr_mask =
1474 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
3a9ab99e
DCZ
1475 }
1476
1477 return &raw_event;
1478}
1479
939991cf
DD
1480static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1481{
1482 unsigned int raw_id = config & 0xff;
1483 unsigned int base_id = raw_id & 0x7f;
1484
1485
1486 raw_event.cntr_mask = CNTR_ALL;
1487 raw_event.event_id = base_id;
1488
1489 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1490 if (base_id > 0x42)
1491 return ERR_PTR(-EOPNOTSUPP);
1492 } else {
1493 if (base_id > 0x3a)
1494 return ERR_PTR(-EOPNOTSUPP);
1495 }
1496
1497 switch (base_id) {
1498 case 0x00:
1499 case 0x0f:
1500 case 0x1e:
1501 case 0x1f:
1502 case 0x2f:
1503 case 0x34:
1504 case 0x3b ... 0x3f:
1505 return ERR_PTR(-EOPNOTSUPP);
1506 default:
1507 break;
1508 }
1509
1510 return &raw_event;
1511}
1512
4be3d2f3
ZSL
1513static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1514{
1515 unsigned int raw_id = config & 0xff;
1516
1517 /* Only 1-63 are defined */
1518 if ((raw_id < 0x01) || (raw_id > 0x3f))
1519 return ERR_PTR(-EOPNOTSUPP);
1520
1521 raw_event.cntr_mask = CNTR_ALL;
1522 raw_event.event_id = raw_id;
1523
1524 return &raw_event;
1525}
1526
3a9ab99e
DCZ
1527static int __init
1528init_hw_perf_events(void)
1529{
1530 int counters, irq;
82091564 1531 int counter_bits;
3a9ab99e
DCZ
1532
1533 pr_info("Performance counters: ");
1534
1535 counters = n_counters();
1536 if (counters == 0) {
1537 pr_cont("No available PMU.\n");
1538 return -ENODEV;
1539 }
1540
399aaa25 1541#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1542 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1543 if (!cpu_has_mipsmt_pertccounters)
1544 counters = counters_total_to_per_cpu(counters);
1545#endif
1546
1547#ifdef MSC01E_INT_BASE
1548 if (cpu_has_veic) {
1549 /*
1550 * Using platform specific interrupt controller defines.
1551 */
1552 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1553 } else {
1554#endif
3572a2c3
FF
1555 if ((cp0_perfcount_irq >= 0) &&
1556 (cp0_compare_irq != cp0_perfcount_irq))
3a9ab99e
DCZ
1557 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1558 else
1559 irq = -1;
1560#ifdef MSC01E_INT_BASE
1561 }
1562#endif
1563
82091564 1564 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
3a9ab99e
DCZ
1565
1566 switch (current_cpu_type()) {
1567 case CPU_24K:
82091564
DD
1568 mipspmu.name = "mips/24K";
1569 mipspmu.general_event_map = &mipsxxcore_event_map;
1570 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e
DCZ
1571 break;
1572 case CPU_34K:
82091564
DD
1573 mipspmu.name = "mips/34K";
1574 mipspmu.general_event_map = &mipsxxcore_event_map;
1575 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e
DCZ
1576 break;
1577 case CPU_74K:
82091564
DD
1578 mipspmu.name = "mips/74K";
1579 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1580 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
3a9ab99e
DCZ
1581 break;
1582 case CPU_1004K:
82091564
DD
1583 mipspmu.name = "mips/1004K";
1584 mipspmu.general_event_map = &mipsxxcore_event_map;
1585 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e 1586 break;
2fa36399
KC
1587 case CPU_LOONGSON1:
1588 mipspmu.name = "mips/loongson1";
1589 mipspmu.general_event_map = &mipsxxcore_event_map;
1590 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1591 break;
939991cf
DD
1592 case CPU_CAVIUM_OCTEON:
1593 case CPU_CAVIUM_OCTEON_PLUS:
1594 case CPU_CAVIUM_OCTEON2:
1595 mipspmu.name = "octeon";
1596 mipspmu.general_event_map = &octeon_event_map;
1597 mipspmu.cache_event_map = &octeon_cache_map;
1598 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1599 break;
a7911a8f
AC
1600 case CPU_BMIPS5000:
1601 mipspmu.name = "BMIPS5000";
1602 mipspmu.general_event_map = &bmips5000_event_map;
1603 mipspmu.cache_event_map = &bmips5000_cache_map;
1604 break;
4be3d2f3
ZSL
1605 case CPU_XLP:
1606 mipspmu.name = "xlp";
1607 mipspmu.general_event_map = &xlp_event_map;
1608 mipspmu.cache_event_map = &xlp_cache_map;
1609 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1610 break;
3a9ab99e
DCZ
1611 default:
1612 pr_cont("Either hardware does not support performance "
1613 "counters, or not yet implemented.\n");
1614 return -ENODEV;
1615 }
1616
82091564
DD
1617 mipspmu.num_counters = counters;
1618 mipspmu.irq = irq;
1619
1620 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1621 mipspmu.max_period = (1ULL << 63) - 1;
1622 mipspmu.valid_count = (1ULL << 63) - 1;
1623 mipspmu.overflow = 1ULL << 63;
1624 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1625 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1626 counter_bits = 64;
1627 } else {
1628 mipspmu.max_period = (1ULL << 31) - 1;
1629 mipspmu.valid_count = (1ULL << 31) - 1;
1630 mipspmu.overflow = 1ULL << 31;
1631 mipspmu.read_counter = mipsxx_pmu_read_counter;
1632 mipspmu.write_counter = mipsxx_pmu_write_counter;
1633 counter_bits = 32;
1634 }
1635
1636 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1637
1638 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1639 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1640 irq < 0 ? " (share with timer interrupt)" : "");
3a9ab99e 1641
404ff638
DCZ
1642 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1643
3a9ab99e
DCZ
1644 return 0;
1645}
004417a6 1646early_initcall(init_hw_perf_events);