MIPS: Octeon: Simplify code by assuming CONFIG_64BIT is always set.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / cavium-octeon / octeon-memcpy.S
CommitLineData
5b3b1688
DD
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15
16#include <asm/asm.h>
17#include <asm/asm-offsets.h>
18#include <asm/regdef.h>
19
20#define dst a0
21#define src a1
22#define len a2
23
24/*
25 * Spec
26 *
27 * memcpy copies len bytes from src to dst and sets v0 to dst.
28 * It assumes that
29 * - src and dst don't overlap
30 * - src is readable
31 * - dst is writable
32 * memcpy uses the standard calling convention
33 *
34 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
35 * the number of uncopied bytes due to an exception caused by a read or write.
36 * __copy_user assumes that src and dst don't overlap, and that the call is
37 * implementing one of the following:
38 * copy_to_user
39 * - src is readable (no exceptions when reading src)
40 * copy_from_user
41 * - dst is writable (no exceptions when writing dst)
42 * __copy_user uses a non-standard calling convention; see
43 * arch/mips/include/asm/uaccess.h
44 *
45 * When an exception happens on a load, the handler must
46 # ensure that all of the destination buffer is overwritten to prevent
47 * leaking information to user mode programs.
48 */
49
50/*
51 * Implementation
52 */
53
54/*
55 * The exception handler for loads requires that:
56 * 1- AT contain the address of the byte just past the end of the source
57 * of the copy,
58 * 2- src_entry <= src < AT, and
59 * 3- (dst - src) == (dst_entry - src_entry),
60 * The _entry suffix denotes values when __copy_user was called.
61 *
62 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
63 * (2) is met by incrementing src by the number of bytes copied
64 * (3) is met by not doing loads between a pair of increments of dst and src
65 *
66 * The exception handlers for stores adjust len (if necessary) and return.
67 * These handlers do not need to overwrite any data.
68 *
69 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
70 * they're not protected.
71 */
72
73#define EXC(inst_reg,addr,handler) \
749: inst_reg, addr; \
75 .section __ex_table,"a"; \
76 PTR 9b, handler; \
77 .previous
78
79/*
80 * Only on the 64-bit kernel we can made use of 64-bit registers.
81 */
5b3b1688
DD
82
83#define LOAD ld
84#define LOADL ldl
85#define LOADR ldr
86#define STOREL sdl
87#define STORER sdr
88#define STORE sd
89#define ADD daddu
90#define SUB dsubu
91#define SRL dsrl
92#define SRA dsra
93#define SLL dsll
94#define SLLV dsllv
95#define SRLV dsrlv
96#define NBYTES 8
97#define LOG_NBYTES 3
98
99/*
100 * As we are sharing code base with the mips32 tree (which use the o32 ABI
101 * register definitions). We need to redefine the register definitions from
102 * the n64 ABI register naming to the o32 ABI register naming.
103 */
104#undef t0
105#undef t1
106#undef t2
107#undef t3
108#define t0 $8
109#define t1 $9
110#define t2 $10
111#define t3 $11
112#define t4 $12
113#define t5 $13
114#define t6 $14
115#define t7 $15
116
5b3b1688
DD
117#ifdef CONFIG_CPU_LITTLE_ENDIAN
118#define LDFIRST LOADR
119#define LDREST LOADL
120#define STFIRST STORER
121#define STREST STOREL
122#define SHIFT_DISCARD SLLV
123#else
124#define LDFIRST LOADL
125#define LDREST LOADR
126#define STFIRST STOREL
127#define STREST STORER
128#define SHIFT_DISCARD SRLV
129#endif
130
131#define FIRST(unit) ((unit)*NBYTES)
132#define REST(unit) (FIRST(unit)+NBYTES-1)
133#define UNIT(unit) FIRST(unit)
134
135#define ADDRMASK (NBYTES-1)
136
137 .text
138 .set noreorder
139 .set noat
140
914f8480
DD
141/*
142 * t7 is used as a flag to note inatomic mode.
143 */
144LEAF(__copy_user_inatomic)
145 b __copy_user_common
146 li t7, 1
147 END(__copy_user_inatomic)
148
5b3b1688
DD
149/*
150 * A combined memcpy/__copy_user
151 * __copy_user sets len to 0 for success; else to an upper bound of
152 * the number of uncopied bytes.
153 * memcpy sets v0 to dst.
154 */
155 .align 5
156LEAF(memcpy) /* a0=dst a1=src a2=len */
157 move v0, dst /* return value */
158__memcpy:
159FEXPORT(__copy_user)
914f8480
DD
160 li t7, 0 /* not inatomic */
161__copy_user_common:
5b3b1688
DD
162 /*
163 * Note: dst & src may be unaligned, len may be 0
164 * Temps
165 */
166 #
167 # Octeon doesn't care if the destination is unaligned. The hardware
168 # can fix it faster than we can special case the assembly.
169 #
170 pref 0, 0(src)
171 sltu t0, len, NBYTES # Check if < 1 word
172 bnez t0, copy_bytes_checklen
173 and t0, src, ADDRMASK # Check if src unaligned
174 bnez t0, src_unaligned
175 sltu t0, len, 4*NBYTES # Check if < 4 words
176 bnez t0, less_than_4units
177 sltu t0, len, 8*NBYTES # Check if < 8 words
178 bnez t0, less_than_8units
179 sltu t0, len, 16*NBYTES # Check if < 16 words
180 bnez t0, cleanup_both_aligned
181 sltu t0, len, 128+1 # Check if len < 129
182 bnez t0, 1f # Skip prefetch if len is too short
183 sltu t0, len, 256+1 # Check if len < 257
184 bnez t0, 1f # Skip prefetch if len is too short
185 pref 0, 128(src) # We must not prefetch invalid addresses
186 #
187 # This is where we loop if there is more than 128 bytes left
1882: pref 0, 256(src) # We must not prefetch invalid addresses
189 #
190 # This is where we loop if we can't prefetch anymore
1911:
192EXC( LOAD t0, UNIT(0)(src), l_exc)
193EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
194EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
195EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
196 SUB len, len, 16*NBYTES
197EXC( STORE t0, UNIT(0)(dst), s_exc_p16u)
198EXC( STORE t1, UNIT(1)(dst), s_exc_p15u)
199EXC( STORE t2, UNIT(2)(dst), s_exc_p14u)
200EXC( STORE t3, UNIT(3)(dst), s_exc_p13u)
201EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
202EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
203EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
204EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
205EXC( STORE t0, UNIT(4)(dst), s_exc_p12u)
206EXC( STORE t1, UNIT(5)(dst), s_exc_p11u)
207EXC( STORE t2, UNIT(6)(dst), s_exc_p10u)
208 ADD src, src, 16*NBYTES
209EXC( STORE t3, UNIT(7)(dst), s_exc_p9u)
210 ADD dst, dst, 16*NBYTES
211EXC( LOAD t0, UNIT(-8)(src), l_exc_copy)
212EXC( LOAD t1, UNIT(-7)(src), l_exc_copy)
213EXC( LOAD t2, UNIT(-6)(src), l_exc_copy)
214EXC( LOAD t3, UNIT(-5)(src), l_exc_copy)
215EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u)
216EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u)
217EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
218EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
219EXC( LOAD t0, UNIT(-4)(src), l_exc_copy)
220EXC( LOAD t1, UNIT(-3)(src), l_exc_copy)
221EXC( LOAD t2, UNIT(-2)(src), l_exc_copy)
222EXC( LOAD t3, UNIT(-1)(src), l_exc_copy)
223EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u)
224EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u)
225EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u)
226EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u)
227 sltu t0, len, 256+1 # See if we can prefetch more
228 beqz t0, 2b
229 sltu t0, len, 128 # See if we can loop more time
230 beqz t0, 1b
231 nop
232 #
233 # Jump here if there are less than 16*NBYTES left.
234 #
235cleanup_both_aligned:
236 beqz len, done
237 sltu t0, len, 8*NBYTES
238 bnez t0, less_than_8units
239 nop
240EXC( LOAD t0, UNIT(0)(src), l_exc)
241EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
242EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
243EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
244 SUB len, len, 8*NBYTES
245EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
246EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
247EXC( STORE t2, UNIT(2)(dst), s_exc_p6u)
248EXC( STORE t3, UNIT(3)(dst), s_exc_p5u)
249EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
250EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
251EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
252EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
253EXC( STORE t0, UNIT(4)(dst), s_exc_p4u)
254EXC( STORE t1, UNIT(5)(dst), s_exc_p3u)
255EXC( STORE t2, UNIT(6)(dst), s_exc_p2u)
256EXC( STORE t3, UNIT(7)(dst), s_exc_p1u)
257 ADD src, src, 8*NBYTES
258 beqz len, done
259 ADD dst, dst, 8*NBYTES
260 #
261 # Jump here if there are less than 8*NBYTES left.
262 #
263less_than_8units:
264 sltu t0, len, 4*NBYTES
265 bnez t0, less_than_4units
266 nop
267EXC( LOAD t0, UNIT(0)(src), l_exc)
268EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
269EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
270EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
271 SUB len, len, 4*NBYTES
272EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
273EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
274EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
275EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
276 ADD src, src, 4*NBYTES
277 beqz len, done
278 ADD dst, dst, 4*NBYTES
279 #
280 # Jump here if there are less than 4*NBYTES left. This means
281 # we may need to copy up to 3 NBYTES words.
282 #
283less_than_4units:
284 sltu t0, len, 1*NBYTES
285 bnez t0, copy_bytes_checklen
286 nop
287 #
288 # 1) Copy NBYTES, then check length again
289 #
290EXC( LOAD t0, 0(src), l_exc)
291 SUB len, len, NBYTES
292 sltu t1, len, 8
293EXC( STORE t0, 0(dst), s_exc_p1u)
294 ADD src, src, NBYTES
295 bnez t1, copy_bytes_checklen
296 ADD dst, dst, NBYTES
297 #
298 # 2) Copy NBYTES, then check length again
299 #
300EXC( LOAD t0, 0(src), l_exc)
301 SUB len, len, NBYTES
302 sltu t1, len, 8
303EXC( STORE t0, 0(dst), s_exc_p1u)
304 ADD src, src, NBYTES
305 bnez t1, copy_bytes_checklen
306 ADD dst, dst, NBYTES
307 #
308 # 3) Copy NBYTES, then check length again
309 #
310EXC( LOAD t0, 0(src), l_exc)
311 SUB len, len, NBYTES
312 ADD src, src, NBYTES
313 ADD dst, dst, NBYTES
314 b copy_bytes_checklen
315EXC( STORE t0, -8(dst), s_exc_p1u)
316
317src_unaligned:
318#define rem t8
319 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
320 beqz t0, cleanup_src_unaligned
321 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
3221:
323/*
324 * Avoid consecutive LD*'s to the same register since some mips
325 * implementations can't issue them in the same cycle.
326 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
327 * are to the same unit (unless src is aligned, but it's not).
328 */
329EXC( LDFIRST t0, FIRST(0)(src), l_exc)
330EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
331 SUB len, len, 4*NBYTES
332EXC( LDREST t0, REST(0)(src), l_exc_copy)
333EXC( LDREST t1, REST(1)(src), l_exc_copy)
334EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
335EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
336EXC( LDREST t2, REST(2)(src), l_exc_copy)
337EXC( LDREST t3, REST(3)(src), l_exc_copy)
338 ADD src, src, 4*NBYTES
339EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
340EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
341EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
342EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
343 bne len, rem, 1b
344 ADD dst, dst, 4*NBYTES
345
346cleanup_src_unaligned:
347 beqz len, done
348 and rem, len, NBYTES-1 # rem = len % NBYTES
349 beq rem, len, copy_bytes
350 nop
3511:
352EXC( LDFIRST t0, FIRST(0)(src), l_exc)
353EXC( LDREST t0, REST(0)(src), l_exc_copy)
354 SUB len, len, NBYTES
355EXC( STORE t0, 0(dst), s_exc_p1u)
356 ADD src, src, NBYTES
357 bne len, rem, 1b
358 ADD dst, dst, NBYTES
359
360copy_bytes_checklen:
361 beqz len, done
362 nop
363copy_bytes:
364 /* 0 < len < NBYTES */
365#define COPY_BYTE(N) \
366EXC( lb t0, N(src), l_exc); \
367 SUB len, len, 1; \
368 beqz len, done; \
369EXC( sb t0, N(dst), s_exc_p1)
370
371 COPY_BYTE(0)
372 COPY_BYTE(1)
5b3b1688
DD
373 COPY_BYTE(2)
374 COPY_BYTE(3)
375 COPY_BYTE(4)
376 COPY_BYTE(5)
5b3b1688
DD
377EXC( lb t0, NBYTES-2(src), l_exc)
378 SUB len, len, 1
379 jr ra
380EXC( sb t0, NBYTES-2(dst), s_exc_p1)
381done:
382 jr ra
383 nop
384 END(memcpy)
385
386l_exc_copy:
387 /*
388 * Copy bytes from src until faulting load address (or until a
389 * lb faults)
390 *
391 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
392 * may be more than a byte beyond the last address.
393 * Hence, the lb below may get an exception.
394 *
395 * Assumes src < THREAD_BUADDR($28)
396 */
397 LOAD t0, TI_TASK($28)
5b3b1688
DD
398 LOAD t0, THREAD_BUADDR(t0)
3991:
400EXC( lb t1, 0(src), l_exc)
401 ADD src, src, 1
402 sb t1, 0(dst) # can't fault -- we're copy_from_user
403 bne src, t0, 1b
404 ADD dst, dst, 1
405l_exc:
406 LOAD t0, TI_TASK($28)
5b3b1688 407 LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
5b3b1688 408 SUB len, AT, t0 # len number of uncopied bytes
914f8480 409 bnez t7, 2f /* Skip the zeroing out part if inatomic */
5b3b1688
DD
410 /*
411 * Here's where we rely on src and dst being incremented in tandem,
412 * See (3) above.
413 * dst += (fault addr - src) to put dst at first byte to clear
414 */
415 ADD dst, t0 # compute start address in a1
416 SUB dst, src
417 /*
418 * Clear len bytes starting at dst. Can't call __bzero because it
419 * might modify len. An inefficient loop for these rare times...
420 */
421 beqz len, done
422 SUB src, len, 1
4231: sb zero, 0(dst)
424 ADD dst, dst, 1
425 bnez src, 1b
426 SUB src, src, 1
914f8480 4272: jr ra
5b3b1688
DD
428 nop
429
430
431#define SEXC(n) \
432s_exc_p ## n ## u: \
433 jr ra; \
434 ADD len, len, n*NBYTES
435
436SEXC(16)
437SEXC(15)
438SEXC(14)
439SEXC(13)
440SEXC(12)
441SEXC(11)
442SEXC(10)
443SEXC(9)
444SEXC(8)
445SEXC(7)
446SEXC(6)
447SEXC(5)
448SEXC(4)
449SEXC(3)
450SEXC(2)
451SEXC(1)
452
453s_exc_p1:
454 jr ra
455 ADD len, len, 1
456s_exc:
457 jr ra
458 nop
459
460 .align 5
461LEAF(memmove)
462 ADD t0, a0, a2
463 ADD t1, a1, a2
464 sltu t0, a1, t0 # dst + len <= src -> memcpy
465 sltu t1, a0, t1 # dst >= src + len -> memcpy
466 and t0, t1
467 beqz t0, __memcpy
468 move v0, a0 /* return value */
469 beqz a2, r_out
470 END(memmove)
471
472 /* fall through to __rmemcpy */
473LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
474 sltu t0, a1, a0
475 beqz t0, r_end_bytes_up # src >= dst
476 nop
477 ADD a0, a2 # dst = dst + len
478 ADD a1, a2 # src = src + len
479
480r_end_bytes:
481 lb t0, -1(a1)
482 SUB a2, a2, 0x1
483 sb t0, -1(a0)
484 SUB a1, a1, 0x1
485 bnez a2, r_end_bytes
486 SUB a0, a0, 0x1
487
488r_out:
489 jr ra
490 move a2, zero
491
492r_end_bytes_up:
493 lb t0, (a1)
494 SUB a2, a2, 0x1
495 sb t0, (a0)
496 ADD a1, a1, 0x1
497 bnez a2, r_end_bytes_up
498 ADD a0, a0, 0x1
499
500 jr ra
501 move a2, zero
502 END(__rmemcpy)