import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm64 / include / asm / cacheflush.h
CommitLineData
f1a0c4aa
CM
1/*
2 * Based on arch/arm/include/asm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King.
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19#ifndef __ASM_CACHEFLUSH_H
20#define __ASM_CACHEFLUSH_H
21
22#include <linux/mm.h>
23
24/*
25 * This flag is used to indicate that the page pointed to by a pte is clean
26 * and does not require cleaning before returning it to the user.
27 */
28#define PG_dcache_clean PG_arch_1
29
30/*
31 * MM Cache Management
32 * ===================
33 *
34 * The arch/arm64/mm/cache.S implements these methods.
35 *
36 * Start addresses are inclusive and end addresses are exclusive; start
37 * addresses should be rounded down, end addresses up.
38 *
39 * See Documentation/cachetlb.txt for more information. Please note that
40 * the implementation assumes non-aliasing VIPT D-cache and (aliasing)
41 * VIPT or ASID-tagged VIVT I-cache.
42 *
43 * flush_cache_all()
44 *
45 * Unconditionally clean and invalidate the entire cache.
46 *
47 * flush_cache_mm(mm)
48 *
49 * Clean and invalidate all user space cache entries
50 * before a change of page tables.
51 *
52 * flush_icache_range(start, end)
53 *
54 * Ensure coherency between the I-cache and the D-cache in the
55 * region described by start, end.
56 * - start - virtual start address
57 * - end - virtual end address
58 *
59 * __flush_cache_user_range(start, end)
60 *
61 * Ensure coherency between the I-cache and the D-cache in the
62 * region described by start, end.
63 * - start - virtual start address
64 * - end - virtual end address
65 *
66 * __flush_dcache_area(kaddr, size)
67 *
68 * Ensure that the data held in page is written back.
69 * - kaddr - page address
70 * - size - region size
71 */
72extern void flush_cache_all(void);
f1a0c4aa 73extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
f1a0c4aa
CM
74extern void flush_icache_range(unsigned long start, unsigned long end);
75extern void __flush_dcache_area(void *addr, size_t len);
76extern void __flush_cache_user_range(unsigned long start, unsigned long end);
77
8f3bfa58
CM
78static inline void flush_cache_mm(struct mm_struct *mm)
79{
80}
81
82static inline void flush_cache_page(struct vm_area_struct *vma,
83 unsigned long user_addr, unsigned long pfn)
84{
85}
86
6fa3eb70
S
87/*
88 * Cache maintenance functions used by the DMA API. No to be used directly.
89 */
90extern void __dma_map_area(const void *, size_t, int);
91extern void __dma_unmap_area(const void *, size_t, int);
92extern void __dma_flush_range(const void *, const void *);
93
f1a0c4aa
CM
94/*
95 * Copy user data from/to a page which is mapped into a different
96 * processes address space. Really, we want to allow our "user
97 * space" model to handle this.
98 */
99extern void copy_to_user_page(struct vm_area_struct *, struct page *,
100 unsigned long, void *, const void *, unsigned long);
101#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
102 do { \
103 memcpy(dst, src, len); \
104 } while (0)
105
106#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
107
108/*
109 * flush_dcache_page is used when the kernel has written to the page
110 * cache page at virtual address page->virtual.
111 *
112 * If this page isn't mapped (ie, page_mapping == NULL), or it might
113 * have userspace mappings, then we _must_ always clean + invalidate
114 * the dcache entries associated with the kernel mapping.
115 *
116 * Otherwise we can defer the operation, and clean the cache when we are
117 * about to change to user space. This is the same method as used on SPARC64.
118 * See update_mmu_cache for the user space part.
119 */
120#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
121extern void flush_dcache_page(struct page *);
122
123static inline void __flush_icache_all(void)
124{
125 asm("ic ialluis");
02599bad 126 dsb();
f1a0c4aa
CM
127}
128
129#define flush_dcache_mmap_lock(mapping) \
130 spin_lock_irq(&(mapping)->tree_lock)
131#define flush_dcache_mmap_unlock(mapping) \
132 spin_unlock_irq(&(mapping)->tree_lock)
133
134#define flush_icache_user_range(vma,page,addr,len) \
135 flush_dcache_page(page)
136
137/*
138 * We don't appear to need to do anything here. In fact, if we did, we'd
139 * duplicate cache flushing elsewhere performed by flush_dcache_page().
140 */
141#define flush_icache_page(vma,page) do { } while (0)
142
143/*
144 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
145 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
146 * caches, since the direct-mappings of these pages may contain cached
147 * data, we need to do a full cache flush to ensure that writebacks
148 * don't corrupt data placed into these pages via the new mappings.
149 */
150static inline void flush_cache_vmap(unsigned long start, unsigned long end)
151{
152 /*
153 * set_pte_at() called from vmap_pte_range() does not
154 * have a DSB after cleaning the cache line.
155 */
156 dsb();
157}
158
159static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
160{
161}
162
163#endif