drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / Documentation / DocBook / genericirq.tmpl
CommitLineData
11c869ea
TG
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="Generic-IRQ-Guide">
6 <bookinfo>
7 <title>Linux generic IRQ handling</title>
8
9 <authorgroup>
10 <author>
11 <firstname>Thomas</firstname>
12 <surname>Gleixner</surname>
13 <affiliation>
14 <address>
15 <email>tglx@linutronix.de</email>
16 </address>
17 </affiliation>
18 </author>
19 <author>
20 <firstname>Ingo</firstname>
21 <surname>Molnar</surname>
22 <affiliation>
23 <address>
24 <email>mingo@elte.hu</email>
25 </address>
26 </affiliation>
27 </author>
28 </authorgroup>
29
30 <copyright>
25ade601 31 <year>2005-2010</year>
11c869ea
TG
32 <holder>Thomas Gleixner</holder>
33 </copyright>
34 <copyright>
35 <year>2005-2006</year>
36 <holder>Ingo Molnar</holder>
37 </copyright>
38
39 <legalnotice>
40 <para>
41 This documentation is free software; you can redistribute
42 it and/or modify it under the terms of the GNU General Public
43 License version 2 as published by the Free Software Foundation.
44 </para>
45
46 <para>
47 This program is distributed in the hope that it will be
48 useful, but WITHOUT ANY WARRANTY; without even the implied
49 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
50 See the GNU General Public License for more details.
51 </para>
52
53 <para>
54 You should have received a copy of the GNU General Public
55 License along with this program; if not, write to the Free
56 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
57 MA 02111-1307 USA
58 </para>
59
60 <para>
61 For more details see the file COPYING in the source
62 distribution of Linux.
63 </para>
64 </legalnotice>
65 </bookinfo>
66
67<toc></toc>
68
69 <chapter id="intro">
70 <title>Introduction</title>
71 <para>
72 The generic interrupt handling layer is designed to provide a
73 complete abstraction of interrupt handling for device drivers.
74 It is able to handle all the different types of interrupt controller
75 hardware. Device drivers use generic API functions to request, enable,
76 disable and free interrupts. The drivers do not have to know anything
77 about interrupt hardware details, so they can be used on different
78 platforms without code changes.
79 </para>
80 <para>
81 This documentation is provided to developers who want to implement
82 an interrupt subsystem based for their architecture, with the help
83 of the generic IRQ handling layer.
84 </para>
85 </chapter>
86
87 <chapter id="rationale">
88 <title>Rationale</title>
89 <para>
90 The original implementation of interrupt handling in Linux is using
91 the __do_IRQ() super-handler, which is able to deal with every
92 type of interrupt logic.
93 </para>
94 <para>
95 Originally, Russell King identified different types of handlers to
96 build a quite universal set for the ARM interrupt handler
97 implementation in Linux 2.5/2.6. He distinguished between:
98 <itemizedlist>
99 <listitem><para>Level type</para></listitem>
100 <listitem><para>Edge type</para></listitem>
101 <listitem><para>Simple type</para></listitem>
102 </itemizedlist>
25ade601
TG
103 During the implementation we identified another type:
104 <itemizedlist>
105 <listitem><para>Fast EOI type</para></listitem>
106 </itemizedlist>
11c869ea
TG
107 In the SMP world of the __do_IRQ() super-handler another type
108 was identified:
109 <itemizedlist>
110 <listitem><para>Per CPU type</para></listitem>
111 </itemizedlist>
112 </para>
113 <para>
114 This split implementation of highlevel IRQ handlers allows us to
115 optimize the flow of the interrupt handling for each specific
116 interrupt type. This reduces complexity in that particular codepath
117 and allows the optimized handling of a given type.
118 </para>
119 <para>
120 The original general IRQ implementation used hw_interrupt_type
121 structures and their ->ack(), ->end() [etc.] callbacks to
122 differentiate the flow control in the super-handler. This leads to
123 a mix of flow logic and lowlevel hardware logic, and it also leads
124 to unnecessary code duplication: for example in i386, there is a
125 ioapic_level_irq and a ioapic_edge_irq irq-type which share many
126 of the lowlevel details but have different flow handling.
127 </para>
128 <para>
129 A more natural abstraction is the clean separation of the
130 'irq flow' and the 'chip details'.
131 </para>
132 <para>
133 Analysing a couple of architecture's IRQ subsystem implementations
134 reveals that most of them can use a generic set of 'irq flow'
135 methods and only need to add the chip level specific code.
136 The separation is also valuable for (sub)architectures
137 which need specific quirks in the irq flow itself but not in the
138 chip-details - and thus provides a more transparent IRQ subsystem
139 design.
140 </para>
141 <para>
142 Each interrupt descriptor is assigned its own highlevel flow
143 handler, which is normally one of the generic
144 implementations. (This highlevel flow handler implementation also
145 makes it simple to provide demultiplexing handlers which can be
146 found in embedded platforms on various architectures.)
147 </para>
148 <para>
149 The separation makes the generic interrupt handling layer more
150 flexible and extensible. For example, an (sub)architecture can
151 use a generic irq-flow implementation for 'level type' interrupts
152 and add a (sub)architecture specific 'edge type' implementation.
153 </para>
154 <para>
155 To make the transition to the new model easier and prevent the
156 breakage of existing implementations, the __do_IRQ() super-handler
157 is still available. This leads to a kind of duality for the time
158 being. Over time the new model should be used in more and more
159 architectures, as it enables smaller and cleaner IRQ subsystems.
25ade601 160 It's deprecated for three years now and about to be removed.
11c869ea
TG
161 </para>
162 </chapter>
163 <chapter id="bugs">
164 <title>Known Bugs And Assumptions</title>
165 <para>
166 None (knock on wood).
167 </para>
168 </chapter>
169
170 <chapter id="Abstraction">
171 <title>Abstraction layers</title>
172 <para>
173 There are three main levels of abstraction in the interrupt code:
174 <orderedlist>
175 <listitem><para>Highlevel driver API</para></listitem>
176 <listitem><para>Highlevel IRQ flow handlers</para></listitem>
177 <listitem><para>Chiplevel hardware encapsulation</para></listitem>
178 </orderedlist>
179 </para>
aa9128f3 180 <sect1 id="Interrupt_control_flow">
11c869ea
TG
181 <title>Interrupt control flow</title>
182 <para>
183 Each interrupt is described by an interrupt descriptor structure
184 irq_desc. The interrupt is referenced by an 'unsigned int' numeric
185 value which selects the corresponding interrupt decription structure
186 in the descriptor structures array.
187 The descriptor structure contains status information and pointers
188 to the interrupt flow method and the interrupt chip structure
189 which are assigned to this interrupt.
190 </para>
191 <para>
192 Whenever an interrupt triggers, the lowlevel arch code calls into
193 the generic interrupt code by calling desc->handle_irq().
ee430599
GU
194 This highlevel IRQ handling function only uses desc->irq_data.chip
195 primitives referenced by the assigned chip descriptor structure.
11c869ea
TG
196 </para>
197 </sect1>
aa9128f3 198 <sect1 id="Highlevel_Driver_API">
11c869ea
TG
199 <title>Highlevel Driver API</title>
200 <para>
201 The highlevel Driver API consists of following functions:
202 <itemizedlist>
203 <listitem><para>request_irq()</para></listitem>
204 <listitem><para>free_irq()</para></listitem>
205 <listitem><para>disable_irq()</para></listitem>
206 <listitem><para>enable_irq()</para></listitem>
207 <listitem><para>disable_irq_nosync() (SMP only)</para></listitem>
208 <listitem><para>synchronize_irq() (SMP only)</para></listitem>
ee430599
GU
209 <listitem><para>irq_set_irq_type()</para></listitem>
210 <listitem><para>irq_set_irq_wake()</para></listitem>
211 <listitem><para>irq_set_handler_data()</para></listitem>
212 <listitem><para>irq_set_chip()</para></listitem>
213 <listitem><para>irq_set_chip_data()</para></listitem>
11c869ea
TG
214 </itemizedlist>
215 See the autogenerated function documentation for details.
216 </para>
217 </sect1>
aa9128f3 218 <sect1 id="Highlevel_IRQ_flow_handlers">
11c869ea
TG
219 <title>Highlevel IRQ flow handlers</title>
220 <para>
221 The generic layer provides a set of pre-defined irq-flow methods:
222 <itemizedlist>
223 <listitem><para>handle_level_irq</para></listitem>
224 <listitem><para>handle_edge_irq</para></listitem>
25ade601 225 <listitem><para>handle_fasteoi_irq</para></listitem>
11c869ea
TG
226 <listitem><para>handle_simple_irq</para></listitem>
227 <listitem><para>handle_percpu_irq</para></listitem>
ee430599
GU
228 <listitem><para>handle_edge_eoi_irq</para></listitem>
229 <listitem><para>handle_bad_irq</para></listitem>
11c869ea
TG
230 </itemizedlist>
231 The interrupt flow handlers (either predefined or architecture
232 specific) are assigned to specific interrupts by the architecture
233 either during bootup or during device initialization.
234 </para>
aa9128f3 235 <sect2 id="Default_flow_implementations">
11c869ea 236 <title>Default flow implementations</title>
aa9128f3 237 <sect3 id="Helper_functions">
11c869ea
TG
238 <title>Helper functions</title>
239 <para>
240 The helper functions call the chip primitives and
241 are used by the default flow implementations.
242 The following helper functions are implemented (simplified excerpt):
243 <programlisting>
25ade601 244default_enable(struct irq_data *data)
11c869ea 245{
ee430599 246 desc->irq_data.chip->irq_unmask(data);
11c869ea
TG
247}
248
25ade601 249default_disable(struct irq_data *data)
11c869ea 250{
25ade601 251 if (!delay_disable(data))
ee430599 252 desc->irq_data.chip->irq_mask(data);
11c869ea
TG
253}
254
25ade601 255default_ack(struct irq_data *data)
11c869ea 256{
25ade601 257 chip->irq_ack(data);
11c869ea
TG
258}
259
25ade601 260default_mask_ack(struct irq_data *data)
11c869ea 261{
25ade601
TG
262 if (chip->irq_mask_ack) {
263 chip->irq_mask_ack(data);
11c869ea 264 } else {
25ade601
TG
265 chip->irq_mask(data);
266 chip->irq_ack(data);
11c869ea
TG
267 }
268}
269
25ade601 270noop(struct irq_data *data))
11c869ea
TG
271{
272}
273
274 </programlisting>
275 </para>
276 </sect3>
277 </sect2>
aa9128f3 278 <sect2 id="Default_flow_handler_implementations">
11c869ea 279 <title>Default flow handler implementations</title>
aa9128f3 280 <sect3 id="Default_Level_IRQ_flow_handler">
11c869ea
TG
281 <title>Default Level IRQ flow handler</title>
282 <para>
283 handle_level_irq provides a generic implementation
284 for level-triggered interrupts.
285 </para>
286 <para>
287 The following control flow is implemented (simplified excerpt):
288 <programlisting>
ee430599
GU
289desc->irq_data.chip->irq_mask_ack();
290handle_irq_event(desc->action);
291desc->irq_data.chip->irq_unmask();
11c869ea
TG
292 </programlisting>
293 </para>
25ade601
TG
294 </sect3>
295 <sect3 id="Default_FASTEOI_IRQ_flow_handler">
296 <title>Default Fast EOI IRQ flow handler</title>
297 <para>
298 handle_fasteoi_irq provides a generic implementation
299 for interrupts, which only need an EOI at the end of
300 the handler
301 </para>
302 <para>
303 The following control flow is implemented (simplified excerpt):
304 <programlisting>
ee430599
GU
305handle_irq_event(desc->action);
306desc->irq_data.chip->irq_eoi();
25ade601
TG
307 </programlisting>
308 </para>
309 </sect3>
aa9128f3 310 <sect3 id="Default_Edge_IRQ_flow_handler">
11c869ea
TG
311 <title>Default Edge IRQ flow handler</title>
312 <para>
313 handle_edge_irq provides a generic implementation
314 for edge-triggered interrupts.
315 </para>
316 <para>
317 The following control flow is implemented (simplified excerpt):
318 <programlisting>
319if (desc->status &amp; running) {
ee430599 320 desc->irq_data.chip->irq_mask_ack();
11c869ea
TG
321 desc->status |= pending | masked;
322 return;
323}
ee430599 324desc->irq_data.chip->irq_ack();
11c869ea
TG
325desc->status |= running;
326do {
327 if (desc->status &amp; masked)
ee430599 328 desc->irq_data.chip->irq_unmask();
b06824ce 329 desc->status &amp;= ~pending;
ee430599 330 handle_irq_event(desc->action);
11c869ea 331} while (status &amp; pending);
b06824ce 332desc->status &amp;= ~running;
11c869ea
TG
333 </programlisting>
334 </para>
335 </sect3>
aa9128f3 336 <sect3 id="Default_simple_IRQ_flow_handler">
11c869ea
TG
337 <title>Default simple IRQ flow handler</title>
338 <para>
339 handle_simple_irq provides a generic implementation
340 for simple interrupts.
341 </para>
342 <para>
343 Note: The simple flow handler does not call any
344 handler/chip primitives.
345 </para>
346 <para>
347 The following control flow is implemented (simplified excerpt):
348 <programlisting>
ee430599 349handle_irq_event(desc->action);
11c869ea
TG
350 </programlisting>
351 </para>
352 </sect3>
aa9128f3 353 <sect3 id="Default_per_CPU_flow_handler">
11c869ea
TG
354 <title>Default per CPU flow handler</title>
355 <para>
356 handle_percpu_irq provides a generic implementation
357 for per CPU interrupts.
358 </para>
359 <para>
360 Per CPU interrupts are only available on SMP and
361 the handler provides a simplified version without
362 locking.
363 </para>
364 <para>
365 The following control flow is implemented (simplified excerpt):
366 <programlisting>
ee430599
GU
367if (desc->irq_data.chip->irq_ack)
368 desc->irq_data.chip->irq_ack();
369handle_irq_event(desc->action);
370if (desc->irq_data.chip->irq_eoi)
371 desc->irq_data.chip->irq_eoi();
11c869ea
TG
372 </programlisting>
373 </para>
374 </sect3>
ee430599
GU
375 <sect3 id="EOI_Edge_IRQ_flow_handler">
376 <title>EOI Edge IRQ flow handler</title>
377 <para>
378 handle_edge_eoi_irq provides an abnomination of the edge
379 handler which is solely used to tame a badly wreckaged
380 irq controller on powerpc/cell.
381 </para>
382 </sect3>
383 <sect3 id="BAD_IRQ_flow_handler">
384 <title>Bad IRQ flow handler</title>
385 <para>
386 handle_bad_irq is used for spurious interrupts which
387 have no real handler assigned..
388 </para>
389 </sect3>
11c869ea 390 </sect2>
aa9128f3 391 <sect2 id="Quirks_and_optimizations">
11c869ea
TG
392 <title>Quirks and optimizations</title>
393 <para>
394 The generic functions are intended for 'clean' architectures and chips,
395 which have no platform-specific IRQ handling quirks. If an architecture
396 needs to implement quirks on the 'flow' level then it can do so by
397 overriding the highlevel irq-flow handler.
398 </para>
399 </sect2>
aa9128f3 400 <sect2 id="Delayed_interrupt_disable">
11c869ea
TG
401 <title>Delayed interrupt disable</title>
402 <para>
403 This per interrupt selectable feature, which was introduced by Russell
404 King in the ARM interrupt implementation, does not mask an interrupt
405 at the hardware level when disable_irq() is called. The interrupt is
406 kept enabled and is masked in the flow handler when an interrupt event
407 happens. This prevents losing edge interrupts on hardware which does
408 not store an edge interrupt event while the interrupt is disabled at
409 the hardware level. When an interrupt arrives while the IRQ_DISABLED
410 flag is set, then the interrupt is masked at the hardware level and
411 the IRQ_PENDING bit is set. When the interrupt is re-enabled by
412 enable_irq() the pending bit is checked and if it is set, the
413 interrupt is resent either via hardware or by a software resend
414 mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when
415 you want to use the delayed interrupt disable feature and your
416 hardware is not capable of retriggering an interrupt.)
25ade601 417 The delayed interrupt disable is not configurable.
11c869ea
TG
418 </para>
419 </sect2>
420 </sect1>
aa9128f3 421 <sect1 id="Chiplevel_hardware_encapsulation">
11c869ea
TG
422 <title>Chiplevel hardware encapsulation</title>
423 <para>
424 The chip level hardware descriptor structure irq_chip
425 contains all the direct chip relevant functions, which
426 can be utilized by the irq flow implementations.
427 <itemizedlist>
25ade601
TG
428 <listitem><para>irq_ack()</para></listitem>
429 <listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem>
430 <listitem><para>irq_mask()</para></listitem>
431 <listitem><para>irq_unmask()</para></listitem>
ee430599 432 <listitem><para>irq_eoi() - Optional, required for eoi flow handlers</para></listitem>
25ade601
TG
433 <listitem><para>irq_retrigger() - Optional</para></listitem>
434 <listitem><para>irq_set_type() - Optional</para></listitem>
435 <listitem><para>irq_set_wake() - Optional</para></listitem>
11c869ea
TG
436 </itemizedlist>
437 These primitives are strictly intended to mean what they say: ack means
438 ACK, masking means masking of an IRQ line, etc. It is up to the flow
439 handler(s) to use these basic units of lowlevel functionality.
440 </para>
441 </sect1>
442 </chapter>
443
444 <chapter id="doirq">
445 <title>__do_IRQ entry point</title>
446 <para>
ee430599
GU
447 The original implementation __do_IRQ() was an alternative entry
448 point for all types of interrupts. It not longer exists.
11c869ea
TG
449 </para>
450 <para>
451 This handler turned out to be not suitable for all
452 interrupt hardware and was therefore reimplemented with split
ee430599 453 functionality for edge/level/simple/percpu interrupts. This is not
11c869ea
TG
454 only a functional optimization. It also shortens code paths for
455 interrupts.
456 </para>
11c869ea
TG
457 </chapter>
458
459 <chapter id="locking">
460 <title>Locking on SMP</title>
461 <para>
462 The locking of chip registers is up to the architecture that
ee430599
GU
463 defines the chip primitives. The per-irq structure is
464 protected via desc->lock, by the generic layer.
11c869ea
TG
465 </para>
466 </chapter>
467 <chapter id="structs">
468 <title>Structures</title>
469 <para>
470 This chapter contains the autogenerated documentation of the structures which are
471 used in the generic IRQ layer.
472 </para>
473!Iinclude/linux/irq.h
a9d0a1a3 474!Iinclude/linux/interrupt.h
11c869ea
TG
475 </chapter>
476
477 <chapter id="pubfunctions">
478 <title>Public Functions Provided</title>
479 <para>
480 This chapter contains the autogenerated documentation of the kernel API functions
481 which are exported.
482 </para>
483!Ekernel/irq/manage.c
484!Ekernel/irq/chip.c
485 </chapter>
486
487 <chapter id="intfunctions">
488 <title>Internal Functions Provided</title>
489 <para>
490 This chapter contains the autogenerated documentation of the internal functions.
491 </para>
25ade601 492!Ikernel/irq/irqdesc.c
11c869ea
TG
493!Ikernel/irq/handle.c
494!Ikernel/irq/chip.c
495 </chapter>
496
497 <chapter id="credits">
498 <title>Credits</title>
499 <para>
500 The following people have contributed to this document:
501 <orderedlist>
502 <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
503 <listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem>
504 </orderedlist>
505 </para>
506 </chapter>
507</book>