remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/compiler.h>
14#include <linux/module.h>
20cea968
CL
15#include <linux/cpu.h>
16#include <linux/uaccess.h>
b7454ad3
GC
17#include <linux/seq_file.h>
18#include <linux/proc_fs.h>
039363f3
CL
19#include <asm/cacheflush.h>
20#include <asm/tlbflush.h>
21#include <asm/page.h>
2633d7a0 22#include <linux/memcontrol.h>
928cec9c
AR
23
24#define CREATE_TRACE_POINTS
f1b6eb6e 25#include <trace/events/kmem.h>
039363f3 26
97d06609
CL
27#include "slab.h"
28
29enum slab_state slab_state;
18004c5d
CL
30LIST_HEAD(slab_caches);
31DEFINE_MUTEX(slab_mutex);
9b030cb8 32struct kmem_cache *kmem_cache;
97d06609 33
657dc2f9
TH
34static LIST_HEAD(slab_caches_to_rcu_destroy);
35static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
36static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
37 slab_caches_to_rcu_destroy_workfn);
38
423c929c
JK
39/*
40 * Set of flags that will prevent slab merging
41 */
42#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 43 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 44 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 45
230e9fc2 46#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
ae63fd26 47 SLAB_ACCOUNT)
423c929c
JK
48
49/*
50 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 51 */
7660a6fd 52static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
53
54static int __init setup_slab_nomerge(char *str)
55{
7660a6fd 56 slab_nomerge = true;
423c929c
JK
57 return 1;
58}
59
60#ifdef CONFIG_SLUB
61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62#endif
63
64__setup("slab_nomerge", setup_slab_nomerge);
65
07f361b2
JK
66/*
67 * Determine the size of a slab object
68 */
69unsigned int kmem_cache_size(struct kmem_cache *s)
70{
71 return s->object_size;
72}
73EXPORT_SYMBOL(kmem_cache_size);
74
77be4b13 75#ifdef CONFIG_DEBUG_VM
794b1248 76static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
77{
78 struct kmem_cache *s = NULL;
79
039363f3
CL
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
039363f3 84 }
b920536a 85
20cea968
CL
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
77be4b13 97 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
98 s->object_size);
99 continue;
100 }
20cea968
CL
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
104 return 0;
105}
106#else
794b1248 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
108{
109 return 0;
110}
20cea968
CL
111#endif
112
484748f0
CL
113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114{
115 size_t i;
116
ca257195
JDB
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
484748f0
CL
123}
124
865762a8 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
126 void **p)
127{
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
865762a8 134 return 0;
484748f0
CL
135 }
136 }
865762a8 137 return i;
484748f0
CL
138}
139
127424c8 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
141
142LIST_HEAD(slab_root_caches);
143
f7ce3190 144void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 145{
9eeadc8b 146 s->memcg_params.root_cache = NULL;
f7ce3190 147 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 148 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
149}
150
151static int init_memcg_params(struct kmem_cache *s,
152 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153{
154 struct memcg_cache_array *arr;
33a690c4 155
9eeadc8b 156 if (root_cache) {
f7ce3190 157 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
158 s->memcg_params.memcg = memcg;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 161 return 0;
f7ce3190 162 }
33a690c4 163
f7ce3190 164 slab_init_memcg_params(s);
33a690c4 165
f7ce3190
VD
166 if (!memcg_nr_cache_ids)
167 return 0;
33a690c4 168
f80c7dab
JW
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
f7ce3190
VD
172 if (!arr)
173 return -ENOMEM;
33a690c4 174
f7ce3190 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
176 return 0;
177}
178
f7ce3190 179static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 180{
f7ce3190 181 if (is_root_cache(s))
f80c7dab
JW
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183}
184
185static void free_memcg_params(struct rcu_head *rcu)
186{
187 struct memcg_cache_array *old;
188
189 old = container_of(rcu, struct memcg_cache_array, rcu);
190 kvfree(old);
33a690c4
VD
191}
192
f7ce3190 193static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 194{
f7ce3190 195 struct memcg_cache_array *old, *new;
6f817f4c 196
f80c7dab
JW
197 new = kvzalloc(sizeof(struct memcg_cache_array) +
198 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 199 if (!new)
6f817f4c
VD
200 return -ENOMEM;
201
f7ce3190
VD
202 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
203 lockdep_is_held(&slab_mutex));
204 if (old)
205 memcpy(new->entries, old->entries,
206 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 207
f7ce3190
VD
208 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
209 if (old)
f80c7dab 210 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
211 return 0;
212}
213
55007d84
GC
214int memcg_update_all_caches(int num_memcgs)
215{
216 struct kmem_cache *s;
217 int ret = 0;
55007d84 218
05257a1a 219 mutex_lock(&slab_mutex);
510ded33 220 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 221 ret = update_memcg_params(s, num_memcgs);
55007d84 222 /*
55007d84
GC
223 * Instead of freeing the memory, we'll just leave the caches
224 * up to this point in an updated state.
225 */
226 if (ret)
05257a1a 227 break;
55007d84 228 }
55007d84
GC
229 mutex_unlock(&slab_mutex);
230 return ret;
231}
657dc2f9 232
510ded33 233void memcg_link_cache(struct kmem_cache *s)
657dc2f9 234{
510ded33
TH
235 if (is_root_cache(s)) {
236 list_add(&s->root_caches_node, &slab_root_caches);
237 } else {
238 list_add(&s->memcg_params.children_node,
239 &s->memcg_params.root_cache->memcg_params.children);
240 list_add(&s->memcg_params.kmem_caches_node,
241 &s->memcg_params.memcg->kmem_caches);
242 }
243}
244
245static void memcg_unlink_cache(struct kmem_cache *s)
246{
247 if (is_root_cache(s)) {
248 list_del(&s->root_caches_node);
249 } else {
250 list_del(&s->memcg_params.children_node);
251 list_del(&s->memcg_params.kmem_caches_node);
252 }
657dc2f9 253}
33a690c4 254#else
f7ce3190
VD
255static inline int init_memcg_params(struct kmem_cache *s,
256 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
257{
258 return 0;
259}
260
f7ce3190 261static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
262{
263}
657dc2f9 264
510ded33 265static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
266{
267}
127424c8 268#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 269
423c929c
JK
270/*
271 * Find a mergeable slab cache
272 */
273int slab_unmergeable(struct kmem_cache *s)
274{
275 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
276 return 1;
277
278 if (!is_root_cache(s))
279 return 1;
280
281 if (s->ctor)
282 return 1;
283
284 /*
285 * We may have set a slab to be unmergeable during bootstrap.
286 */
287 if (s->refcount < 0)
288 return 1;
289
290 return 0;
291}
292
293struct kmem_cache *find_mergeable(size_t size, size_t align,
294 unsigned long flags, const char *name, void (*ctor)(void *))
295{
296 struct kmem_cache *s;
297
c6e28895 298 if (slab_nomerge)
423c929c
JK
299 return NULL;
300
301 if (ctor)
302 return NULL;
303
304 size = ALIGN(size, sizeof(void *));
305 align = calculate_alignment(flags, align, size);
306 size = ALIGN(size, align);
307 flags = kmem_cache_flags(size, flags, name, NULL);
308
c6e28895
GM
309 if (flags & SLAB_NEVER_MERGE)
310 return NULL;
311
510ded33 312 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
313 if (slab_unmergeable(s))
314 continue;
315
316 if (size > s->size)
317 continue;
318
319 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
320 continue;
321 /*
322 * Check if alignment is compatible.
323 * Courtesy of Adrian Drzewiecki
324 */
325 if ((s->size & ~(align - 1)) != s->size)
326 continue;
327
328 if (s->size - size >= sizeof(void *))
329 continue;
330
95069ac8
JK
331 if (IS_ENABLED(CONFIG_SLAB) && align &&
332 (align > s->align || s->align % align))
333 continue;
334
423c929c
JK
335 return s;
336 }
337 return NULL;
338}
339
45906855
CL
340/*
341 * Figure out what the alignment of the objects will be given a set of
342 * flags, a user specified alignment and the size of the objects.
343 */
344unsigned long calculate_alignment(unsigned long flags,
345 unsigned long align, unsigned long size)
346{
347 /*
348 * If the user wants hardware cache aligned objects then follow that
349 * suggestion if the object is sufficiently large.
350 *
351 * The hardware cache alignment cannot override the specified
352 * alignment though. If that is greater then use it.
353 */
354 if (flags & SLAB_HWCACHE_ALIGN) {
355 unsigned long ralign = cache_line_size();
356 while (size <= ralign / 2)
357 ralign /= 2;
358 align = max(align, ralign);
359 }
360
361 if (align < ARCH_SLAB_MINALIGN)
362 align = ARCH_SLAB_MINALIGN;
363
364 return ALIGN(align, sizeof(void *));
365}
366
c9a77a79
VD
367static struct kmem_cache *create_cache(const char *name,
368 size_t object_size, size_t size, size_t align,
369 unsigned long flags, void (*ctor)(void *),
370 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
371{
372 struct kmem_cache *s;
373 int err;
374
375 err = -ENOMEM;
376 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
377 if (!s)
378 goto out;
379
380 s->name = name;
381 s->object_size = object_size;
382 s->size = size;
383 s->align = align;
384 s->ctor = ctor;
385
f7ce3190 386 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
387 if (err)
388 goto out_free_cache;
389
390 err = __kmem_cache_create(s, flags);
391 if (err)
392 goto out_free_cache;
393
394 s->refcount = 1;
395 list_add(&s->list, &slab_caches);
510ded33 396 memcg_link_cache(s);
794b1248
VD
397out:
398 if (err)
399 return ERR_PTR(err);
400 return s;
401
402out_free_cache:
f7ce3190 403 destroy_memcg_params(s);
7c4da061 404 kmem_cache_free(kmem_cache, s);
794b1248
VD
405 goto out;
406}
45906855 407
77be4b13
SK
408/*
409 * kmem_cache_create - Create a cache.
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
413 * @flags: SLAB flags
414 * @ctor: A constructor for the objects.
415 *
416 * Returns a ptr to the cache on success, NULL on failure.
417 * Cannot be called within a interrupt, but can be interrupted.
418 * The @ctor is run when new pages are allocated by the cache.
419 *
420 * The flags are
421 *
422 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
423 * to catch references to uninitialised memory.
424 *
425 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
426 * for buffer overruns.
427 *
428 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
429 * cacheline. This can be beneficial if you're counting cycles as closely
430 * as davem.
431 */
2633d7a0 432struct kmem_cache *
794b1248
VD
433kmem_cache_create(const char *name, size_t size, size_t align,
434 unsigned long flags, void (*ctor)(void *))
77be4b13 435{
40911a79 436 struct kmem_cache *s = NULL;
3dec16ea 437 const char *cache_name;
3965fc36 438 int err;
039363f3 439
77be4b13 440 get_online_cpus();
03afc0e2 441 get_online_mems();
05257a1a 442 memcg_get_cache_ids();
03afc0e2 443
77be4b13 444 mutex_lock(&slab_mutex);
686d550d 445
794b1248 446 err = kmem_cache_sanity_check(name, size);
3aa24f51 447 if (err) {
3965fc36 448 goto out_unlock;
3aa24f51 449 }
686d550d 450
e70954fd
TG
451 /* Refuse requests with allocator specific flags */
452 if (flags & ~SLAB_FLAGS_PERMITTED) {
453 err = -EINVAL;
454 goto out_unlock;
455 }
456
d8843922
GC
457 /*
458 * Some allocators will constraint the set of valid flags to a subset
459 * of all flags. We expect them to define CACHE_CREATE_MASK in this
460 * case, and we'll just provide them with a sanitized version of the
461 * passed flags.
462 */
463 flags &= CACHE_CREATE_MASK;
686d550d 464
794b1248
VD
465 s = __kmem_cache_alias(name, size, align, flags, ctor);
466 if (s)
3965fc36 467 goto out_unlock;
2633d7a0 468
3dec16ea 469 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
470 if (!cache_name) {
471 err = -ENOMEM;
472 goto out_unlock;
473 }
7c9adf5a 474
c9a77a79
VD
475 s = create_cache(cache_name, size, size,
476 calculate_alignment(flags, align, size),
477 flags, ctor, NULL, NULL);
794b1248
VD
478 if (IS_ERR(s)) {
479 err = PTR_ERR(s);
3dec16ea 480 kfree_const(cache_name);
794b1248 481 }
3965fc36
VD
482
483out_unlock:
20cea968 484 mutex_unlock(&slab_mutex);
03afc0e2 485
05257a1a 486 memcg_put_cache_ids();
03afc0e2 487 put_online_mems();
20cea968
CL
488 put_online_cpus();
489
ba3253c7 490 if (err) {
686d550d
CL
491 if (flags & SLAB_PANIC)
492 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
493 name, err);
494 else {
1170532b 495 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
496 name, err);
497 dump_stack();
498 }
686d550d
CL
499 return NULL;
500 }
039363f3
CL
501 return s;
502}
794b1248 503EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 504
657dc2f9 505static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 506{
657dc2f9
TH
507 LIST_HEAD(to_destroy);
508 struct kmem_cache *s, *s2;
d5b3cf71 509
657dc2f9 510 /*
5f0d5a3a 511 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
512 * @slab_caches_to_rcu_destroy list. The slab pages are freed
513 * through RCU and and the associated kmem_cache are dereferenced
514 * while freeing the pages, so the kmem_caches should be freed only
515 * after the pending RCU operations are finished. As rcu_barrier()
516 * is a pretty slow operation, we batch all pending destructions
517 * asynchronously.
518 */
519 mutex_lock(&slab_mutex);
520 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
521 mutex_unlock(&slab_mutex);
d5b3cf71 522
657dc2f9
TH
523 if (list_empty(&to_destroy))
524 return;
525
526 rcu_barrier();
527
528 list_for_each_entry_safe(s, s2, &to_destroy, list) {
529#ifdef SLAB_SUPPORTS_SYSFS
530 sysfs_slab_release(s);
531#else
532 slab_kmem_cache_release(s);
533#endif
534 }
d5b3cf71
VD
535}
536
657dc2f9 537static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 538{
f9fa1d91
GT
539 /* free asan quarantined objects */
540 kasan_cache_shutdown(s);
541
657dc2f9
TH
542 if (__kmem_cache_shutdown(s) != 0)
543 return -EBUSY;
d5b3cf71 544
510ded33 545 memcg_unlink_cache(s);
657dc2f9 546 list_del(&s->list);
d5b3cf71 547
5f0d5a3a 548 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
804a0db7
MP
549#ifdef SLAB_SUPPORTS_SYSFS
550 sysfs_slab_unlink(s);
551#endif
657dc2f9
TH
552 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
553 schedule_work(&slab_caches_to_rcu_destroy_work);
554 } else {
d5b3cf71 555#ifdef SLAB_SUPPORTS_SYSFS
804a0db7 556 sysfs_slab_unlink(s);
bf5eb3de 557 sysfs_slab_release(s);
d5b3cf71
VD
558#else
559 slab_kmem_cache_release(s);
560#endif
561 }
657dc2f9
TH
562
563 return 0;
d5b3cf71
VD
564}
565
127424c8 566#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 567/*
776ed0f0 568 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
569 * @memcg: The memory cgroup the new cache is for.
570 * @root_cache: The parent of the new cache.
571 *
572 * This function attempts to create a kmem cache that will serve allocation
573 * requests going from @memcg to @root_cache. The new cache inherits properties
574 * from its parent.
575 */
d5b3cf71
VD
576void memcg_create_kmem_cache(struct mem_cgroup *memcg,
577 struct kmem_cache *root_cache)
2633d7a0 578{
3e0350a3 579 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 580 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 581 struct memcg_cache_array *arr;
bd673145 582 struct kmem_cache *s = NULL;
794b1248 583 char *cache_name;
f7ce3190 584 int idx;
794b1248
VD
585
586 get_online_cpus();
03afc0e2
VD
587 get_online_mems();
588
794b1248
VD
589 mutex_lock(&slab_mutex);
590
2a4db7eb 591 /*
567e9ab2 592 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
593 * creation work was pending.
594 */
b6ecd2de 595 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
596 goto out_unlock;
597
f7ce3190
VD
598 idx = memcg_cache_id(memcg);
599 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
600 lockdep_is_held(&slab_mutex));
601
d5b3cf71
VD
602 /*
603 * Since per-memcg caches are created asynchronously on first
604 * allocation (see memcg_kmem_get_cache()), several threads can try to
605 * create the same cache, but only one of them may succeed.
606 */
f7ce3190 607 if (arr->entries[idx])
d5b3cf71
VD
608 goto out_unlock;
609
f1008365 610 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
611 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
612 css->serial_nr, memcg_name_buf);
794b1248
VD
613 if (!cache_name)
614 goto out_unlock;
615
c9a77a79
VD
616 s = create_cache(cache_name, root_cache->object_size,
617 root_cache->size, root_cache->align,
f773e36d
GT
618 root_cache->flags & CACHE_CREATE_MASK,
619 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
620 /*
621 * If we could not create a memcg cache, do not complain, because
622 * that's not critical at all as we can always proceed with the root
623 * cache.
624 */
bd673145 625 if (IS_ERR(s)) {
794b1248 626 kfree(cache_name);
d5b3cf71 627 goto out_unlock;
bd673145 628 }
794b1248 629
d5b3cf71
VD
630 /*
631 * Since readers won't lock (see cache_from_memcg_idx()), we need a
632 * barrier here to ensure nobody will see the kmem_cache partially
633 * initialized.
634 */
635 smp_wmb();
f7ce3190 636 arr->entries[idx] = s;
d5b3cf71 637
794b1248
VD
638out_unlock:
639 mutex_unlock(&slab_mutex);
03afc0e2
VD
640
641 put_online_mems();
794b1248 642 put_online_cpus();
2633d7a0 643}
b8529907 644
01fb58bc
TH
645static void kmemcg_deactivate_workfn(struct work_struct *work)
646{
647 struct kmem_cache *s = container_of(work, struct kmem_cache,
648 memcg_params.deact_work);
649
650 get_online_cpus();
651 get_online_mems();
652
653 mutex_lock(&slab_mutex);
654
655 s->memcg_params.deact_fn(s);
656
657 mutex_unlock(&slab_mutex);
658
659 put_online_mems();
660 put_online_cpus();
661
662 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
663 css_put(&s->memcg_params.memcg->css);
664}
665
666static void kmemcg_deactivate_rcufn(struct rcu_head *head)
667{
668 struct kmem_cache *s = container_of(head, struct kmem_cache,
669 memcg_params.deact_rcu_head);
670
671 /*
672 * We need to grab blocking locks. Bounce to ->deact_work. The
673 * work item shares the space with the RCU head and can't be
674 * initialized eariler.
675 */
676 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 677 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
678}
679
680/**
681 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
682 * sched RCU grace period
683 * @s: target kmem_cache
684 * @deact_fn: deactivation function to call
685 *
686 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
687 * held after a sched RCU grace period. The slab is guaranteed to stay
688 * alive until @deact_fn is finished. This is to be used from
689 * __kmemcg_cache_deactivate().
690 */
691void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
692 void (*deact_fn)(struct kmem_cache *))
693{
694 if (WARN_ON_ONCE(is_root_cache(s)) ||
695 WARN_ON_ONCE(s->memcg_params.deact_fn))
696 return;
697
698 /* pin memcg so that @s doesn't get destroyed in the middle */
699 css_get(&s->memcg_params.memcg->css);
700
701 s->memcg_params.deact_fn = deact_fn;
702 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
703}
704
2a4db7eb
VD
705void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
706{
707 int idx;
708 struct memcg_cache_array *arr;
d6e0b7fa 709 struct kmem_cache *s, *c;
2a4db7eb
VD
710
711 idx = memcg_cache_id(memcg);
712
d6e0b7fa
VD
713 get_online_cpus();
714 get_online_mems();
715
2a4db7eb 716 mutex_lock(&slab_mutex);
510ded33 717 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
718 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
719 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
720 c = arr->entries[idx];
721 if (!c)
722 continue;
723
c9fc5864 724 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
725 arr->entries[idx] = NULL;
726 }
727 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
728
729 put_online_mems();
730 put_online_cpus();
2a4db7eb
VD
731}
732
d5b3cf71 733void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 734{
d5b3cf71 735 struct kmem_cache *s, *s2;
b8529907 736
d5b3cf71
VD
737 get_online_cpus();
738 get_online_mems();
b8529907 739
b8529907 740 mutex_lock(&slab_mutex);
bc2791f8
TH
741 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
742 memcg_params.kmem_caches_node) {
d5b3cf71
VD
743 /*
744 * The cgroup is about to be freed and therefore has no charges
745 * left. Hence, all its caches must be empty by now.
746 */
657dc2f9 747 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
748 }
749 mutex_unlock(&slab_mutex);
b8529907 750
d5b3cf71
VD
751 put_online_mems();
752 put_online_cpus();
b8529907 753}
d60fdcc9 754
657dc2f9 755static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
756{
757 struct memcg_cache_array *arr;
758 struct kmem_cache *c, *c2;
759 LIST_HEAD(busy);
760 int i;
761
762 BUG_ON(!is_root_cache(s));
763
764 /*
765 * First, shutdown active caches, i.e. caches that belong to online
766 * memory cgroups.
767 */
768 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
769 lockdep_is_held(&slab_mutex));
770 for_each_memcg_cache_index(i) {
771 c = arr->entries[i];
772 if (!c)
773 continue;
657dc2f9 774 if (shutdown_cache(c))
d60fdcc9
VD
775 /*
776 * The cache still has objects. Move it to a temporary
777 * list so as not to try to destroy it for a second
778 * time while iterating over inactive caches below.
779 */
9eeadc8b 780 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
781 else
782 /*
783 * The cache is empty and will be destroyed soon. Clear
784 * the pointer to it in the memcg_caches array so that
785 * it will never be accessed even if the root cache
786 * stays alive.
787 */
788 arr->entries[i] = NULL;
789 }
790
791 /*
792 * Second, shutdown all caches left from memory cgroups that are now
793 * offline.
794 */
9eeadc8b
TH
795 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
796 memcg_params.children_node)
657dc2f9 797 shutdown_cache(c);
d60fdcc9 798
9eeadc8b 799 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
800
801 /*
802 * A cache being destroyed must be empty. In particular, this means
803 * that all per memcg caches attached to it must be empty too.
804 */
9eeadc8b 805 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
806 return -EBUSY;
807 return 0;
808}
809#else
657dc2f9 810static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
811{
812 return 0;
813}
127424c8 814#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 815
41a21285
CL
816void slab_kmem_cache_release(struct kmem_cache *s)
817{
52b4b950 818 __kmem_cache_release(s);
f7ce3190 819 destroy_memcg_params(s);
3dec16ea 820 kfree_const(s->name);
41a21285
CL
821 kmem_cache_free(kmem_cache, s);
822}
823
945cf2b6
CL
824void kmem_cache_destroy(struct kmem_cache *s)
825{
d60fdcc9 826 int err;
d5b3cf71 827
3942d299
SS
828 if (unlikely(!s))
829 return;
830
945cf2b6 831 get_online_cpus();
03afc0e2
VD
832 get_online_mems();
833
945cf2b6 834 mutex_lock(&slab_mutex);
b8529907 835
945cf2b6 836 s->refcount--;
b8529907
VD
837 if (s->refcount)
838 goto out_unlock;
839
657dc2f9 840 err = shutdown_memcg_caches(s);
d60fdcc9 841 if (!err)
657dc2f9 842 err = shutdown_cache(s);
b8529907 843
cd918c55 844 if (err) {
756a025f
JP
845 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
846 s->name);
cd918c55
VD
847 dump_stack();
848 }
b8529907
VD
849out_unlock:
850 mutex_unlock(&slab_mutex);
d5b3cf71 851
03afc0e2 852 put_online_mems();
945cf2b6
CL
853 put_online_cpus();
854}
855EXPORT_SYMBOL(kmem_cache_destroy);
856
03afc0e2
VD
857/**
858 * kmem_cache_shrink - Shrink a cache.
859 * @cachep: The cache to shrink.
860 *
861 * Releases as many slabs as possible for a cache.
862 * To help debugging, a zero exit status indicates all slabs were released.
863 */
864int kmem_cache_shrink(struct kmem_cache *cachep)
865{
866 int ret;
867
868 get_online_cpus();
869 get_online_mems();
55834c59 870 kasan_cache_shrink(cachep);
c9fc5864 871 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
872 put_online_mems();
873 put_online_cpus();
874 return ret;
875}
876EXPORT_SYMBOL(kmem_cache_shrink);
877
fda90124 878bool slab_is_available(void)
97d06609
CL
879{
880 return slab_state >= UP;
881}
b7454ad3 882
45530c44
CL
883#ifndef CONFIG_SLOB
884/* Create a cache during boot when no slab services are available yet */
885void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
886 unsigned long flags)
887{
888 int err;
889
890 s->name = name;
891 s->size = s->object_size = size;
45906855 892 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
893
894 slab_init_memcg_params(s);
895
45530c44
CL
896 err = __kmem_cache_create(s, flags);
897
898 if (err)
31ba7346 899 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
900 name, size, err);
901
902 s->refcount = -1; /* Exempt from merging for now */
903}
904
905struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
906 unsigned long flags)
907{
908 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
909
910 if (!s)
911 panic("Out of memory when creating slab %s\n", name);
912
913 create_boot_cache(s, name, size, flags);
914 list_add(&s->list, &slab_caches);
510ded33 915 memcg_link_cache(s);
45530c44
CL
916 s->refcount = 1;
917 return s;
918}
919
9425c58e
CL
920struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
921EXPORT_SYMBOL(kmalloc_caches);
922
923#ifdef CONFIG_ZONE_DMA
924struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
925EXPORT_SYMBOL(kmalloc_dma_caches);
926#endif
927
2c59dd65
CL
928/*
929 * Conversion table for small slabs sizes / 8 to the index in the
930 * kmalloc array. This is necessary for slabs < 192 since we have non power
931 * of two cache sizes there. The size of larger slabs can be determined using
932 * fls.
933 */
934static s8 size_index[24] = {
935 3, /* 8 */
936 4, /* 16 */
937 5, /* 24 */
938 5, /* 32 */
939 6, /* 40 */
940 6, /* 48 */
941 6, /* 56 */
942 6, /* 64 */
943 1, /* 72 */
944 1, /* 80 */
945 1, /* 88 */
946 1, /* 96 */
947 7, /* 104 */
948 7, /* 112 */
949 7, /* 120 */
950 7, /* 128 */
951 2, /* 136 */
952 2, /* 144 */
953 2, /* 152 */
954 2, /* 160 */
955 2, /* 168 */
956 2, /* 176 */
957 2, /* 184 */
958 2 /* 192 */
959};
960
961static inline int size_index_elem(size_t bytes)
962{
963 return (bytes - 1) / 8;
964}
965
966/*
967 * Find the kmem_cache structure that serves a given size of
968 * allocation
969 */
970struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
971{
972 int index;
973
974 if (size <= 192) {
975 if (!size)
976 return ZERO_SIZE_PTR;
977
978 index = size_index[size_index_elem(size)];
97764043
DV
979 } else {
980 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
981 WARN_ON(1);
982 return NULL;
983 }
2c59dd65 984 index = fls(size - 1);
97764043 985 }
2c59dd65
CL
986
987#ifdef CONFIG_ZONE_DMA
b1e05416 988 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
989 return kmalloc_dma_caches[index];
990
991#endif
992 return kmalloc_caches[index];
993}
994
4066c33d
GG
995/*
996 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
997 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
998 * kmalloc-67108864.
999 */
af3b5f87 1000const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1001 {NULL, 0}, {"kmalloc-96", 96},
1002 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1003 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1004 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1005 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1006 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1007 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1008 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1009 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1010 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1011 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1012 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1013 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1014 {"kmalloc-67108864", 67108864}
1015};
1016
f97d5f63 1017/*
34cc6990
DS
1018 * Patch up the size_index table if we have strange large alignment
1019 * requirements for the kmalloc array. This is only the case for
1020 * MIPS it seems. The standard arches will not generate any code here.
1021 *
1022 * Largest permitted alignment is 256 bytes due to the way we
1023 * handle the index determination for the smaller caches.
1024 *
1025 * Make sure that nothing crazy happens if someone starts tinkering
1026 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1027 */
34cc6990 1028void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
1029{
1030 int i;
1031
2c59dd65
CL
1032 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1033 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1034
1035 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1036 int elem = size_index_elem(i);
1037
1038 if (elem >= ARRAY_SIZE(size_index))
1039 break;
1040 size_index[elem] = KMALLOC_SHIFT_LOW;
1041 }
1042
1043 if (KMALLOC_MIN_SIZE >= 64) {
1044 /*
1045 * The 96 byte size cache is not used if the alignment
1046 * is 64 byte.
1047 */
1048 for (i = 64 + 8; i <= 96; i += 8)
1049 size_index[size_index_elem(i)] = 7;
1050
1051 }
1052
1053 if (KMALLOC_MIN_SIZE >= 128) {
1054 /*
1055 * The 192 byte sized cache is not used if the alignment
1056 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1057 * instead.
1058 */
1059 for (i = 128 + 8; i <= 192; i += 8)
1060 size_index[size_index_elem(i)] = 8;
1061 }
34cc6990
DS
1062}
1063
ae6f2462 1064static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
1065{
1066 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1067 kmalloc_info[idx].size, flags);
1068}
1069
34cc6990
DS
1070/*
1071 * Create the kmalloc array. Some of the regular kmalloc arrays
1072 * may already have been created because they were needed to
1073 * enable allocations for slab creation.
1074 */
1075void __init create_kmalloc_caches(unsigned long flags)
1076{
1077 int i;
1078
a9730fca
CL
1079 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1080 if (!kmalloc_caches[i])
1081 new_kmalloc_cache(i, flags);
f97d5f63 1082
956e46ef 1083 /*
a9730fca
CL
1084 * Caches that are not of the two-to-the-power-of size.
1085 * These have to be created immediately after the
1086 * earlier power of two caches
956e46ef 1087 */
a9730fca
CL
1088 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1089 new_kmalloc_cache(1, flags);
1090 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1091 new_kmalloc_cache(2, flags);
8a965b3b
CL
1092 }
1093
f97d5f63
CL
1094 /* Kmalloc array is now usable */
1095 slab_state = UP;
1096
f97d5f63
CL
1097#ifdef CONFIG_ZONE_DMA
1098 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1099 struct kmem_cache *s = kmalloc_caches[i];
1100
1101 if (s) {
1102 int size = kmalloc_size(i);
1103 char *n = kasprintf(GFP_NOWAIT,
1104 "dma-kmalloc-%d", size);
1105
1106 BUG_ON(!n);
1107 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1108 size, SLAB_CACHE_DMA | flags);
1109 }
1110 }
1111#endif
1112}
45530c44
CL
1113#endif /* !CONFIG_SLOB */
1114
cea371f4
VD
1115/*
1116 * To avoid unnecessary overhead, we pass through large allocation requests
1117 * directly to the page allocator. We use __GFP_COMP, because we will need to
1118 * know the allocation order to free the pages properly in kfree.
1119 */
52383431
VD
1120void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1121{
1122 void *ret;
1123 struct page *page;
1124
1125 flags |= __GFP_COMP;
4949148a 1126 page = alloc_pages(flags, order);
52383431
VD
1127 ret = page ? page_address(page) : NULL;
1128 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1129 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1130 return ret;
1131}
1132EXPORT_SYMBOL(kmalloc_order);
1133
f1b6eb6e
CL
1134#ifdef CONFIG_TRACING
1135void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1136{
1137 void *ret = kmalloc_order(size, flags, order);
1138 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1139 return ret;
1140}
1141EXPORT_SYMBOL(kmalloc_order_trace);
1142#endif
45530c44 1143
7c00fce9
TG
1144#ifdef CONFIG_SLAB_FREELIST_RANDOM
1145/* Randomize a generic freelist */
1146static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1147 size_t count)
1148{
1149 size_t i;
1150 unsigned int rand;
1151
1152 for (i = 0; i < count; i++)
1153 list[i] = i;
1154
1155 /* Fisher-Yates shuffle */
1156 for (i = count - 1; i > 0; i--) {
1157 rand = prandom_u32_state(state);
1158 rand %= (i + 1);
1159 swap(list[i], list[rand]);
1160 }
1161}
1162
1163/* Create a random sequence per cache */
1164int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1165 gfp_t gfp)
1166{
1167 struct rnd_state state;
1168
1169 if (count < 2 || cachep->random_seq)
1170 return 0;
1171
1172 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1173 if (!cachep->random_seq)
1174 return -ENOMEM;
1175
1176 /* Get best entropy at this stage of boot */
1177 prandom_seed_state(&state, get_random_long());
1178
1179 freelist_randomize(&state, cachep->random_seq, count);
1180 return 0;
1181}
1182
1183/* Destroy the per-cache random freelist sequence */
1184void cache_random_seq_destroy(struct kmem_cache *cachep)
1185{
1186 kfree(cachep->random_seq);
1187 cachep->random_seq = NULL;
1188}
1189#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1190
b7454ad3 1191#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1192
1193#ifdef CONFIG_SLAB
1194#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1195#else
1196#define SLABINFO_RIGHTS S_IRUSR
1197#endif
1198
b047501c 1199static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1200{
1201 /*
1202 * Output format version, so at least we can change it
1203 * without _too_ many complaints.
1204 */
1205#ifdef CONFIG_DEBUG_SLAB
1206 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1207#else
1208 seq_puts(m, "slabinfo - version: 2.1\n");
1209#endif
756a025f 1210 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1211 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1212 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1213#ifdef CONFIG_DEBUG_SLAB
756a025f 1214 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1215 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1216#endif
1217 seq_putc(m, '\n');
1218}
1219
1df3b26f 1220void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1221{
b7454ad3 1222 mutex_lock(&slab_mutex);
510ded33 1223 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1224}
1225
276a2439 1226void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1227{
510ded33 1228 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1229}
1230
276a2439 1231void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1232{
1233 mutex_unlock(&slab_mutex);
1234}
1235
749c5415
GC
1236static void
1237memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1238{
1239 struct kmem_cache *c;
1240 struct slabinfo sinfo;
749c5415
GC
1241
1242 if (!is_root_cache(s))
1243 return;
1244
426589f5 1245 for_each_memcg_cache(c, s) {
749c5415
GC
1246 memset(&sinfo, 0, sizeof(sinfo));
1247 get_slabinfo(c, &sinfo);
1248
1249 info->active_slabs += sinfo.active_slabs;
1250 info->num_slabs += sinfo.num_slabs;
1251 info->shared_avail += sinfo.shared_avail;
1252 info->active_objs += sinfo.active_objs;
1253 info->num_objs += sinfo.num_objs;
1254 }
1255}
1256
b047501c 1257static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1258{
0d7561c6
GC
1259 struct slabinfo sinfo;
1260
1261 memset(&sinfo, 0, sizeof(sinfo));
1262 get_slabinfo(s, &sinfo);
1263
749c5415
GC
1264 memcg_accumulate_slabinfo(s, &sinfo);
1265
0d7561c6 1266 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1267 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1268 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1269
1270 seq_printf(m, " : tunables %4u %4u %4u",
1271 sinfo.limit, sinfo.batchcount, sinfo.shared);
1272 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1273 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1274 slabinfo_show_stats(m, s);
1275 seq_putc(m, '\n');
b7454ad3
GC
1276}
1277
1df3b26f 1278static int slab_show(struct seq_file *m, void *p)
749c5415 1279{
510ded33 1280 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1281
510ded33 1282 if (p == slab_root_caches.next)
1df3b26f 1283 print_slabinfo_header(m);
510ded33 1284 cache_show(s, m);
b047501c
VD
1285 return 0;
1286}
1287
127424c8 1288#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
bc2791f8
TH
1289void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1290{
1291 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1292
1293 mutex_lock(&slab_mutex);
1294 return seq_list_start(&memcg->kmem_caches, *pos);
1295}
1296
1297void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1298{
1299 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1300
1301 return seq_list_next(p, &memcg->kmem_caches, pos);
1302}
1303
1304void memcg_slab_stop(struct seq_file *m, void *p)
1305{
1306 mutex_unlock(&slab_mutex);
1307}
1308
b047501c
VD
1309int memcg_slab_show(struct seq_file *m, void *p)
1310{
bc2791f8
TH
1311 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1312 memcg_params.kmem_caches_node);
b047501c
VD
1313 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1314
bc2791f8 1315 if (p == memcg->kmem_caches.next)
b047501c 1316 print_slabinfo_header(m);
bc2791f8 1317 cache_show(s, m);
b047501c 1318 return 0;
749c5415 1319}
b047501c 1320#endif
749c5415 1321
b7454ad3
GC
1322/*
1323 * slabinfo_op - iterator that generates /proc/slabinfo
1324 *
1325 * Output layout:
1326 * cache-name
1327 * num-active-objs
1328 * total-objs
1329 * object size
1330 * num-active-slabs
1331 * total-slabs
1332 * num-pages-per-slab
1333 * + further values on SMP and with statistics enabled
1334 */
1335static const struct seq_operations slabinfo_op = {
1df3b26f 1336 .start = slab_start,
276a2439
WL
1337 .next = slab_next,
1338 .stop = slab_stop,
1df3b26f 1339 .show = slab_show,
b7454ad3
GC
1340};
1341
1342static int slabinfo_open(struct inode *inode, struct file *file)
1343{
1344 return seq_open(file, &slabinfo_op);
1345}
1346
1347static const struct file_operations proc_slabinfo_operations = {
1348 .open = slabinfo_open,
1349 .read = seq_read,
1350 .write = slabinfo_write,
1351 .llseek = seq_lseek,
1352 .release = seq_release,
1353};
1354
1355static int __init slab_proc_init(void)
1356{
e9b4db2b
WL
1357 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1358 &proc_slabinfo_operations);
b7454ad3
GC
1359 return 0;
1360}
1361module_init(slab_proc_init);
1362#endif /* CONFIG_SLABINFO */
928cec9c
AR
1363
1364static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1365 gfp_t flags)
1366{
1367 void *ret;
1368 size_t ks = 0;
1369
1370 if (p)
1371 ks = ksize(p);
1372
0316bec2 1373 if (ks >= new_size) {
505f5dcb 1374 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1375 return (void *)p;
0316bec2 1376 }
928cec9c
AR
1377
1378 ret = kmalloc_track_caller(new_size, flags);
1379 if (ret && p)
1380 memcpy(ret, p, ks);
1381
1382 return ret;
1383}
1384
1385/**
1386 * __krealloc - like krealloc() but don't free @p.
1387 * @p: object to reallocate memory for.
1388 * @new_size: how many bytes of memory are required.
1389 * @flags: the type of memory to allocate.
1390 *
1391 * This function is like krealloc() except it never frees the originally
1392 * allocated buffer. Use this if you don't want to free the buffer immediately
1393 * like, for example, with RCU.
1394 */
1395void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1396{
1397 if (unlikely(!new_size))
1398 return ZERO_SIZE_PTR;
1399
1400 return __do_krealloc(p, new_size, flags);
1401
1402}
1403EXPORT_SYMBOL(__krealloc);
1404
1405/**
1406 * krealloc - reallocate memory. The contents will remain unchanged.
1407 * @p: object to reallocate memory for.
1408 * @new_size: how many bytes of memory are required.
1409 * @flags: the type of memory to allocate.
1410 *
1411 * The contents of the object pointed to are preserved up to the
1412 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1413 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1414 * %NULL pointer, the object pointed to is freed.
1415 */
1416void *krealloc(const void *p, size_t new_size, gfp_t flags)
1417{
1418 void *ret;
1419
1420 if (unlikely(!new_size)) {
1421 kfree(p);
1422 return ZERO_SIZE_PTR;
1423 }
1424
1425 ret = __do_krealloc(p, new_size, flags);
1426 if (ret && p != ret)
1427 kfree(p);
1428
1429 return ret;
1430}
1431EXPORT_SYMBOL(krealloc);
1432
1433/**
1434 * kzfree - like kfree but zero memory
1435 * @p: object to free memory of
1436 *
1437 * The memory of the object @p points to is zeroed before freed.
1438 * If @p is %NULL, kzfree() does nothing.
1439 *
1440 * Note: this function zeroes the whole allocated buffer which can be a good
1441 * deal bigger than the requested buffer size passed to kmalloc(). So be
1442 * careful when using this function in performance sensitive code.
1443 */
1444void kzfree(const void *p)
1445{
1446 size_t ks;
1447 void *mem = (void *)p;
1448
1449 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1450 return;
1451 ks = ksize(mem);
1452 memset(mem, 0, ks);
1453 kfree(mem);
1454}
1455EXPORT_SYMBOL(kzfree);
1456
1457/* Tracepoints definitions. */
1458EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1459EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1460EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1461EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1462EXPORT_TRACEPOINT_SYMBOL(kfree);
1463EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);