remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_ext.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
eefa864b
JK
2#include <linux/mm.h>
3#include <linux/mmzone.h>
4#include <linux/bootmem.h>
5#include <linux/page_ext.h>
6#include <linux/memory.h>
7#include <linux/vmalloc.h>
8#include <linux/kmemleak.h>
48c96a36 9#include <linux/page_owner.h>
33c3fc71 10#include <linux/page_idle.h>
eefa864b
JK
11
12/*
13 * struct page extension
14 *
15 * This is the feature to manage memory for extended data per page.
16 *
17 * Until now, we must modify struct page itself to store extra data per page.
18 * This requires rebuilding the kernel and it is really time consuming process.
19 * And, sometimes, rebuild is impossible due to third party module dependency.
20 * At last, enlarging struct page could cause un-wanted system behaviour change.
21 *
22 * This feature is intended to overcome above mentioned problems. This feature
23 * allocates memory for extended data per page in certain place rather than
24 * the struct page itself. This memory can be accessed by the accessor
25 * functions provided by this code. During the boot process, it checks whether
26 * allocation of huge chunk of memory is needed or not. If not, it avoids
27 * allocating memory at all. With this advantage, we can include this feature
28 * into the kernel in default and can avoid rebuild and solve related problems.
29 *
30 * To help these things to work well, there are two callbacks for clients. One
31 * is the need callback which is mandatory if user wants to avoid useless
32 * memory allocation at boot-time. The other is optional, init callback, which
33 * is used to do proper initialization after memory is allocated.
34 *
35 * The need callback is used to decide whether extended memory allocation is
36 * needed or not. Sometimes users want to deactivate some features in this
37 * boot and extra memory would be unneccessary. In this case, to avoid
38 * allocating huge chunk of memory, each clients represent their need of
39 * extra memory through the need callback. If one of the need callbacks
40 * returns true, it means that someone needs extra memory so that
41 * page extension core should allocates memory for page extension. If
42 * none of need callbacks return true, memory isn't needed at all in this boot
43 * and page extension core can skip to allocate memory. As result,
44 * none of memory is wasted.
45 *
980ac167
JK
46 * When need callback returns true, page_ext checks if there is a request for
47 * extra memory through size in struct page_ext_operations. If it is non-zero,
48 * extra space is allocated for each page_ext entry and offset is returned to
49 * user through offset in struct page_ext_operations.
50 *
eefa864b
JK
51 * The init callback is used to do proper initialization after page extension
52 * is completely initialized. In sparse memory system, extra memory is
53 * allocated some time later than memmap is allocated. In other words, lifetime
54 * of memory for page extension isn't same with memmap for struct page.
55 * Therefore, clients can't store extra data until page extension is
56 * initialized, even if pages are allocated and used freely. This could
57 * cause inadequate state of extra data per page, so, to prevent it, client
58 * can utilize this callback to initialize the state of it correctly.
59 */
60
61static struct page_ext_operations *page_ext_ops[] = {
e30825f1 62 &debug_guardpage_ops,
48c96a36
JK
63#ifdef CONFIG_PAGE_OWNER
64 &page_owner_ops,
65#endif
33c3fc71
VD
66#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
67 &page_idle_ops,
68#endif
eefa864b
JK
69};
70
71static unsigned long total_usage;
980ac167 72static unsigned long extra_mem;
eefa864b
JK
73
74static bool __init invoke_need_callbacks(void)
75{
76 int i;
77 int entries = ARRAY_SIZE(page_ext_ops);
980ac167 78 bool need = false;
eefa864b
JK
79
80 for (i = 0; i < entries; i++) {
980ac167
JK
81 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
82 page_ext_ops[i]->offset = sizeof(struct page_ext) +
83 extra_mem;
84 extra_mem += page_ext_ops[i]->size;
85 need = true;
86 }
eefa864b
JK
87 }
88
980ac167 89 return need;
eefa864b
JK
90}
91
92static void __init invoke_init_callbacks(void)
93{
94 int i;
95 int entries = ARRAY_SIZE(page_ext_ops);
96
97 for (i = 0; i < entries; i++) {
98 if (page_ext_ops[i]->init)
99 page_ext_ops[i]->init();
100 }
101}
102
980ac167
JK
103static unsigned long get_entry_size(void)
104{
105 return sizeof(struct page_ext) + extra_mem;
106}
107
108static inline struct page_ext *get_entry(void *base, unsigned long index)
109{
110 return base + get_entry_size() * index;
111}
112
eefa864b
JK
113#if !defined(CONFIG_SPARSEMEM)
114
115
116void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
117{
118 pgdat->node_page_ext = NULL;
119}
120
121struct page_ext *lookup_page_ext(struct page *page)
122{
123 unsigned long pfn = page_to_pfn(page);
0b06bb3f 124 unsigned long index;
eefa864b
JK
125 struct page_ext *base;
126
127 base = NODE_DATA(page_to_nid(page))->node_page_ext;
eefa864b
JK
128 /*
129 * The sanity checks the page allocator does upon freeing a
130 * page can reach here before the page_ext arrays are
131 * allocated when feeding a range of pages to the allocator
132 * for the first time during bootup or memory hotplug.
133 */
134 if (unlikely(!base))
135 return NULL;
0b06bb3f 136 index = pfn - round_down(node_start_pfn(page_to_nid(page)),
eefa864b 137 MAX_ORDER_NR_PAGES);
980ac167 138 return get_entry(base, index);
eefa864b
JK
139}
140
141static int __init alloc_node_page_ext(int nid)
142{
143 struct page_ext *base;
144 unsigned long table_size;
145 unsigned long nr_pages;
146
147 nr_pages = NODE_DATA(nid)->node_spanned_pages;
148 if (!nr_pages)
149 return 0;
150
151 /*
152 * Need extra space if node range is not aligned with
153 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
154 * checks buddy's status, range could be out of exact node range.
155 */
156 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
157 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
158 nr_pages += MAX_ORDER_NR_PAGES;
159
980ac167 160 table_size = get_entry_size() * nr_pages;
eefa864b
JK
161
162 base = memblock_virt_alloc_try_nid_nopanic(
163 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
164 BOOTMEM_ALLOC_ACCESSIBLE, nid);
165 if (!base)
166 return -ENOMEM;
167 NODE_DATA(nid)->node_page_ext = base;
168 total_usage += table_size;
169 return 0;
170}
171
172void __init page_ext_init_flatmem(void)
173{
174
175 int nid, fail;
176
177 if (!invoke_need_callbacks())
178 return;
179
180 for_each_online_node(nid) {
181 fail = alloc_node_page_ext(nid);
182 if (fail)
183 goto fail;
184 }
185 pr_info("allocated %ld bytes of page_ext\n", total_usage);
186 invoke_init_callbacks();
187 return;
188
189fail:
190 pr_crit("allocation of page_ext failed.\n");
191 panic("Out of memory");
192}
193
194#else /* CONFIG_FLAT_NODE_MEM_MAP */
195
196struct page_ext *lookup_page_ext(struct page *page)
197{
198 unsigned long pfn = page_to_pfn(page);
199 struct mem_section *section = __pfn_to_section(pfn);
eefa864b
JK
200 /*
201 * The sanity checks the page allocator does upon freeing a
202 * page can reach here before the page_ext arrays are
203 * allocated when feeding a range of pages to the allocator
204 * for the first time during bootup or memory hotplug.
205 */
206 if (!section->page_ext)
207 return NULL;
980ac167 208 return get_entry(section->page_ext, pfn);
eefa864b
JK
209}
210
211static void *__meminit alloc_page_ext(size_t size, int nid)
212{
213 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
214 void *addr = NULL;
215
216 addr = alloc_pages_exact_nid(nid, size, flags);
217 if (addr) {
218 kmemleak_alloc(addr, size, 1, flags);
219 return addr;
220 }
221
b95046b0 222 addr = vzalloc_node(size, nid);
eefa864b
JK
223
224 return addr;
225}
226
227static int __meminit init_section_page_ext(unsigned long pfn, int nid)
228{
229 struct mem_section *section;
230 struct page_ext *base;
231 unsigned long table_size;
232
233 section = __pfn_to_section(pfn);
234
235 if (section->page_ext)
236 return 0;
237
980ac167 238 table_size = get_entry_size() * PAGES_PER_SECTION;
eefa864b
JK
239 base = alloc_page_ext(table_size, nid);
240
241 /*
242 * The value stored in section->page_ext is (base - pfn)
243 * and it does not point to the memory block allocated above,
244 * causing kmemleak false positives.
245 */
246 kmemleak_not_leak(base);
247
248 if (!base) {
249 pr_err("page ext allocation failure\n");
250 return -ENOMEM;
251 }
252
253 /*
254 * The passed "pfn" may not be aligned to SECTION. For the calculation
255 * we need to apply a mask.
256 */
257 pfn &= PAGE_SECTION_MASK;
980ac167 258 section->page_ext = (void *)base - get_entry_size() * pfn;
eefa864b
JK
259 total_usage += table_size;
260 return 0;
261}
262#ifdef CONFIG_MEMORY_HOTPLUG
263static void free_page_ext(void *addr)
264{
265 if (is_vmalloc_addr(addr)) {
266 vfree(addr);
267 } else {
268 struct page *page = virt_to_page(addr);
269 size_t table_size;
270
980ac167 271 table_size = get_entry_size() * PAGES_PER_SECTION;
eefa864b
JK
272
273 BUG_ON(PageReserved(page));
9f570268 274 kmemleak_free(addr);
eefa864b
JK
275 free_pages_exact(addr, table_size);
276 }
277}
278
279static void __free_page_ext(unsigned long pfn)
280{
281 struct mem_section *ms;
282 struct page_ext *base;
283
284 ms = __pfn_to_section(pfn);
285 if (!ms || !ms->page_ext)
286 return;
980ac167 287 base = get_entry(ms->page_ext, pfn);
eefa864b
JK
288 free_page_ext(base);
289 ms->page_ext = NULL;
290}
291
292static int __meminit online_page_ext(unsigned long start_pfn,
293 unsigned long nr_pages,
294 int nid)
295{
296 unsigned long start, end, pfn;
297 int fail = 0;
298
299 start = SECTION_ALIGN_DOWN(start_pfn);
300 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
301
302 if (nid == -1) {
303 /*
304 * In this case, "nid" already exists and contains valid memory.
305 * "start_pfn" passed to us is a pfn which is an arg for
306 * online__pages(), and start_pfn should exist.
307 */
308 nid = pfn_to_nid(start_pfn);
309 VM_BUG_ON(!node_state(nid, N_ONLINE));
310 }
311
312 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
313 if (!pfn_present(pfn))
314 continue;
315 fail = init_section_page_ext(pfn, nid);
316 }
317 if (!fail)
318 return 0;
319
320 /* rollback */
321 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
322 __free_page_ext(pfn);
323
324 return -ENOMEM;
325}
326
327static int __meminit offline_page_ext(unsigned long start_pfn,
328 unsigned long nr_pages, int nid)
329{
330 unsigned long start, end, pfn;
331
332 start = SECTION_ALIGN_DOWN(start_pfn);
333 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
334
335 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
336 __free_page_ext(pfn);
337 return 0;
338
339}
340
341static int __meminit page_ext_callback(struct notifier_block *self,
342 unsigned long action, void *arg)
343{
344 struct memory_notify *mn = arg;
345 int ret = 0;
346
347 switch (action) {
348 case MEM_GOING_ONLINE:
349 ret = online_page_ext(mn->start_pfn,
350 mn->nr_pages, mn->status_change_nid);
351 break;
352 case MEM_OFFLINE:
353 offline_page_ext(mn->start_pfn,
354 mn->nr_pages, mn->status_change_nid);
355 break;
356 case MEM_CANCEL_ONLINE:
357 offline_page_ext(mn->start_pfn,
358 mn->nr_pages, mn->status_change_nid);
359 break;
360 case MEM_GOING_OFFLINE:
361 break;
362 case MEM_ONLINE:
363 case MEM_CANCEL_OFFLINE:
364 break;
365 }
366
367 return notifier_from_errno(ret);
368}
369
370#endif
371
372void __init page_ext_init(void)
373{
374 unsigned long pfn;
375 int nid;
376
377 if (!invoke_need_callbacks())
378 return;
379
380 for_each_node_state(nid, N_MEMORY) {
381 unsigned long start_pfn, end_pfn;
382
383 start_pfn = node_start_pfn(nid);
384 end_pfn = node_end_pfn(nid);
385 /*
386 * start_pfn and end_pfn may not be aligned to SECTION and the
387 * page->flags of out of node pages are not initialized. So we
388 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
389 */
390 for (pfn = start_pfn; pfn < end_pfn;
391 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
392
393 if (!pfn_valid(pfn))
394 continue;
395 /*
396 * Nodes's pfns can be overlapping.
397 * We know some arch can have a nodes layout such as
398 * -------------pfn-------------->
399 * N0 | N1 | N2 | N0 | N1 | N2|....
400 */
5a8da52a 401 if (pfn_to_nid(pfn) != nid)
eefa864b
JK
402 continue;
403 if (init_section_page_ext(pfn, nid))
404 goto oom;
0fc542b7 405 cond_resched();
eefa864b
JK
406 }
407 }
408 hotplug_memory_notifier(page_ext_callback, 0);
409 pr_info("allocated %ld bytes of page_ext\n", total_usage);
410 invoke_init_callbacks();
411 return;
412
413oom:
414 panic("Out of memory");
415}
416
417void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
418{
419}
420
421#endif