remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
ac401cc7
JK
41/* We choose 4096 entries - same as per-zone page wait tables */
42#define DAX_WAIT_TABLE_BITS 12
43#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
917f3452
RZ
45/* The 'colour' (ie low bits) within a PMD of a page offset. */
46#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47
ce95ab0f 48static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
49
50static int __init init_dax_wait_table(void)
51{
52 int i;
53
54 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
55 init_waitqueue_head(wait_table + i);
56 return 0;
57}
58fs_initcall(init_dax_wait_table);
59
527b19d0
RZ
60/*
61 * We use lowest available bit in exceptional entry for locking, one bit for
62 * the entry size (PMD) and two more to tell us if the entry is a zero page or
63 * an empty entry that is just used for locking. In total four special bits.
64 *
65 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
67 * block allocation.
68 */
69#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70#define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72#define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73#define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
74
75static unsigned long dax_radix_sector(void *entry)
76{
77 return (unsigned long)entry >> RADIX_DAX_SHIFT;
78}
79
80static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
81{
82 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
83 ((unsigned long)sector << RADIX_DAX_SHIFT) |
84 RADIX_DAX_ENTRY_LOCK);
85}
86
87static unsigned int dax_radix_order(void *entry)
88{
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92}
93
642261ac 94static int dax_is_pmd_entry(void *entry)
d1a5f2b4 95{
642261ac 96 return (unsigned long)entry & RADIX_DAX_PMD;
d1a5f2b4
DW
97}
98
642261ac 99static int dax_is_pte_entry(void *entry)
d475c634 100{
642261ac 101 return !((unsigned long)entry & RADIX_DAX_PMD);
d475c634
MW
102}
103
642261ac 104static int dax_is_zero_entry(void *entry)
d475c634 105{
91d25ba8 106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
d475c634
MW
107}
108
642261ac 109static int dax_is_empty_entry(void *entry)
b2e0d162 110{
642261ac 111 return (unsigned long)entry & RADIX_DAX_EMPTY;
b2e0d162
DW
112}
113
ac401cc7
JK
114/*
115 * DAX radix tree locking
116 */
117struct exceptional_entry_key {
118 struct address_space *mapping;
63e95b5c 119 pgoff_t entry_start;
ac401cc7
JK
120};
121
122struct wait_exceptional_entry_queue {
ac6424b9 123 wait_queue_entry_t wait;
ac401cc7
JK
124 struct exceptional_entry_key key;
125};
126
63e95b5c
RZ
127static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129{
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
642261ac 137 if (dax_is_pmd_entry(entry))
917f3452 138 index &= ~PG_PMD_COLOUR;
63e95b5c
RZ
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145}
146
ac6424b9 147static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
ac401cc7
JK
148 int sync, void *keyp)
149{
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
63e95b5c 155 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158}
159
e30331ff
RZ
160/*
161 * We do not necessarily hold the mapping->tree_lock when we call this
162 * function so it is possible that 'entry' is no longer a valid item in the
163 * radix tree. This is okay because all we really need to do is to find the
164 * correct waitqueue where tasks might be waiting for that old 'entry' and
165 * wake them.
166 */
d01ad197 167static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
e30331ff
RZ
168 pgoff_t index, void *entry, bool wake_all)
169{
170 struct exceptional_entry_key key;
171 wait_queue_head_t *wq;
172
173 wq = dax_entry_waitqueue(mapping, index, entry, &key);
174
175 /*
176 * Checking for locked entry and prepare_to_wait_exclusive() happens
177 * under mapping->tree_lock, ditto for entry handling in our callers.
178 * So at this point all tasks that could have seen our entry locked
179 * must be in the waitqueue and the following check will see them.
180 */
181 if (waitqueue_active(wq))
182 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
183}
184
ac401cc7
JK
185/*
186 * Check whether the given slot is locked. The function must be called with
187 * mapping->tree_lock held
188 */
189static inline int slot_locked(struct address_space *mapping, void **slot)
190{
191 unsigned long entry = (unsigned long)
192 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
193 return entry & RADIX_DAX_ENTRY_LOCK;
194}
195
196/*
197 * Mark the given slot is locked. The function must be called with
198 * mapping->tree_lock held
199 */
200static inline void *lock_slot(struct address_space *mapping, void **slot)
201{
202 unsigned long entry = (unsigned long)
203 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
204
205 entry |= RADIX_DAX_ENTRY_LOCK;
6d75f366 206 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
ac401cc7
JK
207 return (void *)entry;
208}
209
210/*
211 * Mark the given slot is unlocked. The function must be called with
212 * mapping->tree_lock held
213 */
214static inline void *unlock_slot(struct address_space *mapping, void **slot)
215{
216 unsigned long entry = (unsigned long)
217 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
218
219 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
6d75f366 220 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
ac401cc7
JK
221 return (void *)entry;
222}
223
224/*
225 * Lookup entry in radix tree, wait for it to become unlocked if it is
226 * exceptional entry and return it. The caller must call
227 * put_unlocked_mapping_entry() when he decided not to lock the entry or
228 * put_locked_mapping_entry() when he locked the entry and now wants to
229 * unlock it.
230 *
231 * The function must be called with mapping->tree_lock held.
232 */
233static void *get_unlocked_mapping_entry(struct address_space *mapping,
234 pgoff_t index, void ***slotp)
235{
e3ad61c6 236 void *entry, **slot;
ac401cc7 237 struct wait_exceptional_entry_queue ewait;
63e95b5c 238 wait_queue_head_t *wq;
ac401cc7
JK
239
240 init_wait(&ewait.wait);
241 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
242
243 for (;;) {
e3ad61c6 244 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
ac401cc7 245 &slot);
91d25ba8
RZ
246 if (!entry ||
247 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
ac401cc7
JK
248 !slot_locked(mapping, slot)) {
249 if (slotp)
250 *slotp = slot;
e3ad61c6 251 return entry;
ac401cc7 252 }
63e95b5c
RZ
253
254 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
255 prepare_to_wait_exclusive(wq, &ewait.wait,
256 TASK_UNINTERRUPTIBLE);
257 spin_unlock_irq(&mapping->tree_lock);
258 schedule();
259 finish_wait(wq, &ewait.wait);
260 spin_lock_irq(&mapping->tree_lock);
261 }
262}
263
b1aa812b
JK
264static void dax_unlock_mapping_entry(struct address_space *mapping,
265 pgoff_t index)
266{
267 void *entry, **slot;
268
269 spin_lock_irq(&mapping->tree_lock);
270 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
271 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
272 !slot_locked(mapping, slot))) {
273 spin_unlock_irq(&mapping->tree_lock);
274 return;
275 }
276 unlock_slot(mapping, slot);
277 spin_unlock_irq(&mapping->tree_lock);
278 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
279}
280
422476c4 281static void put_locked_mapping_entry(struct address_space *mapping,
91d25ba8 282 pgoff_t index)
422476c4 283{
91d25ba8 284 dax_unlock_mapping_entry(mapping, index);
422476c4
RZ
285}
286
287/*
288 * Called when we are done with radix tree entry we looked up via
289 * get_unlocked_mapping_entry() and which we didn't lock in the end.
290 */
291static void put_unlocked_mapping_entry(struct address_space *mapping,
292 pgoff_t index, void *entry)
293{
91d25ba8 294 if (!entry)
422476c4
RZ
295 return;
296
297 /* We have to wake up next waiter for the radix tree entry lock */
298 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
299}
300
ac401cc7 301/*
91d25ba8
RZ
302 * Find radix tree entry at given index. If it points to an exceptional entry,
303 * return it with the radix tree entry locked. If the radix tree doesn't
304 * contain given index, create an empty exceptional entry for the index and
305 * return with it locked.
ac401cc7 306 *
642261ac
RZ
307 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308 * either return that locked entry or will return an error. This error will
91d25ba8
RZ
309 * happen if there are any 4k entries within the 2MiB range that we are
310 * requesting.
642261ac
RZ
311 *
312 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
314 * insertion will fail if it finds any 4k entries already in the tree, and a
315 * 4k insertion will cause an existing 2MiB entry to be unmapped and
316 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
317 * well as 2MiB empty entries.
318 *
319 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320 * real storage backing them. We will leave these real 2MiB DAX entries in
321 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
322 *
ac401cc7
JK
323 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324 * persistent memory the benefit is doubtful. We can add that later if we can
325 * show it helps.
326 */
642261ac
RZ
327static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
328 unsigned long size_flag)
ac401cc7 329{
642261ac 330 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 331 void *entry, **slot;
ac401cc7
JK
332
333restart:
334 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 335 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac 336
91d25ba8
RZ
337 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
338 entry = ERR_PTR(-EIO);
339 goto out_unlock;
340 }
341
642261ac
RZ
342 if (entry) {
343 if (size_flag & RADIX_DAX_PMD) {
91d25ba8 344 if (dax_is_pte_entry(entry)) {
642261ac
RZ
345 put_unlocked_mapping_entry(mapping, index,
346 entry);
347 entry = ERR_PTR(-EEXIST);
348 goto out_unlock;
349 }
350 } else { /* trying to grab a PTE entry */
91d25ba8 351 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
352 (dax_is_zero_entry(entry) ||
353 dax_is_empty_entry(entry))) {
354 pmd_downgrade = true;
355 }
356 }
357 }
358
ac401cc7 359 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 360 if (!entry || pmd_downgrade) {
ac401cc7
JK
361 int err;
362
642261ac
RZ
363 if (pmd_downgrade) {
364 /*
365 * Make sure 'entry' remains valid while we drop
366 * mapping->tree_lock.
367 */
368 entry = lock_slot(mapping, slot);
369 }
370
ac401cc7 371 spin_unlock_irq(&mapping->tree_lock);
642261ac
RZ
372 /*
373 * Besides huge zero pages the only other thing that gets
374 * downgraded are empty entries which don't need to be
375 * unmapped.
376 */
377 if (pmd_downgrade && dax_is_zero_entry(entry))
378 unmap_mapping_range(mapping,
379 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
380
ac401cc7
JK
381 err = radix_tree_preload(
382 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
0cb80b48
JK
383 if (err) {
384 if (pmd_downgrade)
91d25ba8 385 put_locked_mapping_entry(mapping, index);
ac401cc7 386 return ERR_PTR(err);
0cb80b48 387 }
ac401cc7 388 spin_lock_irq(&mapping->tree_lock);
642261ac 389
e11f8b7b
RZ
390 if (!entry) {
391 /*
392 * We needed to drop the page_tree lock while calling
393 * radix_tree_preload() and we didn't have an entry to
394 * lock. See if another thread inserted an entry at
395 * our index during this time.
396 */
397 entry = __radix_tree_lookup(&mapping->page_tree, index,
398 NULL, &slot);
399 if (entry) {
400 radix_tree_preload_end();
401 spin_unlock_irq(&mapping->tree_lock);
402 goto restart;
403 }
404 }
405
642261ac
RZ
406 if (pmd_downgrade) {
407 radix_tree_delete(&mapping->page_tree, index);
408 mapping->nrexceptional--;
409 dax_wake_mapping_entry_waiter(mapping, index, entry,
410 true);
411 }
412
413 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
414
415 err = __radix_tree_insert(&mapping->page_tree, index,
416 dax_radix_order(entry), entry);
ac401cc7
JK
417 radix_tree_preload_end();
418 if (err) {
419 spin_unlock_irq(&mapping->tree_lock);
642261ac 420 /*
e11f8b7b
RZ
421 * Our insertion of a DAX entry failed, most likely
422 * because we were inserting a PMD entry and it
423 * collided with a PTE sized entry at a different
424 * index in the PMD range. We haven't inserted
425 * anything into the radix tree and have no waiters to
426 * wake.
642261ac 427 */
ac401cc7
JK
428 return ERR_PTR(err);
429 }
430 /* Good, we have inserted empty locked entry into the tree. */
431 mapping->nrexceptional++;
432 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 433 return entry;
ac401cc7 434 }
e3ad61c6 435 entry = lock_slot(mapping, slot);
642261ac 436 out_unlock:
ac401cc7 437 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 438 return entry;
ac401cc7
JK
439}
440
c6dcf52c
JK
441static int __dax_invalidate_mapping_entry(struct address_space *mapping,
442 pgoff_t index, bool trunc)
443{
444 int ret = 0;
445 void *entry;
446 struct radix_tree_root *page_tree = &mapping->page_tree;
447
448 spin_lock_irq(&mapping->tree_lock);
449 entry = get_unlocked_mapping_entry(mapping, index, NULL);
91d25ba8 450 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
c6dcf52c
JK
451 goto out;
452 if (!trunc &&
453 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
454 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
455 goto out;
456 radix_tree_delete(page_tree, index);
457 mapping->nrexceptional--;
458 ret = 1;
459out:
460 put_unlocked_mapping_entry(mapping, index, entry);
461 spin_unlock_irq(&mapping->tree_lock);
462 return ret;
463}
ac401cc7
JK
464/*
465 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466 * entry to get unlocked before deleting it.
467 */
468int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
469{
c6dcf52c 470 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
ac401cc7 471
ac401cc7
JK
472 /*
473 * This gets called from truncate / punch_hole path. As such, the caller
474 * must hold locks protecting against concurrent modifications of the
475 * radix tree (usually fs-private i_mmap_sem for writing). Since the
476 * caller has seen exceptional entry for this index, we better find it
477 * at that index as well...
478 */
c6dcf52c
JK
479 WARN_ON_ONCE(!ret);
480 return ret;
481}
482
c6dcf52c
JK
483/*
484 * Invalidate exceptional DAX entry if it is clean.
485 */
486int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
487 pgoff_t index)
488{
489 return __dax_invalidate_mapping_entry(mapping, index, false);
ac401cc7
JK
490}
491
cccbce67
DW
492static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
493 sector_t sector, size_t size, struct page *to,
494 unsigned long vaddr)
f7ca90b1 495{
cccbce67
DW
496 void *vto, *kaddr;
497 pgoff_t pgoff;
498 pfn_t pfn;
499 long rc;
500 int id;
501
502 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
503 if (rc)
504 return rc;
505
506 id = dax_read_lock();
507 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
508 if (rc < 0) {
509 dax_read_unlock(id);
510 return rc;
511 }
f7ca90b1 512 vto = kmap_atomic(to);
cccbce67 513 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 514 kunmap_atomic(vto);
cccbce67 515 dax_read_unlock(id);
f7ca90b1
MW
516 return 0;
517}
518
642261ac
RZ
519/*
520 * By this point grab_mapping_entry() has ensured that we have a locked entry
521 * of the appropriate size so we don't have to worry about downgrading PMDs to
522 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
523 * already in the tree, we will skip the insertion and just dirty the PMD as
524 * appropriate.
525 */
ac401cc7
JK
526static void *dax_insert_mapping_entry(struct address_space *mapping,
527 struct vm_fault *vmf,
642261ac
RZ
528 void *entry, sector_t sector,
529 unsigned long flags)
9973c98e
RZ
530{
531 struct radix_tree_root *page_tree = &mapping->page_tree;
ac401cc7
JK
532 void *new_entry;
533 pgoff_t index = vmf->pgoff;
9973c98e 534
ac401cc7 535 if (vmf->flags & FAULT_FLAG_WRITE)
d2b2a28e 536 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 537
91d25ba8
RZ
538 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
539 /* we are replacing a zero page with block mapping */
540 if (dax_is_pmd_entry(entry))
541 unmap_mapping_range(mapping,
542 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
543 PMD_SIZE, 0);
544 else /* pte entry */
545 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
546 PAGE_SIZE, 0);
9973c98e
RZ
547 }
548
ac401cc7 549 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
550 new_entry = dax_radix_locked_entry(sector, flags);
551
91d25ba8 552 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac
RZ
553 /*
554 * Only swap our new entry into the radix tree if the current
555 * entry is a zero page or an empty entry. If a normal PTE or
556 * PMD entry is already in the tree, we leave it alone. This
557 * means that if we are trying to insert a PTE and the
558 * existing entry is a PMD, we will just leave the PMD in the
559 * tree and dirty it if necessary.
560 */
f7942430 561 struct radix_tree_node *node;
ac401cc7
JK
562 void **slot;
563 void *ret;
9973c98e 564
f7942430 565 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
ac401cc7 566 WARN_ON_ONCE(ret != entry);
4d693d08
JW
567 __radix_tree_replace(page_tree, node, slot,
568 new_entry, NULL, NULL);
91d25ba8 569 entry = new_entry;
9973c98e 570 }
91d25ba8 571
ac401cc7 572 if (vmf->flags & FAULT_FLAG_WRITE)
9973c98e 573 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
91d25ba8 574
9973c98e 575 spin_unlock_irq(&mapping->tree_lock);
91d25ba8 576 return entry;
9973c98e
RZ
577}
578
4b4bb46d
JK
579static inline unsigned long
580pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
581{
582 unsigned long address;
583
584 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
585 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
586 return address;
587}
588
589/* Walk all mappings of a given index of a file and writeprotect them */
590static void dax_mapping_entry_mkclean(struct address_space *mapping,
591 pgoff_t index, unsigned long pfn)
592{
593 struct vm_area_struct *vma;
f729c8c9
RZ
594 pte_t pte, *ptep = NULL;
595 pmd_t *pmdp = NULL;
4b4bb46d 596 spinlock_t *ptl;
4b4bb46d
JK
597
598 i_mmap_lock_read(mapping);
599 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 600 unsigned long address, start, end;
4b4bb46d
JK
601
602 cond_resched();
603
604 if (!(vma->vm_flags & VM_SHARED))
605 continue;
606
607 address = pgoff_address(index, vma);
a4d1a885
JG
608
609 /*
610 * Note because we provide start/end to follow_pte_pmd it will
611 * call mmu_notifier_invalidate_range_start() on our behalf
612 * before taking any lock.
613 */
614 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 615 continue;
4b4bb46d 616
f729c8c9
RZ
617 if (pmdp) {
618#ifdef CONFIG_FS_DAX_PMD
619 pmd_t pmd;
620
621 if (pfn != pmd_pfn(*pmdp))
622 goto unlock_pmd;
623 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
624 goto unlock_pmd;
625
626 flush_cache_page(vma, address, pfn);
627 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
628 pmd = pmd_wrprotect(pmd);
629 pmd = pmd_mkclean(pmd);
630 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
a4d1a885 631 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
f729c8c9 632unlock_pmd:
f729c8c9 633#endif
710b5124 634 spin_unlock(ptl);
f729c8c9
RZ
635 } else {
636 if (pfn != pte_pfn(*ptep))
637 goto unlock_pte;
638 if (!pte_dirty(*ptep) && !pte_write(*ptep))
639 goto unlock_pte;
640
641 flush_cache_page(vma, address, pfn);
642 pte = ptep_clear_flush(vma, address, ptep);
643 pte = pte_wrprotect(pte);
644 pte = pte_mkclean(pte);
645 set_pte_at(vma->vm_mm, address, ptep, pte);
a4d1a885 646 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
f729c8c9
RZ
647unlock_pte:
648 pte_unmap_unlock(ptep, ptl);
649 }
4b4bb46d 650
a4d1a885 651 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
652 }
653 i_mmap_unlock_read(mapping);
654}
655
9973c98e 656static int dax_writeback_one(struct block_device *bdev,
cccbce67
DW
657 struct dax_device *dax_dev, struct address_space *mapping,
658 pgoff_t index, void *entry)
9973c98e
RZ
659{
660 struct radix_tree_root *page_tree = &mapping->page_tree;
cccbce67
DW
661 void *entry2, **slot, *kaddr;
662 long ret = 0, id;
663 sector_t sector;
664 pgoff_t pgoff;
665 size_t size;
666 pfn_t pfn;
9973c98e 667
9973c98e 668 /*
a6abc2c0
JK
669 * A page got tagged dirty in DAX mapping? Something is seriously
670 * wrong.
9973c98e 671 */
a6abc2c0
JK
672 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
673 return -EIO;
9973c98e 674
a6abc2c0
JK
675 spin_lock_irq(&mapping->tree_lock);
676 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
677 /* Entry got punched out / reallocated? */
91d25ba8 678 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
a6abc2c0
JK
679 goto put_unlocked;
680 /*
681 * Entry got reallocated elsewhere? No need to writeback. We have to
682 * compare sectors as we must not bail out due to difference in lockbit
683 * or entry type.
684 */
685 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
686 goto put_unlocked;
642261ac
RZ
687 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
688 dax_is_zero_entry(entry))) {
9973c98e 689 ret = -EIO;
a6abc2c0 690 goto put_unlocked;
9973c98e
RZ
691 }
692
a6abc2c0
JK
693 /* Another fsync thread may have already written back this entry */
694 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
695 goto put_unlocked;
696 /* Lock the entry to serialize with page faults */
697 entry = lock_slot(mapping, slot);
698 /*
699 * We can clear the tag now but we have to be careful so that concurrent
700 * dax_writeback_one() calls for the same index cannot finish before we
701 * actually flush the caches. This is achieved as the calls will look
702 * at the entry only under tree_lock and once they do that they will
703 * see the entry locked and wait for it to unlock.
704 */
705 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
706 spin_unlock_irq(&mapping->tree_lock);
707
642261ac
RZ
708 /*
709 * Even if dax_writeback_mapping_range() was given a wbc->range_start
710 * in the middle of a PMD, the 'index' we are given will be aligned to
711 * the start index of the PMD, as will the sector we pull from
712 * 'entry'. This allows us to flush for PMD_SIZE and not have to
713 * worry about partial PMD writebacks.
714 */
cccbce67
DW
715 sector = dax_radix_sector(entry);
716 size = PAGE_SIZE << dax_radix_order(entry);
717
718 id = dax_read_lock();
719 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
720 if (ret)
721 goto dax_unlock;
9973c98e
RZ
722
723 /*
cccbce67
DW
724 * dax_direct_access() may sleep, so cannot hold tree_lock over
725 * its invocation.
9973c98e 726 */
cccbce67
DW
727 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
728 if (ret < 0)
729 goto dax_unlock;
9973c98e 730
cccbce67 731 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
9973c98e 732 ret = -EIO;
cccbce67 733 goto dax_unlock;
9973c98e
RZ
734 }
735
cccbce67 736 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
c3ca015f 737 dax_flush(dax_dev, kaddr, size);
4b4bb46d
JK
738 /*
739 * After we have flushed the cache, we can clear the dirty tag. There
740 * cannot be new dirty data in the pfn after the flush has completed as
741 * the pfn mappings are writeprotected and fault waits for mapping
742 * entry lock.
743 */
744 spin_lock_irq(&mapping->tree_lock);
745 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
746 spin_unlock_irq(&mapping->tree_lock);
f9bc3a07 747 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
cccbce67
DW
748 dax_unlock:
749 dax_read_unlock(id);
91d25ba8 750 put_locked_mapping_entry(mapping, index);
9973c98e
RZ
751 return ret;
752
a6abc2c0
JK
753 put_unlocked:
754 put_unlocked_mapping_entry(mapping, index, entry2);
9973c98e
RZ
755 spin_unlock_irq(&mapping->tree_lock);
756 return ret;
757}
758
759/*
760 * Flush the mapping to the persistent domain within the byte range of [start,
761 * end]. This is required by data integrity operations to ensure file data is
762 * on persistent storage prior to completion of the operation.
763 */
7f6d5b52
RZ
764int dax_writeback_mapping_range(struct address_space *mapping,
765 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
766{
767 struct inode *inode = mapping->host;
642261ac 768 pgoff_t start_index, end_index;
9973c98e 769 pgoff_t indices[PAGEVEC_SIZE];
cccbce67 770 struct dax_device *dax_dev;
9973c98e
RZ
771 struct pagevec pvec;
772 bool done = false;
773 int i, ret = 0;
9973c98e
RZ
774
775 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
776 return -EIO;
777
7f6d5b52
RZ
778 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
779 return 0;
780
cccbce67
DW
781 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
782 if (!dax_dev)
783 return -EIO;
784
09cbfeaf
KS
785 start_index = wbc->range_start >> PAGE_SHIFT;
786 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e 787
d14a3f48
RZ
788 trace_dax_writeback_range(inode, start_index, end_index);
789
9973c98e
RZ
790 tag_pages_for_writeback(mapping, start_index, end_index);
791
792 pagevec_init(&pvec, 0);
793 while (!done) {
794 pvec.nr = find_get_entries_tag(mapping, start_index,
795 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
796 pvec.pages, indices);
797
798 if (pvec.nr == 0)
799 break;
800
801 for (i = 0; i < pvec.nr; i++) {
802 if (indices[i] > end_index) {
803 done = true;
804 break;
805 }
806
cccbce67
DW
807 ret = dax_writeback_one(bdev, dax_dev, mapping,
808 indices[i], pvec.pages[i]);
819ec6b9
JL
809 if (ret < 0) {
810 mapping_set_error(mapping, ret);
d14a3f48 811 goto out;
819ec6b9 812 }
9973c98e 813 }
1eb643d0 814 start_index = indices[pvec.nr - 1] + 1;
9973c98e 815 }
d14a3f48 816out:
cccbce67 817 put_dax(dax_dev);
d14a3f48
RZ
818 trace_dax_writeback_range_done(inode, start_index, end_index);
819 return (ret < 0 ? ret : 0);
9973c98e
RZ
820}
821EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
822
ac401cc7 823static int dax_insert_mapping(struct address_space *mapping,
cccbce67 824 struct block_device *bdev, struct dax_device *dax_dev,
91d25ba8 825 sector_t sector, size_t size, void *entry,
cccbce67 826 struct vm_area_struct *vma, struct vm_fault *vmf)
f7ca90b1 827{
1a29d85e 828 unsigned long vaddr = vmf->address;
cccbce67
DW
829 void *ret, *kaddr;
830 pgoff_t pgoff;
831 int id, rc;
832 pfn_t pfn;
f7ca90b1 833
cccbce67
DW
834 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
835 if (rc)
836 return rc;
f7ca90b1 837
cccbce67
DW
838 id = dax_read_lock();
839 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
840 if (rc < 0) {
841 dax_read_unlock(id);
842 return rc;
843 }
844 dax_read_unlock(id);
845
846 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
4d9a2c87
JK
847 if (IS_ERR(ret))
848 return PTR_ERR(ret);
9973c98e 849
b4440734 850 trace_dax_insert_mapping(mapping->host, vmf, ret);
91d25ba8
RZ
851 if (vmf->flags & FAULT_FLAG_WRITE)
852 return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
853 else
854 return vm_insert_mixed(vma, vaddr, pfn);
0e3b210c 855}
0e3b210c 856
e30331ff 857/*
91d25ba8
RZ
858 * The user has performed a load from a hole in the file. Allocating a new
859 * page in the file would cause excessive storage usage for workloads with
860 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
861 * If this page is ever written to we will re-fault and change the mapping to
862 * point to real DAX storage instead.
e30331ff 863 */
91d25ba8 864static int dax_load_hole(struct address_space *mapping, void *entry,
e30331ff
RZ
865 struct vm_fault *vmf)
866{
867 struct inode *inode = mapping->host;
91d25ba8
RZ
868 unsigned long vaddr = vmf->address;
869 int ret = VM_FAULT_NOPAGE;
870 struct page *zero_page;
871 void *entry2;
e30331ff 872
91d25ba8
RZ
873 zero_page = ZERO_PAGE(0);
874 if (unlikely(!zero_page)) {
e30331ff
RZ
875 ret = VM_FAULT_OOM;
876 goto out;
877 }
878
91d25ba8
RZ
879 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
880 RADIX_DAX_ZERO_PAGE);
881 if (IS_ERR(entry2)) {
882 ret = VM_FAULT_SIGBUS;
883 goto out;
e30331ff 884 }
91d25ba8
RZ
885
886 vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
e30331ff
RZ
887out:
888 trace_dax_load_hole(inode, vmf, ret);
889 return ret;
890}
891
4b0228fa
VV
892static bool dax_range_is_aligned(struct block_device *bdev,
893 unsigned int offset, unsigned int length)
894{
895 unsigned short sector_size = bdev_logical_block_size(bdev);
896
897 if (!IS_ALIGNED(offset, sector_size))
898 return false;
899 if (!IS_ALIGNED(length, sector_size))
900 return false;
901
902 return true;
903}
904
cccbce67
DW
905int __dax_zero_page_range(struct block_device *bdev,
906 struct dax_device *dax_dev, sector_t sector,
907 unsigned int offset, unsigned int size)
679c8bd3 908{
cccbce67
DW
909 if (dax_range_is_aligned(bdev, offset, size)) {
910 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
911
912 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 913 size >> 9, GFP_NOFS, 0);
4b0228fa 914 } else {
cccbce67
DW
915 pgoff_t pgoff;
916 long rc, id;
917 void *kaddr;
918 pfn_t pfn;
919
e84b83b9 920 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
921 if (rc)
922 return rc;
923
924 id = dax_read_lock();
e84b83b9 925 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
cccbce67
DW
926 &pfn);
927 if (rc < 0) {
928 dax_read_unlock(id);
929 return rc;
930 }
81f55870 931 memset(kaddr + offset, 0, size);
c3ca015f 932 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 933 dax_read_unlock(id);
4b0228fa 934 }
679c8bd3
CH
935 return 0;
936}
937EXPORT_SYMBOL_GPL(__dax_zero_page_range);
938
333ccc97 939static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
25726bc1 940{
333ccc97 941 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
25726bc1 942}
a254e568 943
a254e568 944static loff_t
11c59c92 945dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
946 struct iomap *iomap)
947{
cccbce67
DW
948 struct block_device *bdev = iomap->bdev;
949 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
950 struct iov_iter *iter = data;
951 loff_t end = pos + length, done = 0;
952 ssize_t ret = 0;
cccbce67 953 int id;
a254e568
CH
954
955 if (iov_iter_rw(iter) == READ) {
956 end = min(end, i_size_read(inode));
957 if (pos >= end)
958 return 0;
959
960 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
961 return iov_iter_zero(min(length, end - pos), iter);
962 }
963
964 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
965 return -EIO;
966
e3fce68c
JK
967 /*
968 * Write can allocate block for an area which has a hole page mapped
969 * into page tables. We have to tear down these mappings so that data
970 * written by write(2) is visible in mmap.
971 */
cd656375 972 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
973 invalidate_inode_pages2_range(inode->i_mapping,
974 pos >> PAGE_SHIFT,
975 (end - 1) >> PAGE_SHIFT);
976 }
977
cccbce67 978 id = dax_read_lock();
a254e568
CH
979 while (pos < end) {
980 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
981 const size_t size = ALIGN(length + offset, PAGE_SIZE);
982 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 983 ssize_t map_len;
cccbce67
DW
984 pgoff_t pgoff;
985 void *kaddr;
986 pfn_t pfn;
a254e568 987
d1908f52
MH
988 if (fatal_signal_pending(current)) {
989 ret = -EINTR;
990 break;
991 }
992
cccbce67
DW
993 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
994 if (ret)
995 break;
996
997 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
998 &kaddr, &pfn);
a254e568
CH
999 if (map_len < 0) {
1000 ret = map_len;
1001 break;
1002 }
1003
cccbce67
DW
1004 map_len = PFN_PHYS(map_len);
1005 kaddr += offset;
a254e568
CH
1006 map_len -= offset;
1007 if (map_len > end - pos)
1008 map_len = end - pos;
1009
a2e050f5
RZ
1010 /*
1011 * The userspace address for the memory copy has already been
1012 * validated via access_ok() in either vfs_read() or
1013 * vfs_write(), depending on which operation we are doing.
1014 */
a254e568 1015 if (iov_iter_rw(iter) == WRITE)
fec53774
DW
1016 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1017 map_len, iter);
a254e568 1018 else
cccbce67 1019 map_len = copy_to_iter(kaddr, map_len, iter);
a254e568
CH
1020 if (map_len <= 0) {
1021 ret = map_len ? map_len : -EFAULT;
1022 break;
1023 }
1024
1025 pos += map_len;
1026 length -= map_len;
1027 done += map_len;
1028 }
cccbce67 1029 dax_read_unlock(id);
a254e568
CH
1030
1031 return done ? done : ret;
1032}
1033
1034/**
11c59c92 1035 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1036 * @iocb: The control block for this I/O
1037 * @iter: The addresses to do I/O from or to
1038 * @ops: iomap ops passed from the file system
1039 *
1040 * This function performs read and write operations to directly mapped
1041 * persistent memory. The callers needs to take care of read/write exclusion
1042 * and evicting any page cache pages in the region under I/O.
1043 */
1044ssize_t
11c59c92 1045dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1046 const struct iomap_ops *ops)
a254e568
CH
1047{
1048 struct address_space *mapping = iocb->ki_filp->f_mapping;
1049 struct inode *inode = mapping->host;
1050 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1051 unsigned flags = 0;
1052
168316db
CH
1053 if (iov_iter_rw(iter) == WRITE) {
1054 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1055 flags |= IOMAP_WRITE;
168316db
CH
1056 } else {
1057 lockdep_assert_held(&inode->i_rwsem);
1058 }
a254e568 1059
a254e568
CH
1060 while (iov_iter_count(iter)) {
1061 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1062 iter, dax_iomap_actor);
a254e568
CH
1063 if (ret <= 0)
1064 break;
1065 pos += ret;
1066 done += ret;
1067 }
1068
1069 iocb->ki_pos += done;
1070 return done ? done : ret;
1071}
11c59c92 1072EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1073
9f141d6e
JK
1074static int dax_fault_return(int error)
1075{
1076 if (error == 0)
1077 return VM_FAULT_NOPAGE;
1078 if (error == -ENOMEM)
1079 return VM_FAULT_OOM;
1080 return VM_FAULT_SIGBUS;
1081}
1082
a2d58167
DJ
1083static int dax_iomap_pte_fault(struct vm_fault *vmf,
1084 const struct iomap_ops *ops)
a7d73fe6 1085{
11bac800 1086 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
a7d73fe6 1087 struct inode *inode = mapping->host;
1a29d85e 1088 unsigned long vaddr = vmf->address;
a7d73fe6
CH
1089 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1090 sector_t sector;
1091 struct iomap iomap = { 0 };
9484ab1b 1092 unsigned flags = IOMAP_FAULT;
a7d73fe6 1093 int error, major = 0;
b1aa812b 1094 int vmf_ret = 0;
a7d73fe6
CH
1095 void *entry;
1096
a9c42b33 1097 trace_dax_pte_fault(inode, vmf, vmf_ret);
a7d73fe6
CH
1098 /*
1099 * Check whether offset isn't beyond end of file now. Caller is supposed
1100 * to hold locks serializing us with truncate / punch hole so this is
1101 * a reliable test.
1102 */
a9c42b33
RZ
1103 if (pos >= i_size_read(inode)) {
1104 vmf_ret = VM_FAULT_SIGBUS;
1105 goto out;
1106 }
a7d73fe6 1107
a7d73fe6
CH
1108 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1109 flags |= IOMAP_WRITE;
1110
13e451fd
JK
1111 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1112 if (IS_ERR(entry)) {
1113 vmf_ret = dax_fault_return(PTR_ERR(entry));
1114 goto out;
1115 }
1116
e2093926
RZ
1117 /*
1118 * It is possible, particularly with mixed reads & writes to private
1119 * mappings, that we have raced with a PMD fault that overlaps with
1120 * the PTE we need to set up. If so just return and the fault will be
1121 * retried.
1122 */
1123 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1124 vmf_ret = VM_FAULT_NOPAGE;
1125 goto unlock_entry;
1126 }
1127
a7d73fe6
CH
1128 /*
1129 * Note that we don't bother to use iomap_apply here: DAX required
1130 * the file system block size to be equal the page size, which means
1131 * that we never have to deal with more than a single extent here.
1132 */
1133 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
a9c42b33
RZ
1134 if (error) {
1135 vmf_ret = dax_fault_return(error);
13e451fd 1136 goto unlock_entry;
a9c42b33 1137 }
a7d73fe6 1138 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1139 error = -EIO; /* fs corruption? */
1140 goto error_finish_iomap;
a7d73fe6
CH
1141 }
1142
333ccc97 1143 sector = dax_iomap_sector(&iomap, pos);
a7d73fe6
CH
1144
1145 if (vmf->cow_page) {
1146 switch (iomap.type) {
1147 case IOMAP_HOLE:
1148 case IOMAP_UNWRITTEN:
1149 clear_user_highpage(vmf->cow_page, vaddr);
1150 break;
1151 case IOMAP_MAPPED:
cccbce67
DW
1152 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1153 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1154 break;
1155 default:
1156 WARN_ON_ONCE(1);
1157 error = -EIO;
1158 break;
1159 }
1160
1161 if (error)
13e451fd 1162 goto error_finish_iomap;
b1aa812b
JK
1163
1164 __SetPageUptodate(vmf->cow_page);
1165 vmf_ret = finish_fault(vmf);
1166 if (!vmf_ret)
1167 vmf_ret = VM_FAULT_DONE_COW;
13e451fd 1168 goto finish_iomap;
a7d73fe6
CH
1169 }
1170
1171 switch (iomap.type) {
1172 case IOMAP_MAPPED:
1173 if (iomap.flags & IOMAP_F_NEW) {
1174 count_vm_event(PGMAJFAULT);
2262185c 1175 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1176 major = VM_FAULT_MAJOR;
1177 }
cccbce67 1178 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
91d25ba8 1179 sector, PAGE_SIZE, entry, vmf->vma, vmf);
9f141d6e
JK
1180 /* -EBUSY is fine, somebody else faulted on the same PTE */
1181 if (error == -EBUSY)
1182 error = 0;
a7d73fe6
CH
1183 break;
1184 case IOMAP_UNWRITTEN:
1185 case IOMAP_HOLE:
1550290b 1186 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
91d25ba8 1187 vmf_ret = dax_load_hole(mapping, entry, vmf);
13e451fd 1188 goto finish_iomap;
1550290b 1189 }
a7d73fe6
CH
1190 /*FALLTHRU*/
1191 default:
1192 WARN_ON_ONCE(1);
1193 error = -EIO;
1194 break;
1195 }
1196
13e451fd 1197 error_finish_iomap:
9f141d6e 1198 vmf_ret = dax_fault_return(error) | major;
9f141d6e
JK
1199 finish_iomap:
1200 if (ops->iomap_end) {
1201 int copied = PAGE_SIZE;
1202
1203 if (vmf_ret & VM_FAULT_ERROR)
1204 copied = 0;
1205 /*
1206 * The fault is done by now and there's no way back (other
1207 * thread may be already happily using PTE we have installed).
1208 * Just ignore error from ->iomap_end since we cannot do much
1209 * with it.
1210 */
1211 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1212 }
13e451fd 1213 unlock_entry:
91d25ba8 1214 put_locked_mapping_entry(mapping, vmf->pgoff);
13e451fd 1215 out:
a9c42b33 1216 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
9f141d6e 1217 return vmf_ret;
a7d73fe6 1218}
642261ac
RZ
1219
1220#ifdef CONFIG_FS_DAX_PMD
f4200391 1221static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
91d25ba8 1222 loff_t pos, void *entry)
642261ac 1223{
f4200391 1224 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cccbce67
DW
1225 const sector_t sector = dax_iomap_sector(iomap, pos);
1226 struct dax_device *dax_dev = iomap->dax_dev;
642261ac 1227 struct block_device *bdev = iomap->bdev;
27a7ffac 1228 struct inode *inode = mapping->host;
cccbce67
DW
1229 const size_t size = PMD_SIZE;
1230 void *ret = NULL, *kaddr;
1231 long length = 0;
1232 pgoff_t pgoff;
2f52074d 1233 pfn_t pfn = {};
cccbce67
DW
1234 int id;
1235
1236 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
27a7ffac 1237 goto fallback;
642261ac 1238
cccbce67
DW
1239 id = dax_read_lock();
1240 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1241 if (length < 0)
1242 goto unlock_fallback;
1243 length = PFN_PHYS(length);
1244
1245 if (length < size)
1246 goto unlock_fallback;
1247 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1248 goto unlock_fallback;
1249 if (!pfn_t_devmap(pfn))
1250 goto unlock_fallback;
1251 dax_read_unlock(id);
1252
91d25ba8 1253 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
642261ac
RZ
1254 RADIX_DAX_PMD);
1255 if (IS_ERR(ret))
27a7ffac 1256 goto fallback;
642261ac 1257
cccbce67 1258 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
f4200391 1259 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
cccbce67 1260 pfn, vmf->flags & FAULT_FLAG_WRITE);
642261ac 1261
cccbce67
DW
1262unlock_fallback:
1263 dax_read_unlock(id);
27a7ffac 1264fallback:
cccbce67 1265 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
642261ac
RZ
1266 return VM_FAULT_FALLBACK;
1267}
1268
f4200391 1269static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
91d25ba8 1270 void *entry)
642261ac 1271{
f4200391
DJ
1272 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1273 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1274 struct inode *inode = mapping->host;
642261ac 1275 struct page *zero_page;
653b2ea3 1276 void *ret = NULL;
642261ac
RZ
1277 spinlock_t *ptl;
1278 pmd_t pmd_entry;
642261ac 1279
f4200391 1280 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1281
1282 if (unlikely(!zero_page))
653b2ea3 1283 goto fallback;
642261ac 1284
91d25ba8
RZ
1285 ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1286 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
642261ac 1287 if (IS_ERR(ret))
653b2ea3 1288 goto fallback;
642261ac 1289
f4200391
DJ
1290 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1291 if (!pmd_none(*(vmf->pmd))) {
642261ac 1292 spin_unlock(ptl);
653b2ea3 1293 goto fallback;
642261ac
RZ
1294 }
1295
f4200391 1296 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1297 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1298 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1299 spin_unlock(ptl);
f4200391 1300 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
642261ac 1301 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1302
1303fallback:
f4200391 1304 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
653b2ea3 1305 return VM_FAULT_FALLBACK;
642261ac
RZ
1306}
1307
a2d58167
DJ
1308static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1309 const struct iomap_ops *ops)
642261ac 1310{
f4200391 1311 struct vm_area_struct *vma = vmf->vma;
642261ac 1312 struct address_space *mapping = vma->vm_file->f_mapping;
d8a849e1
DJ
1313 unsigned long pmd_addr = vmf->address & PMD_MASK;
1314 bool write = vmf->flags & FAULT_FLAG_WRITE;
9484ab1b 1315 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac
RZ
1316 struct inode *inode = mapping->host;
1317 int result = VM_FAULT_FALLBACK;
1318 struct iomap iomap = { 0 };
1319 pgoff_t max_pgoff, pgoff;
642261ac
RZ
1320 void *entry;
1321 loff_t pos;
1322 int error;
1323
282a8e03
RZ
1324 /*
1325 * Check whether offset isn't beyond end of file now. Caller is
1326 * supposed to hold locks serializing us with truncate / punch hole so
1327 * this is a reliable test.
1328 */
1329 pgoff = linear_page_index(vma, pmd_addr);
c21261e6 1330 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1331
f4200391 1332 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1333
fffa281b
RZ
1334 /*
1335 * Make sure that the faulting address's PMD offset (color) matches
1336 * the PMD offset from the start of the file. This is necessary so
1337 * that a PMD range in the page table overlaps exactly with a PMD
1338 * range in the radix tree.
1339 */
1340 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1341 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1342 goto fallback;
1343
642261ac
RZ
1344 /* Fall back to PTEs if we're going to COW */
1345 if (write && !(vma->vm_flags & VM_SHARED))
1346 goto fallback;
1347
1348 /* If the PMD would extend outside the VMA */
1349 if (pmd_addr < vma->vm_start)
1350 goto fallback;
1351 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1352 goto fallback;
1353
c21261e6 1354 if (pgoff >= max_pgoff) {
282a8e03
RZ
1355 result = VM_FAULT_SIGBUS;
1356 goto out;
1357 }
642261ac
RZ
1358
1359 /* If the PMD would extend beyond the file size */
c21261e6 1360 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1361 goto fallback;
1362
876f2946 1363 /*
91d25ba8
RZ
1364 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1365 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1366 * is already in the tree, for instance), it will return -EEXIST and
1367 * we just fall back to 4k entries.
876f2946
RZ
1368 */
1369 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1370 if (IS_ERR(entry))
1371 goto fallback;
1372
e2093926
RZ
1373 /*
1374 * It is possible, particularly with mixed reads & writes to private
1375 * mappings, that we have raced with a PTE fault that overlaps with
1376 * the PMD we need to set up. If so just return and the fault will be
1377 * retried.
1378 */
1379 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1380 !pmd_devmap(*vmf->pmd)) {
1381 result = 0;
1382 goto unlock_entry;
1383 }
1384
642261ac
RZ
1385 /*
1386 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1387 * setting up a mapping, so really we're using iomap_begin() as a way
1388 * to look up our filesystem block.
1389 */
1390 pos = (loff_t)pgoff << PAGE_SHIFT;
1391 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1392 if (error)
876f2946 1393 goto unlock_entry;
9f141d6e 1394
642261ac
RZ
1395 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1396 goto finish_iomap;
1397
642261ac
RZ
1398 switch (iomap.type) {
1399 case IOMAP_MAPPED:
91d25ba8 1400 result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
642261ac
RZ
1401 break;
1402 case IOMAP_UNWRITTEN:
1403 case IOMAP_HOLE:
1404 if (WARN_ON_ONCE(write))
876f2946 1405 break;
91d25ba8 1406 result = dax_pmd_load_hole(vmf, &iomap, entry);
642261ac
RZ
1407 break;
1408 default:
1409 WARN_ON_ONCE(1);
1410 break;
1411 }
1412
1413 finish_iomap:
1414 if (ops->iomap_end) {
9f141d6e
JK
1415 int copied = PMD_SIZE;
1416
1417 if (result == VM_FAULT_FALLBACK)
1418 copied = 0;
1419 /*
1420 * The fault is done by now and there's no way back (other
1421 * thread may be already happily using PMD we have installed).
1422 * Just ignore error from ->iomap_end since we cannot do much
1423 * with it.
1424 */
1425 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1426 &iomap);
642261ac 1427 }
876f2946 1428 unlock_entry:
91d25ba8 1429 put_locked_mapping_entry(mapping, pgoff);
642261ac
RZ
1430 fallback:
1431 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1432 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1433 count_vm_event(THP_FAULT_FALLBACK);
1434 }
282a8e03 1435out:
f4200391 1436 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1437 return result;
1438}
a2d58167 1439#else
01cddfe9
AB
1440static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1441 const struct iomap_ops *ops)
a2d58167
DJ
1442{
1443 return VM_FAULT_FALLBACK;
1444}
642261ac 1445#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1446
1447/**
1448 * dax_iomap_fault - handle a page fault on a DAX file
1449 * @vmf: The description of the fault
1450 * @ops: iomap ops passed from the file system
1451 *
1452 * When a page fault occurs, filesystems may call this helper in
1453 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1454 * has done all the necessary locking for page fault to proceed
1455 * successfully.
1456 */
c791ace1
DJ
1457int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1458 const struct iomap_ops *ops)
a2d58167 1459{
c791ace1
DJ
1460 switch (pe_size) {
1461 case PE_SIZE_PTE:
a2d58167 1462 return dax_iomap_pte_fault(vmf, ops);
c791ace1 1463 case PE_SIZE_PMD:
a2d58167
DJ
1464 return dax_iomap_pmd_fault(vmf, ops);
1465 default:
1466 return VM_FAULT_FALLBACK;
1467 }
1468}
1469EXPORT_SYMBOL_GPL(dax_iomap_fault);