Merge 4.14.70 into android-4.14-p
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
43c1b3d6
PV
59 * NOTE: if the main or only goal, with a given device, is to achieve
60 * the maximum-possible throughput at all times, then do switch off
61 * all low-latency heuristics for that device, by setting low_latency
62 * to 0.
63 *
aee69d78
PV
64 * BFQ is described in [1], where also a reference to the initial, more
65 * theoretical paper on BFQ can be found. The interested reader can find
66 * in the latter paper full details on the main algorithm, as well as
67 * formulas of the guarantees and formal proofs of all the properties.
68 * With respect to the version of BFQ presented in these papers, this
69 * implementation adds a few more heuristics, such as the one that
70 * guarantees a low latency to soft real-time applications, and a
71 * hierarchical extension based on H-WF2Q+.
72 *
73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75 * with O(log N) complexity derives from the one introduced with EEVDF
76 * in [3].
77 *
78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79 * Scheduler", Proceedings of the First Workshop on Mobile System
80 * Technologies (MST-2015), May 2015.
81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82 *
83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85 * Oct 1997.
86 *
87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88 *
89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90 * First: A Flexible and Accurate Mechanism for Proportional Share
91 * Resource Allocation", technical report.
92 *
93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94 */
95#include <linux/module.h>
96#include <linux/slab.h>
97#include <linux/blkdev.h>
e21b7a0b 98#include <linux/cgroup.h>
aee69d78
PV
99#include <linux/elevator.h>
100#include <linux/ktime.h>
101#include <linux/rbtree.h>
102#include <linux/ioprio.h>
103#include <linux/sbitmap.h>
104#include <linux/delay.h>
105
106#include "blk.h"
107#include "blk-mq.h"
108#include "blk-mq-tag.h"
109#include "blk-mq-sched.h"
ea25da48 110#include "bfq-iosched.h"
7535afcc 111#include "blk-wbt.h"
aee69d78 112
ea25da48
PV
113#define BFQ_BFQQ_FNS(name) \
114void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
115{ \
116 __set_bit(BFQQF_##name, &(bfqq)->flags); \
117} \
118void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
119{ \
120 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
121} \
122int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
123{ \
124 return test_bit(BFQQF_##name, &(bfqq)->flags); \
44e44a1b
PV
125}
126
ea25da48
PV
127BFQ_BFQQ_FNS(just_created);
128BFQ_BFQQ_FNS(busy);
129BFQ_BFQQ_FNS(wait_request);
130BFQ_BFQQ_FNS(non_blocking_wait_rq);
131BFQ_BFQQ_FNS(fifo_expire);
d5be3fef 132BFQ_BFQQ_FNS(has_short_ttime);
ea25da48
PV
133BFQ_BFQQ_FNS(sync);
134BFQ_BFQQ_FNS(IO_bound);
135BFQ_BFQQ_FNS(in_large_burst);
136BFQ_BFQQ_FNS(coop);
137BFQ_BFQQ_FNS(split_coop);
138BFQ_BFQQ_FNS(softrt_update);
139#undef BFQ_BFQQ_FNS \
aee69d78 140
ea25da48
PV
141/* Expiration time of sync (0) and async (1) requests, in ns. */
142static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
aee69d78 143
ea25da48
PV
144/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
145static const int bfq_back_max = 16 * 1024;
aee69d78 146
ea25da48
PV
147/* Penalty of a backwards seek, in number of sectors. */
148static const int bfq_back_penalty = 2;
e21b7a0b 149
ea25da48
PV
150/* Idling period duration, in ns. */
151static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
aee69d78 152
ea25da48
PV
153/* Minimum number of assigned budgets for which stats are safe to compute. */
154static const int bfq_stats_min_budgets = 194;
aee69d78 155
ea25da48
PV
156/* Default maximum budget values, in sectors and number of requests. */
157static const int bfq_default_max_budget = 16 * 1024;
e21b7a0b 158
ea25da48
PV
159/*
160 * Async to sync throughput distribution is controlled as follows:
161 * when an async request is served, the entity is charged the number
162 * of sectors of the request, multiplied by the factor below
163 */
164static const int bfq_async_charge_factor = 10;
aee69d78 165
ea25da48
PV
166/* Default timeout values, in jiffies, approximating CFQ defaults. */
167const int bfq_timeout = HZ / 8;
aee69d78 168
ea25da48 169static struct kmem_cache *bfq_pool;
e21b7a0b 170
ea25da48
PV
171/* Below this threshold (in ns), we consider thinktime immediate. */
172#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
e21b7a0b 173
ea25da48
PV
174/* hw_tag detection: parallel requests threshold and min samples needed. */
175#define BFQ_HW_QUEUE_THRESHOLD 4
176#define BFQ_HW_QUEUE_SAMPLES 32
aee69d78 177
ea25da48
PV
178#define BFQQ_SEEK_THR (sector_t)(8 * 100)
179#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
180#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
181#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
aee69d78 182
ea25da48
PV
183/* Min number of samples required to perform peak-rate update */
184#define BFQ_RATE_MIN_SAMPLES 32
185/* Min observation time interval required to perform a peak-rate update (ns) */
186#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
187/* Target observation time interval for a peak-rate update (ns) */
188#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78 189
ea25da48
PV
190/* Shift used for peak rate fixed precision calculations. */
191#define BFQ_RATE_SHIFT 16
aee69d78 192
ea25da48
PV
193/*
194 * By default, BFQ computes the duration of the weight raising for
195 * interactive applications automatically, using the following formula:
196 * duration = (R / r) * T, where r is the peak rate of the device, and
197 * R and T are two reference parameters.
198 * In particular, R is the peak rate of the reference device (see below),
199 * and T is a reference time: given the systems that are likely to be
200 * installed on the reference device according to its speed class, T is
201 * about the maximum time needed, under BFQ and while reading two files in
202 * parallel, to load typical large applications on these systems.
203 * In practice, the slower/faster the device at hand is, the more/less it
204 * takes to load applications with respect to the reference device.
205 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
206 * applications.
207 *
208 * BFQ uses four different reference pairs (R, T), depending on:
209 * . whether the device is rotational or non-rotational;
210 * . whether the device is slow, such as old or portable HDDs, as well as
211 * SD cards, or fast, such as newer HDDs and SSDs.
212 *
213 * The device's speed class is dynamically (re)detected in
214 * bfq_update_peak_rate() every time the estimated peak rate is updated.
215 *
216 * In the following definitions, R_slow[0]/R_fast[0] and
217 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
218 * rotational device, whereas R_slow[1]/R_fast[1] and
219 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
220 * non-rotational device. Finally, device_speed_thresh are the
221 * thresholds used to switch between speed classes. The reference
222 * rates are not the actual peak rates of the devices used as a
223 * reference, but slightly lower values. The reason for using these
224 * slightly lower values is that the peak-rate estimator tends to
225 * yield slightly lower values than the actual peak rate (it can yield
226 * the actual peak rate only if there is only one process doing I/O,
227 * and the process does sequential I/O).
228 *
229 * Both the reference peak rates and the thresholds are measured in
230 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
231 */
232static int R_slow[2] = {1000, 10700};
233static int R_fast[2] = {14000, 33000};
234/*
235 * To improve readability, a conversion function is used to initialize the
236 * following arrays, which entails that they can be initialized only in a
237 * function.
238 */
239static int T_slow[2];
240static int T_fast[2];
241static int device_speed_thresh[2];
aee69d78 242
12cd3a2f 243#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
ea25da48 244#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
aee69d78 245
ea25da48 246struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
e21b7a0b 247{
ea25da48 248 return bic->bfqq[is_sync];
aee69d78
PV
249}
250
ea25da48 251void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
aee69d78 252{
ea25da48 253 bic->bfqq[is_sync] = bfqq;
aee69d78
PV
254}
255
ea25da48 256struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
aee69d78 257{
ea25da48 258 return bic->icq.q->elevator->elevator_data;
e21b7a0b 259}
aee69d78 260
ea25da48
PV
261/**
262 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
263 * @icq: the iocontext queue.
264 */
265static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
e21b7a0b 266{
ea25da48
PV
267 /* bic->icq is the first member, %NULL will convert to %NULL */
268 return container_of(icq, struct bfq_io_cq, icq);
e21b7a0b 269}
aee69d78 270
ea25da48
PV
271/**
272 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
273 * @bfqd: the lookup key.
274 * @ioc: the io_context of the process doing I/O.
275 * @q: the request queue.
276 */
277static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
278 struct io_context *ioc,
279 struct request_queue *q)
e21b7a0b 280{
ea25da48
PV
281 if (ioc) {
282 unsigned long flags;
283 struct bfq_io_cq *icq;
aee69d78 284
ea25da48
PV
285 spin_lock_irqsave(q->queue_lock, flags);
286 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
287 spin_unlock_irqrestore(q->queue_lock, flags);
aee69d78 288
ea25da48 289 return icq;
e21b7a0b 290 }
e21b7a0b 291
ea25da48 292 return NULL;
aee69d78
PV
293}
294
ea25da48
PV
295/*
296 * Scheduler run of queue, if there are requests pending and no one in the
297 * driver that will restart queueing.
298 */
299void bfq_schedule_dispatch(struct bfq_data *bfqd)
aee69d78 300{
ea25da48
PV
301 if (bfqd->queued != 0) {
302 bfq_log(bfqd, "schedule dispatch");
303 blk_mq_run_hw_queues(bfqd->queue, true);
e21b7a0b 304 }
aee69d78
PV
305}
306
307#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
308#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
309
310#define bfq_sample_valid(samples) ((samples) > 80)
311
aee69d78
PV
312/*
313 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
314 * We choose the request that is closesr to the head right now. Distance
315 * behind the head is penalized and only allowed to a certain extent.
316 */
317static struct request *bfq_choose_req(struct bfq_data *bfqd,
318 struct request *rq1,
319 struct request *rq2,
320 sector_t last)
321{
322 sector_t s1, s2, d1 = 0, d2 = 0;
323 unsigned long back_max;
324#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
325#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
326 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
327
328 if (!rq1 || rq1 == rq2)
329 return rq2;
330 if (!rq2)
331 return rq1;
332
333 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
334 return rq1;
335 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
336 return rq2;
337 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
338 return rq1;
339 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
340 return rq2;
341
342 s1 = blk_rq_pos(rq1);
343 s2 = blk_rq_pos(rq2);
344
345 /*
346 * By definition, 1KiB is 2 sectors.
347 */
348 back_max = bfqd->bfq_back_max * 2;
349
350 /*
351 * Strict one way elevator _except_ in the case where we allow
352 * short backward seeks which are biased as twice the cost of a
353 * similar forward seek.
354 */
355 if (s1 >= last)
356 d1 = s1 - last;
357 else if (s1 + back_max >= last)
358 d1 = (last - s1) * bfqd->bfq_back_penalty;
359 else
360 wrap |= BFQ_RQ1_WRAP;
361
362 if (s2 >= last)
363 d2 = s2 - last;
364 else if (s2 + back_max >= last)
365 d2 = (last - s2) * bfqd->bfq_back_penalty;
366 else
367 wrap |= BFQ_RQ2_WRAP;
368
369 /* Found required data */
370
371 /*
372 * By doing switch() on the bit mask "wrap" we avoid having to
373 * check two variables for all permutations: --> faster!
374 */
375 switch (wrap) {
376 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
377 if (d1 < d2)
378 return rq1;
379 else if (d2 < d1)
380 return rq2;
381
382 if (s1 >= s2)
383 return rq1;
384 else
385 return rq2;
386
387 case BFQ_RQ2_WRAP:
388 return rq1;
389 case BFQ_RQ1_WRAP:
390 return rq2;
391 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
392 default:
393 /*
394 * Since both rqs are wrapped,
395 * start with the one that's further behind head
396 * (--> only *one* back seek required),
397 * since back seek takes more time than forward.
398 */
399 if (s1 <= s2)
400 return rq1;
401 else
402 return rq2;
403 }
404}
405
36eca894
AA
406static struct bfq_queue *
407bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
408 sector_t sector, struct rb_node **ret_parent,
409 struct rb_node ***rb_link)
410{
411 struct rb_node **p, *parent;
412 struct bfq_queue *bfqq = NULL;
413
414 parent = NULL;
415 p = &root->rb_node;
416 while (*p) {
417 struct rb_node **n;
418
419 parent = *p;
420 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
421
422 /*
423 * Sort strictly based on sector. Smallest to the left,
424 * largest to the right.
425 */
426 if (sector > blk_rq_pos(bfqq->next_rq))
427 n = &(*p)->rb_right;
428 else if (sector < blk_rq_pos(bfqq->next_rq))
429 n = &(*p)->rb_left;
430 else
431 break;
432 p = n;
433 bfqq = NULL;
434 }
435
436 *ret_parent = parent;
437 if (rb_link)
438 *rb_link = p;
439
440 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
441 (unsigned long long)sector,
442 bfqq ? bfqq->pid : 0);
443
444 return bfqq;
445}
446
ea25da48 447void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
36eca894
AA
448{
449 struct rb_node **p, *parent;
450 struct bfq_queue *__bfqq;
451
452 if (bfqq->pos_root) {
453 rb_erase(&bfqq->pos_node, bfqq->pos_root);
454 bfqq->pos_root = NULL;
455 }
456
457 if (bfq_class_idle(bfqq))
458 return;
459 if (!bfqq->next_rq)
460 return;
461
462 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
463 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
464 blk_rq_pos(bfqq->next_rq), &parent, &p);
465 if (!__bfqq) {
466 rb_link_node(&bfqq->pos_node, parent, p);
467 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
468 } else
469 bfqq->pos_root = NULL;
470}
471
1de0c4cd
AA
472/*
473 * Tell whether there are active queues or groups with differentiated weights.
474 */
475static bool bfq_differentiated_weights(struct bfq_data *bfqd)
476{
477 /*
478 * For weights to differ, at least one of the trees must contain
479 * at least two nodes.
480 */
481 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
482 (bfqd->queue_weights_tree.rb_node->rb_left ||
483 bfqd->queue_weights_tree.rb_node->rb_right)
484#ifdef CONFIG_BFQ_GROUP_IOSCHED
485 ) ||
486 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
487 (bfqd->group_weights_tree.rb_node->rb_left ||
488 bfqd->group_weights_tree.rb_node->rb_right)
489#endif
490 );
491}
492
493/*
494 * The following function returns true if every queue must receive the
495 * same share of the throughput (this condition is used when deciding
496 * whether idling may be disabled, see the comments in the function
497 * bfq_bfqq_may_idle()).
498 *
499 * Such a scenario occurs when:
500 * 1) all active queues have the same weight,
501 * 2) all active groups at the same level in the groups tree have the same
502 * weight,
503 * 3) all active groups at the same level in the groups tree have the same
504 * number of children.
505 *
506 * Unfortunately, keeping the necessary state for evaluating exactly the
507 * above symmetry conditions would be quite complex and time-consuming.
508 * Therefore this function evaluates, instead, the following stronger
509 * sub-conditions, for which it is much easier to maintain the needed
510 * state:
511 * 1) all active queues have the same weight,
512 * 2) all active groups have the same weight,
513 * 3) all active groups have at most one active child each.
514 * In particular, the last two conditions are always true if hierarchical
515 * support and the cgroups interface are not enabled, thus no state needs
516 * to be maintained in this case.
517 */
518static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
519{
520 return !bfq_differentiated_weights(bfqd);
521}
522
523/*
524 * If the weight-counter tree passed as input contains no counter for
525 * the weight of the input entity, then add that counter; otherwise just
526 * increment the existing counter.
527 *
528 * Note that weight-counter trees contain few nodes in mostly symmetric
529 * scenarios. For example, if all queues have the same weight, then the
530 * weight-counter tree for the queues may contain at most one node.
531 * This holds even if low_latency is on, because weight-raised queues
532 * are not inserted in the tree.
533 * In most scenarios, the rate at which nodes are created/destroyed
534 * should be low too.
535 */
ea25da48
PV
536void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
537 struct rb_root *root)
1de0c4cd
AA
538{
539 struct rb_node **new = &(root->rb_node), *parent = NULL;
540
541 /*
542 * Do not insert if the entity is already associated with a
543 * counter, which happens if:
544 * 1) the entity is associated with a queue,
545 * 2) a request arrival has caused the queue to become both
546 * non-weight-raised, and hence change its weight, and
547 * backlogged; in this respect, each of the two events
548 * causes an invocation of this function,
549 * 3) this is the invocation of this function caused by the
550 * second event. This second invocation is actually useless,
551 * and we handle this fact by exiting immediately. More
552 * efficient or clearer solutions might possibly be adopted.
553 */
554 if (entity->weight_counter)
555 return;
556
557 while (*new) {
558 struct bfq_weight_counter *__counter = container_of(*new,
559 struct bfq_weight_counter,
560 weights_node);
561 parent = *new;
562
563 if (entity->weight == __counter->weight) {
564 entity->weight_counter = __counter;
565 goto inc_counter;
566 }
567 if (entity->weight < __counter->weight)
568 new = &((*new)->rb_left);
569 else
570 new = &((*new)->rb_right);
571 }
572
573 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
574 GFP_ATOMIC);
575
576 /*
577 * In the unlucky event of an allocation failure, we just
578 * exit. This will cause the weight of entity to not be
579 * considered in bfq_differentiated_weights, which, in its
580 * turn, causes the scenario to be deemed wrongly symmetric in
581 * case entity's weight would have been the only weight making
582 * the scenario asymmetric. On the bright side, no unbalance
583 * will however occur when entity becomes inactive again (the
584 * invocation of this function is triggered by an activation
585 * of entity). In fact, bfq_weights_tree_remove does nothing
586 * if !entity->weight_counter.
587 */
588 if (unlikely(!entity->weight_counter))
589 return;
590
591 entity->weight_counter->weight = entity->weight;
592 rb_link_node(&entity->weight_counter->weights_node, parent, new);
593 rb_insert_color(&entity->weight_counter->weights_node, root);
594
595inc_counter:
596 entity->weight_counter->num_active++;
597}
598
599/*
600 * Decrement the weight counter associated with the entity, and, if the
601 * counter reaches 0, remove the counter from the tree.
602 * See the comments to the function bfq_weights_tree_add() for considerations
603 * about overhead.
604 */
ea25da48
PV
605void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
606 struct rb_root *root)
1de0c4cd
AA
607{
608 if (!entity->weight_counter)
609 return;
610
611 entity->weight_counter->num_active--;
612 if (entity->weight_counter->num_active > 0)
613 goto reset_entity_pointer;
614
615 rb_erase(&entity->weight_counter->weights_node, root);
616 kfree(entity->weight_counter);
617
618reset_entity_pointer:
619 entity->weight_counter = NULL;
620}
621
aee69d78
PV
622/*
623 * Return expired entry, or NULL to just start from scratch in rbtree.
624 */
625static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
626 struct request *last)
627{
628 struct request *rq;
629
630 if (bfq_bfqq_fifo_expire(bfqq))
631 return NULL;
632
633 bfq_mark_bfqq_fifo_expire(bfqq);
634
635 rq = rq_entry_fifo(bfqq->fifo.next);
636
637 if (rq == last || ktime_get_ns() < rq->fifo_time)
638 return NULL;
639
640 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
641 return rq;
642}
643
644static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
645 struct bfq_queue *bfqq,
646 struct request *last)
647{
648 struct rb_node *rbnext = rb_next(&last->rb_node);
649 struct rb_node *rbprev = rb_prev(&last->rb_node);
650 struct request *next, *prev = NULL;
651
652 /* Follow expired path, else get first next available. */
653 next = bfq_check_fifo(bfqq, last);
654 if (next)
655 return next;
656
657 if (rbprev)
658 prev = rb_entry_rq(rbprev);
659
660 if (rbnext)
661 next = rb_entry_rq(rbnext);
662 else {
663 rbnext = rb_first(&bfqq->sort_list);
664 if (rbnext && rbnext != &last->rb_node)
665 next = rb_entry_rq(rbnext);
666 }
667
668 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
669}
670
c074170e 671/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
672static unsigned long bfq_serv_to_charge(struct request *rq,
673 struct bfq_queue *bfqq)
674{
44e44a1b 675 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
676 return blk_rq_sectors(rq);
677
cfd69712
PV
678 /*
679 * If there are no weight-raised queues, then amplify service
680 * by just the async charge factor; otherwise amplify service
681 * by twice the async charge factor, to further reduce latency
682 * for weight-raised queues.
683 */
684 if (bfqq->bfqd->wr_busy_queues == 0)
685 return blk_rq_sectors(rq) * bfq_async_charge_factor;
686
687 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
688}
689
690/**
691 * bfq_updated_next_req - update the queue after a new next_rq selection.
692 * @bfqd: the device data the queue belongs to.
693 * @bfqq: the queue to update.
694 *
695 * If the first request of a queue changes we make sure that the queue
696 * has enough budget to serve at least its first request (if the
697 * request has grown). We do this because if the queue has not enough
698 * budget for its first request, it has to go through two dispatch
699 * rounds to actually get it dispatched.
700 */
701static void bfq_updated_next_req(struct bfq_data *bfqd,
702 struct bfq_queue *bfqq)
703{
704 struct bfq_entity *entity = &bfqq->entity;
705 struct request *next_rq = bfqq->next_rq;
706 unsigned long new_budget;
707
708 if (!next_rq)
709 return;
710
711 if (bfqq == bfqd->in_service_queue)
712 /*
713 * In order not to break guarantees, budgets cannot be
714 * changed after an entity has been selected.
715 */
716 return;
717
718 new_budget = max_t(unsigned long, bfqq->max_budget,
719 bfq_serv_to_charge(next_rq, bfqq));
720 if (entity->budget != new_budget) {
721 entity->budget = new_budget;
722 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
723 new_budget);
80294c3b 724 bfq_requeue_bfqq(bfqd, bfqq, false);
aee69d78
PV
725 }
726}
727
36eca894 728static void
13c931bd
PV
729bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
730 struct bfq_io_cq *bic, bool bfq_already_existing)
36eca894 731{
13c931bd
PV
732 unsigned int old_wr_coeff = bfqq->wr_coeff;
733 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
734
d5be3fef
PV
735 if (bic->saved_has_short_ttime)
736 bfq_mark_bfqq_has_short_ttime(bfqq);
36eca894 737 else
d5be3fef 738 bfq_clear_bfqq_has_short_ttime(bfqq);
36eca894
AA
739
740 if (bic->saved_IO_bound)
741 bfq_mark_bfqq_IO_bound(bfqq);
742 else
743 bfq_clear_bfqq_IO_bound(bfqq);
744
745 bfqq->ttime = bic->saved_ttime;
746 bfqq->wr_coeff = bic->saved_wr_coeff;
747 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
748 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
749 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
750
e1b2324d 751 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 752 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 753 bfqq->wr_cur_max_time))) {
36eca894
AA
754 bfq_log_bfqq(bfqq->bfqd, bfqq,
755 "resume state: switching off wr");
756
757 bfqq->wr_coeff = 1;
758 }
759
760 /* make sure weight will be updated, however we got here */
761 bfqq->entity.prio_changed = 1;
13c931bd
PV
762
763 if (likely(!busy))
764 return;
765
766 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
767 bfqd->wr_busy_queues++;
768 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
769 bfqd->wr_busy_queues--;
36eca894
AA
770}
771
772static int bfqq_process_refs(struct bfq_queue *bfqq)
773{
774 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
775}
776
e1b2324d
AA
777/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
778static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
779{
780 struct bfq_queue *item;
781 struct hlist_node *n;
782
783 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
784 hlist_del_init(&item->burst_list_node);
785 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
786 bfqd->burst_size = 1;
787 bfqd->burst_parent_entity = bfqq->entity.parent;
788}
789
790/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
791static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
792{
793 /* Increment burst size to take into account also bfqq */
794 bfqd->burst_size++;
795
796 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
797 struct bfq_queue *pos, *bfqq_item;
798 struct hlist_node *n;
799
800 /*
801 * Enough queues have been activated shortly after each
802 * other to consider this burst as large.
803 */
804 bfqd->large_burst = true;
805
806 /*
807 * We can now mark all queues in the burst list as
808 * belonging to a large burst.
809 */
810 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
811 burst_list_node)
812 bfq_mark_bfqq_in_large_burst(bfqq_item);
813 bfq_mark_bfqq_in_large_burst(bfqq);
814
815 /*
816 * From now on, and until the current burst finishes, any
817 * new queue being activated shortly after the last queue
818 * was inserted in the burst can be immediately marked as
819 * belonging to a large burst. So the burst list is not
820 * needed any more. Remove it.
821 */
822 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
823 burst_list_node)
824 hlist_del_init(&pos->burst_list_node);
825 } else /*
826 * Burst not yet large: add bfqq to the burst list. Do
827 * not increment the ref counter for bfqq, because bfqq
828 * is removed from the burst list before freeing bfqq
829 * in put_queue.
830 */
831 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
832}
833
834/*
835 * If many queues belonging to the same group happen to be created
836 * shortly after each other, then the processes associated with these
837 * queues have typically a common goal. In particular, bursts of queue
838 * creations are usually caused by services or applications that spawn
839 * many parallel threads/processes. Examples are systemd during boot,
840 * or git grep. To help these processes get their job done as soon as
841 * possible, it is usually better to not grant either weight-raising
842 * or device idling to their queues.
843 *
844 * In this comment we describe, firstly, the reasons why this fact
845 * holds, and, secondly, the next function, which implements the main
846 * steps needed to properly mark these queues so that they can then be
847 * treated in a different way.
848 *
849 * The above services or applications benefit mostly from a high
850 * throughput: the quicker the requests of the activated queues are
851 * cumulatively served, the sooner the target job of these queues gets
852 * completed. As a consequence, weight-raising any of these queues,
853 * which also implies idling the device for it, is almost always
854 * counterproductive. In most cases it just lowers throughput.
855 *
856 * On the other hand, a burst of queue creations may be caused also by
857 * the start of an application that does not consist of a lot of
858 * parallel I/O-bound threads. In fact, with a complex application,
859 * several short processes may need to be executed to start-up the
860 * application. In this respect, to start an application as quickly as
861 * possible, the best thing to do is in any case to privilege the I/O
862 * related to the application with respect to all other
863 * I/O. Therefore, the best strategy to start as quickly as possible
864 * an application that causes a burst of queue creations is to
865 * weight-raise all the queues created during the burst. This is the
866 * exact opposite of the best strategy for the other type of bursts.
867 *
868 * In the end, to take the best action for each of the two cases, the
869 * two types of bursts need to be distinguished. Fortunately, this
870 * seems relatively easy, by looking at the sizes of the bursts. In
871 * particular, we found a threshold such that only bursts with a
872 * larger size than that threshold are apparently caused by
873 * services or commands such as systemd or git grep. For brevity,
874 * hereafter we call just 'large' these bursts. BFQ *does not*
875 * weight-raise queues whose creation occurs in a large burst. In
876 * addition, for each of these queues BFQ performs or does not perform
877 * idling depending on which choice boosts the throughput more. The
878 * exact choice depends on the device and request pattern at
879 * hand.
880 *
881 * Unfortunately, false positives may occur while an interactive task
882 * is starting (e.g., an application is being started). The
883 * consequence is that the queues associated with the task do not
884 * enjoy weight raising as expected. Fortunately these false positives
885 * are very rare. They typically occur if some service happens to
886 * start doing I/O exactly when the interactive task starts.
887 *
888 * Turning back to the next function, it implements all the steps
889 * needed to detect the occurrence of a large burst and to properly
890 * mark all the queues belonging to it (so that they can then be
891 * treated in a different way). This goal is achieved by maintaining a
892 * "burst list" that holds, temporarily, the queues that belong to the
893 * burst in progress. The list is then used to mark these queues as
894 * belonging to a large burst if the burst does become large. The main
895 * steps are the following.
896 *
897 * . when the very first queue is created, the queue is inserted into the
898 * list (as it could be the first queue in a possible burst)
899 *
900 * . if the current burst has not yet become large, and a queue Q that does
901 * not yet belong to the burst is activated shortly after the last time
902 * at which a new queue entered the burst list, then the function appends
903 * Q to the burst list
904 *
905 * . if, as a consequence of the previous step, the burst size reaches
906 * the large-burst threshold, then
907 *
908 * . all the queues in the burst list are marked as belonging to a
909 * large burst
910 *
911 * . the burst list is deleted; in fact, the burst list already served
912 * its purpose (keeping temporarily track of the queues in a burst,
913 * so as to be able to mark them as belonging to a large burst in the
914 * previous sub-step), and now is not needed any more
915 *
916 * . the device enters a large-burst mode
917 *
918 * . if a queue Q that does not belong to the burst is created while
919 * the device is in large-burst mode and shortly after the last time
920 * at which a queue either entered the burst list or was marked as
921 * belonging to the current large burst, then Q is immediately marked
922 * as belonging to a large burst.
923 *
924 * . if a queue Q that does not belong to the burst is created a while
925 * later, i.e., not shortly after, than the last time at which a queue
926 * either entered the burst list or was marked as belonging to the
927 * current large burst, then the current burst is deemed as finished and:
928 *
929 * . the large-burst mode is reset if set
930 *
931 * . the burst list is emptied
932 *
933 * . Q is inserted in the burst list, as Q may be the first queue
934 * in a possible new burst (then the burst list contains just Q
935 * after this step).
936 */
937static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
938{
939 /*
940 * If bfqq is already in the burst list or is part of a large
941 * burst, or finally has just been split, then there is
942 * nothing else to do.
943 */
944 if (!hlist_unhashed(&bfqq->burst_list_node) ||
945 bfq_bfqq_in_large_burst(bfqq) ||
946 time_is_after_eq_jiffies(bfqq->split_time +
947 msecs_to_jiffies(10)))
948 return;
949
950 /*
951 * If bfqq's creation happens late enough, or bfqq belongs to
952 * a different group than the burst group, then the current
953 * burst is finished, and related data structures must be
954 * reset.
955 *
956 * In this respect, consider the special case where bfqq is
957 * the very first queue created after BFQ is selected for this
958 * device. In this case, last_ins_in_burst and
959 * burst_parent_entity are not yet significant when we get
960 * here. But it is easy to verify that, whether or not the
961 * following condition is true, bfqq will end up being
962 * inserted into the burst list. In particular the list will
963 * happen to contain only bfqq. And this is exactly what has
964 * to happen, as bfqq may be the first queue of the first
965 * burst.
966 */
967 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
968 bfqd->bfq_burst_interval) ||
969 bfqq->entity.parent != bfqd->burst_parent_entity) {
970 bfqd->large_burst = false;
971 bfq_reset_burst_list(bfqd, bfqq);
972 goto end;
973 }
974
975 /*
976 * If we get here, then bfqq is being activated shortly after the
977 * last queue. So, if the current burst is also large, we can mark
978 * bfqq as belonging to this large burst immediately.
979 */
980 if (bfqd->large_burst) {
981 bfq_mark_bfqq_in_large_burst(bfqq);
982 goto end;
983 }
984
985 /*
986 * If we get here, then a large-burst state has not yet been
987 * reached, but bfqq is being activated shortly after the last
988 * queue. Then we add bfqq to the burst.
989 */
990 bfq_add_to_burst(bfqd, bfqq);
991end:
992 /*
993 * At this point, bfqq either has been added to the current
994 * burst or has caused the current burst to terminate and a
995 * possible new burst to start. In particular, in the second
996 * case, bfqq has become the first queue in the possible new
997 * burst. In both cases last_ins_in_burst needs to be moved
998 * forward.
999 */
1000 bfqd->last_ins_in_burst = jiffies;
1001}
1002
aee69d78
PV
1003static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1004{
1005 struct bfq_entity *entity = &bfqq->entity;
1006
1007 return entity->budget - entity->service;
1008}
1009
1010/*
1011 * If enough samples have been computed, return the current max budget
1012 * stored in bfqd, which is dynamically updated according to the
1013 * estimated disk peak rate; otherwise return the default max budget
1014 */
1015static int bfq_max_budget(struct bfq_data *bfqd)
1016{
1017 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1018 return bfq_default_max_budget;
1019 else
1020 return bfqd->bfq_max_budget;
1021}
1022
1023/*
1024 * Return min budget, which is a fraction of the current or default
1025 * max budget (trying with 1/32)
1026 */
1027static int bfq_min_budget(struct bfq_data *bfqd)
1028{
1029 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1030 return bfq_default_max_budget / 32;
1031 else
1032 return bfqd->bfq_max_budget / 32;
1033}
1034
aee69d78
PV
1035/*
1036 * The next function, invoked after the input queue bfqq switches from
1037 * idle to busy, updates the budget of bfqq. The function also tells
1038 * whether the in-service queue should be expired, by returning
1039 * true. The purpose of expiring the in-service queue is to give bfqq
1040 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
1041 * for preempting the in-service queue is to achieve one of the two
1042 * goals below.
aee69d78 1043 *
44e44a1b
PV
1044 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1045 * expired because it has remained idle. In particular, bfqq may have
1046 * expired for one of the following two reasons:
aee69d78
PV
1047 *
1048 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1049 * and did not make it to issue a new request before its last
1050 * request was served;
1051 *
1052 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1053 * a new request before the expiration of the idling-time.
1054 *
1055 * Even if bfqq has expired for one of the above reasons, the process
1056 * associated with the queue may be however issuing requests greedily,
1057 * and thus be sensitive to the bandwidth it receives (bfqq may have
1058 * remained idle for other reasons: CPU high load, bfqq not enjoying
1059 * idling, I/O throttling somewhere in the path from the process to
1060 * the I/O scheduler, ...). But if, after every expiration for one of
1061 * the above two reasons, bfqq has to wait for the service of at least
1062 * one full budget of another queue before being served again, then
1063 * bfqq is likely to get a much lower bandwidth or resource time than
1064 * its reserved ones. To address this issue, two countermeasures need
1065 * to be taken.
1066 *
1067 * First, the budget and the timestamps of bfqq need to be updated in
1068 * a special way on bfqq reactivation: they need to be updated as if
1069 * bfqq did not remain idle and did not expire. In fact, if they are
1070 * computed as if bfqq expired and remained idle until reactivation,
1071 * then the process associated with bfqq is treated as if, instead of
1072 * being greedy, it stopped issuing requests when bfqq remained idle,
1073 * and restarts issuing requests only on this reactivation. In other
1074 * words, the scheduler does not help the process recover the "service
1075 * hole" between bfqq expiration and reactivation. As a consequence,
1076 * the process receives a lower bandwidth than its reserved one. In
1077 * contrast, to recover this hole, the budget must be updated as if
1078 * bfqq was not expired at all before this reactivation, i.e., it must
1079 * be set to the value of the remaining budget when bfqq was
1080 * expired. Along the same line, timestamps need to be assigned the
1081 * value they had the last time bfqq was selected for service, i.e.,
1082 * before last expiration. Thus timestamps need to be back-shifted
1083 * with respect to their normal computation (see [1] for more details
1084 * on this tricky aspect).
1085 *
1086 * Secondly, to allow the process to recover the hole, the in-service
1087 * queue must be expired too, to give bfqq the chance to preempt it
1088 * immediately. In fact, if bfqq has to wait for a full budget of the
1089 * in-service queue to be completed, then it may become impossible to
1090 * let the process recover the hole, even if the back-shifted
1091 * timestamps of bfqq are lower than those of the in-service queue. If
1092 * this happens for most or all of the holes, then the process may not
1093 * receive its reserved bandwidth. In this respect, it is worth noting
1094 * that, being the service of outstanding requests unpreemptible, a
1095 * little fraction of the holes may however be unrecoverable, thereby
1096 * causing a little loss of bandwidth.
1097 *
1098 * The last important point is detecting whether bfqq does need this
1099 * bandwidth recovery. In this respect, the next function deems the
1100 * process associated with bfqq greedy, and thus allows it to recover
1101 * the hole, if: 1) the process is waiting for the arrival of a new
1102 * request (which implies that bfqq expired for one of the above two
1103 * reasons), and 2) such a request has arrived soon. The first
1104 * condition is controlled through the flag non_blocking_wait_rq,
1105 * while the second through the flag arrived_in_time. If both
1106 * conditions hold, then the function computes the budget in the
1107 * above-described special way, and signals that the in-service queue
1108 * should be expired. Timestamp back-shifting is done later in
1109 * __bfq_activate_entity.
44e44a1b
PV
1110 *
1111 * 2. Reduce latency. Even if timestamps are not backshifted to let
1112 * the process associated with bfqq recover a service hole, bfqq may
1113 * however happen to have, after being (re)activated, a lower finish
1114 * timestamp than the in-service queue. That is, the next budget of
1115 * bfqq may have to be completed before the one of the in-service
1116 * queue. If this is the case, then preempting the in-service queue
1117 * allows this goal to be achieved, apart from the unpreemptible,
1118 * outstanding requests mentioned above.
1119 *
1120 * Unfortunately, regardless of which of the above two goals one wants
1121 * to achieve, service trees need first to be updated to know whether
1122 * the in-service queue must be preempted. To have service trees
1123 * correctly updated, the in-service queue must be expired and
1124 * rescheduled, and bfqq must be scheduled too. This is one of the
1125 * most costly operations (in future versions, the scheduling
1126 * mechanism may be re-designed in such a way to make it possible to
1127 * know whether preemption is needed without needing to update service
1128 * trees). In addition, queue preemptions almost always cause random
1129 * I/O, and thus loss of throughput. Because of these facts, the next
1130 * function adopts the following simple scheme to avoid both costly
1131 * operations and too frequent preemptions: it requests the expiration
1132 * of the in-service queue (unconditionally) only for queues that need
1133 * to recover a hole, or that either are weight-raised or deserve to
1134 * be weight-raised.
aee69d78
PV
1135 */
1136static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1137 struct bfq_queue *bfqq,
44e44a1b
PV
1138 bool arrived_in_time,
1139 bool wr_or_deserves_wr)
aee69d78
PV
1140{
1141 struct bfq_entity *entity = &bfqq->entity;
1142
1143 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1144 /*
1145 * We do not clear the flag non_blocking_wait_rq here, as
1146 * the latter is used in bfq_activate_bfqq to signal
1147 * that timestamps need to be back-shifted (and is
1148 * cleared right after).
1149 */
1150
1151 /*
1152 * In next assignment we rely on that either
1153 * entity->service or entity->budget are not updated
1154 * on expiration if bfqq is empty (see
1155 * __bfq_bfqq_recalc_budget). Thus both quantities
1156 * remain unchanged after such an expiration, and the
1157 * following statement therefore assigns to
1158 * entity->budget the remaining budget on such an
1159 * expiration. For clarity, entity->service is not
1160 * updated on expiration in any case, and, in normal
1161 * operation, is reset only when bfqq is selected for
1162 * service (see bfq_get_next_queue).
1163 */
1164 entity->budget = min_t(unsigned long,
1165 bfq_bfqq_budget_left(bfqq),
1166 bfqq->max_budget);
1167
1168 return true;
1169 }
1170
1171 entity->budget = max_t(unsigned long, bfqq->max_budget,
1172 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1173 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
1174 return wr_or_deserves_wr;
1175}
1176
1177static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1178{
1179 u64 dur;
1180
1181 if (bfqd->bfq_wr_max_time > 0)
1182 return bfqd->bfq_wr_max_time;
1183
1184 dur = bfqd->RT_prod;
1185 do_div(dur, bfqd->peak_rate);
1186
1187 /*
1188 * Limit duration between 3 and 13 seconds. Tests show that
1189 * higher values than 13 seconds often yield the opposite of
1190 * the desired result, i.e., worsen responsiveness by letting
1191 * non-interactive and non-soft-real-time applications
1192 * preserve weight raising for a too long time interval.
1193 *
1194 * On the other end, lower values than 3 seconds make it
1195 * difficult for most interactive tasks to complete their jobs
1196 * before weight-raising finishes.
1197 */
1198 if (dur > msecs_to_jiffies(13000))
1199 dur = msecs_to_jiffies(13000);
1200 else if (dur < msecs_to_jiffies(3000))
1201 dur = msecs_to_jiffies(3000);
1202
1203 return dur;
1204}
1205
1a2d9921
PV
1206/*
1207 * Return the farthest future time instant according to jiffies
1208 * macros.
1209 */
1210static unsigned long bfq_greatest_from_now(void)
1211{
1212 return jiffies + MAX_JIFFY_OFFSET;
1213}
1214
1215/*
1216 * Return the farthest past time instant according to jiffies
1217 * macros.
1218 */
1219static unsigned long bfq_smallest_from_now(void)
1220{
1221 return jiffies - MAX_JIFFY_OFFSET;
1222}
1223
44e44a1b
PV
1224static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1225 struct bfq_queue *bfqq,
1226 unsigned int old_wr_coeff,
1227 bool wr_or_deserves_wr,
77b7dcea 1228 bool interactive,
e1b2324d 1229 bool in_burst,
77b7dcea 1230 bool soft_rt)
44e44a1b
PV
1231{
1232 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1233 /* start a weight-raising period */
77b7dcea
PV
1234 if (interactive) {
1235 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1236 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1237 } else {
1a2d9921
PV
1238 /*
1239 * No interactive weight raising in progress
1240 * here: assign minus infinity to
1241 * wr_start_at_switch_to_srt, to make sure
1242 * that, at the end of the soft-real-time
1243 * weight raising periods that is starting
1244 * now, no interactive weight-raising period
1245 * may be wrongly considered as still in
1246 * progress (and thus actually started by
1247 * mistake).
1248 */
1249 bfqq->wr_start_at_switch_to_srt =
1250 bfq_smallest_from_now();
77b7dcea
PV
1251 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1252 BFQ_SOFTRT_WEIGHT_FACTOR;
1253 bfqq->wr_cur_max_time =
1254 bfqd->bfq_wr_rt_max_time;
1255 }
44e44a1b
PV
1256
1257 /*
1258 * If needed, further reduce budget to make sure it is
1259 * close to bfqq's backlog, so as to reduce the
1260 * scheduling-error component due to a too large
1261 * budget. Do not care about throughput consequences,
1262 * but only about latency. Finally, do not assign a
1263 * too small budget either, to avoid increasing
1264 * latency by causing too frequent expirations.
1265 */
1266 bfqq->entity.budget = min_t(unsigned long,
1267 bfqq->entity.budget,
1268 2 * bfq_min_budget(bfqd));
1269 } else if (old_wr_coeff > 1) {
77b7dcea
PV
1270 if (interactive) { /* update wr coeff and duration */
1271 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1272 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
1273 } else if (in_burst)
1274 bfqq->wr_coeff = 1;
1275 else if (soft_rt) {
77b7dcea
PV
1276 /*
1277 * The application is now or still meeting the
1278 * requirements for being deemed soft rt. We
1279 * can then correctly and safely (re)charge
1280 * the weight-raising duration for the
1281 * application with the weight-raising
1282 * duration for soft rt applications.
1283 *
1284 * In particular, doing this recharge now, i.e.,
1285 * before the weight-raising period for the
1286 * application finishes, reduces the probability
1287 * of the following negative scenario:
1288 * 1) the weight of a soft rt application is
1289 * raised at startup (as for any newly
1290 * created application),
1291 * 2) since the application is not interactive,
1292 * at a certain time weight-raising is
1293 * stopped for the application,
1294 * 3) at that time the application happens to
1295 * still have pending requests, and hence
1296 * is destined to not have a chance to be
1297 * deemed soft rt before these requests are
1298 * completed (see the comments to the
1299 * function bfq_bfqq_softrt_next_start()
1300 * for details on soft rt detection),
1301 * 4) these pending requests experience a high
1302 * latency because the application is not
1303 * weight-raised while they are pending.
1304 */
1305 if (bfqq->wr_cur_max_time !=
1306 bfqd->bfq_wr_rt_max_time) {
1307 bfqq->wr_start_at_switch_to_srt =
1308 bfqq->last_wr_start_finish;
1309
1310 bfqq->wr_cur_max_time =
1311 bfqd->bfq_wr_rt_max_time;
1312 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1313 BFQ_SOFTRT_WEIGHT_FACTOR;
1314 }
1315 bfqq->last_wr_start_finish = jiffies;
1316 }
44e44a1b
PV
1317 }
1318}
1319
1320static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1321 struct bfq_queue *bfqq)
1322{
1323 return bfqq->dispatched == 0 &&
1324 time_is_before_jiffies(
1325 bfqq->budget_timeout +
1326 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
1327}
1328
1329static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1330 struct bfq_queue *bfqq,
44e44a1b
PV
1331 int old_wr_coeff,
1332 struct request *rq,
1333 bool *interactive)
aee69d78 1334{
e1b2324d
AA
1335 bool soft_rt, in_burst, wr_or_deserves_wr,
1336 bfqq_wants_to_preempt,
44e44a1b 1337 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
1338 /*
1339 * See the comments on
1340 * bfq_bfqq_update_budg_for_activation for
1341 * details on the usage of the next variable.
1342 */
1343 arrived_in_time = ktime_get_ns() <=
1344 bfqq->ttime.last_end_request +
1345 bfqd->bfq_slice_idle * 3;
1346
e21b7a0b
AA
1347 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
1348
aee69d78 1349 /*
44e44a1b
PV
1350 * bfqq deserves to be weight-raised if:
1351 * - it is sync,
e1b2324d 1352 * - it does not belong to a large burst,
36eca894
AA
1353 * - it has been idle for enough time or is soft real-time,
1354 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 1355 */
e1b2324d 1356 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 1357 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 1358 !in_burst &&
77b7dcea 1359 time_is_before_jiffies(bfqq->soft_rt_next_start);
e1b2324d 1360 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
1361 wr_or_deserves_wr = bfqd->low_latency &&
1362 (bfqq->wr_coeff > 1 ||
36eca894
AA
1363 (bfq_bfqq_sync(bfqq) &&
1364 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
1365
1366 /*
1367 * Using the last flag, update budget and check whether bfqq
1368 * may want to preempt the in-service queue.
aee69d78
PV
1369 */
1370 bfqq_wants_to_preempt =
1371 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
1372 arrived_in_time,
1373 wr_or_deserves_wr);
aee69d78 1374
e1b2324d
AA
1375 /*
1376 * If bfqq happened to be activated in a burst, but has been
1377 * idle for much more than an interactive queue, then we
1378 * assume that, in the overall I/O initiated in the burst, the
1379 * I/O associated with bfqq is finished. So bfqq does not need
1380 * to be treated as a queue belonging to a burst
1381 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1382 * if set, and remove bfqq from the burst list if it's
1383 * there. We do not decrement burst_size, because the fact
1384 * that bfqq does not need to belong to the burst list any
1385 * more does not invalidate the fact that bfqq was created in
1386 * a burst.
1387 */
1388 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1389 idle_for_long_time &&
1390 time_is_before_jiffies(
1391 bfqq->budget_timeout +
1392 msecs_to_jiffies(10000))) {
1393 hlist_del_init(&bfqq->burst_list_node);
1394 bfq_clear_bfqq_in_large_burst(bfqq);
1395 }
1396
1397 bfq_clear_bfqq_just_created(bfqq);
1398
1399
aee69d78
PV
1400 if (!bfq_bfqq_IO_bound(bfqq)) {
1401 if (arrived_in_time) {
1402 bfqq->requests_within_timer++;
1403 if (bfqq->requests_within_timer >=
1404 bfqd->bfq_requests_within_timer)
1405 bfq_mark_bfqq_IO_bound(bfqq);
1406 } else
1407 bfqq->requests_within_timer = 0;
1408 }
1409
44e44a1b 1410 if (bfqd->low_latency) {
36eca894
AA
1411 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1412 /* wraparound */
1413 bfqq->split_time =
1414 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1415
1416 if (time_is_before_jiffies(bfqq->split_time +
1417 bfqd->bfq_wr_min_idle_time)) {
1418 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1419 old_wr_coeff,
1420 wr_or_deserves_wr,
1421 *interactive,
e1b2324d 1422 in_burst,
36eca894
AA
1423 soft_rt);
1424
1425 if (old_wr_coeff != bfqq->wr_coeff)
1426 bfqq->entity.prio_changed = 1;
1427 }
44e44a1b
PV
1428 }
1429
77b7dcea
PV
1430 bfqq->last_idle_bklogged = jiffies;
1431 bfqq->service_from_backlogged = 0;
1432 bfq_clear_bfqq_softrt_update(bfqq);
1433
aee69d78
PV
1434 bfq_add_bfqq_busy(bfqd, bfqq);
1435
1436 /*
1437 * Expire in-service queue only if preemption may be needed
1438 * for guarantees. In this respect, the function
1439 * next_queue_may_preempt just checks a simple, necessary
1440 * condition, and not a sufficient condition based on
1441 * timestamps. In fact, for the latter condition to be
1442 * evaluated, timestamps would need first to be updated, and
1443 * this operation is quite costly (see the comments on the
1444 * function bfq_bfqq_update_budg_for_activation).
1445 */
1446 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 1447 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
1448 next_queue_may_preempt(bfqd))
1449 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1450 false, BFQQE_PREEMPTED);
1451}
1452
1453static void bfq_add_request(struct request *rq)
1454{
1455 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1456 struct bfq_data *bfqd = bfqq->bfqd;
1457 struct request *next_rq, *prev;
44e44a1b
PV
1458 unsigned int old_wr_coeff = bfqq->wr_coeff;
1459 bool interactive = false;
aee69d78
PV
1460
1461 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1462 bfqq->queued[rq_is_sync(rq)]++;
1463 bfqd->queued++;
1464
1465 elv_rb_add(&bfqq->sort_list, rq);
1466
1467 /*
1468 * Check if this request is a better next-serve candidate.
1469 */
1470 prev = bfqq->next_rq;
1471 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1472 bfqq->next_rq = next_rq;
1473
36eca894
AA
1474 /*
1475 * Adjust priority tree position, if next_rq changes.
1476 */
1477 if (prev != bfqq->next_rq)
1478 bfq_pos_tree_add_move(bfqd, bfqq);
1479
aee69d78 1480 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
1481 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1482 rq, &interactive);
1483 else {
1484 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1485 time_is_before_jiffies(
1486 bfqq->last_wr_start_finish +
1487 bfqd->bfq_wr_min_inter_arr_async)) {
1488 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1489 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1490
cfd69712 1491 bfqd->wr_busy_queues++;
44e44a1b
PV
1492 bfqq->entity.prio_changed = 1;
1493 }
1494 if (prev != bfqq->next_rq)
1495 bfq_updated_next_req(bfqd, bfqq);
1496 }
1497
1498 /*
1499 * Assign jiffies to last_wr_start_finish in the following
1500 * cases:
1501 *
1502 * . if bfqq is not going to be weight-raised, because, for
1503 * non weight-raised queues, last_wr_start_finish stores the
1504 * arrival time of the last request; as of now, this piece
1505 * of information is used only for deciding whether to
1506 * weight-raise async queues
1507 *
1508 * . if bfqq is not weight-raised, because, if bfqq is now
1509 * switching to weight-raised, then last_wr_start_finish
1510 * stores the time when weight-raising starts
1511 *
1512 * . if bfqq is interactive, because, regardless of whether
1513 * bfqq is currently weight-raised, the weight-raising
1514 * period must start or restart (this case is considered
1515 * separately because it is not detected by the above
1516 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
1517 *
1518 * last_wr_start_finish has to be updated also if bfqq is soft
1519 * real-time, because the weight-raising period is constantly
1520 * restarted on idle-to-busy transitions for these queues, but
1521 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1522 * needed.
44e44a1b
PV
1523 */
1524 if (bfqd->low_latency &&
1525 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1526 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
1527}
1528
1529static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1530 struct bio *bio,
1531 struct request_queue *q)
1532{
1533 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1534
1535
1536 if (bfqq)
1537 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1538
1539 return NULL;
1540}
1541
ab0e43e9
PV
1542static sector_t get_sdist(sector_t last_pos, struct request *rq)
1543{
1544 if (last_pos)
1545 return abs(blk_rq_pos(rq) - last_pos);
1546
1547 return 0;
1548}
1549
aee69d78
PV
1550#if 0 /* Still not clear if we can do without next two functions */
1551static void bfq_activate_request(struct request_queue *q, struct request *rq)
1552{
1553 struct bfq_data *bfqd = q->elevator->elevator_data;
1554
1555 bfqd->rq_in_driver++;
aee69d78
PV
1556}
1557
1558static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1559{
1560 struct bfq_data *bfqd = q->elevator->elevator_data;
1561
1562 bfqd->rq_in_driver--;
1563}
1564#endif
1565
1566static void bfq_remove_request(struct request_queue *q,
1567 struct request *rq)
1568{
1569 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1570 struct bfq_data *bfqd = bfqq->bfqd;
1571 const int sync = rq_is_sync(rq);
1572
1573 if (bfqq->next_rq == rq) {
1574 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1575 bfq_updated_next_req(bfqd, bfqq);
1576 }
1577
1578 if (rq->queuelist.prev != &rq->queuelist)
1579 list_del_init(&rq->queuelist);
1580 bfqq->queued[sync]--;
1581 bfqd->queued--;
1582 elv_rb_del(&bfqq->sort_list, rq);
1583
1584 elv_rqhash_del(q, rq);
1585 if (q->last_merge == rq)
1586 q->last_merge = NULL;
1587
1588 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1589 bfqq->next_rq = NULL;
1590
1591 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 1592 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
1593 /*
1594 * bfqq emptied. In normal operation, when
1595 * bfqq is empty, bfqq->entity.service and
1596 * bfqq->entity.budget must contain,
1597 * respectively, the service received and the
1598 * budget used last time bfqq emptied. These
1599 * facts do not hold in this case, as at least
1600 * this last removal occurred while bfqq is
1601 * not in service. To avoid inconsistencies,
1602 * reset both bfqq->entity.service and
1603 * bfqq->entity.budget, if bfqq has still a
1604 * process that may issue I/O requests to it.
1605 */
1606 bfqq->entity.budget = bfqq->entity.service = 0;
1607 }
36eca894
AA
1608
1609 /*
1610 * Remove queue from request-position tree as it is empty.
1611 */
1612 if (bfqq->pos_root) {
1613 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1614 bfqq->pos_root = NULL;
1615 }
aee69d78
PV
1616 }
1617
1618 if (rq->cmd_flags & REQ_META)
1619 bfqq->meta_pending--;
e21b7a0b
AA
1620
1621 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
aee69d78
PV
1622}
1623
1624static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1625{
1626 struct request_queue *q = hctx->queue;
1627 struct bfq_data *bfqd = q->elevator->elevator_data;
1628 struct request *free = NULL;
1629 /*
1630 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1631 * store its return value for later use, to avoid nesting
1632 * queue_lock inside the bfqd->lock. We assume that the bic
1633 * returned by bfq_bic_lookup does not go away before
1634 * bfqd->lock is taken.
1635 */
1636 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1637 bool ret;
1638
1639 spin_lock_irq(&bfqd->lock);
1640
1641 if (bic)
1642 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1643 else
1644 bfqd->bio_bfqq = NULL;
1645 bfqd->bio_bic = bic;
1646
1647 ret = blk_mq_sched_try_merge(q, bio, &free);
1648
1649 if (free)
1650 blk_mq_free_request(free);
1651 spin_unlock_irq(&bfqd->lock);
1652
1653 return ret;
1654}
1655
1656static int bfq_request_merge(struct request_queue *q, struct request **req,
1657 struct bio *bio)
1658{
1659 struct bfq_data *bfqd = q->elevator->elevator_data;
1660 struct request *__rq;
1661
1662 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1663 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1664 *req = __rq;
1665 return ELEVATOR_FRONT_MERGE;
1666 }
1667
1668 return ELEVATOR_NO_MERGE;
1669}
1670
1671static void bfq_request_merged(struct request_queue *q, struct request *req,
1672 enum elv_merge type)
1673{
1674 if (type == ELEVATOR_FRONT_MERGE &&
1675 rb_prev(&req->rb_node) &&
1676 blk_rq_pos(req) <
1677 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1678 struct request, rb_node))) {
1679 struct bfq_queue *bfqq = RQ_BFQQ(req);
1680 struct bfq_data *bfqd = bfqq->bfqd;
1681 struct request *prev, *next_rq;
1682
1683 /* Reposition request in its sort_list */
1684 elv_rb_del(&bfqq->sort_list, req);
1685 elv_rb_add(&bfqq->sort_list, req);
1686
1687 /* Choose next request to be served for bfqq */
1688 prev = bfqq->next_rq;
1689 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1690 bfqd->last_position);
1691 bfqq->next_rq = next_rq;
1692 /*
36eca894
AA
1693 * If next_rq changes, update both the queue's budget to
1694 * fit the new request and the queue's position in its
1695 * rq_pos_tree.
aee69d78 1696 */
36eca894 1697 if (prev != bfqq->next_rq) {
aee69d78 1698 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
1699 bfq_pos_tree_add_move(bfqd, bfqq);
1700 }
aee69d78
PV
1701 }
1702}
1703
1704static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1705 struct request *next)
1706{
1707 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1708
1709 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 1710 goto end;
aee69d78
PV
1711
1712 /*
1713 * If next and rq belong to the same bfq_queue and next is older
1714 * than rq, then reposition rq in the fifo (by substituting next
1715 * with rq). Otherwise, if next and rq belong to different
1716 * bfq_queues, never reposition rq: in fact, we would have to
1717 * reposition it with respect to next's position in its own fifo,
1718 * which would most certainly be too expensive with respect to
1719 * the benefits.
1720 */
1721 if (bfqq == next_bfqq &&
1722 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1723 next->fifo_time < rq->fifo_time) {
1724 list_del_init(&rq->queuelist);
1725 list_replace_init(&next->queuelist, &rq->queuelist);
1726 rq->fifo_time = next->fifo_time;
1727 }
1728
1729 if (bfqq->next_rq == next)
1730 bfqq->next_rq = rq;
1731
1732 bfq_remove_request(q, next);
1733
e21b7a0b
AA
1734end:
1735 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1736}
1737
44e44a1b
PV
1738/* Must be called with bfqq != NULL */
1739static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1740{
cfd69712
PV
1741 if (bfq_bfqq_busy(bfqq))
1742 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
1743 bfqq->wr_coeff = 1;
1744 bfqq->wr_cur_max_time = 0;
77b7dcea 1745 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
1746 /*
1747 * Trigger a weight change on the next invocation of
1748 * __bfq_entity_update_weight_prio.
1749 */
1750 bfqq->entity.prio_changed = 1;
1751}
1752
ea25da48
PV
1753void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1754 struct bfq_group *bfqg)
44e44a1b
PV
1755{
1756 int i, j;
1757
1758 for (i = 0; i < 2; i++)
1759 for (j = 0; j < IOPRIO_BE_NR; j++)
1760 if (bfqg->async_bfqq[i][j])
1761 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1762 if (bfqg->async_idle_bfqq)
1763 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1764}
1765
1766static void bfq_end_wr(struct bfq_data *bfqd)
1767{
1768 struct bfq_queue *bfqq;
1769
1770 spin_lock_irq(&bfqd->lock);
1771
1772 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1773 bfq_bfqq_end_wr(bfqq);
1774 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1775 bfq_bfqq_end_wr(bfqq);
1776 bfq_end_wr_async(bfqd);
1777
1778 spin_unlock_irq(&bfqd->lock);
1779}
1780
36eca894
AA
1781static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1782{
1783 if (request)
1784 return blk_rq_pos(io_struct);
1785 else
1786 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1787}
1788
1789static int bfq_rq_close_to_sector(void *io_struct, bool request,
1790 sector_t sector)
1791{
1792 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1793 BFQQ_CLOSE_THR;
1794}
1795
1796static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1797 struct bfq_queue *bfqq,
1798 sector_t sector)
1799{
1800 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1801 struct rb_node *parent, *node;
1802 struct bfq_queue *__bfqq;
1803
1804 if (RB_EMPTY_ROOT(root))
1805 return NULL;
1806
1807 /*
1808 * First, if we find a request starting at the end of the last
1809 * request, choose it.
1810 */
1811 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1812 if (__bfqq)
1813 return __bfqq;
1814
1815 /*
1816 * If the exact sector wasn't found, the parent of the NULL leaf
1817 * will contain the closest sector (rq_pos_tree sorted by
1818 * next_request position).
1819 */
1820 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1821 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1822 return __bfqq;
1823
1824 if (blk_rq_pos(__bfqq->next_rq) < sector)
1825 node = rb_next(&__bfqq->pos_node);
1826 else
1827 node = rb_prev(&__bfqq->pos_node);
1828 if (!node)
1829 return NULL;
1830
1831 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
1832 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1833 return __bfqq;
1834
1835 return NULL;
1836}
1837
1838static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1839 struct bfq_queue *cur_bfqq,
1840 sector_t sector)
1841{
1842 struct bfq_queue *bfqq;
1843
1844 /*
1845 * We shall notice if some of the queues are cooperating,
1846 * e.g., working closely on the same area of the device. In
1847 * that case, we can group them together and: 1) don't waste
1848 * time idling, and 2) serve the union of their requests in
1849 * the best possible order for throughput.
1850 */
1851 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1852 if (!bfqq || bfqq == cur_bfqq)
1853 return NULL;
1854
1855 return bfqq;
1856}
1857
1858static struct bfq_queue *
1859bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1860{
1861 int process_refs, new_process_refs;
1862 struct bfq_queue *__bfqq;
1863
1864 /*
1865 * If there are no process references on the new_bfqq, then it is
1866 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1867 * may have dropped their last reference (not just their last process
1868 * reference).
1869 */
1870 if (!bfqq_process_refs(new_bfqq))
1871 return NULL;
1872
1873 /* Avoid a circular list and skip interim queue merges. */
1874 while ((__bfqq = new_bfqq->new_bfqq)) {
1875 if (__bfqq == bfqq)
1876 return NULL;
1877 new_bfqq = __bfqq;
1878 }
1879
1880 process_refs = bfqq_process_refs(bfqq);
1881 new_process_refs = bfqq_process_refs(new_bfqq);
1882 /*
1883 * If the process for the bfqq has gone away, there is no
1884 * sense in merging the queues.
1885 */
1886 if (process_refs == 0 || new_process_refs == 0)
1887 return NULL;
1888
1889 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1890 new_bfqq->pid);
1891
1892 /*
1893 * Merging is just a redirection: the requests of the process
1894 * owning one of the two queues are redirected to the other queue.
1895 * The latter queue, in its turn, is set as shared if this is the
1896 * first time that the requests of some process are redirected to
1897 * it.
1898 *
6fa3e8d3
PV
1899 * We redirect bfqq to new_bfqq and not the opposite, because
1900 * we are in the context of the process owning bfqq, thus we
1901 * have the io_cq of this process. So we can immediately
1902 * configure this io_cq to redirect the requests of the
1903 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1904 * not available any more (new_bfqq->bic == NULL).
36eca894 1905 *
6fa3e8d3
PV
1906 * Anyway, even in case new_bfqq coincides with the in-service
1907 * queue, redirecting requests the in-service queue is the
1908 * best option, as we feed the in-service queue with new
1909 * requests close to the last request served and, by doing so,
1910 * are likely to increase the throughput.
36eca894
AA
1911 */
1912 bfqq->new_bfqq = new_bfqq;
1913 new_bfqq->ref += process_refs;
1914 return new_bfqq;
1915}
1916
1917static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1918 struct bfq_queue *new_bfqq)
1919{
1920 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1921 (bfqq->ioprio_class != new_bfqq->ioprio_class))
1922 return false;
1923
1924 /*
1925 * If either of the queues has already been detected as seeky,
1926 * then merging it with the other queue is unlikely to lead to
1927 * sequential I/O.
1928 */
1929 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1930 return false;
1931
1932 /*
1933 * Interleaved I/O is known to be done by (some) applications
1934 * only for reads, so it does not make sense to merge async
1935 * queues.
1936 */
1937 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1938 return false;
1939
1940 return true;
1941}
1942
1943/*
1944 * If this function returns true, then bfqq cannot be merged. The idea
1945 * is that true cooperation happens very early after processes start
1946 * to do I/O. Usually, late cooperations are just accidental false
1947 * positives. In case bfqq is weight-raised, such false positives
1948 * would evidently degrade latency guarantees for bfqq.
1949 */
1950static bool wr_from_too_long(struct bfq_queue *bfqq)
1951{
1952 return bfqq->wr_coeff > 1 &&
1953 time_is_before_jiffies(bfqq->last_wr_start_finish +
1954 msecs_to_jiffies(100));
1955}
1956
1957/*
1958 * Attempt to schedule a merge of bfqq with the currently in-service
1959 * queue or with a close queue among the scheduled queues. Return
1960 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1961 * structure otherwise.
1962 *
1963 * The OOM queue is not allowed to participate to cooperation: in fact, since
1964 * the requests temporarily redirected to the OOM queue could be redirected
1965 * again to dedicated queues at any time, the state needed to correctly
1966 * handle merging with the OOM queue would be quite complex and expensive
1967 * to maintain. Besides, in such a critical condition as an out of memory,
1968 * the benefits of queue merging may be little relevant, or even negligible.
1969 *
1970 * Weight-raised queues can be merged only if their weight-raising
1971 * period has just started. In fact cooperating processes are usually
1972 * started together. Thus, with this filter we avoid false positives
1973 * that would jeopardize low-latency guarantees.
1974 *
1975 * WARNING: queue merging may impair fairness among non-weight raised
1976 * queues, for at least two reasons: 1) the original weight of a
1977 * merged queue may change during the merged state, 2) even being the
1978 * weight the same, a merged queue may be bloated with many more
1979 * requests than the ones produced by its originally-associated
1980 * process.
1981 */
1982static struct bfq_queue *
1983bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1984 void *io_struct, bool request)
1985{
1986 struct bfq_queue *in_service_bfqq, *new_bfqq;
1987
1988 if (bfqq->new_bfqq)
1989 return bfqq->new_bfqq;
1990
1991 if (!io_struct ||
1992 wr_from_too_long(bfqq) ||
1993 unlikely(bfqq == &bfqd->oom_bfqq))
1994 return NULL;
1995
1996 /* If there is only one backlogged queue, don't search. */
1997 if (bfqd->busy_queues == 1)
1998 return NULL;
1999
2000 in_service_bfqq = bfqd->in_service_queue;
2001
6fa3e8d3
PV
2002 if (!in_service_bfqq || in_service_bfqq == bfqq
2003 || wr_from_too_long(in_service_bfqq) ||
36eca894
AA
2004 unlikely(in_service_bfqq == &bfqd->oom_bfqq))
2005 goto check_scheduled;
2006
2007 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2008 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2009 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2010 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2011 if (new_bfqq)
2012 return new_bfqq;
2013 }
2014 /*
2015 * Check whether there is a cooperator among currently scheduled
2016 * queues. The only thing we need is that the bio/request is not
2017 * NULL, as we need it to establish whether a cooperator exists.
2018 */
2019check_scheduled:
2020 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2021 bfq_io_struct_pos(io_struct, request));
2022
2023 if (new_bfqq && !wr_from_too_long(new_bfqq) &&
2024 likely(new_bfqq != &bfqd->oom_bfqq) &&
2025 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2026 return bfq_setup_merge(bfqq, new_bfqq);
2027
2028 return NULL;
2029}
2030
2031static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2032{
2033 struct bfq_io_cq *bic = bfqq->bic;
2034
2035 /*
2036 * If !bfqq->bic, the queue is already shared or its requests
2037 * have already been redirected to a shared queue; both idle window
2038 * and weight raising state have already been saved. Do nothing.
2039 */
2040 if (!bic)
2041 return;
2042
2043 bic->saved_ttime = bfqq->ttime;
d5be3fef 2044 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
36eca894 2045 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
2046 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2047 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
36eca894
AA
2048 bic->saved_wr_coeff = bfqq->wr_coeff;
2049 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
2050 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2051 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2052}
2053
36eca894
AA
2054static void
2055bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2056 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2057{
2058 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2059 (unsigned long)new_bfqq->pid);
2060 /* Save weight raising and idle window of the merged queues */
2061 bfq_bfqq_save_state(bfqq);
2062 bfq_bfqq_save_state(new_bfqq);
2063 if (bfq_bfqq_IO_bound(bfqq))
2064 bfq_mark_bfqq_IO_bound(new_bfqq);
2065 bfq_clear_bfqq_IO_bound(bfqq);
2066
2067 /*
2068 * If bfqq is weight-raised, then let new_bfqq inherit
2069 * weight-raising. To reduce false positives, neglect the case
2070 * where bfqq has just been created, but has not yet made it
2071 * to be weight-raised (which may happen because EQM may merge
2072 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
2073 * time for bfqq). Handling this case would however be very
2074 * easy, thanks to the flag just_created.
36eca894
AA
2075 */
2076 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2077 new_bfqq->wr_coeff = bfqq->wr_coeff;
2078 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2079 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2080 new_bfqq->wr_start_at_switch_to_srt =
2081 bfqq->wr_start_at_switch_to_srt;
2082 if (bfq_bfqq_busy(new_bfqq))
2083 bfqd->wr_busy_queues++;
2084 new_bfqq->entity.prio_changed = 1;
2085 }
2086
2087 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2088 bfqq->wr_coeff = 1;
2089 bfqq->entity.prio_changed = 1;
2090 if (bfq_bfqq_busy(bfqq))
2091 bfqd->wr_busy_queues--;
2092 }
2093
2094 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2095 bfqd->wr_busy_queues);
2096
36eca894
AA
2097 /*
2098 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2099 */
2100 bic_set_bfqq(bic, new_bfqq, 1);
2101 bfq_mark_bfqq_coop(new_bfqq);
2102 /*
2103 * new_bfqq now belongs to at least two bics (it is a shared queue):
2104 * set new_bfqq->bic to NULL. bfqq either:
2105 * - does not belong to any bic any more, and hence bfqq->bic must
2106 * be set to NULL, or
2107 * - is a queue whose owning bics have already been redirected to a
2108 * different queue, hence the queue is destined to not belong to
2109 * any bic soon and bfqq->bic is already NULL (therefore the next
2110 * assignment causes no harm).
2111 */
2112 new_bfqq->bic = NULL;
2113 bfqq->bic = NULL;
2114 /* release process reference to bfqq */
2115 bfq_put_queue(bfqq);
2116}
2117
aee69d78
PV
2118static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2119 struct bio *bio)
2120{
2121 struct bfq_data *bfqd = q->elevator->elevator_data;
2122 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 2123 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
2124
2125 /*
2126 * Disallow merge of a sync bio into an async request.
2127 */
2128 if (is_sync && !rq_is_sync(rq))
2129 return false;
2130
2131 /*
2132 * Lookup the bfqq that this bio will be queued with. Allow
2133 * merge only if rq is queued there.
2134 */
2135 if (!bfqq)
2136 return false;
2137
36eca894
AA
2138 /*
2139 * We take advantage of this function to perform an early merge
2140 * of the queues of possible cooperating processes.
2141 */
2142 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2143 if (new_bfqq) {
2144 /*
2145 * bic still points to bfqq, then it has not yet been
2146 * redirected to some other bfq_queue, and a queue
2147 * merge beween bfqq and new_bfqq can be safely
2148 * fulfillled, i.e., bic can be redirected to new_bfqq
2149 * and bfqq can be put.
2150 */
2151 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2152 new_bfqq);
2153 /*
2154 * If we get here, bio will be queued into new_queue,
2155 * so use new_bfqq to decide whether bio and rq can be
2156 * merged.
2157 */
2158 bfqq = new_bfqq;
2159
2160 /*
2161 * Change also bqfd->bio_bfqq, as
2162 * bfqd->bio_bic now points to new_bfqq, and
2163 * this function may be invoked again (and then may
2164 * use again bqfd->bio_bfqq).
2165 */
2166 bfqd->bio_bfqq = bfqq;
2167 }
2168
aee69d78
PV
2169 return bfqq == RQ_BFQQ(rq);
2170}
2171
44e44a1b
PV
2172/*
2173 * Set the maximum time for the in-service queue to consume its
2174 * budget. This prevents seeky processes from lowering the throughput.
2175 * In practice, a time-slice service scheme is used with seeky
2176 * processes.
2177 */
2178static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2179 struct bfq_queue *bfqq)
2180{
77b7dcea
PV
2181 unsigned int timeout_coeff;
2182
2183 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2184 timeout_coeff = 1;
2185 else
2186 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2187
44e44a1b
PV
2188 bfqd->last_budget_start = ktime_get();
2189
2190 bfqq->budget_timeout = jiffies +
77b7dcea 2191 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
2192}
2193
aee69d78
PV
2194static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2195 struct bfq_queue *bfqq)
2196{
2197 if (bfqq) {
e21b7a0b 2198 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
aee69d78
PV
2199 bfq_clear_bfqq_fifo_expire(bfqq);
2200
2201 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2202
77b7dcea
PV
2203 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2204 bfqq->wr_coeff > 1 &&
2205 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2206 time_is_before_jiffies(bfqq->budget_timeout)) {
2207 /*
2208 * For soft real-time queues, move the start
2209 * of the weight-raising period forward by the
2210 * time the queue has not received any
2211 * service. Otherwise, a relatively long
2212 * service delay is likely to cause the
2213 * weight-raising period of the queue to end,
2214 * because of the short duration of the
2215 * weight-raising period of a soft real-time
2216 * queue. It is worth noting that this move
2217 * is not so dangerous for the other queues,
2218 * because soft real-time queues are not
2219 * greedy.
2220 *
2221 * To not add a further variable, we use the
2222 * overloaded field budget_timeout to
2223 * determine for how long the queue has not
2224 * received service, i.e., how much time has
2225 * elapsed since the queue expired. However,
2226 * this is a little imprecise, because
2227 * budget_timeout is set to jiffies if bfqq
2228 * not only expires, but also remains with no
2229 * request.
2230 */
2231 if (time_after(bfqq->budget_timeout,
2232 bfqq->last_wr_start_finish))
2233 bfqq->last_wr_start_finish +=
2234 jiffies - bfqq->budget_timeout;
2235 else
2236 bfqq->last_wr_start_finish = jiffies;
2237 }
2238
44e44a1b 2239 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
2240 bfq_log_bfqq(bfqd, bfqq,
2241 "set_in_service_queue, cur-budget = %d",
2242 bfqq->entity.budget);
2243 }
2244
2245 bfqd->in_service_queue = bfqq;
2246}
2247
2248/*
2249 * Get and set a new queue for service.
2250 */
2251static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2252{
2253 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2254
2255 __bfq_set_in_service_queue(bfqd, bfqq);
2256 return bfqq;
2257}
2258
aee69d78
PV
2259static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2260{
2261 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
2262 u32 sl;
2263
aee69d78
PV
2264 bfq_mark_bfqq_wait_request(bfqq);
2265
2266 /*
2267 * We don't want to idle for seeks, but we do want to allow
2268 * fair distribution of slice time for a process doing back-to-back
2269 * seeks. So allow a little bit of time for him to submit a new rq.
2270 */
2271 sl = bfqd->bfq_slice_idle;
2272 /*
1de0c4cd
AA
2273 * Unless the queue is being weight-raised or the scenario is
2274 * asymmetric, grant only minimum idle time if the queue
2275 * is seeky. A long idling is preserved for a weight-raised
2276 * queue, or, more in general, in an asymmetric scenario,
2277 * because a long idling is needed for guaranteeing to a queue
2278 * its reserved share of the throughput (in particular, it is
2279 * needed if the queue has a higher weight than some other
2280 * queue).
aee69d78 2281 */
1de0c4cd
AA
2282 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2283 bfq_symmetric_scenario(bfqd))
aee69d78
PV
2284 sl = min_t(u64, sl, BFQ_MIN_TT);
2285
2286 bfqd->last_idling_start = ktime_get();
2287 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2288 HRTIMER_MODE_REL);
e21b7a0b 2289 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
2290}
2291
ab0e43e9
PV
2292/*
2293 * In autotuning mode, max_budget is dynamically recomputed as the
2294 * amount of sectors transferred in timeout at the estimated peak
2295 * rate. This enables BFQ to utilize a full timeslice with a full
2296 * budget, even if the in-service queue is served at peak rate. And
2297 * this maximises throughput with sequential workloads.
2298 */
2299static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2300{
2301 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2302 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2303}
2304
44e44a1b
PV
2305/*
2306 * Update parameters related to throughput and responsiveness, as a
2307 * function of the estimated peak rate. See comments on
2308 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2309 */
2310static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2311{
2312 int dev_type = blk_queue_nonrot(bfqd->queue);
2313
2314 if (bfqd->bfq_user_max_budget == 0)
2315 bfqd->bfq_max_budget =
2316 bfq_calc_max_budget(bfqd);
2317
2318 if (bfqd->device_speed == BFQ_BFQD_FAST &&
2319 bfqd->peak_rate < device_speed_thresh[dev_type]) {
2320 bfqd->device_speed = BFQ_BFQD_SLOW;
2321 bfqd->RT_prod = R_slow[dev_type] *
2322 T_slow[dev_type];
2323 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2324 bfqd->peak_rate > device_speed_thresh[dev_type]) {
2325 bfqd->device_speed = BFQ_BFQD_FAST;
2326 bfqd->RT_prod = R_fast[dev_type] *
2327 T_fast[dev_type];
2328 }
2329
2330 bfq_log(bfqd,
2331"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2332 dev_type == 0 ? "ROT" : "NONROT",
2333 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2334 bfqd->device_speed == BFQ_BFQD_FAST ?
2335 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2336 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2337 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2338 BFQ_RATE_SHIFT);
2339}
2340
ab0e43e9
PV
2341static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2342 struct request *rq)
2343{
2344 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2345 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2346 bfqd->peak_rate_samples = 1;
2347 bfqd->sequential_samples = 0;
2348 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2349 blk_rq_sectors(rq);
2350 } else /* no new rq dispatched, just reset the number of samples */
2351 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2352
2353 bfq_log(bfqd,
2354 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2355 bfqd->peak_rate_samples, bfqd->sequential_samples,
2356 bfqd->tot_sectors_dispatched);
2357}
2358
2359static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2360{
2361 u32 rate, weight, divisor;
2362
2363 /*
2364 * For the convergence property to hold (see comments on
2365 * bfq_update_peak_rate()) and for the assessment to be
2366 * reliable, a minimum number of samples must be present, and
2367 * a minimum amount of time must have elapsed. If not so, do
2368 * not compute new rate. Just reset parameters, to get ready
2369 * for a new evaluation attempt.
2370 */
2371 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2372 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2373 goto reset_computation;
2374
2375 /*
2376 * If a new request completion has occurred after last
2377 * dispatch, then, to approximate the rate at which requests
2378 * have been served by the device, it is more precise to
2379 * extend the observation interval to the last completion.
2380 */
2381 bfqd->delta_from_first =
2382 max_t(u64, bfqd->delta_from_first,
2383 bfqd->last_completion - bfqd->first_dispatch);
2384
2385 /*
2386 * Rate computed in sects/usec, and not sects/nsec, for
2387 * precision issues.
2388 */
2389 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2390 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2391
2392 /*
2393 * Peak rate not updated if:
2394 * - the percentage of sequential dispatches is below 3/4 of the
2395 * total, and rate is below the current estimated peak rate
2396 * - rate is unreasonably high (> 20M sectors/sec)
2397 */
2398 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2399 rate <= bfqd->peak_rate) ||
2400 rate > 20<<BFQ_RATE_SHIFT)
2401 goto reset_computation;
2402
2403 /*
2404 * We have to update the peak rate, at last! To this purpose,
2405 * we use a low-pass filter. We compute the smoothing constant
2406 * of the filter as a function of the 'weight' of the new
2407 * measured rate.
2408 *
2409 * As can be seen in next formulas, we define this weight as a
2410 * quantity proportional to how sequential the workload is,
2411 * and to how long the observation time interval is.
2412 *
2413 * The weight runs from 0 to 8. The maximum value of the
2414 * weight, 8, yields the minimum value for the smoothing
2415 * constant. At this minimum value for the smoothing constant,
2416 * the measured rate contributes for half of the next value of
2417 * the estimated peak rate.
2418 *
2419 * So, the first step is to compute the weight as a function
2420 * of how sequential the workload is. Note that the weight
2421 * cannot reach 9, because bfqd->sequential_samples cannot
2422 * become equal to bfqd->peak_rate_samples, which, in its
2423 * turn, holds true because bfqd->sequential_samples is not
2424 * incremented for the first sample.
2425 */
2426 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2427
2428 /*
2429 * Second step: further refine the weight as a function of the
2430 * duration of the observation interval.
2431 */
2432 weight = min_t(u32, 8,
2433 div_u64(weight * bfqd->delta_from_first,
2434 BFQ_RATE_REF_INTERVAL));
2435
2436 /*
2437 * Divisor ranging from 10, for minimum weight, to 2, for
2438 * maximum weight.
2439 */
2440 divisor = 10 - weight;
2441
2442 /*
2443 * Finally, update peak rate:
2444 *
2445 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2446 */
2447 bfqd->peak_rate *= divisor-1;
2448 bfqd->peak_rate /= divisor;
2449 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2450
2451 bfqd->peak_rate += rate;
44e44a1b 2452 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
2453
2454reset_computation:
2455 bfq_reset_rate_computation(bfqd, rq);
2456}
2457
2458/*
2459 * Update the read/write peak rate (the main quantity used for
2460 * auto-tuning, see update_thr_responsiveness_params()).
2461 *
2462 * It is not trivial to estimate the peak rate (correctly): because of
2463 * the presence of sw and hw queues between the scheduler and the
2464 * device components that finally serve I/O requests, it is hard to
2465 * say exactly when a given dispatched request is served inside the
2466 * device, and for how long. As a consequence, it is hard to know
2467 * precisely at what rate a given set of requests is actually served
2468 * by the device.
2469 *
2470 * On the opposite end, the dispatch time of any request is trivially
2471 * available, and, from this piece of information, the "dispatch rate"
2472 * of requests can be immediately computed. So, the idea in the next
2473 * function is to use what is known, namely request dispatch times
2474 * (plus, when useful, request completion times), to estimate what is
2475 * unknown, namely in-device request service rate.
2476 *
2477 * The main issue is that, because of the above facts, the rate at
2478 * which a certain set of requests is dispatched over a certain time
2479 * interval can vary greatly with respect to the rate at which the
2480 * same requests are then served. But, since the size of any
2481 * intermediate queue is limited, and the service scheme is lossless
2482 * (no request is silently dropped), the following obvious convergence
2483 * property holds: the number of requests dispatched MUST become
2484 * closer and closer to the number of requests completed as the
2485 * observation interval grows. This is the key property used in
2486 * the next function to estimate the peak service rate as a function
2487 * of the observed dispatch rate. The function assumes to be invoked
2488 * on every request dispatch.
2489 */
2490static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2491{
2492 u64 now_ns = ktime_get_ns();
2493
2494 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2495 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2496 bfqd->peak_rate_samples);
2497 bfq_reset_rate_computation(bfqd, rq);
2498 goto update_last_values; /* will add one sample */
2499 }
2500
2501 /*
2502 * Device idle for very long: the observation interval lasting
2503 * up to this dispatch cannot be a valid observation interval
2504 * for computing a new peak rate (similarly to the late-
2505 * completion event in bfq_completed_request()). Go to
2506 * update_rate_and_reset to have the following three steps
2507 * taken:
2508 * - close the observation interval at the last (previous)
2509 * request dispatch or completion
2510 * - compute rate, if possible, for that observation interval
2511 * - start a new observation interval with this dispatch
2512 */
2513 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2514 bfqd->rq_in_driver == 0)
2515 goto update_rate_and_reset;
2516
2517 /* Update sampling information */
2518 bfqd->peak_rate_samples++;
2519
2520 if ((bfqd->rq_in_driver > 0 ||
2521 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2522 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2523 bfqd->sequential_samples++;
2524
2525 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2526
2527 /* Reset max observed rq size every 32 dispatches */
2528 if (likely(bfqd->peak_rate_samples % 32))
2529 bfqd->last_rq_max_size =
2530 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2531 else
2532 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2533
2534 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2535
2536 /* Target observation interval not yet reached, go on sampling */
2537 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2538 goto update_last_values;
2539
2540update_rate_and_reset:
2541 bfq_update_rate_reset(bfqd, rq);
2542update_last_values:
2543 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2544 bfqd->last_dispatch = now_ns;
2545}
2546
aee69d78
PV
2547/*
2548 * Remove request from internal lists.
2549 */
2550static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2551{
2552 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2553
2554 /*
2555 * For consistency, the next instruction should have been
2556 * executed after removing the request from the queue and
2557 * dispatching it. We execute instead this instruction before
2558 * bfq_remove_request() (and hence introduce a temporary
2559 * inconsistency), for efficiency. In fact, should this
2560 * dispatch occur for a non in-service bfqq, this anticipated
2561 * increment prevents two counters related to bfqq->dispatched
2562 * from risking to be, first, uselessly decremented, and then
2563 * incremented again when the (new) value of bfqq->dispatched
2564 * happens to be taken into account.
2565 */
2566 bfqq->dispatched++;
ab0e43e9 2567 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
2568
2569 bfq_remove_request(q, rq);
2570}
2571
2572static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2573{
36eca894
AA
2574 /*
2575 * If this bfqq is shared between multiple processes, check
2576 * to make sure that those processes are still issuing I/Os
2577 * within the mean seek distance. If not, it may be time to
2578 * break the queues apart again.
2579 */
2580 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2581 bfq_mark_bfqq_split_coop(bfqq);
2582
44e44a1b
PV
2583 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2584 if (bfqq->dispatched == 0)
2585 /*
2586 * Overloading budget_timeout field to store
2587 * the time at which the queue remains with no
2588 * backlog and no outstanding request; used by
2589 * the weight-raising mechanism.
2590 */
2591 bfqq->budget_timeout = jiffies;
2592
e21b7a0b 2593 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 2594 } else {
80294c3b 2595 bfq_requeue_bfqq(bfqd, bfqq, true);
36eca894
AA
2596 /*
2597 * Resort priority tree of potential close cooperators.
2598 */
2599 bfq_pos_tree_add_move(bfqd, bfqq);
2600 }
e21b7a0b
AA
2601
2602 /*
2603 * All in-service entities must have been properly deactivated
2604 * or requeued before executing the next function, which
2605 * resets all in-service entites as no more in service.
2606 */
2607 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
2608}
2609
2610/**
2611 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2612 * @bfqd: device data.
2613 * @bfqq: queue to update.
2614 * @reason: reason for expiration.
2615 *
2616 * Handle the feedback on @bfqq budget at queue expiration.
2617 * See the body for detailed comments.
2618 */
2619static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2620 struct bfq_queue *bfqq,
2621 enum bfqq_expiration reason)
2622{
2623 struct request *next_rq;
2624 int budget, min_budget;
2625
aee69d78
PV
2626 min_budget = bfq_min_budget(bfqd);
2627
44e44a1b
PV
2628 if (bfqq->wr_coeff == 1)
2629 budget = bfqq->max_budget;
2630 else /*
2631 * Use a constant, low budget for weight-raised queues,
2632 * to help achieve a low latency. Keep it slightly higher
2633 * than the minimum possible budget, to cause a little
2634 * bit fewer expirations.
2635 */
2636 budget = 2 * min_budget;
2637
aee69d78
PV
2638 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2639 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2640 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2641 budget, bfq_min_budget(bfqd));
2642 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2643 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2644
44e44a1b 2645 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
2646 switch (reason) {
2647 /*
2648 * Caveat: in all the following cases we trade latency
2649 * for throughput.
2650 */
2651 case BFQQE_TOO_IDLE:
54b60456
PV
2652 /*
2653 * This is the only case where we may reduce
2654 * the budget: if there is no request of the
2655 * process still waiting for completion, then
2656 * we assume (tentatively) that the timer has
2657 * expired because the batch of requests of
2658 * the process could have been served with a
2659 * smaller budget. Hence, betting that
2660 * process will behave in the same way when it
2661 * becomes backlogged again, we reduce its
2662 * next budget. As long as we guess right,
2663 * this budget cut reduces the latency
2664 * experienced by the process.
2665 *
2666 * However, if there are still outstanding
2667 * requests, then the process may have not yet
2668 * issued its next request just because it is
2669 * still waiting for the completion of some of
2670 * the still outstanding ones. So in this
2671 * subcase we do not reduce its budget, on the
2672 * contrary we increase it to possibly boost
2673 * the throughput, as discussed in the
2674 * comments to the BUDGET_TIMEOUT case.
2675 */
2676 if (bfqq->dispatched > 0) /* still outstanding reqs */
2677 budget = min(budget * 2, bfqd->bfq_max_budget);
2678 else {
2679 if (budget > 5 * min_budget)
2680 budget -= 4 * min_budget;
2681 else
2682 budget = min_budget;
2683 }
aee69d78
PV
2684 break;
2685 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
2686 /*
2687 * We double the budget here because it gives
2688 * the chance to boost the throughput if this
2689 * is not a seeky process (and has bumped into
2690 * this timeout because of, e.g., ZBR).
2691 */
2692 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
2693 break;
2694 case BFQQE_BUDGET_EXHAUSTED:
2695 /*
2696 * The process still has backlog, and did not
2697 * let either the budget timeout or the disk
2698 * idling timeout expire. Hence it is not
2699 * seeky, has a short thinktime and may be
2700 * happy with a higher budget too. So
2701 * definitely increase the budget of this good
2702 * candidate to boost the disk throughput.
2703 */
54b60456 2704 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
2705 break;
2706 case BFQQE_NO_MORE_REQUESTS:
2707 /*
2708 * For queues that expire for this reason, it
2709 * is particularly important to keep the
2710 * budget close to the actual service they
2711 * need. Doing so reduces the timestamp
2712 * misalignment problem described in the
2713 * comments in the body of
2714 * __bfq_activate_entity. In fact, suppose
2715 * that a queue systematically expires for
2716 * BFQQE_NO_MORE_REQUESTS and presents a
2717 * new request in time to enjoy timestamp
2718 * back-shifting. The larger the budget of the
2719 * queue is with respect to the service the
2720 * queue actually requests in each service
2721 * slot, the more times the queue can be
2722 * reactivated with the same virtual finish
2723 * time. It follows that, even if this finish
2724 * time is pushed to the system virtual time
2725 * to reduce the consequent timestamp
2726 * misalignment, the queue unjustly enjoys for
2727 * many re-activations a lower finish time
2728 * than all newly activated queues.
2729 *
2730 * The service needed by bfqq is measured
2731 * quite precisely by bfqq->entity.service.
2732 * Since bfqq does not enjoy device idling,
2733 * bfqq->entity.service is equal to the number
2734 * of sectors that the process associated with
2735 * bfqq requested to read/write before waiting
2736 * for request completions, or blocking for
2737 * other reasons.
2738 */
2739 budget = max_t(int, bfqq->entity.service, min_budget);
2740 break;
2741 default:
2742 return;
2743 }
44e44a1b 2744 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
2745 /*
2746 * Async queues get always the maximum possible
2747 * budget, as for them we do not care about latency
2748 * (in addition, their ability to dispatch is limited
2749 * by the charging factor).
2750 */
2751 budget = bfqd->bfq_max_budget;
2752 }
2753
2754 bfqq->max_budget = budget;
2755
2756 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2757 !bfqd->bfq_user_max_budget)
2758 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2759
2760 /*
2761 * If there is still backlog, then assign a new budget, making
2762 * sure that it is large enough for the next request. Since
2763 * the finish time of bfqq must be kept in sync with the
2764 * budget, be sure to call __bfq_bfqq_expire() *after* this
2765 * update.
2766 *
2767 * If there is no backlog, then no need to update the budget;
2768 * it will be updated on the arrival of a new request.
2769 */
2770 next_rq = bfqq->next_rq;
2771 if (next_rq)
2772 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2773 bfq_serv_to_charge(next_rq, bfqq));
2774
2775 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2776 next_rq ? blk_rq_sectors(next_rq) : 0,
2777 bfqq->entity.budget);
2778}
2779
aee69d78 2780/*
ab0e43e9
PV
2781 * Return true if the process associated with bfqq is "slow". The slow
2782 * flag is used, in addition to the budget timeout, to reduce the
2783 * amount of service provided to seeky processes, and thus reduce
2784 * their chances to lower the throughput. More details in the comments
2785 * on the function bfq_bfqq_expire().
2786 *
2787 * An important observation is in order: as discussed in the comments
2788 * on the function bfq_update_peak_rate(), with devices with internal
2789 * queues, it is hard if ever possible to know when and for how long
2790 * an I/O request is processed by the device (apart from the trivial
2791 * I/O pattern where a new request is dispatched only after the
2792 * previous one has been completed). This makes it hard to evaluate
2793 * the real rate at which the I/O requests of each bfq_queue are
2794 * served. In fact, for an I/O scheduler like BFQ, serving a
2795 * bfq_queue means just dispatching its requests during its service
2796 * slot (i.e., until the budget of the queue is exhausted, or the
2797 * queue remains idle, or, finally, a timeout fires). But, during the
2798 * service slot of a bfq_queue, around 100 ms at most, the device may
2799 * be even still processing requests of bfq_queues served in previous
2800 * service slots. On the opposite end, the requests of the in-service
2801 * bfq_queue may be completed after the service slot of the queue
2802 * finishes.
2803 *
2804 * Anyway, unless more sophisticated solutions are used
2805 * (where possible), the sum of the sizes of the requests dispatched
2806 * during the service slot of a bfq_queue is probably the only
2807 * approximation available for the service received by the bfq_queue
2808 * during its service slot. And this sum is the quantity used in this
2809 * function to evaluate the I/O speed of a process.
aee69d78 2810 */
ab0e43e9
PV
2811static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2812 bool compensate, enum bfqq_expiration reason,
2813 unsigned long *delta_ms)
aee69d78 2814{
ab0e43e9
PV
2815 ktime_t delta_ktime;
2816 u32 delta_usecs;
2817 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 2818
ab0e43e9 2819 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
2820 return false;
2821
2822 if (compensate)
ab0e43e9 2823 delta_ktime = bfqd->last_idling_start;
aee69d78 2824 else
ab0e43e9
PV
2825 delta_ktime = ktime_get();
2826 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2827 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
2828
2829 /* don't use too short time intervals */
ab0e43e9
PV
2830 if (delta_usecs < 1000) {
2831 if (blk_queue_nonrot(bfqd->queue))
2832 /*
2833 * give same worst-case guarantees as idling
2834 * for seeky
2835 */
2836 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2837 else /* charge at least one seek */
2838 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2839
2840 return slow;
2841 }
aee69d78 2842
ab0e43e9 2843 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
2844
2845 /*
ab0e43e9
PV
2846 * Use only long (> 20ms) intervals to filter out excessive
2847 * spikes in service rate estimation.
aee69d78 2848 */
ab0e43e9
PV
2849 if (delta_usecs > 20000) {
2850 /*
2851 * Caveat for rotational devices: processes doing I/O
2852 * in the slower disk zones tend to be slow(er) even
2853 * if not seeky. In this respect, the estimated peak
2854 * rate is likely to be an average over the disk
2855 * surface. Accordingly, to not be too harsh with
2856 * unlucky processes, a process is deemed slow only if
2857 * its rate has been lower than half of the estimated
2858 * peak rate.
2859 */
2860 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
2861 }
2862
ab0e43e9 2863 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 2864
ab0e43e9 2865 return slow;
aee69d78
PV
2866}
2867
77b7dcea
PV
2868/*
2869 * To be deemed as soft real-time, an application must meet two
2870 * requirements. First, the application must not require an average
2871 * bandwidth higher than the approximate bandwidth required to playback or
2872 * record a compressed high-definition video.
2873 * The next function is invoked on the completion of the last request of a
2874 * batch, to compute the next-start time instant, soft_rt_next_start, such
2875 * that, if the next request of the application does not arrive before
2876 * soft_rt_next_start, then the above requirement on the bandwidth is met.
2877 *
2878 * The second requirement is that the request pattern of the application is
2879 * isochronous, i.e., that, after issuing a request or a batch of requests,
2880 * the application stops issuing new requests until all its pending requests
2881 * have been completed. After that, the application may issue a new batch,
2882 * and so on.
2883 * For this reason the next function is invoked to compute
2884 * soft_rt_next_start only for applications that meet this requirement,
2885 * whereas soft_rt_next_start is set to infinity for applications that do
2886 * not.
2887 *
2888 * Unfortunately, even a greedy application may happen to behave in an
2889 * isochronous way if the CPU load is high. In fact, the application may
2890 * stop issuing requests while the CPUs are busy serving other processes,
2891 * then restart, then stop again for a while, and so on. In addition, if
2892 * the disk achieves a low enough throughput with the request pattern
2893 * issued by the application (e.g., because the request pattern is random
2894 * and/or the device is slow), then the application may meet the above
2895 * bandwidth requirement too. To prevent such a greedy application to be
2896 * deemed as soft real-time, a further rule is used in the computation of
2897 * soft_rt_next_start: soft_rt_next_start must be higher than the current
2898 * time plus the maximum time for which the arrival of a request is waited
2899 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2900 * This filters out greedy applications, as the latter issue instead their
2901 * next request as soon as possible after the last one has been completed
2902 * (in contrast, when a batch of requests is completed, a soft real-time
2903 * application spends some time processing data).
2904 *
2905 * Unfortunately, the last filter may easily generate false positives if
2906 * only bfqd->bfq_slice_idle is used as a reference time interval and one
2907 * or both the following cases occur:
2908 * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2909 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2910 * HZ=100.
2911 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2912 * for a while, then suddenly 'jump' by several units to recover the lost
2913 * increments. This seems to happen, e.g., inside virtual machines.
2914 * To address this issue, we do not use as a reference time interval just
2915 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2916 * particular we add the minimum number of jiffies for which the filter
2917 * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2918 * machines.
2919 */
2920static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2921 struct bfq_queue *bfqq)
2922{
2923 return max(bfqq->last_idle_bklogged +
2924 HZ * bfqq->service_from_backlogged /
2925 bfqd->bfq_wr_max_softrt_rate,
2926 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2927}
2928
aee69d78
PV
2929/**
2930 * bfq_bfqq_expire - expire a queue.
2931 * @bfqd: device owning the queue.
2932 * @bfqq: the queue to expire.
2933 * @compensate: if true, compensate for the time spent idling.
2934 * @reason: the reason causing the expiration.
2935 *
c074170e
PV
2936 * If the process associated with bfqq does slow I/O (e.g., because it
2937 * issues random requests), we charge bfqq with the time it has been
2938 * in service instead of the service it has received (see
2939 * bfq_bfqq_charge_time for details on how this goal is achieved). As
2940 * a consequence, bfqq will typically get higher timestamps upon
2941 * reactivation, and hence it will be rescheduled as if it had
2942 * received more service than what it has actually received. In the
2943 * end, bfqq receives less service in proportion to how slowly its
2944 * associated process consumes its budgets (and hence how seriously it
2945 * tends to lower the throughput). In addition, this time-charging
2946 * strategy guarantees time fairness among slow processes. In
2947 * contrast, if the process associated with bfqq is not slow, we
2948 * charge bfqq exactly with the service it has received.
aee69d78 2949 *
c074170e
PV
2950 * Charging time to the first type of queues and the exact service to
2951 * the other has the effect of using the WF2Q+ policy to schedule the
2952 * former on a timeslice basis, without violating service domain
2953 * guarantees among the latter.
aee69d78 2954 */
ea25da48
PV
2955void bfq_bfqq_expire(struct bfq_data *bfqd,
2956 struct bfq_queue *bfqq,
2957 bool compensate,
2958 enum bfqq_expiration reason)
aee69d78
PV
2959{
2960 bool slow;
ab0e43e9
PV
2961 unsigned long delta = 0;
2962 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
2963 int ref;
2964
2965 /*
ab0e43e9 2966 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 2967 */
ab0e43e9 2968 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78 2969
77b7dcea
PV
2970 /*
2971 * Increase service_from_backlogged before next statement,
2972 * because the possible next invocation of
2973 * bfq_bfqq_charge_time would likely inflate
2974 * entity->service. In contrast, service_from_backlogged must
2975 * contain real service, to enable the soft real-time
2976 * heuristic to correctly compute the bandwidth consumed by
2977 * bfqq.
2978 */
2979 bfqq->service_from_backlogged += entity->service;
2980
aee69d78 2981 /*
c074170e
PV
2982 * As above explained, charge slow (typically seeky) and
2983 * timed-out queues with the time and not the service
2984 * received, to favor sequential workloads.
2985 *
2986 * Processes doing I/O in the slower disk zones will tend to
2987 * be slow(er) even if not seeky. Therefore, since the
2988 * estimated peak rate is actually an average over the disk
2989 * surface, these processes may timeout just for bad luck. To
2990 * avoid punishing them, do not charge time to processes that
2991 * succeeded in consuming at least 2/3 of their budget. This
2992 * allows BFQ to preserve enough elasticity to still perform
2993 * bandwidth, and not time, distribution with little unlucky
2994 * or quasi-sequential processes.
aee69d78 2995 */
44e44a1b
PV
2996 if (bfqq->wr_coeff == 1 &&
2997 (slow ||
2998 (reason == BFQQE_BUDGET_TIMEOUT &&
2999 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 3000 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
3001
3002 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 3003 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
3004 bfq_clear_bfqq_IO_bound(bfqq);
3005
44e44a1b
PV
3006 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3007 bfqq->last_wr_start_finish = jiffies;
3008
77b7dcea
PV
3009 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3010 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3011 /*
3012 * If we get here, and there are no outstanding
3013 * requests, then the request pattern is isochronous
3014 * (see the comments on the function
3015 * bfq_bfqq_softrt_next_start()). Thus we can compute
3016 * soft_rt_next_start. If, instead, the queue still
3017 * has outstanding requests, then we have to wait for
3018 * the completion of all the outstanding requests to
3019 * discover whether the request pattern is actually
3020 * isochronous.
3021 */
3022 if (bfqq->dispatched == 0)
3023 bfqq->soft_rt_next_start =
3024 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3025 else {
3026 /*
3027 * The application is still waiting for the
3028 * completion of one or more requests:
3029 * prevent it from possibly being incorrectly
3030 * deemed as soft real-time by setting its
3031 * soft_rt_next_start to infinity. In fact,
3032 * without this assignment, the application
3033 * would be incorrectly deemed as soft
3034 * real-time if:
3035 * 1) it issued a new request before the
3036 * completion of all its in-flight
3037 * requests, and
3038 * 2) at that time, its soft_rt_next_start
3039 * happened to be in the past.
3040 */
3041 bfqq->soft_rt_next_start =
3042 bfq_greatest_from_now();
3043 /*
3044 * Schedule an update of soft_rt_next_start to when
3045 * the task may be discovered to be isochronous.
3046 */
3047 bfq_mark_bfqq_softrt_update(bfqq);
3048 }
3049 }
3050
aee69d78 3051 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
3052 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3053 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
aee69d78
PV
3054
3055 /*
3056 * Increase, decrease or leave budget unchanged according to
3057 * reason.
3058 */
3059 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3060 ref = bfqq->ref;
3061 __bfq_bfqq_expire(bfqd, bfqq);
3062
3063 /* mark bfqq as waiting a request only if a bic still points to it */
3064 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3065 reason != BFQQE_BUDGET_TIMEOUT &&
3066 reason != BFQQE_BUDGET_EXHAUSTED)
3067 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3068}
3069
3070/*
3071 * Budget timeout is not implemented through a dedicated timer, but
3072 * just checked on request arrivals and completions, as well as on
3073 * idle timer expirations.
3074 */
3075static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3076{
44e44a1b 3077 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
3078}
3079
3080/*
3081 * If we expire a queue that is actively waiting (i.e., with the
3082 * device idled) for the arrival of a new request, then we may incur
3083 * the timestamp misalignment problem described in the body of the
3084 * function __bfq_activate_entity. Hence we return true only if this
3085 * condition does not hold, or if the queue is slow enough to deserve
3086 * only to be kicked off for preserving a high throughput.
3087 */
3088static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3089{
3090 bfq_log_bfqq(bfqq->bfqd, bfqq,
3091 "may_budget_timeout: wait_request %d left %d timeout %d",
3092 bfq_bfqq_wait_request(bfqq),
3093 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3094 bfq_bfqq_budget_timeout(bfqq));
3095
3096 return (!bfq_bfqq_wait_request(bfqq) ||
3097 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3098 &&
3099 bfq_bfqq_budget_timeout(bfqq);
3100}
3101
3102/*
3103 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
3104 * this function returns true for the queue. As a consequence, since
3105 * device idling plays a critical role in both throughput boosting and
3106 * service guarantees, the return value of this function plays a
3107 * critical role in both these aspects as well.
3108 *
3109 * In a nutshell, this function returns true only if idling is
3110 * beneficial for throughput or, even if detrimental for throughput,
3111 * idling is however necessary to preserve service guarantees (low
3112 * latency, desired throughput distribution, ...). In particular, on
3113 * NCQ-capable devices, this function tries to return false, so as to
3114 * help keep the drives' internal queues full, whenever this helps the
3115 * device boost the throughput without causing any service-guarantee
3116 * issue.
3117 *
3118 * In more detail, the return value of this function is obtained by,
3119 * first, computing a number of boolean variables that take into
3120 * account throughput and service-guarantee issues, and, then,
3121 * combining these variables in a logical expression. Most of the
3122 * issues taken into account are not trivial. We discuss these issues
3123 * individually while introducing the variables.
aee69d78
PV
3124 */
3125static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3126{
3127 struct bfq_data *bfqd = bfqq->bfqd;
edaf9428
PV
3128 bool rot_without_queueing =
3129 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3130 bfqq_sequential_and_IO_bound,
3131 idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 3132 idling_needed_for_service_guarantees,
cfd69712 3133 asymmetric_scenario;
aee69d78
PV
3134
3135 if (bfqd->strict_guarantees)
3136 return true;
3137
d5be3fef
PV
3138 /*
3139 * Idling is performed only if slice_idle > 0. In addition, we
3140 * do not idle if
3141 * (a) bfqq is async
3142 * (b) bfqq is in the idle io prio class: in this case we do
3143 * not idle because we want to minimize the bandwidth that
3144 * queues in this class can steal to higher-priority queues
3145 */
3146 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3147 bfq_class_idle(bfqq))
3148 return false;
3149
edaf9428
PV
3150 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3151 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3152
aee69d78 3153 /*
44e44a1b
PV
3154 * The next variable takes into account the cases where idling
3155 * boosts the throughput.
3156 *
e01eff01
PV
3157 * The value of the variable is computed considering, first, that
3158 * idling is virtually always beneficial for the throughput if:
edaf9428
PV
3159 * (a) the device is not NCQ-capable and rotational, or
3160 * (b) regardless of the presence of NCQ, the device is rotational and
3161 * the request pattern for bfqq is I/O-bound and sequential, or
3162 * (c) regardless of whether it is rotational, the device is
3163 * not NCQ-capable and the request pattern for bfqq is
3164 * I/O-bound and sequential.
bf2b79e7
PV
3165 *
3166 * Secondly, and in contrast to the above item (b), idling an
3167 * NCQ-capable flash-based device would not boost the
e01eff01 3168 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
3169 * the throughput in proportion to how fast the device
3170 * is. Accordingly, the next variable is true if any of the
edaf9428
PV
3171 * above conditions (a), (b) or (c) is true, and, in
3172 * particular, happens to be false if bfqd is an NCQ-capable
3173 * flash-based device.
aee69d78 3174 */
edaf9428
PV
3175 idling_boosts_thr = rot_without_queueing ||
3176 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3177 bfqq_sequential_and_IO_bound);
aee69d78 3178
cfd69712
PV
3179 /*
3180 * The value of the next variable,
3181 * idling_boosts_thr_without_issues, is equal to that of
3182 * idling_boosts_thr, unless a special case holds. In this
3183 * special case, described below, idling may cause problems to
3184 * weight-raised queues.
3185 *
3186 * When the request pool is saturated (e.g., in the presence
3187 * of write hogs), if the processes associated with
3188 * non-weight-raised queues ask for requests at a lower rate,
3189 * then processes associated with weight-raised queues have a
3190 * higher probability to get a request from the pool
3191 * immediately (or at least soon) when they need one. Thus
3192 * they have a higher probability to actually get a fraction
3193 * of the device throughput proportional to their high
3194 * weight. This is especially true with NCQ-capable drives,
3195 * which enqueue several requests in advance, and further
3196 * reorder internally-queued requests.
3197 *
3198 * For this reason, we force to false the value of
3199 * idling_boosts_thr_without_issues if there are weight-raised
3200 * busy queues. In this case, and if bfqq is not weight-raised,
3201 * this guarantees that the device is not idled for bfqq (if,
3202 * instead, bfqq is weight-raised, then idling will be
3203 * guaranteed by another variable, see below). Combined with
3204 * the timestamping rules of BFQ (see [1] for details), this
3205 * behavior causes bfqq, and hence any sync non-weight-raised
3206 * queue, to get a lower number of requests served, and thus
3207 * to ask for a lower number of requests from the request
3208 * pool, before the busy weight-raised queues get served
3209 * again. This often mitigates starvation problems in the
3210 * presence of heavy write workloads and NCQ, thereby
3211 * guaranteeing a higher application and system responsiveness
3212 * in these hostile scenarios.
3213 */
3214 idling_boosts_thr_without_issues = idling_boosts_thr &&
3215 bfqd->wr_busy_queues == 0;
3216
aee69d78 3217 /*
bf2b79e7
PV
3218 * There is then a case where idling must be performed not
3219 * for throughput concerns, but to preserve service
3220 * guarantees.
3221 *
3222 * To introduce this case, we can note that allowing the drive
3223 * to enqueue more than one request at a time, and hence
44e44a1b 3224 * delegating de facto final scheduling decisions to the
bf2b79e7 3225 * drive's internal scheduler, entails loss of control on the
44e44a1b 3226 * actual request service order. In particular, the critical
bf2b79e7 3227 * situation is when requests from different processes happen
44e44a1b
PV
3228 * to be present, at the same time, in the internal queue(s)
3229 * of the drive. In such a situation, the drive, by deciding
3230 * the service order of the internally-queued requests, does
3231 * determine also the actual throughput distribution among
3232 * these processes. But the drive typically has no notion or
3233 * concern about per-process throughput distribution, and
3234 * makes its decisions only on a per-request basis. Therefore,
3235 * the service distribution enforced by the drive's internal
3236 * scheduler is likely to coincide with the desired
3237 * device-throughput distribution only in a completely
bf2b79e7
PV
3238 * symmetric scenario where:
3239 * (i) each of these processes must get the same throughput as
3240 * the others;
3241 * (ii) all these processes have the same I/O pattern
3242 (either sequential or random).
3243 * In fact, in such a scenario, the drive will tend to treat
3244 * the requests of each of these processes in about the same
3245 * way as the requests of the others, and thus to provide
3246 * each of these processes with about the same throughput
3247 * (which is exactly the desired throughput distribution). In
3248 * contrast, in any asymmetric scenario, device idling is
3249 * certainly needed to guarantee that bfqq receives its
3250 * assigned fraction of the device throughput (see [1] for
3251 * details).
3252 *
3253 * We address this issue by controlling, actually, only the
3254 * symmetry sub-condition (i), i.e., provided that
3255 * sub-condition (i) holds, idling is not performed,
3256 * regardless of whether sub-condition (ii) holds. In other
3257 * words, only if sub-condition (i) holds, then idling is
3258 * allowed, and the device tends to be prevented from queueing
3259 * many requests, possibly of several processes. The reason
3260 * for not controlling also sub-condition (ii) is that we
3261 * exploit preemption to preserve guarantees in case of
3262 * symmetric scenarios, even if (ii) does not hold, as
3263 * explained in the next two paragraphs.
3264 *
3265 * Even if a queue, say Q, is expired when it remains idle, Q
3266 * can still preempt the new in-service queue if the next
3267 * request of Q arrives soon (see the comments on
3268 * bfq_bfqq_update_budg_for_activation). If all queues and
3269 * groups have the same weight, this form of preemption,
3270 * combined with the hole-recovery heuristic described in the
3271 * comments on function bfq_bfqq_update_budg_for_activation,
3272 * are enough to preserve a correct bandwidth distribution in
3273 * the mid term, even without idling. In fact, even if not
3274 * idling allows the internal queues of the device to contain
3275 * many requests, and thus to reorder requests, we can rather
3276 * safely assume that the internal scheduler still preserves a
3277 * minimum of mid-term fairness. The motivation for using
3278 * preemption instead of idling is that, by not idling,
3279 * service guarantees are preserved without minimally
3280 * sacrificing throughput. In other words, both a high
3281 * throughput and its desired distribution are obtained.
3282 *
3283 * More precisely, this preemption-based, idleless approach
3284 * provides fairness in terms of IOPS, and not sectors per
3285 * second. This can be seen with a simple example. Suppose
3286 * that there are two queues with the same weight, but that
3287 * the first queue receives requests of 8 sectors, while the
3288 * second queue receives requests of 1024 sectors. In
3289 * addition, suppose that each of the two queues contains at
3290 * most one request at a time, which implies that each queue
3291 * always remains idle after it is served. Finally, after
3292 * remaining idle, each queue receives very quickly a new
3293 * request. It follows that the two queues are served
3294 * alternatively, preempting each other if needed. This
3295 * implies that, although both queues have the same weight,
3296 * the queue with large requests receives a service that is
3297 * 1024/8 times as high as the service received by the other
3298 * queue.
44e44a1b 3299 *
bf2b79e7
PV
3300 * On the other hand, device idling is performed, and thus
3301 * pure sector-domain guarantees are provided, for the
3302 * following queues, which are likely to need stronger
3303 * throughput guarantees: weight-raised queues, and queues
3304 * with a higher weight than other queues. When such queues
3305 * are active, sub-condition (i) is false, which triggers
3306 * device idling.
44e44a1b 3307 *
bf2b79e7
PV
3308 * According to the above considerations, the next variable is
3309 * true (only) if sub-condition (i) holds. To compute the
3310 * value of this variable, we not only use the return value of
3311 * the function bfq_symmetric_scenario(), but also check
3312 * whether bfqq is being weight-raised, because
3313 * bfq_symmetric_scenario() does not take into account also
3314 * weight-raised queues (see comments on
3315 * bfq_weights_tree_add()).
44e44a1b
PV
3316 *
3317 * As a side note, it is worth considering that the above
3318 * device-idling countermeasures may however fail in the
3319 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
3320 * disabled in a time period during which all symmetry
3321 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
3322 * enqueue many requests, but at some later point in time some
3323 * sub-condition stops to hold, then it may become impossible
3324 * to let requests be served in the desired order until all
3325 * the requests already queued in the device have been served.
3326 */
bf2b79e7
PV
3327 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3328 !bfq_symmetric_scenario(bfqd);
44e44a1b 3329
e1b2324d
AA
3330 /*
3331 * Finally, there is a case where maximizing throughput is the
3332 * best choice even if it may cause unfairness toward
3333 * bfqq. Such a case is when bfqq became active in a burst of
3334 * queue activations. Queues that became active during a large
3335 * burst benefit only from throughput, as discussed in the
3336 * comments on bfq_handle_burst. Thus, if bfqq became active
3337 * in a burst and not idling the device maximizes throughput,
3338 * then the device must no be idled, because not idling the
3339 * device provides bfqq and all other queues in the burst with
3340 * maximum benefit. Combining this and the above case, we can
3341 * now establish when idling is actually needed to preserve
3342 * service guarantees.
3343 */
3344 idling_needed_for_service_guarantees =
3345 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3346
44e44a1b 3347 /*
d5be3fef
PV
3348 * We have now all the components we need to compute the
3349 * return value of the function, which is true only if idling
3350 * either boosts the throughput (without issues), or is
3351 * necessary to preserve service guarantees.
aee69d78 3352 */
d5be3fef
PV
3353 return idling_boosts_thr_without_issues ||
3354 idling_needed_for_service_guarantees;
aee69d78
PV
3355}
3356
3357/*
3358 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3359 * returns true, then:
3360 * 1) the queue must remain in service and cannot be expired, and
3361 * 2) the device must be idled to wait for the possible arrival of a new
3362 * request for the queue.
3363 * See the comments on the function bfq_bfqq_may_idle for the reasons
3364 * why performing device idling is the best choice to boost the throughput
3365 * and preserve service guarantees when bfq_bfqq_may_idle itself
3366 * returns true.
3367 */
3368static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3369{
d5be3fef 3370 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
aee69d78
PV
3371}
3372
3373/*
3374 * Select a queue for service. If we have a current queue in service,
3375 * check whether to continue servicing it, or retrieve and set a new one.
3376 */
3377static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3378{
3379 struct bfq_queue *bfqq;
3380 struct request *next_rq;
3381 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3382
3383 bfqq = bfqd->in_service_queue;
3384 if (!bfqq)
3385 goto new_queue;
3386
3387 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3388
3389 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3390 !bfq_bfqq_wait_request(bfqq) &&
3391 !bfq_bfqq_must_idle(bfqq))
3392 goto expire;
3393
3394check_queue:
3395 /*
3396 * This loop is rarely executed more than once. Even when it
3397 * happens, it is much more convenient to re-execute this loop
3398 * than to return NULL and trigger a new dispatch to get a
3399 * request served.
3400 */
3401 next_rq = bfqq->next_rq;
3402 /*
3403 * If bfqq has requests queued and it has enough budget left to
3404 * serve them, keep the queue, otherwise expire it.
3405 */
3406 if (next_rq) {
3407 if (bfq_serv_to_charge(next_rq, bfqq) >
3408 bfq_bfqq_budget_left(bfqq)) {
3409 /*
3410 * Expire the queue for budget exhaustion,
3411 * which makes sure that the next budget is
3412 * enough to serve the next request, even if
3413 * it comes from the fifo expired path.
3414 */
3415 reason = BFQQE_BUDGET_EXHAUSTED;
3416 goto expire;
3417 } else {
3418 /*
3419 * The idle timer may be pending because we may
3420 * not disable disk idling even when a new request
3421 * arrives.
3422 */
3423 if (bfq_bfqq_wait_request(bfqq)) {
3424 /*
3425 * If we get here: 1) at least a new request
3426 * has arrived but we have not disabled the
3427 * timer because the request was too small,
3428 * 2) then the block layer has unplugged
3429 * the device, causing the dispatch to be
3430 * invoked.
3431 *
3432 * Since the device is unplugged, now the
3433 * requests are probably large enough to
3434 * provide a reasonable throughput.
3435 * So we disable idling.
3436 */
3437 bfq_clear_bfqq_wait_request(bfqq);
3438 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 3439 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
3440 }
3441 goto keep_queue;
3442 }
3443 }
3444
3445 /*
3446 * No requests pending. However, if the in-service queue is idling
3447 * for a new request, or has requests waiting for a completion and
3448 * may idle after their completion, then keep it anyway.
3449 */
3450 if (bfq_bfqq_wait_request(bfqq) ||
3451 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3452 bfqq = NULL;
3453 goto keep_queue;
3454 }
3455
3456 reason = BFQQE_NO_MORE_REQUESTS;
3457expire:
3458 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3459new_queue:
3460 bfqq = bfq_set_in_service_queue(bfqd);
3461 if (bfqq) {
3462 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3463 goto check_queue;
3464 }
3465keep_queue:
3466 if (bfqq)
3467 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3468 else
3469 bfq_log(bfqd, "select_queue: no queue returned");
3470
3471 return bfqq;
3472}
3473
44e44a1b
PV
3474static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3475{
3476 struct bfq_entity *entity = &bfqq->entity;
3477
3478 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3479 bfq_log_bfqq(bfqd, bfqq,
3480 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3481 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3482 jiffies_to_msecs(bfqq->wr_cur_max_time),
3483 bfqq->wr_coeff,
3484 bfqq->entity.weight, bfqq->entity.orig_weight);
3485
3486 if (entity->prio_changed)
3487 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3488
3489 /*
e1b2324d
AA
3490 * If the queue was activated in a burst, or too much
3491 * time has elapsed from the beginning of this
3492 * weight-raising period, then end weight raising.
44e44a1b 3493 */
e1b2324d
AA
3494 if (bfq_bfqq_in_large_burst(bfqq))
3495 bfq_bfqq_end_wr(bfqq);
3496 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3497 bfqq->wr_cur_max_time)) {
77b7dcea
PV
3498 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3499 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 3500 bfq_wr_duration(bfqd)))
77b7dcea
PV
3501 bfq_bfqq_end_wr(bfqq);
3502 else {
3503 /* switch back to interactive wr */
3504 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
3505 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
3506 bfqq->last_wr_start_finish =
3507 bfqq->wr_start_at_switch_to_srt;
3508 bfqq->entity.prio_changed = 1;
3509 }
44e44a1b
PV
3510 }
3511 }
431b17f9
PV
3512 /*
3513 * To improve latency (for this or other queues), immediately
3514 * update weight both if it must be raised and if it must be
3515 * lowered. Since, entity may be on some active tree here, and
3516 * might have a pending change of its ioprio class, invoke
3517 * next function with the last parameter unset (see the
3518 * comments on the function).
3519 */
44e44a1b 3520 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
431b17f9
PV
3521 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3522 entity, false);
44e44a1b
PV
3523}
3524
aee69d78
PV
3525/*
3526 * Dispatch next request from bfqq.
3527 */
3528static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3529 struct bfq_queue *bfqq)
3530{
3531 struct request *rq = bfqq->next_rq;
3532 unsigned long service_to_charge;
3533
3534 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3535
3536 bfq_bfqq_served(bfqq, service_to_charge);
3537
3538 bfq_dispatch_remove(bfqd->queue, rq);
3539
44e44a1b
PV
3540 /*
3541 * If weight raising has to terminate for bfqq, then next
3542 * function causes an immediate update of bfqq's weight,
3543 * without waiting for next activation. As a consequence, on
3544 * expiration, bfqq will be timestamped as if has never been
3545 * weight-raised during this service slot, even if it has
3546 * received part or even most of the service as a
3547 * weight-raised queue. This inflates bfqq's timestamps, which
3548 * is beneficial, as bfqq is then more willing to leave the
3549 * device immediately to possible other weight-raised queues.
3550 */
3551 bfq_update_wr_data(bfqd, bfqq);
3552
aee69d78
PV
3553 /*
3554 * Expire bfqq, pretending that its budget expired, if bfqq
3555 * belongs to CLASS_IDLE and other queues are waiting for
3556 * service.
3557 */
3558 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3559 goto expire;
3560
3561 return rq;
3562
3563expire:
3564 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3565 return rq;
3566}
3567
3568static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3569{
3570 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3571
3572 /*
3573 * Avoiding lock: a race on bfqd->busy_queues should cause at
3574 * most a call to dispatch for nothing
3575 */
3576 return !list_empty_careful(&bfqd->dispatch) ||
3577 bfqd->busy_queues > 0;
3578}
3579
3580static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3581{
3582 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3583 struct request *rq = NULL;
3584 struct bfq_queue *bfqq = NULL;
3585
3586 if (!list_empty(&bfqd->dispatch)) {
3587 rq = list_first_entry(&bfqd->dispatch, struct request,
3588 queuelist);
3589 list_del_init(&rq->queuelist);
3590
3591 bfqq = RQ_BFQQ(rq);
3592
3593 if (bfqq) {
3594 /*
3595 * Increment counters here, because this
3596 * dispatch does not follow the standard
3597 * dispatch flow (where counters are
3598 * incremented)
3599 */
3600 bfqq->dispatched++;
3601
3602 goto inc_in_driver_start_rq;
3603 }
3604
3605 /*
3606 * We exploit the put_rq_private hook to decrement
3607 * rq_in_driver, but put_rq_private will not be
3608 * invoked on this request. So, to avoid unbalance,
3609 * just start this request, without incrementing
3610 * rq_in_driver. As a negative consequence,
3611 * rq_in_driver is deceptively lower than it should be
3612 * while this request is in service. This may cause
3613 * bfq_schedule_dispatch to be invoked uselessly.
3614 *
3615 * As for implementing an exact solution, the
3616 * put_request hook, if defined, is probably invoked
3617 * also on this request. So, by exploiting this hook,
3618 * we could 1) increment rq_in_driver here, and 2)
3619 * decrement it in put_request. Such a solution would
3620 * let the value of the counter be always accurate,
3621 * but it would entail using an extra interface
3622 * function. This cost seems higher than the benefit,
3623 * being the frequency of non-elevator-private
3624 * requests very low.
3625 */
3626 goto start_rq;
3627 }
3628
3629 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3630
3631 if (bfqd->busy_queues == 0)
3632 goto exit;
3633
3634 /*
3635 * Force device to serve one request at a time if
3636 * strict_guarantees is true. Forcing this service scheme is
3637 * currently the ONLY way to guarantee that the request
3638 * service order enforced by the scheduler is respected by a
3639 * queueing device. Otherwise the device is free even to make
3640 * some unlucky request wait for as long as the device
3641 * wishes.
3642 *
3643 * Of course, serving one request at at time may cause loss of
3644 * throughput.
3645 */
3646 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3647 goto exit;
3648
3649 bfqq = bfq_select_queue(bfqd);
3650 if (!bfqq)
3651 goto exit;
3652
3653 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3654
3655 if (rq) {
3656inc_in_driver_start_rq:
3657 bfqd->rq_in_driver++;
3658start_rq:
3659 rq->rq_flags |= RQF_STARTED;
3660 }
3661exit:
3662 return rq;
3663}
3664
3665static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3666{
3667 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3668 struct request *rq;
3669
3670 spin_lock_irq(&bfqd->lock);
36eca894 3671
aee69d78 3672 rq = __bfq_dispatch_request(hctx);
6fa3e8d3 3673 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
3674
3675 return rq;
3676}
3677
3678/*
3679 * Task holds one reference to the queue, dropped when task exits. Each rq
3680 * in-flight on this queue also holds a reference, dropped when rq is freed.
3681 *
3682 * Scheduler lock must be held here. Recall not to use bfqq after calling
3683 * this function on it.
3684 */
ea25da48 3685void bfq_put_queue(struct bfq_queue *bfqq)
aee69d78 3686{
e21b7a0b
AA
3687#ifdef CONFIG_BFQ_GROUP_IOSCHED
3688 struct bfq_group *bfqg = bfqq_group(bfqq);
3689#endif
3690
aee69d78
PV
3691 if (bfqq->bfqd)
3692 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3693 bfqq, bfqq->ref);
3694
3695 bfqq->ref--;
3696 if (bfqq->ref)
3697 return;
3698
e1b2324d
AA
3699 if (bfq_bfqq_sync(bfqq))
3700 /*
3701 * The fact that this queue is being destroyed does not
3702 * invalidate the fact that this queue may have been
3703 * activated during the current burst. As a consequence,
3704 * although the queue does not exist anymore, and hence
3705 * needs to be removed from the burst list if there,
3706 * the burst size has not to be decremented.
3707 */
3708 hlist_del_init(&bfqq->burst_list_node);
e21b7a0b 3709
aee69d78 3710 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b 3711#ifdef CONFIG_BFQ_GROUP_IOSCHED
8f9bebc3 3712 bfqg_and_blkg_put(bfqg);
e21b7a0b 3713#endif
aee69d78
PV
3714}
3715
36eca894
AA
3716static void bfq_put_cooperator(struct bfq_queue *bfqq)
3717{
3718 struct bfq_queue *__bfqq, *next;
3719
3720 /*
3721 * If this queue was scheduled to merge with another queue, be
3722 * sure to drop the reference taken on that queue (and others in
3723 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3724 */
3725 __bfqq = bfqq->new_bfqq;
3726 while (__bfqq) {
3727 if (__bfqq == bfqq)
3728 break;
3729 next = __bfqq->new_bfqq;
3730 bfq_put_queue(__bfqq);
3731 __bfqq = next;
3732 }
3733}
3734
aee69d78
PV
3735static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3736{
3737 if (bfqq == bfqd->in_service_queue) {
3738 __bfq_bfqq_expire(bfqd, bfqq);
3739 bfq_schedule_dispatch(bfqd);
3740 }
3741
3742 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3743
36eca894
AA
3744 bfq_put_cooperator(bfqq);
3745
aee69d78
PV
3746 bfq_put_queue(bfqq); /* release process reference */
3747}
3748
3749static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3750{
3751 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3752 struct bfq_data *bfqd;
3753
3754 if (bfqq)
3755 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3756
3757 if (bfqq && bfqd) {
3758 unsigned long flags;
3759
3760 spin_lock_irqsave(&bfqd->lock, flags);
3761 bfq_exit_bfqq(bfqd, bfqq);
3762 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 3763 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
3764 }
3765}
3766
3767static void bfq_exit_icq(struct io_cq *icq)
3768{
3769 struct bfq_io_cq *bic = icq_to_bic(icq);
3770
3771 bfq_exit_icq_bfqq(bic, true);
3772 bfq_exit_icq_bfqq(bic, false);
3773}
3774
3775/*
3776 * Update the entity prio values; note that the new values will not
3777 * be used until the next (re)activation.
3778 */
3779static void
3780bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3781{
3782 struct task_struct *tsk = current;
3783 int ioprio_class;
3784 struct bfq_data *bfqd = bfqq->bfqd;
3785
3786 if (!bfqd)
3787 return;
3788
3789 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3790 switch (ioprio_class) {
3791 default:
3792 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3793 "bfq: bad prio class %d\n", ioprio_class);
fa393d1b 3794 /* fall through */
aee69d78
PV
3795 case IOPRIO_CLASS_NONE:
3796 /*
3797 * No prio set, inherit CPU scheduling settings.
3798 */
3799 bfqq->new_ioprio = task_nice_ioprio(tsk);
3800 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3801 break;
3802 case IOPRIO_CLASS_RT:
3803 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3804 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3805 break;
3806 case IOPRIO_CLASS_BE:
3807 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3808 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3809 break;
3810 case IOPRIO_CLASS_IDLE:
3811 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3812 bfqq->new_ioprio = 7;
aee69d78
PV
3813 break;
3814 }
3815
3816 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3817 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3818 bfqq->new_ioprio);
3819 bfqq->new_ioprio = IOPRIO_BE_NR;
3820 }
3821
3822 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3823 bfqq->entity.prio_changed = 1;
3824}
3825
ea25da48
PV
3826static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3827 struct bio *bio, bool is_sync,
3828 struct bfq_io_cq *bic);
3829
aee69d78
PV
3830static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3831{
3832 struct bfq_data *bfqd = bic_to_bfqd(bic);
3833 struct bfq_queue *bfqq;
3834 int ioprio = bic->icq.ioc->ioprio;
3835
3836 /*
3837 * This condition may trigger on a newly created bic, be sure to
3838 * drop the lock before returning.
3839 */
3840 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3841 return;
3842
3843 bic->ioprio = ioprio;
3844
3845 bfqq = bic_to_bfqq(bic, false);
3846 if (bfqq) {
3847 /* release process reference on this queue */
3848 bfq_put_queue(bfqq);
3849 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3850 bic_set_bfqq(bic, bfqq, false);
3851 }
3852
3853 bfqq = bic_to_bfqq(bic, true);
3854 if (bfqq)
3855 bfq_set_next_ioprio_data(bfqq, bic);
3856}
3857
3858static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3859 struct bfq_io_cq *bic, pid_t pid, int is_sync)
3860{
3861 RB_CLEAR_NODE(&bfqq->entity.rb_node);
3862 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 3863 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
3864
3865 bfqq->ref = 0;
3866 bfqq->bfqd = bfqd;
3867
3868 if (bic)
3869 bfq_set_next_ioprio_data(bfqq, bic);
3870
3871 if (is_sync) {
d5be3fef
PV
3872 /*
3873 * No need to mark as has_short_ttime if in
3874 * idle_class, because no device idling is performed
3875 * for queues in idle class
3876 */
aee69d78 3877 if (!bfq_class_idle(bfqq))
d5be3fef
PV
3878 /* tentatively mark as has_short_ttime */
3879 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 3880 bfq_mark_bfqq_sync(bfqq);
e1b2324d 3881 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
3882 } else
3883 bfq_clear_bfqq_sync(bfqq);
3884
3885 /* set end request to minus infinity from now */
3886 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
3887
3888 bfq_mark_bfqq_IO_bound(bfqq);
3889
3890 bfqq->pid = pid;
3891
3892 /* Tentative initial value to trade off between thr and lat */
54b60456 3893 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 3894 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 3895
44e44a1b 3896 bfqq->wr_coeff = 1;
36eca894 3897 bfqq->last_wr_start_finish = jiffies;
77b7dcea 3898 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 3899 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
3900
3901 /*
3902 * Set to the value for which bfqq will not be deemed as
3903 * soft rt when it becomes backlogged.
3904 */
3905 bfqq->soft_rt_next_start = bfq_greatest_from_now();
44e44a1b 3906
aee69d78
PV
3907 /* first request is almost certainly seeky */
3908 bfqq->seek_history = 1;
3909}
3910
3911static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 3912 struct bfq_group *bfqg,
aee69d78
PV
3913 int ioprio_class, int ioprio)
3914{
3915 switch (ioprio_class) {
3916 case IOPRIO_CLASS_RT:
e21b7a0b 3917 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
3918 case IOPRIO_CLASS_NONE:
3919 ioprio = IOPRIO_NORM;
3920 /* fall through */
3921 case IOPRIO_CLASS_BE:
e21b7a0b 3922 return &bfqg->async_bfqq[1][ioprio];
aee69d78 3923 case IOPRIO_CLASS_IDLE:
e21b7a0b 3924 return &bfqg->async_idle_bfqq;
aee69d78
PV
3925 default:
3926 return NULL;
3927 }
3928}
3929
3930static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3931 struct bio *bio, bool is_sync,
3932 struct bfq_io_cq *bic)
3933{
3934 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3935 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3936 struct bfq_queue **async_bfqq = NULL;
3937 struct bfq_queue *bfqq;
e21b7a0b 3938 struct bfq_group *bfqg;
aee69d78
PV
3939
3940 rcu_read_lock();
3941
e21b7a0b
AA
3942 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
3943 if (!bfqg) {
3944 bfqq = &bfqd->oom_bfqq;
3945 goto out;
3946 }
3947
aee69d78 3948 if (!is_sync) {
e21b7a0b 3949 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
3950 ioprio);
3951 bfqq = *async_bfqq;
3952 if (bfqq)
3953 goto out;
3954 }
3955
3956 bfqq = kmem_cache_alloc_node(bfq_pool,
3957 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3958 bfqd->queue->node);
3959
3960 if (bfqq) {
3961 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
3962 is_sync);
e21b7a0b 3963 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
3964 bfq_log_bfqq(bfqd, bfqq, "allocated");
3965 } else {
3966 bfqq = &bfqd->oom_bfqq;
3967 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
3968 goto out;
3969 }
3970
3971 /*
3972 * Pin the queue now that it's allocated, scheduler exit will
3973 * prune it.
3974 */
3975 if (async_bfqq) {
e21b7a0b
AA
3976 bfqq->ref++; /*
3977 * Extra group reference, w.r.t. sync
3978 * queue. This extra reference is removed
3979 * only if bfqq->bfqg disappears, to
3980 * guarantee that this queue is not freed
3981 * until its group goes away.
3982 */
3983 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
3984 bfqq, bfqq->ref);
3985 *async_bfqq = bfqq;
3986 }
3987
3988out:
3989 bfqq->ref++; /* get a process reference to this queue */
3990 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
3991 rcu_read_unlock();
3992 return bfqq;
3993}
3994
3995static void bfq_update_io_thinktime(struct bfq_data *bfqd,
3996 struct bfq_queue *bfqq)
3997{
3998 struct bfq_ttime *ttime = &bfqq->ttime;
3999 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4000
4001 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4002
4003 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4004 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4005 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4006 ttime->ttime_samples);
4007}
4008
4009static void
4010bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4011 struct request *rq)
4012{
aee69d78 4013 bfqq->seek_history <<= 1;
ab0e43e9
PV
4014 bfqq->seek_history |=
4015 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
4016 (!blk_queue_nonrot(bfqd->queue) ||
4017 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4018}
4019
d5be3fef
PV
4020static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4021 struct bfq_queue *bfqq,
4022 struct bfq_io_cq *bic)
aee69d78 4023{
d5be3fef 4024 bool has_short_ttime = true;
aee69d78 4025
d5be3fef
PV
4026 /*
4027 * No need to update has_short_ttime if bfqq is async or in
4028 * idle io prio class, or if bfq_slice_idle is zero, because
4029 * no device idling is performed for bfqq in this case.
4030 */
4031 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4032 bfqd->bfq_slice_idle == 0)
aee69d78
PV
4033 return;
4034
36eca894
AA
4035 /* Idle window just restored, statistics are meaningless. */
4036 if (time_is_after_eq_jiffies(bfqq->split_time +
4037 bfqd->bfq_wr_min_idle_time))
4038 return;
4039
d5be3fef
PV
4040 /* Think time is infinite if no process is linked to
4041 * bfqq. Otherwise check average think time to
4042 * decide whether to mark as has_short_ttime
4043 */
aee69d78 4044 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
d5be3fef
PV
4045 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4046 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4047 has_short_ttime = false;
4048
4049 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4050 has_short_ttime);
aee69d78 4051
d5be3fef
PV
4052 if (has_short_ttime)
4053 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 4054 else
d5be3fef 4055 bfq_clear_bfqq_has_short_ttime(bfqq);
aee69d78
PV
4056}
4057
4058/*
4059 * Called when a new fs request (rq) is added to bfqq. Check if there's
4060 * something we should do about it.
4061 */
4062static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4063 struct request *rq)
4064{
4065 struct bfq_io_cq *bic = RQ_BIC(rq);
4066
4067 if (rq->cmd_flags & REQ_META)
4068 bfqq->meta_pending++;
4069
4070 bfq_update_io_thinktime(bfqd, bfqq);
d5be3fef 4071 bfq_update_has_short_ttime(bfqd, bfqq, bic);
aee69d78 4072 bfq_update_io_seektime(bfqd, bfqq, rq);
aee69d78
PV
4073
4074 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
4075 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4076 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
aee69d78
PV
4077
4078 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4079
4080 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4081 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4082 blk_rq_sectors(rq) < 32;
4083 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4084
4085 /*
4086 * There is just this request queued: if the request
4087 * is small and the queue is not to be expired, then
4088 * just exit.
4089 *
4090 * In this way, if the device is being idled to wait
4091 * for a new request from the in-service queue, we
4092 * avoid unplugging the device and committing the
4093 * device to serve just a small request. On the
4094 * contrary, we wait for the block layer to decide
4095 * when to unplug the device: hopefully, new requests
4096 * will be merged to this one quickly, then the device
4097 * will be unplugged and larger requests will be
4098 * dispatched.
4099 */
4100 if (small_req && !budget_timeout)
4101 return;
4102
4103 /*
4104 * A large enough request arrived, or the queue is to
4105 * be expired: in both cases disk idling is to be
4106 * stopped, so clear wait_request flag and reset
4107 * timer.
4108 */
4109 bfq_clear_bfqq_wait_request(bfqq);
4110 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 4111 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
4112
4113 /*
4114 * The queue is not empty, because a new request just
4115 * arrived. Hence we can safely expire the queue, in
4116 * case of budget timeout, without risking that the
4117 * timestamps of the queue are not updated correctly.
4118 * See [1] for more details.
4119 */
4120 if (budget_timeout)
4121 bfq_bfqq_expire(bfqd, bfqq, false,
4122 BFQQE_BUDGET_TIMEOUT);
4123 }
4124}
4125
4126static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4127{
36eca894
AA
4128 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4129 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4130
4131 if (new_bfqq) {
4132 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4133 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4134 /*
4135 * Release the request's reference to the old bfqq
4136 * and make sure one is taken to the shared queue.
4137 */
4138 new_bfqq->allocated++;
4139 bfqq->allocated--;
4140 new_bfqq->ref++;
e1b2324d 4141 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
4142 /*
4143 * If the bic associated with the process
4144 * issuing this request still points to bfqq
4145 * (and thus has not been already redirected
4146 * to new_bfqq or even some other bfq_queue),
4147 * then complete the merge and redirect it to
4148 * new_bfqq.
4149 */
4150 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4151 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4152 bfqq, new_bfqq);
4153 /*
4154 * rq is about to be enqueued into new_bfqq,
4155 * release rq reference on bfqq
4156 */
4157 bfq_put_queue(bfqq);
4158 rq->elv.priv[1] = new_bfqq;
4159 bfqq = new_bfqq;
4160 }
aee69d78
PV
4161
4162 bfq_add_request(rq);
4163
4164 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4165 list_add_tail(&rq->queuelist, &bfqq->fifo);
4166
4167 bfq_rq_enqueued(bfqd, bfqq, rq);
4168}
4169
4170static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4171 bool at_head)
4172{
4173 struct request_queue *q = hctx->queue;
4174 struct bfq_data *bfqd = q->elevator->elevator_data;
4175
4176 spin_lock_irq(&bfqd->lock);
4177 if (blk_mq_sched_try_insert_merge(q, rq)) {
4178 spin_unlock_irq(&bfqd->lock);
4179 return;
4180 }
4181
4182 spin_unlock_irq(&bfqd->lock);
4183
4184 blk_mq_sched_request_inserted(rq);
4185
4186 spin_lock_irq(&bfqd->lock);
4187 if (at_head || blk_rq_is_passthrough(rq)) {
4188 if (at_head)
4189 list_add(&rq->queuelist, &bfqd->dispatch);
4190 else
4191 list_add_tail(&rq->queuelist, &bfqd->dispatch);
4192 } else {
4193 __bfq_insert_request(bfqd, rq);
4194
4195 if (rq_mergeable(rq)) {
4196 elv_rqhash_add(q, rq);
4197 if (!q->last_merge)
4198 q->last_merge = rq;
4199 }
4200 }
4201
6fa3e8d3 4202 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4203}
4204
4205static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4206 struct list_head *list, bool at_head)
4207{
4208 while (!list_empty(list)) {
4209 struct request *rq;
4210
4211 rq = list_first_entry(list, struct request, queuelist);
4212 list_del_init(&rq->queuelist);
4213 bfq_insert_request(hctx, rq, at_head);
4214 }
4215}
4216
4217static void bfq_update_hw_tag(struct bfq_data *bfqd)
4218{
4219 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4220 bfqd->rq_in_driver);
4221
4222 if (bfqd->hw_tag == 1)
4223 return;
4224
4225 /*
4226 * This sample is valid if the number of outstanding requests
4227 * is large enough to allow a queueing behavior. Note that the
4228 * sum is not exact, as it's not taking into account deactivated
4229 * requests.
4230 */
4231 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4232 return;
4233
4234 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4235 return;
4236
4237 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4238 bfqd->max_rq_in_driver = 0;
4239 bfqd->hw_tag_samples = 0;
4240}
4241
4242static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4243{
ab0e43e9
PV
4244 u64 now_ns;
4245 u32 delta_us;
4246
aee69d78
PV
4247 bfq_update_hw_tag(bfqd);
4248
4249 bfqd->rq_in_driver--;
4250 bfqq->dispatched--;
4251
44e44a1b
PV
4252 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4253 /*
4254 * Set budget_timeout (which we overload to store the
4255 * time at which the queue remains with no backlog and
4256 * no outstanding request; used by the weight-raising
4257 * mechanism).
4258 */
4259 bfqq->budget_timeout = jiffies;
1de0c4cd
AA
4260
4261 bfq_weights_tree_remove(bfqd, &bfqq->entity,
4262 &bfqd->queue_weights_tree);
44e44a1b
PV
4263 }
4264
ab0e43e9
PV
4265 now_ns = ktime_get_ns();
4266
4267 bfqq->ttime.last_end_request = now_ns;
4268
4269 /*
4270 * Using us instead of ns, to get a reasonable precision in
4271 * computing rate in next check.
4272 */
4273 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4274
4275 /*
4276 * If the request took rather long to complete, and, according
4277 * to the maximum request size recorded, this completion latency
4278 * implies that the request was certainly served at a very low
4279 * rate (less than 1M sectors/sec), then the whole observation
4280 * interval that lasts up to this time instant cannot be a
4281 * valid time interval for computing a new peak rate. Invoke
4282 * bfq_update_rate_reset to have the following three steps
4283 * taken:
4284 * - close the observation interval at the last (previous)
4285 * request dispatch or completion
4286 * - compute rate, if possible, for that observation interval
4287 * - reset to zero samples, which will trigger a proper
4288 * re-initialization of the observation interval on next
4289 * dispatch
4290 */
4291 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4292 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4293 1UL<<(BFQ_RATE_SHIFT - 10))
4294 bfq_update_rate_reset(bfqd, NULL);
4295 bfqd->last_completion = now_ns;
aee69d78 4296
77b7dcea
PV
4297 /*
4298 * If we are waiting to discover whether the request pattern
4299 * of the task associated with the queue is actually
4300 * isochronous, and both requisites for this condition to hold
4301 * are now satisfied, then compute soft_rt_next_start (see the
4302 * comments on the function bfq_bfqq_softrt_next_start()). We
4303 * schedule this delayed check when bfqq expires, if it still
4304 * has in-flight requests.
4305 */
4306 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4307 RB_EMPTY_ROOT(&bfqq->sort_list))
4308 bfqq->soft_rt_next_start =
4309 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4310
aee69d78
PV
4311 /*
4312 * If this is the in-service queue, check if it needs to be expired,
4313 * or if we want to idle in case it has no pending requests.
4314 */
4315 if (bfqd->in_service_queue == bfqq) {
44e44a1b 4316 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
4317 bfq_arm_slice_timer(bfqd);
4318 return;
4319 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4320 bfq_bfqq_expire(bfqd, bfqq, false,
4321 BFQQE_BUDGET_TIMEOUT);
4322 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4323 (bfqq->dispatched == 0 ||
4324 !bfq_bfqq_may_idle(bfqq)))
4325 bfq_bfqq_expire(bfqd, bfqq, false,
4326 BFQQE_NO_MORE_REQUESTS);
4327 }
3f7cb4f4
HT
4328
4329 if (!bfqd->rq_in_driver)
4330 bfq_schedule_dispatch(bfqd);
aee69d78
PV
4331}
4332
4333static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4334{
4335 bfqq->allocated--;
4336
4337 bfq_put_queue(bfqq);
4338}
4339
7b9e9361 4340static void bfq_finish_request(struct request *rq)
aee69d78 4341{
5bbf4e5a
CH
4342 struct bfq_queue *bfqq;
4343 struct bfq_data *bfqd;
4344
4345 if (!rq->elv.icq)
4346 return;
4347
4348 bfqq = RQ_BFQQ(rq);
4349 bfqd = bfqq->bfqd;
aee69d78 4350
e21b7a0b
AA
4351 if (rq->rq_flags & RQF_STARTED)
4352 bfqg_stats_update_completion(bfqq_group(bfqq),
4353 rq_start_time_ns(rq),
4354 rq_io_start_time_ns(rq),
4355 rq->cmd_flags);
aee69d78
PV
4356
4357 if (likely(rq->rq_flags & RQF_STARTED)) {
4358 unsigned long flags;
4359
4360 spin_lock_irqsave(&bfqd->lock, flags);
4361
4362 bfq_completed_request(bfqq, bfqd);
4363 bfq_put_rq_priv_body(bfqq);
4364
6fa3e8d3 4365 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4366 } else {
4367 /*
4368 * Request rq may be still/already in the scheduler,
4369 * in which case we need to remove it. And we cannot
4370 * defer such a check and removal, to avoid
4371 * inconsistencies in the time interval from the end
4372 * of this function to the start of the deferred work.
4373 * This situation seems to occur only in process
4374 * context, as a consequence of a merge. In the
4375 * current version of the code, this implies that the
4376 * lock is held.
4377 */
4378
4379 if (!RB_EMPTY_NODE(&rq->rb_node))
7b9e9361 4380 bfq_remove_request(rq->q, rq);
aee69d78
PV
4381 bfq_put_rq_priv_body(bfqq);
4382 }
4383
4384 rq->elv.priv[0] = NULL;
4385 rq->elv.priv[1] = NULL;
4386}
4387
36eca894
AA
4388/*
4389 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4390 * was the last process referring to that bfqq.
4391 */
4392static struct bfq_queue *
4393bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4394{
4395 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4396
4397 if (bfqq_process_refs(bfqq) == 1) {
4398 bfqq->pid = current->pid;
4399 bfq_clear_bfqq_coop(bfqq);
4400 bfq_clear_bfqq_split_coop(bfqq);
4401 return bfqq;
4402 }
4403
4404 bic_set_bfqq(bic, NULL, 1);
4405
4406 bfq_put_cooperator(bfqq);
4407
4408 bfq_put_queue(bfqq);
4409 return NULL;
4410}
4411
4412static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4413 struct bfq_io_cq *bic,
4414 struct bio *bio,
4415 bool split, bool is_sync,
4416 bool *new_queue)
4417{
4418 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4419
4420 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4421 return bfqq;
4422
4423 if (new_queue)
4424 *new_queue = true;
4425
4426 if (bfqq)
4427 bfq_put_queue(bfqq);
4428 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4429
4430 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
4431 if (split && is_sync) {
4432 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4433 bic->saved_in_large_burst)
4434 bfq_mark_bfqq_in_large_burst(bfqq);
4435 else {
4436 bfq_clear_bfqq_in_large_burst(bfqq);
4437 if (bic->was_in_burst_list)
4438 hlist_add_head(&bfqq->burst_list_node,
4439 &bfqd->burst_list);
4440 }
36eca894 4441 bfqq->split_time = jiffies;
e1b2324d 4442 }
36eca894
AA
4443
4444 return bfqq;
4445}
4446
aee69d78
PV
4447/*
4448 * Allocate bfq data structures associated with this request.
4449 */
5bbf4e5a 4450static void bfq_prepare_request(struct request *rq, struct bio *bio)
aee69d78 4451{
5bbf4e5a 4452 struct request_queue *q = rq->q;
aee69d78 4453 struct bfq_data *bfqd = q->elevator->elevator_data;
9f210738 4454 struct bfq_io_cq *bic;
aee69d78
PV
4455 const int is_sync = rq_is_sync(rq);
4456 struct bfq_queue *bfqq;
36eca894 4457 bool new_queue = false;
13c931bd 4458 bool bfqq_already_existing = false, split = false;
aee69d78 4459
be10336a
JA
4460 /*
4461 * Even if we don't have an icq attached, we should still clear
4462 * the scheduler pointers, as they might point to previously
4463 * allocated bic/bfqq structs.
4464 */
4465 if (!rq->elv.icq) {
4466 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5bbf4e5a 4467 return;
be10336a
JA
4468 }
4469
9f210738 4470 bic = icq_to_bic(rq->elv.icq);
aee69d78 4471
9f210738 4472 spin_lock_irq(&bfqd->lock);
aee69d78 4473
8c9ff1ad
CIK
4474 bfq_check_ioprio_change(bic, bio);
4475
e21b7a0b
AA
4476 bfq_bic_update_cgroup(bic, bio);
4477
36eca894
AA
4478 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4479 &new_queue);
4480
4481 if (likely(!new_queue)) {
4482 /* If the queue was seeky for too long, break it apart. */
4483 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4484 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
4485
4486 /* Update bic before losing reference to bfqq */
4487 if (bfq_bfqq_in_large_burst(bfqq))
4488 bic->saved_in_large_burst = true;
4489
36eca894 4490 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 4491 split = true;
36eca894
AA
4492
4493 if (!bfqq)
4494 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4495 true, is_sync,
4496 NULL);
13c931bd
PV
4497 else
4498 bfqq_already_existing = true;
36eca894 4499 }
aee69d78
PV
4500 }
4501
4502 bfqq->allocated++;
4503 bfqq->ref++;
4504 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4505 rq, bfqq, bfqq->ref);
4506
4507 rq->elv.priv[0] = bic;
4508 rq->elv.priv[1] = bfqq;
4509
36eca894
AA
4510 /*
4511 * If a bfq_queue has only one process reference, it is owned
4512 * by only this bic: we can then set bfqq->bic = bic. in
4513 * addition, if the queue has also just been split, we have to
4514 * resume its state.
4515 */
4516 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4517 bfqq->bic = bic;
6fa3e8d3 4518 if (split) {
36eca894
AA
4519 /*
4520 * The queue has just been split from a shared
4521 * queue: restore the idle window and the
4522 * possible weight raising period.
4523 */
13c931bd
PV
4524 bfq_bfqq_resume_state(bfqq, bfqd, bic,
4525 bfqq_already_existing);
36eca894
AA
4526 }
4527 }
4528
e1b2324d
AA
4529 if (unlikely(bfq_bfqq_just_created(bfqq)))
4530 bfq_handle_burst(bfqd, bfqq);
4531
6fa3e8d3 4532 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4533}
4534
4535static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4536{
4537 struct bfq_data *bfqd = bfqq->bfqd;
4538 enum bfqq_expiration reason;
4539 unsigned long flags;
4540
4541 spin_lock_irqsave(&bfqd->lock, flags);
4542 bfq_clear_bfqq_wait_request(bfqq);
4543
4544 if (bfqq != bfqd->in_service_queue) {
4545 spin_unlock_irqrestore(&bfqd->lock, flags);
4546 return;
4547 }
4548
4549 if (bfq_bfqq_budget_timeout(bfqq))
4550 /*
4551 * Also here the queue can be safely expired
4552 * for budget timeout without wasting
4553 * guarantees
4554 */
4555 reason = BFQQE_BUDGET_TIMEOUT;
4556 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4557 /*
4558 * The queue may not be empty upon timer expiration,
4559 * because we may not disable the timer when the
4560 * first request of the in-service queue arrives
4561 * during disk idling.
4562 */
4563 reason = BFQQE_TOO_IDLE;
4564 else
4565 goto schedule_dispatch;
4566
4567 bfq_bfqq_expire(bfqd, bfqq, true, reason);
4568
4569schedule_dispatch:
6fa3e8d3 4570 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4571 bfq_schedule_dispatch(bfqd);
4572}
4573
4574/*
4575 * Handler of the expiration of the timer running if the in-service queue
4576 * is idling inside its time slice.
4577 */
4578static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4579{
4580 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4581 idle_slice_timer);
4582 struct bfq_queue *bfqq = bfqd->in_service_queue;
4583
4584 /*
4585 * Theoretical race here: the in-service queue can be NULL or
4586 * different from the queue that was idling if a new request
4587 * arrives for the current queue and there is a full dispatch
4588 * cycle that changes the in-service queue. This can hardly
4589 * happen, but in the worst case we just expire a queue too
4590 * early.
4591 */
4592 if (bfqq)
4593 bfq_idle_slice_timer_body(bfqq);
4594
4595 return HRTIMER_NORESTART;
4596}
4597
4598static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4599 struct bfq_queue **bfqq_ptr)
4600{
4601 struct bfq_queue *bfqq = *bfqq_ptr;
4602
4603 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4604 if (bfqq) {
e21b7a0b
AA
4605 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4606
aee69d78
PV
4607 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4608 bfqq, bfqq->ref);
4609 bfq_put_queue(bfqq);
4610 *bfqq_ptr = NULL;
4611 }
4612}
4613
4614/*
e21b7a0b
AA
4615 * Release all the bfqg references to its async queues. If we are
4616 * deallocating the group these queues may still contain requests, so
4617 * we reparent them to the root cgroup (i.e., the only one that will
4618 * exist for sure until all the requests on a device are gone).
aee69d78 4619 */
ea25da48 4620void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
4621{
4622 int i, j;
4623
4624 for (i = 0; i < 2; i++)
4625 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 4626 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 4627
e21b7a0b 4628 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
4629}
4630
4631static void bfq_exit_queue(struct elevator_queue *e)
4632{
4633 struct bfq_data *bfqd = e->elevator_data;
4634 struct bfq_queue *bfqq, *n;
4635
4636 hrtimer_cancel(&bfqd->idle_slice_timer);
4637
4638 spin_lock_irq(&bfqd->lock);
4639 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 4640 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
4641 spin_unlock_irq(&bfqd->lock);
4642
4643 hrtimer_cancel(&bfqd->idle_slice_timer);
4644
e21b7a0b
AA
4645#ifdef CONFIG_BFQ_GROUP_IOSCHED
4646 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4647#else
4648 spin_lock_irq(&bfqd->lock);
4649 bfq_put_async_queues(bfqd, bfqd->root_group);
4650 kfree(bfqd->root_group);
4651 spin_unlock_irq(&bfqd->lock);
4652#endif
4653
aee69d78
PV
4654 kfree(bfqd);
4655}
4656
e21b7a0b
AA
4657static void bfq_init_root_group(struct bfq_group *root_group,
4658 struct bfq_data *bfqd)
4659{
4660 int i;
4661
4662#ifdef CONFIG_BFQ_GROUP_IOSCHED
4663 root_group->entity.parent = NULL;
4664 root_group->my_entity = NULL;
4665 root_group->bfqd = bfqd;
4666#endif
36eca894 4667 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
4668 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4669 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4670 root_group->sched_data.bfq_class_idle_last_service = jiffies;
4671}
4672
aee69d78
PV
4673static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4674{
4675 struct bfq_data *bfqd;
4676 struct elevator_queue *eq;
aee69d78
PV
4677
4678 eq = elevator_alloc(q, e);
4679 if (!eq)
4680 return -ENOMEM;
4681
4682 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4683 if (!bfqd) {
4684 kobject_put(&eq->kobj);
4685 return -ENOMEM;
4686 }
4687 eq->elevator_data = bfqd;
4688
e21b7a0b
AA
4689 spin_lock_irq(q->queue_lock);
4690 q->elevator = eq;
4691 spin_unlock_irq(q->queue_lock);
4692
aee69d78
PV
4693 /*
4694 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4695 * Grab a permanent reference to it, so that the normal code flow
4696 * will not attempt to free it.
4697 */
4698 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4699 bfqd->oom_bfqq.ref++;
4700 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4701 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4702 bfqd->oom_bfqq.entity.new_weight =
4703 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
4704
4705 /* oom_bfqq does not participate to bursts */
4706 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4707
aee69d78
PV
4708 /*
4709 * Trigger weight initialization, according to ioprio, at the
4710 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4711 * class won't be changed any more.
4712 */
4713 bfqd->oom_bfqq.entity.prio_changed = 1;
4714
4715 bfqd->queue = q;
4716
e21b7a0b 4717 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
4718
4719 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4720 HRTIMER_MODE_REL);
4721 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4722
1de0c4cd
AA
4723 bfqd->queue_weights_tree = RB_ROOT;
4724 bfqd->group_weights_tree = RB_ROOT;
4725
aee69d78
PV
4726 INIT_LIST_HEAD(&bfqd->active_list);
4727 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 4728 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
4729
4730 bfqd->hw_tag = -1;
4731
4732 bfqd->bfq_max_budget = bfq_default_max_budget;
4733
4734 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4735 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4736 bfqd->bfq_back_max = bfq_back_max;
4737 bfqd->bfq_back_penalty = bfq_back_penalty;
4738 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
4739 bfqd->bfq_timeout = bfq_timeout;
4740
4741 bfqd->bfq_requests_within_timer = 120;
4742
e1b2324d
AA
4743 bfqd->bfq_large_burst_thresh = 8;
4744 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4745
44e44a1b
PV
4746 bfqd->low_latency = true;
4747
4748 /*
4749 * Trade-off between responsiveness and fairness.
4750 */
4751 bfqd->bfq_wr_coeff = 30;
77b7dcea 4752 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
4753 bfqd->bfq_wr_max_time = 0;
4754 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4755 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
4756 bfqd->bfq_wr_max_softrt_rate = 7000; /*
4757 * Approximate rate required
4758 * to playback or record a
4759 * high-definition compressed
4760 * video.
4761 */
cfd69712 4762 bfqd->wr_busy_queues = 0;
44e44a1b
PV
4763
4764 /*
4765 * Begin by assuming, optimistically, that the device is a
4766 * high-speed one, and that its peak rate is equal to 2/3 of
4767 * the highest reference rate.
4768 */
4769 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4770 T_fast[blk_queue_nonrot(bfqd->queue)];
4771 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4772 bfqd->device_speed = BFQ_BFQD_FAST;
4773
aee69d78 4774 spin_lock_init(&bfqd->lock);
aee69d78 4775
e21b7a0b
AA
4776 /*
4777 * The invocation of the next bfq_create_group_hierarchy
4778 * function is the head of a chain of function calls
4779 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4780 * blk_mq_freeze_queue) that may lead to the invocation of the
4781 * has_work hook function. For this reason,
4782 * bfq_create_group_hierarchy is invoked only after all
4783 * scheduler data has been initialized, apart from the fields
4784 * that can be initialized only after invoking
4785 * bfq_create_group_hierarchy. This, in particular, enables
4786 * has_work to correctly return false. Of course, to avoid
4787 * other inconsistencies, the blk-mq stack must then refrain
4788 * from invoking further scheduler hooks before this init
4789 * function is finished.
4790 */
4791 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4792 if (!bfqd->root_group)
4793 goto out_free;
4794 bfq_init_root_group(bfqd->root_group, bfqd);
4795 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4796
7535afcc 4797 wbt_disable_default(q);
aee69d78 4798 return 0;
e21b7a0b
AA
4799
4800out_free:
4801 kfree(bfqd);
4802 kobject_put(&eq->kobj);
4803 return -ENOMEM;
aee69d78
PV
4804}
4805
4806static void bfq_slab_kill(void)
4807{
4808 kmem_cache_destroy(bfq_pool);
4809}
4810
4811static int __init bfq_slab_setup(void)
4812{
4813 bfq_pool = KMEM_CACHE(bfq_queue, 0);
4814 if (!bfq_pool)
4815 return -ENOMEM;
4816 return 0;
4817}
4818
4819static ssize_t bfq_var_show(unsigned int var, char *page)
4820{
4821 return sprintf(page, "%u\n", var);
4822}
4823
2f79136b 4824static int bfq_var_store(unsigned long *var, const char *page)
aee69d78
PV
4825{
4826 unsigned long new_val;
4827 int ret = kstrtoul(page, 10, &new_val);
4828
2f79136b
BVA
4829 if (ret)
4830 return ret;
4831 *var = new_val;
4832 return 0;
aee69d78
PV
4833}
4834
4835#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4836static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4837{ \
4838 struct bfq_data *bfqd = e->elevator_data; \
4839 u64 __data = __VAR; \
4840 if (__CONV == 1) \
4841 __data = jiffies_to_msecs(__data); \
4842 else if (__CONV == 2) \
4843 __data = div_u64(__data, NSEC_PER_MSEC); \
4844 return bfq_var_show(__data, (page)); \
4845}
4846SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
4847SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
4848SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
4849SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
4850SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
4851SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
4852SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
4853SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 4854SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
4855#undef SHOW_FUNCTION
4856
4857#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4858static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4859{ \
4860 struct bfq_data *bfqd = e->elevator_data; \
4861 u64 __data = __VAR; \
4862 __data = div_u64(__data, NSEC_PER_USEC); \
4863 return bfq_var_show(__data, (page)); \
4864}
4865USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
4866#undef USEC_SHOW_FUNCTION
4867
4868#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4869static ssize_t \
4870__FUNC(struct elevator_queue *e, const char *page, size_t count) \
4871{ \
4872 struct bfq_data *bfqd = e->elevator_data; \
1530486c 4873 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
4874 int ret; \
4875 \
4876 ret = bfq_var_store(&__data, (page)); \
4877 if (ret) \
4878 return ret; \
1530486c
BVA
4879 if (__data < __min) \
4880 __data = __min; \
4881 else if (__data > __max) \
4882 __data = __max; \
aee69d78
PV
4883 if (__CONV == 1) \
4884 *(__PTR) = msecs_to_jiffies(__data); \
4885 else if (__CONV == 2) \
4886 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4887 else \
4888 *(__PTR) = __data; \
235f8da1 4889 return count; \
aee69d78
PV
4890}
4891STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
4892 INT_MAX, 2);
4893STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
4894 INT_MAX, 2);
4895STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
4896STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
4897 INT_MAX, 0);
4898STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
4899#undef STORE_FUNCTION
4900
4901#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4902static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
4903{ \
4904 struct bfq_data *bfqd = e->elevator_data; \
1530486c 4905 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
4906 int ret; \
4907 \
4908 ret = bfq_var_store(&__data, (page)); \
4909 if (ret) \
4910 return ret; \
1530486c
BVA
4911 if (__data < __min) \
4912 __data = __min; \
4913 else if (__data > __max) \
4914 __data = __max; \
aee69d78 4915 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
235f8da1 4916 return count; \
aee69d78
PV
4917}
4918USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
4919 UINT_MAX);
4920#undef USEC_STORE_FUNCTION
4921
aee69d78
PV
4922static ssize_t bfq_max_budget_store(struct elevator_queue *e,
4923 const char *page, size_t count)
4924{
4925 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4926 unsigned long __data;
4927 int ret;
235f8da1 4928
2f79136b
BVA
4929 ret = bfq_var_store(&__data, (page));
4930 if (ret)
4931 return ret;
aee69d78
PV
4932
4933 if (__data == 0)
ab0e43e9 4934 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
4935 else {
4936 if (__data > INT_MAX)
4937 __data = INT_MAX;
4938 bfqd->bfq_max_budget = __data;
4939 }
4940
4941 bfqd->bfq_user_max_budget = __data;
4942
235f8da1 4943 return count;
aee69d78
PV
4944}
4945
4946/*
4947 * Leaving this name to preserve name compatibility with cfq
4948 * parameters, but this timeout is used for both sync and async.
4949 */
4950static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
4951 const char *page, size_t count)
4952{
4953 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4954 unsigned long __data;
4955 int ret;
235f8da1 4956
2f79136b
BVA
4957 ret = bfq_var_store(&__data, (page));
4958 if (ret)
4959 return ret;
aee69d78
PV
4960
4961 if (__data < 1)
4962 __data = 1;
4963 else if (__data > INT_MAX)
4964 __data = INT_MAX;
4965
4966 bfqd->bfq_timeout = msecs_to_jiffies(__data);
4967 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 4968 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78 4969
235f8da1 4970 return count;
aee69d78
PV
4971}
4972
4973static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
4974 const char *page, size_t count)
4975{
4976 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4977 unsigned long __data;
4978 int ret;
235f8da1 4979
2f79136b
BVA
4980 ret = bfq_var_store(&__data, (page));
4981 if (ret)
4982 return ret;
aee69d78
PV
4983
4984 if (__data > 1)
4985 __data = 1;
4986 if (!bfqd->strict_guarantees && __data == 1
4987 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
4988 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
4989
4990 bfqd->strict_guarantees = __data;
4991
235f8da1 4992 return count;
aee69d78
PV
4993}
4994
44e44a1b
PV
4995static ssize_t bfq_low_latency_store(struct elevator_queue *e,
4996 const char *page, size_t count)
4997{
4998 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
4999 unsigned long __data;
5000 int ret;
235f8da1 5001
2f79136b
BVA
5002 ret = bfq_var_store(&__data, (page));
5003 if (ret)
5004 return ret;
44e44a1b
PV
5005
5006 if (__data > 1)
5007 __data = 1;
5008 if (__data == 0 && bfqd->low_latency != 0)
5009 bfq_end_wr(bfqd);
5010 bfqd->low_latency = __data;
5011
235f8da1 5012 return count;
44e44a1b
PV
5013}
5014
aee69d78
PV
5015#define BFQ_ATTR(name) \
5016 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5017
5018static struct elv_fs_entry bfq_attrs[] = {
5019 BFQ_ATTR(fifo_expire_sync),
5020 BFQ_ATTR(fifo_expire_async),
5021 BFQ_ATTR(back_seek_max),
5022 BFQ_ATTR(back_seek_penalty),
5023 BFQ_ATTR(slice_idle),
5024 BFQ_ATTR(slice_idle_us),
5025 BFQ_ATTR(max_budget),
5026 BFQ_ATTR(timeout_sync),
5027 BFQ_ATTR(strict_guarantees),
44e44a1b 5028 BFQ_ATTR(low_latency),
aee69d78
PV
5029 __ATTR_NULL
5030};
5031
5032static struct elevator_type iosched_bfq_mq = {
5033 .ops.mq = {
5bbf4e5a 5034 .prepare_request = bfq_prepare_request,
7b9e9361 5035 .finish_request = bfq_finish_request,
aee69d78
PV
5036 .exit_icq = bfq_exit_icq,
5037 .insert_requests = bfq_insert_requests,
5038 .dispatch_request = bfq_dispatch_request,
5039 .next_request = elv_rb_latter_request,
5040 .former_request = elv_rb_former_request,
5041 .allow_merge = bfq_allow_bio_merge,
5042 .bio_merge = bfq_bio_merge,
5043 .request_merge = bfq_request_merge,
5044 .requests_merged = bfq_requests_merged,
5045 .request_merged = bfq_request_merged,
5046 .has_work = bfq_has_work,
5047 .init_sched = bfq_init_queue,
5048 .exit_sched = bfq_exit_queue,
5049 },
5050
5051 .uses_mq = true,
5052 .icq_size = sizeof(struct bfq_io_cq),
5053 .icq_align = __alignof__(struct bfq_io_cq),
5054 .elevator_attrs = bfq_attrs,
5055 .elevator_name = "bfq",
5056 .elevator_owner = THIS_MODULE,
5057};
26b4cf24 5058MODULE_ALIAS("bfq-iosched");
aee69d78
PV
5059
5060static int __init bfq_init(void)
5061{
5062 int ret;
5063
e21b7a0b
AA
5064#ifdef CONFIG_BFQ_GROUP_IOSCHED
5065 ret = blkcg_policy_register(&blkcg_policy_bfq);
5066 if (ret)
5067 return ret;
5068#endif
5069
aee69d78
PV
5070 ret = -ENOMEM;
5071 if (bfq_slab_setup())
5072 goto err_pol_unreg;
5073
44e44a1b
PV
5074 /*
5075 * Times to load large popular applications for the typical
5076 * systems installed on the reference devices (see the
5077 * comments before the definitions of the next two
5078 * arrays). Actually, we use slightly slower values, as the
5079 * estimated peak rate tends to be smaller than the actual
5080 * peak rate. The reason for this last fact is that estimates
5081 * are computed over much shorter time intervals than the long
5082 * intervals typically used for benchmarking. Why? First, to
5083 * adapt more quickly to variations. Second, because an I/O
5084 * scheduler cannot rely on a peak-rate-evaluation workload to
5085 * be run for a long time.
5086 */
5087 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5088 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5089 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5090 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5091
5092 /*
5093 * Thresholds that determine the switch between speed classes
5094 * (see the comments before the definition of the array
5095 * device_speed_thresh). These thresholds are biased towards
5096 * transitions to the fast class. This is safer than the
5097 * opposite bias. In fact, a wrong transition to the slow
5098 * class results in short weight-raising periods, because the
5099 * speed of the device then tends to be higher that the
5100 * reference peak rate. On the opposite end, a wrong
5101 * transition to the fast class tends to increase
5102 * weight-raising periods, because of the opposite reason.
5103 */
5104 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5105 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5106
aee69d78
PV
5107 ret = elv_register(&iosched_bfq_mq);
5108 if (ret)
37dcd657 5109 goto slab_kill;
aee69d78
PV
5110
5111 return 0;
5112
37dcd657 5113slab_kill:
5114 bfq_slab_kill();
aee69d78 5115err_pol_unreg:
e21b7a0b
AA
5116#ifdef CONFIG_BFQ_GROUP_IOSCHED
5117 blkcg_policy_unregister(&blkcg_policy_bfq);
5118#endif
aee69d78
PV
5119 return ret;
5120}
5121
5122static void __exit bfq_exit(void)
5123{
5124 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
5125#ifdef CONFIG_BFQ_GROUP_IOSCHED
5126 blkcg_policy_unregister(&blkcg_policy_bfq);
5127#endif
aee69d78
PV
5128 bfq_slab_kill();
5129}
5130
5131module_init(bfq_init);
5132module_exit(bfq_exit);
5133
5134MODULE_AUTHOR("Paolo Valente");
5135MODULE_LICENSE("GPL");
5136MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");